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Abstract: Hydrogen refueling stations are one of the key infrastructure components for the hydrogen-
fueled economy. Skid-mounted hydrogen refueling stations (SHRSs) can be more easily commer-
cialized due to their smaller footprints and lower costs compared to stationary hydrogen refueling
stations. The present work modeled hydrogen explosions in a skid-mounted hydrogen refueling
station to predict the overpressures for hydrogen-air mixtures and investigate the protective effects
for different explosion vent layouts and protective wall distances. The results show that the explo-
sive vents with the same vent area have similar overpressure reduction effects. The layout of the
explosion vent affects the flame shape. Explosion venting can effectively reduce the inside maximum
overpressure by 61.8%. The protective walls can reduce the overpressures, but the protective walls
should not be too close to the SHRS because high overpressures are generated inside the walls due
to the confined shock waves. The protective wall with a distance of 6 m can effectively protect the
surrounding people and avoid the secondary overpressure damage to the container.

Keywords: hydrogen safety; skid-mounted hydrogen refueling stations; vented explosion;
protective wall

1. Introduction

Environmental pollution and resource shortages have become increasingly serious
due to the extensive use of fossil fuels. Hydrogen plays an important role in a long-term
transition toward a clean and sustainable future because hydrogen is clean, sustainable,
and abundant [1–4]. However, hydrogen infrastructure is now insufficient for the commer-
cialization of fuel cell vehicles, especially hydrogen refueling stations [5]. Skid-mounted
hydrogen refueling stations (SHRSs) have the advantages of a small footprint, short con-
struction time, and low cost, which can be more easily commercialized [6]. Hydrogen
safety is important for the large-scale commercialization of SHRSs. Hydrogen is a fuel
with similar dangerous properties as methane and gasoline [7]. The physical properties of
hydrogen, methane, and gasoline are shown in Table 1. The hydrogen flammability range
is very wide compared to other fuels. The energy required to initiate hydrogen combustion
is much lower than that required for other common fuels, and the hydrogen flame is much
more likely to progress to a widespread deflagration, or even to a detonation, than methane
or gasoline flames [8].

Table 1. Properties of hydrogen, methane, and gasoline [9,10].

Properties Hydrogen Methane Gasoline

Gas Density (kg/m3) 0.0808 0.643 1.767
Diffusion Coefficient (cm2/s) 0.61 0.16 0.05
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Table 1. Cont.

Properties Hydrogen Methane Gasoline

Lower Flammability Limit (Volume %) 4 5.3 2.2
Upper Flammability Limit (Volume %) 75 15 9.5

Flame Radiation Fraction (%) 17~25 23~33 30~42
Minimum Ignition Energy (mJ) 0.02 0.29 0.24
Auto-ignition Temperature (K) 858 813 505

Burning Velocity (cm/s) 265~325 37~45 37~43
Stoichiometric Concentration (Volume %) 29.53 9.48 1.76

The SHRS is a congested space, in which the leaked hydrogen will be confined and
accumulate to form a dangerous explosive gas mixture [11,12]. Once the gas mixture is
ignited, the explosion will harm the people and equipment inside and outside the container
if there are no explosion protection measures. Explosion venting is commonly used in
the process industries as a prevention solution to protect equipment or buildings against
excessive internal pressure caused by an internal explosion [13]. The size of explosion
vent openings and the degree of congestion within a building are key factors in structural
damage following an explosion [14]. The maximum explosion peak overpressure occurs
inside the room, and the explosion peak overpressure gradually decreases as the vent
size increases [15]. Studies of explosions in confined spaces with built-in obstacles have
shown that obstacles can cause increased turbulence and flame instability, resulting in
flame acceleration [16]. The location of the ignition in the enclosed space also has an impact
on the detonation; setting up a detonation port near the ignition source area can effectively
reduce the overpressure [17]. Several studies on explosion venting used the premixing of
combustible gases to evaluate explosion overpressure behaviors [18,19]. The maximum
length and duration of the external flame rises and then falls with the increasing hydrogen
concentration [20]. Explosion venting effectively reduces the internal overpressure of the
container to protect people and equipment inside the container, but it cannot reduce the
overpressure damage outside the container. Once the hydrogen mixture is ignited, the
explosion will harm nearby people and facilities. Protective walls can protect the nearby
personnel and equipment and reduce the separation distances with the proper size in the
leak direction [21–24]. Higher walls can block more pressure waves and jet flames [25].
However, when the protective wall height reaches a certain value, further increase of
the wall height cannot significantly promote greater protective effects [26]. Numerical
modeling has been widely used to analyze the circulation phenomena near the wall, the
development law of shock wave flows, and the development of reflection and flow around
the wall [27–30].

However, most existing studies of vented explosions have focused on the size of
explosion vents and the concentrations of premixed fuel, with few analyses of the explosion
vent layouts in SHRSs. The studies of protective walls have focused on the wall heights and
the development law of shock wave flows, with few analyses of the wall distances from the
container. Therefore, the present work modeled hydrogen explosions in a skid-mounted
hydrogen refueling station to predict the overpressures for hydrogen-air mixtures and
investigate the protective effects of different explosion vent layouts and protective wall
distances from the SHRS.

2. CFD Model
2.1. Modeling Approach

The premixed hydrogen explosions were modeled using FLACS software, which
was developed by Gexcon and validated for hydrogen applications [31–33]. The SIMPLE
pressure correction algorithm is applied [34] and extended to handle compressible flows,
with additional source terms for the compression work in the enthalpy equation. Iterations
are repeated until a mass residual of less than 10−4 is obtained. A standard k-ε turbulence
model is used for turbulent modeling.
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In FLACS, the solution convergence process is decided by the Courant–Friedrichs–
Lewy (CFL) number. The length of time step becomes adaptive by adjusting the speed of
sound (CFLC) and the fluid flow velocity (CFLV) to meet CFL number stability criteria. The
FLACS user manual suggests that the calculation of the explosion should use CFLC = 5
and CFLV = 0.5 [35].

2.2. Modeling Validation

In this study, experimental data in the literature were used to further validate the
accuracy of the numerical results. The experimental data were obtained from experiments
performed in a 64 m3 explosion test chamber. The overall dimensions of the chamber
were 4.6 × 3.0 × 4.6 m3, with a square vent of 5.4 m2 located on one of the vertical walls.
Four pressure transducers were mounted to the chamber: one at the center of the wall
opposite the vent, one on the wall containing the vent, and two on a wall perpendicular
to the vent. A hydrogen-air mixture was supplied by injecting the pure fuel through an
inlet at the floor of the chamber while mixing fans within the chamber were used to create
a uniform mixture [36]. This study used a geometric model of the same size as in the
experiment, as shown in Figure 1a, and used the 90,000 element mesh for calculation. The
ambient conditions were the static wind, and the ambient temperature was 25 ◦C. An 18%
vol hydrogen-air mixture filled the chamber. The ignition point was at the center of the
container, and monitoring points were set up at locations corresponding to the experiments.
The comparison between the calculated overpressures and experimental data are shown
in Figure 1b, which shows that the trend of overpressures agrees with the experimental
data. Therefore, the FLACS software shows excellent performance in the simulation of
hydrogen explosions.
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Figure 1. (a) Grid for validation, (b) comparison of calculated and measured overpressures of the
explosion in a chamber.

2.3. Geometry
2.3.1. Explosion Vent Layouts

The model geometry shown in Figure 2 represents a skid-mounted hydrogen refueling
station. The container was 9.5 m long, 2.5 m wide, and 2.5 m high. In this study, the
explosion vented area was calculated to be 12 m2, according to the GB 50516-2010 Technical
Code for Hydrogen Fuelling Station (2021 Edition) and the GB 50016-2014 Code for Fire
Protection design of Buildings (2018 Edition). Three different explosion vent layouts were
installed on the top of the SHRS container. The explosion vent areas were the same for
different vent layouts. This study used the stoichiometric concentration of hydrogen in the
air (29.6%) to model the most severe hydrogen explosion and analyzed the protective effect
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of the vent on the SHRS. The PLC control cabinet is prone to electric leakage and static
electricity; thus, the PLC control cabinet was set as the ignition region. The ignition region
and hydrogen-air premixed region are shown in Figure 3. The environment was set as
static wind conditions, and the ambient air temperature was 20 ◦C. The calculation domain
was 30 m × 25 m × 15 m. The core area of the explosion around the SHRS container was
locally refined to ensure the calculation accuracy and capture the details of the explosion.
The explosion venting calculations used the 913,000 element mesh in this study.
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2.3.2. Protective Wall Layouts

The SHRS needs to set aside space for refueling when setting up protective walls.
Therefore, protective walls were installed behind the dispenser. The protective walls were
3.5 m high and at a distance of 2 m, 4 m, and 6 m from the SHRS, as shown in Figure 4.
The ignition region and hydrogen-air premixed region are shown in Figure 3. The ambient
air temperature was 20 ◦C, and the environment is windless. The calculation domain was
28 m × 28 m × 15 m. The calculation areas of X and Y directions were reduced because
the protective wall limited the development of shock waves and flames. The core area
of the explosion was locally refined, and the boundary mesh was stretched to reduce the
number of mesh and reduce the calculation time. The protective wall calculations used the
620,000 element mesh in this study. Seventeen monitoring points were set up to record the
hydrogen overpressures in the cabinet and the operating area, as shown in Figure 5.
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2.4. Explosion Overpressure Harm Criteria

Hydrogen explosions cause shock waves with overpressures that can lead to different
levels of harm to nearby personnel and equipment. The injury to the auditory organs and
internal organs was used to determine the damage caused by overpressure on a person.
The damage to windows, walls and other building structures was used to determine the
damage to the building from overpressures. The injury standards shown in Table 2 were
used to determine the risk associated with a hydrogen explosion. The affected areas and
safety distances for specific accidents were determined based on these injury standards
to ensure the safety of people around the equipment and to provide reference data for
emergency response plans for hydrogen production systems [37].

Table 2. Overpressure damages to buildings and humans (Reprinted with permission from Ref. [38]).

Overpressure (bar) Damage to Buildings Human Injury

0.20~0.30 Partial damage Slight injury
0.30~0.50 Significant damage Moderate injury, such as hearing injuries and bone fractures
0.50~1.00 Serious damage or destruction Serious injury to human viscera

>1.00 Residential structures collapse Most people die

3. Effects of Explosion Vents

The calculated temperatures for various explosion vent layouts are shown in Figure 6.
Premixed hydrogen flammable clouds ignited at the back of the PLC control cabinet and the
flame spread from the vicinity of the ignition area to the surrounding area. The hydrogen
flame heights are similar, but the flame shapes are different after 0.132 s. The maximum
flame heights of the 3 vent layouts were about 8 m after the hydrogen flame burning 0.2 s.
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The temperature inside the container decreases with the development of the flame. The
hydrogen flammable clouds easily accumulate in the gap of the hydrogen storage tank, thus
there is still a high-temperature flame burning in the storage tank area after 5 s of ignition.
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The calculated overpressures for various explosion vent layouts are shown in Figure 7.
The premixed hydrogen flammable cloud ignited, and the pressure wave propagated from
the middle of the container in all directions. The pressure wave developed outside the tank
through the explosion vents after 0.018 s. The overpressure increased when the shock wave
developed to the hydrogen storage tank area, and the maximum overpressure was about
9.28 bar, which could lead to the destruction of steel structures, the dislodging of hydrogen
storage tanks, and the damage of tank valves. Therefore, hydrogen storage tanks should
be placed separately outside the container of SHRS. The maximum overpressure in the
container was 11.89 bar when there were no explosion vents in the SHRS. Explosion vents
can effectively reduce the overpressure, compared with the container without the explosion
vents. The effects of different vent layouts on the explosion overpressure distributions
are minor.
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Figure 7. Overpressures at various times for various explosion vent layouts (a–c).

The evolution of the hydrogen overpressures for various explosion vent layouts inside
the container is shown in Figure 8a. The maximum overpressure inside the container
without the explosion vents was 1.78 bar, which would cause severe damage to people and
equipment inside the container. The explosion venting reduced the maximum overpressure
inside the container by 61.83%, but the people and equipment inside the container would
suffer serious overpressure injuries. The evolution of the hydrogen overpressures for
various explosion vent layouts outside the container is shown in Figure 8b. The maximum
pressure outside the container without the explosion vents was 0.91 bar, which would
cause serious injuries to the nearby people and facilities. The explosion venting reduced
the maximum overpressure outside the container by 29.07%, but the people and facilities
outside the container would still suffer serious overpressure injuries. The overpressure
curve of the three different vent layouts approximately overlaps; hence, the explosion vent
layouts do not affect the explosion venting effects.
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4. Effects of Protective Walls

The calculated overpressures at 1.4 m height for various protective wall distances
are shown in Figure 9. When the combustible hydrogen cloud ignited after 0.028 s, the
explosion generated a shock wave that reached the location of the protective wall at
a distance of 2 m, and the pressure near the protective wall increased to 1 bar. The
overpressure in the corner of the 2 m protective wall was 2.6 bar after 0.04 s of ignition, and
there was still about 1 bar of overpressure near the ignition source in the container, which
could cause serious injuries to the people and equipment. The front and side protective
walls of SHRSs are more damaged by explosion overpressure. The protective walls can
significantly limit the range of overpressure damage from the explosion.

The overpressures at monitoring points inside and outside the protective walls at
different distances in front of the SHRS are shown in Figure 10. The maximum overpres-
sures were 0.86 bar inside the wall and 0.04 bar outside the wall when the distance of the
protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the
maximum overpressure in front of the container by 94.9%, as shown in Figure 10a. The
maximum overpressures were 0.85 bar inside the wall and 0.04 bar outside the wall when
the distance of the protective wall was 4 m. Setting a protective wall at a distance of 4 m
could reduce the maximum overpressure in front of the container by 95.9%, as shown in
Figure 10b. The reflected secondary peak overpressure was 0.97 bar when the distance
of the protective wall was 2 m and 0.80 bar when the distance of the protective wall was
4 m; therefore, the 2 m and 4 m protective walls are too close to the container, and the
secondary peak overpressure could cause serious injuries to the container. The maximum
overpressures were 0.78 bar inside the wall without the secondary peak overpressure and
0.05 bar outside the wall when the distance of the protective wall was 6 m. Setting a
protective wall at a distance of 6 m could reduce the maximum overpressure in front of the
container by 94.9%, as shown in Figure 10c. Therefore, the protective walls can reduce the
overpressure damage in front of the SHRS to a safe range, and the separation distance of
6m in front of the container is more appropriate.

The overpressures at monitoring points inside and outside the protective walls at
different distances on the side of the SHRS are shown in Figure 11. The maximum over-
pressures were 0.82 bar inside the wall and 0.05 bar outside the wall when the distance of
the protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the
maximum overpressure on the side of the container by 93.4%, as shown in Figure 11a. How-
ever, the 2 m protective walls were too close to the container, thus the peak overpressure
could cause serious injuries to the people and equipment inside the protective walls. The
maximum overpressures were 0.37 bar inside the wall and 0.06 bar outside the wall when
the distance of the protective wall was 4 m. Setting a protective wall at a distance of 4 m
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could reduce the maximum overpressure on the side of the container by 84.7%, as shown in
Figure 11b. The maximum overpressures were 0.30 bar inside the wall and 0.05 bar outside
the wall when the distance of the protective wall was 6 m. Setting a protective wall at a
distance of 6 m could reduce the maximum overpressure on the side of the container by
81.4%, as shown in Figure 11c. The protective walls can reduce the overpressure damage
outside the wall to a safe range.

Energies 2023, 16, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 9. Overpressures at various times for various protective wall distances. 

The overpressures at monitoring points inside and outside the protective walls at 
different distances in front of the SHRS are shown in Figure 10. The maximum overpres-
sures were 0.86 bar inside the wall and 0.04 bar outside the wall when the distance of the 
protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the 
maximum overpressure in front of the container by 94.9%, as shown in Figure 10a. The 
maximum overpressures were 0.85 bar inside the wall and 0.04 bar outside the wall when 
the distance of the protective wall was 4 m. Setting a protective wall at a distance of 4 m 
could reduce the maximum overpressure in front of the container by 95.9%, as shown in 
Figure 10b. The reflected secondary peak overpressure was 0.97 bar when the distance of 
the protective wall was 2 m and 0.80 bar when the distance of the protective wall was 4 
m; therefore, the 2 m and 4 m protective walls are too close to the container, and the sec-
ondary peak overpressure could cause serious injuries to the container. The maximum 
overpressures were 0.78 bar inside the wall without the secondary peak overpressure and 
0.05 bar outside the wall when the distance of the protective wall was 6 m. Setting a pro-
tective wall at a distance of 6 m could reduce the maximum overpressure in front of the 
container by 94.9%, as shown in Figure 10c. Therefore, the protective walls can reduce the 

Figure 9. Overpressures at various times for various protective wall distances.



Energies 2023, 16, 910 10 of 13

Energies 2023, 16, x FOR PEER REVIEW 10 of 13 
 

 

overpressure damage in front of the SHRS to a safe range, and the separation distance of 
6m in front of the container is more appropriate. 

   
(a) 2 m wall (b) 4 m wall (c) 6 m wall 

Figure 10. Evolution of the hydrogen overpressures in front of the SHRS for various protective wall 
distances. 

The overpressures at monitoring points inside and outside the protective walls at 
different distances on the side of the SHRS are shown in Figure 11. The maximum over-
pressures were 0.82 bar inside the wall and 0.05 bar outside the wall when the distance of 
the protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the 
maximum overpressure on the side of the container by 93.4%, as shown in Figure 11a. 
However, the 2 m protective walls were too close to the container, thus the peak overpres-
sure could cause serious injuries to the people and equipment inside the protective walls. 
The maximum overpressures were 0.37 bar inside the wall and 0.06 bar outside the wall 
when the distance of the protective wall was 4 m. Setting a protective wall at a distance of 
4 m could reduce the maximum overpressure on the side of the container by 84.7%, as 
shown in Figure 11b. The maximum overpressures were 0.30 bar inside the wall and 0.05 
bar outside the wall when the distance of the protective wall was 6 m. Setting a protective 
wall at a distance of 6 m could reduce the maximum overpressure on the side of the con-
tainer by 81.4%, as shown in Figure 11c. The protective walls can reduce the overpressure 
damage outside the wall to a safe range. 

   
(a) 2 m wall (b) 4 m wall (c) 6 m wall 

Figure 11. Evolution of the hydrogen overpressures on the side of the SHRS for various protective 
wall distances. 

The overpressures at monitoring points inside and outside the protective wall at dif-
ferent distances at the back of the SHRS are shown in Figure 12. The maximum overpres-
sures were 0.21 bar inside the wall and 0.06 bar outside the wall when the distance of the 
protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the 
maximum overpressure at the back of the container by 73.6%, as shown in Figure 12a. The 
maximum overpressures were 0.17 bar inside the wall and 0.04 bar outside the wall when 

Figure 10. Evolution of the hydrogen overpressures in front of the SHRS for various protective
wall distances.

Energies 2023, 16, x FOR PEER REVIEW 10 of 13 
 

 

overpressure damage in front of the SHRS to a safe range, and the separation distance of 
6m in front of the container is more appropriate. 

   
(a) 2 m wall (b) 4 m wall (c) 6 m wall 

Figure 10. Evolution of the hydrogen overpressures in front of the SHRS for various protective wall 
distances. 

The overpressures at monitoring points inside and outside the protective walls at 
different distances on the side of the SHRS are shown in Figure 11. The maximum over-
pressures were 0.82 bar inside the wall and 0.05 bar outside the wall when the distance of 
the protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the 
maximum overpressure on the side of the container by 93.4%, as shown in Figure 11a. 
However, the 2 m protective walls were too close to the container, thus the peak overpres-
sure could cause serious injuries to the people and equipment inside the protective walls. 
The maximum overpressures were 0.37 bar inside the wall and 0.06 bar outside the wall 
when the distance of the protective wall was 4 m. Setting a protective wall at a distance of 
4 m could reduce the maximum overpressure on the side of the container by 84.7%, as 
shown in Figure 11b. The maximum overpressures were 0.30 bar inside the wall and 0.05 
bar outside the wall when the distance of the protective wall was 6 m. Setting a protective 
wall at a distance of 6 m could reduce the maximum overpressure on the side of the con-
tainer by 81.4%, as shown in Figure 11c. The protective walls can reduce the overpressure 
damage outside the wall to a safe range. 

   
(a) 2 m wall (b) 4 m wall (c) 6 m wall 

Figure 11. Evolution of the hydrogen overpressures on the side of the SHRS for various protective 
wall distances. 

The overpressures at monitoring points inside and outside the protective wall at dif-
ferent distances at the back of the SHRS are shown in Figure 12. The maximum overpres-
sures were 0.21 bar inside the wall and 0.06 bar outside the wall when the distance of the 
protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the 
maximum overpressure at the back of the container by 73.6%, as shown in Figure 12a. The 
maximum overpressures were 0.17 bar inside the wall and 0.04 bar outside the wall when 

Figure 11. Evolution of the hydrogen overpressures on the side of the SHRS for various protective
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The overpressures at monitoring points inside and outside the protective wall at
different distances at the back of the SHRS are shown in Figure 12. The maximum over-
pressures were 0.21 bar inside the wall and 0.06 bar outside the wall when the distance of
the protective wall was 2 m. Setting a protective wall at a distance of 2 m could reduce the
maximum overpressure at the back of the container by 73.6%, as shown in Figure 12a. The
maximum overpressures were 0.17 bar inside the wall and 0.04 bar outside the wall when
the distance of the protective wall was 4 m. Setting a protective wall at a distance of 4 m
could reduce the maximum overpressure at the back of the container by 76.2%, as shown
in Figure 12b. The secondary overpressure was within the acceptable range for the 2 m and
4 m protective walls. The maximum overpressure inside the wall is 0.15 bar and outside
the wall is 0.03 bar when the distance of the protective wall is 6 m. Setting a protective wall
at a distance of 6 m could reduce the maximum overpressure at the back of the container by
80.3%, as shown in Figure 12c. Therefore, the protective walls can reduce the overpressure
damage outside the wall to a safe range.
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5. Conclusions

In the present work, hydrogen explosions were modeled for hydrogen-air mixtures in
a skid-mounted hydrogen refueling station. The vented explosion experimental data were
used to verify the accuracy of the calculation results. The protective effects of explosion
vents and protective walls were evaluated for various explosion vent layouts and protective
wall distances.

Three different explosion vent layouts were compared to the case without explosion
vents, and the protective effect for the inside and outside of the container was analyzed.
The results show that the explosion vents have a consistent protective effect with the same
vent area, which can reduce the inside maximum overpressure by 61.8% and reduce the
outside maximum overpressure by 29.1%.

Three different protective wall distances (2 m, 4 m, and 6 m away from the skid-
mounted hydrogen refueling station) were investigated for the protective effects. The
protective walls can reduce the overpressure outside the skid-mounted hydrogen refuel-
ing stations to protect nearby personnel and equipment. However, the protective walls
should not be too close to the SHRS because high overpressures are generated inside the
walls due to the confined shock waves. The protective wall with a distance of 6 m can
effectively protect the surrounding people and avoid the secondary overpressure injury of
the container.
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