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Abstract—A numerical study has been carried out to under-
stand the influences of barrier arrangements on the discharge
characteristics of dielectric barrier discharge (DBD). A 1.5-di-
mensional (1.5-D) modeling is considered in the arrangements
of bare, single-barrier, and double-barrier electrodes while a
two-dimensional (2-D) approach is employed in a configuration of
ferroelectric packed discharge (FPD). Numerical simulations show
that the evolution of microdischarges in DBD occurs sequentially
in the three distinctive phases of avalanche, streamer, and decay,
and that the dielectric barriers make streamer discharges stabi-
lized and sustained in lowered electric fields without transition
to spark compared with no barrier case. Especially, the highly
nonuniform strong electric field effect created by the pellets
appears to be formed in FPD, which enables the flue gas cleaning
to be expected to enhance the decomposition efficiency.

Index Terms—Barrier arrangement effect, dielectric barrier dis-
charge (DBD), ferroelectric packed discharge (FPD), numerical
modeling.

I. INTRODUCTION

T
HE DIELECTRIC barrier discharge (DBD) is one of the

important sources for generating nonequilibrium plasmas

in the atmospheric pressure [1]. As a typical example of its

practical application to the daily life, it has been successfully

used to commercialize the production of ozone for air cleaning

and sterilization during the past century. Recently, with the re-

newed interests in applications of atmospheric nonequilibrium

plasmas [2], [3], a great deal of effort has been attempted to use

the DBD in other applications such as flue gas decomposition,

surface treatments, high-power lasers, eximer UV light sources,

and plasma display panels [4].

Several technical methods have been suggested to control

electron energy for generating the effective nonequilibrium at-

mospheric-pressure plasma by the DBD usable for practical ap-

plications. One of them is a proper choice of barrier materials

and geometry inserted between the electrodes in DBD reactors.

The ferrolectric packed discharge (FPD) is another form of DBD

with a pellet-geometry by inserting ferroelectric pellets between
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the plate-electrodes covered with dielectric barriers. Currently,

the FPD is widely studied, because it is not only simpler and

more economical in varying the power supply than the con-

ventional DBD, but also highly efficient in decomposition of

volatile organic compounds (VOCs) [5].

In order to understand the influences of these technical modi-

fications on the microdischarges usually observed during DBD,

numerical simulation is essential for resolving the difficulties

met in the measurements due to limited range and rapid devel-

opment of the discharge in DBD. To date, there have been lots

of reports on numerical studies dealing with DBD. Braun et al.

[6] explained discharge characteristics in the single barrier dis-

charge by a 1.5-dimensional (1.5-D) approach, and Oda et al.

[7] also analyzed a Xe excimer lamp having an arrangement

of double barrier discharge by a 1.5-D way. Eliasson et al. [8]

showed the formation and decay of single microdischarge com-

bined with reaction chemistry in a single barrier reactor. How-

ever, it is almost rare to find direct comparisons of plasma mod-

eling among various barrier arrangements in the parallel-plate

geometry in the previous work. Even though many experimental

results revealed higher decomposition rates of flue gases in FPD

reactors, it is still hard to explain the ferroelectric pellet ef-

fects on the decomposition due to the geometrical complexity

of reactors.

In this work, numerical modeling on the parallel-plate DBD

reactors with various barrier arrangements, as shown in Fig. 1,

is carried out to understand the influences of different barrier ar-

rangements on the evolution and characteristics of discharges.

By a 1.5-D finite-difference method (FDM), discharge char-

acteristics are described and compared in terms of discharge

currents in different discharge cases of bare electrode, single-

dielectric barrier, and double dielectric barriers. On the other

hand, a two-dimensional (2-D) finite-element method (FEM) is

used for the FPD modeling to reflect its complex pellet geom-

etry, and the ferroelectric pellet effects are discussed with elec-

tron density and electric field in the single and double pellet

cases.

II. MODELING OF DBDS

A. Computational Domains

The computational domains employed in this numerical

study are presented in Fig. 2. Fig. 2(a) depicts a schematic of

1.5-D single-streamer model for a parallel-plate DBD using the

so-called disk method, and Fig. 2(b) describes an unstructured
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Fig. 1. Parallel-plate DBD reactors with various barrier arrangements.
(a) Bare electrodes. (b) Single dielectric barrier. (c) Double dielectric barriers.
(d) Ferroelectric pellets packed in the discharge gap.

triangular grid system in a 2-D model for FPD with double

pellets inside a double-barrier DBD reactor. In the 1.5-D

model, the dielectric barriers with relative permittivity are

placed on the anode and cathode surfaces which are located

at and , respectively, and the locations of barrier

surfaces exposed to air in the discharge gap are

assumed to be and . Voltage drops across the barriers are

represented as and , and is the discharge voltages

between the barriers. In the 2-D model, the two electrodes at

the top and bottom of the chamber are covered with dielectric

materials, and a single pellet or double ones placed on the

cathode dielectric barrier surface.

B. Fluid Equations

The motions of electrons, positive ions, and negative ions in

DBD are described by a set of the following continuity equations

[9], [10]:

(1)

(2)

(3)

where , and are the number densities of electron, pos-

itive ion, and negative ion, respectively. , and are the

drift velocities of plasma species, and is the diffusion coeffi-

cient of electron. and are the coefficients of electron impact

ionization and electron attachment, respectively, and is the co-

efficient of secondary emission.

The governing equations (1)–(3) used for the present DBD

and FPD simulations only include the direct interactions of elec-

trons and photons with neutral gas particles, such as electron im-

pact ionization, electron attachment, and photon impact ioniza-

tion. Excited molecules and their respective indirect processes,

such as stepwise ionization by metastable molecules and photo-

excitation, are not taken into account because the densities of

(a)

(b)

Fig. 2. (a) Schematic diagram of 1.5-D single-streamer model for DBD
using the disk method. (b) Computational domain of 2-D model for FPD in an
unstructured triangular grid with double pellets inside a double-barrier DBD
reactor.

such excited molecules produced by streamers still remain far

below the neutral gas density in atmospheric pressure.

For simulating the discharge in an atmospheric dry air, the ex-

pressions for the transport and interaction properties appeared in

(1)–(3) are presented as a function of electric field strength in

Table I [9]. Especially, the coefficient of secondary emission

for air is chosen from the experimental results in [11].

C. Electric Field Calculations

In the 1.5-D simulation for a simple parallel-plate geometry

of DBD, the disk method developed by Davies et al. [12] is ap-

plied since the one-dimensional (1-D) Poisson’s equation has

limitations to describe a discharge range during the highly lo-

calized microdischarges. The externally applied electric field

is first obtained from Laplace’s equation. Then, the elec-

tric field affected by space charges in the discharge range

is calculated by assuming a single cylindrical channel of mi-

crodischarge as a set of infinitesimally thin disks in a streamer

with radius as depicted in Fig. 2(a)

(4)
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TABLE I
CALCULATION DATA USED IN THIS SIMULATION FOR THE PLASMA TRANSPORT

AND INTERACTION PROPERTIES [9] IN (1)–(3)

where is the surface charge density on the thin disk. The radius

of streamer is assumed as 200 m. Total electric field is

then determined by the summation of and .

In the 2-D simulation for FPD reflecting its geometrical com-

plexity, the electrostatic potential and electric field are cal-

culated from Poisson’s equation

(5)

(6)

where is the relative permittivity of dielectric material, is the

charge of electron, and is the net space charge in the channel.

In the 1.5-D simulation, a current equation given by Sato [13]

is employed for the calculation of the current flowing through

the external circuit of the discharge reactor due to the motions

of electrons and positive ions in a very short time scale of the

discharge

(7)

D. Boundary Conditions

At the plasma-barrier interfaces, all the incoming electron and

ion fluxes, and , toward the dielectric barriers are as-

sumed to be accumulated as surface charges on the barrier sur-

faces. Therefore, surface charge densities and can be

calculated from

(8)

where is the normal vector directed from plasma to dielectric

barrier.

The boundary values of electric potential at the two electrodes

are

at the anode at the cathode (9)

In addition, the boundary conditions of electric field and

electric potential at the plasma-barrier interfaces and pellets are

calculated reflecting the modifications by accumulated surface

charges from Gauss’ theorem with charge sources included

(10)

(11)

When the DBD reactor is operated in a reactor with a single

barrier placed on the anode surface, the secondary emission due

to photon impacts at the cathode is taken into account. In gen-

eral, as is often the case with the secondary emission by ion

bombardments on the cathode, the secondary emission coeffi-

cient by photon impacts can be implicitly described by a

current equation

(12)

where

(13)

Here, is the probability of effective photoelectric emission

due to radiation from the gas, is the geometrical factor which

specifies the fraction of photons heading for the cathode, is

the number of excited states owing to electron collisions per

unit length in the field direction, is the ionization coefficient,

and is the coefficient of radiation absorption (attenuation).

In numerical calculations, the electron density at the cathode is

usually determined by [14]

(14)

where is the peak electron density at the electrode. Although

is normally dependent on the electrode material and its sur-

face condition as well as the discharge gas [15], it is assumed

to be 0.01 in this numerical modeling for the bare copper elec-

trode in atmospheric dry air. An initial value of electron density

is taken as 10 cm from an assumption that seed elec-

trons are located just in front of the electrode at the beginning

of discharge.

E. Numerical Methods

An FDM is adopted for the 1.5-D simulation of DBD by using

the disk method, while an FEM is used for the 2-D simulation of

FPD in the unstructured triangular grid systems for the two cases

of a single ferroelectric pellet and vertically-stacked double fer-

roelectric pellets. A flux-corrected transport algorithm is ap-

plied, in which upwind and Lax–Wendroff schemes are used

for calculations of the low- and high-order parts, respectively.

Then, their numerical outcomes are corrected as the final simu-

lation results using the method suggested by Zalesak [16].

III. NUMERICAL RESULTS AND DISCUSSION

A. Discharge Characteristics in DBD

For the 1.5-D calculations of DBD with a single barrier placed

on the anode in Fig. 1(b), the thickness of a dielectric barrier

with relative permittivity of 8 is 2 mm and a discharge gap is
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(a) (b)

(c) (d)

Fig. 3. Discharge characteristics in a single-barrier DBD. Temporal developments of: (a) electron number density; (b) total electric field in the streamer discharge;
(c) time histories of discharge current; and (d) discharge voltages dividend by the discharge gap and barrier.

2 mm. The seed electrons are assumed to be initially distributed

in front of the cathode with a Gaussian shape, of which peak

electron density is 10 cm . An external voltage of 11.2 kV is

applied between the two electrodes to produce a uniform electric

field of 50 kV/cm in the air gap in the absence of discharge.

Fig. 3 shows the evolutions of (a) electron density, (b) electric

field, (c) discharge current, and (d) discharge voltage during

a discharge period, respectively. The discharge characteris-

tics in the single-barrier DBD can be classified into three

phases—avalanche, steamer, and decay.

1) Avalanche Phase (0–8 ns): The seed electrons released

from the cathode at ns begin to drift and multiply them-

selves until they reach the barrier attached to the anode. Due to

negligible space charge effects, there is negligible disturbance

to the initial uniform electric field. Consequently, the discharge

current is nearly zero and the discharge voltage sustains its ini-

tial value.

2) Streamer Phase (8–11.4 ns): After the electrons reach the

barrier, a streamer formation occurs. Increase in electric field

of the streamer head is observed and the discharge current be-

gins to increase while the discharge voltage decreases. As the

streamer approaches the cathode, the electric field rapidly in-

creases and has its highest value when the streamer strikes the

cathode at 11.4 ns. At this moment, the discharge current shows

its maximum value, and the discharge voltage falls down while

most of the external voltage appears to be applied in the barrier.

Finally, a streamer channel is created between the barrier and

cathode, and the electron density within the channel is about

10 –10 cm .

3) Decay Phase (11.4 ns-): After the streamer phase, the

electric field within the discharge region decreases and the dis-

charge is gradually extinguished. The discharge current also de-

creases and finally becomes zero. This phase indicates that the

accumulated surface charges on the dielectric barrier play an

important role of reducing the discharge voltage.

B. Influences of Barrier Plate Arrangements on Discharge

Characteristics in DBDs

Additional calculations are accomplished in the cases of

bare-electrode discharge [Fig. 1(a)] and double-barrier DBD

[Fig. 1(c)] to compare with single-barrier DBD [Fig. 1(b)]. The

discharge gap and initial uniform electric field in each case are
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Fig. 4. Time history of discharge currents during a single-streamer discharge
period in bare-electrode, single-barrier, and double-barrier discharges.

kept with the same conditions as the single-barrier case given

in the previous Section III-A-1.

In the discharge current profiles, the tendencies of electron

avalanche and streamer propagation are turned out to be qualita-

tively similar to each other in the avalanche, and streamer phase,

but the different characteristics are found in the later phase.

Fig. 4 shows the temporal profiles of discharge current obtained

from the three cases. Discharge currents of all cases are negli-

gibly increased up to 8 ns, among which the bare electrode dis-

charge shows the highest value. After that, each current rapidly

increases until the streamer hits a surface of the cathode or the

barrier covered on the cathode and the closed circles in Fig. 4

indicate those moments. Even in this event, the bare electrode

discharge still has the highest current value and finally blows

up to infinity. Since the discharge voltage in the bare electrode

discharge is always constant, the external electric field is also

sustained. This makes overall electron density increase to a cer-

tain extent and finally the discharge comes to meet an unavoid-

able spark stage. On the other hand, in the barrier discharge,

the discharge current decreases after its maximum point. It is,

therefore, believed that the discharge voltage is lowered due to

the accumulated surface charges preventing excessive discharge

currents from transiting to spark.

In the double-barrier discharge, even though the effects of

electrodes are removed, the current profile resembles that of the

single-barrier discharge with a slightly lower current level. That

is why the external electric field is reduced additionally by the

accumulated surface charges on the barrier at the cathode.

C. Discharge Characteristics in FPDs

1) FPD With a Single Ferroelectric Pellet: In the present

discharge case with a single pellet in the parallel-plate DBD, the

diameter of ferroelectric pellet with relative permittivity of 10 is

1 mm, and the thickness of dielectric barriers with relative per-

mittivity of 8 is 1 mm in the discharge gap distance of 2 mm. The

external electric voltage applied to the electrodes is 12 kV, and

a spatially uniform electron distribution of 1 cm is used as an

initial condition. Fig. 5 presents the calculated distributions of

Fig. 5. Distributions of electron density (left column) and electric field
strength (right column) in FPD with a single pellet inside a double-barrier
DBD reactor.

electron density and electric field strength. From the beginning

of discharge, the locally concentrated high electric field (about

250 kV/cm) due to the polarization of the ferroelectric pellet

yields spatially nonuniform electron multiplications as seen in

corona discharges, especially near the interface between pellet

and cathode dielectric barrier and on the top surface of the pellet.

By these multiplied electrons in the discharge region, the neg-

ative streamer start to develop like corona discharge as seen in

Fig. 5(a). At 10.0 ns, the negative streamer arrives at the anode

dielectric surface and a discharge channel is then created. After

the streamers hit upon the dielectric and pellet surfaces, electric

fields decrease in the streamer channel and the streamers prop-

agate along the dielectric and pellet surfaces due to the highly

localized electric fields on the surfaces as shown in Fig. 5(d).

2) FPD With Stacked Double Ferroelectric Pellets: When

double ferroelectric pellets are used inside the double-barrier

DBD reactor, they are vertically stacked between the anode and

cathode dielectric barriers with the same conditions given previ-

ously. Fig. 6 shows the calculated results of the distributions of

electron density and electric field strength. Similar to the single

pellet case, locally concentrated nonuniform electric fields are

initially created at the interfaces between the two pellets or be-

tween the pellet and plate barriers, with very high field strength

up to about 350 kV/cm. After 0.9 ns, multiplied electrons at the

interfaces spread themselves along the pellet surfaces. At 1.0 ns,

the surface discharges appeared along the outer boundaries of

barriers and pellets make electric fields decrease remaining the

high-electron density.
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Fig. 6. Distributions of electron density (left column) and electric field
strength (right column) in FPD with stacked double pellets inside a
double-barrier DBD reactor.

IV. CONCLUSION

A numerical simulation of dielectric barrier discharges has

been accomplished with surface charge behaviors on the dielec-

tric barriers in order to understand the characteristics of mi-

crodischarges influenced by various barrier arrangements.

The geometrical effects of dielectric barriers on microdis-

charges have been considered by the 1.5-D FDM for DBD with

parallel-plate barrier configurations, and the 2-D FEM for FPD

with ferroelectric pellets. According to the simulation results,

for the parallel-plate geometry with a single-barrier, the three

microdischarge phases—avalanche, streamer, and decay—are

observed during the discharge period. The electric field strength

is enhanced as the streamer approaches the cathode, and finally,

a channel is created across the discharge region in which the

electron density is about 10 –10 cm .

The different microdischarge characteristics have been com-

pared in the arrangements of bare, single-barrier, and double-

barrier electrodes of the DBD reactors. In the bare-electrodes

case, the streamer is eventually transformed to spark with a rapid

increase of discharge current. A dielectric barrier inserted be-

tween the two electrodes makes the overall electric field lower,

and suppresses the transition of streamer to spark. When double-

barriers are used, the electric field is lowered a bit more than that

of the single-barrier case.

In the single pellet geometry of FPD, the 2-D simulation il-

lustrates the similar effects of ferroelectric pellet as those of

the plate dielectric barriers. Moreover, the pellet generates the

nonuniform electric field distribution inside the discharge re-

gion and governs the discharge characteristics available in the

corona discharge. In the case of FPD with stacked double pel-

lets, only the surface discharge with high-electric field is ob-

served. Hence, such calculated results may be a key to explain

why the FPD has shown high efficiencies in flue gas decompo-

sitions resulted from the higher electron energy in the FPD due

to the nonuniform electric field effect created by pellets.
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