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Preface 

This dissertation computes the environmental loadings that in-service pavement slabs 
are subjects to. It develops a heat transfer model to predict the slab temperatures and then 
proposes a heat-transfer and moisture transport model to simulate the slab-moisture 
distribution. The environmental loadings are computed by uses of predicted temperatures 
and predicted moisture to evaluate the curling and warping of the slab. For the sake of 
simplicity, the computation considers only the stresses developed in joint plain concrete 
pavement slab and treats the slab as a beam that has visco-elastic, drying-creep behaviors. 

Other than the environmental loadings, the sensitivity of the local weather conditions 
to the slab-moisture and -temperature distributions are also of the dissertation‘s concern. 
The dissertation investigates the role of air temperature, wind speed, and solar radiation 
on the slab temperature; it assesses the influence of the wind speed, local annual rainfall 
distribution, and air relative humidity on the slab-moisture distribution. 

The dissertation contains 9 chapters. Chapter 1 presents the research significance 
regarding the models to predicted slab moisture and slab temperature and also reviews 
the literatures relative to this modeling. Chapter 2 develops a model to simulate the slab 
temperature distribution. Chapter 3 investigates the impact of air temperature on the 
temperature profile of in-service pavement slabs. This chapter has been published in 
Construction and Building Materials, with my advisor Jacob E. Hiller as the co-author. 
The author keeps only his contribution and removes the contribution of the co-author. 
The copyright permission is attached in Appendix A.  Chapter 4 focuses on roles of wind 
speed on the slab-temperature development and on formulation of the slab-surface heat 
convention coefficient. Chapter 5 examines the impacts of the solar radiation and the 
pavement albedo on the slab-temperature distribution. This chapter has been approved by 
KSCE Journal of Civil Engineering, with my advisor Jacob E. Hiller as the co-author. It 
only presents the contribution of the author. The copyright permission is attached in 
Appendix B. Chapter 6 proposes a model to simulate the moisture distribution through 
in-service slab. Chapter 7 characterizes the sensitivity of slab moisture to roles of rainfall 
pattern, wind speed, seasonal air RH, daily variation of RH, water-to-cement ratio, 
treatment of the upper boundary, etc. Chapter 9 draws the conclusions from the 
dissertation and proposes the future works to build upon works from this dissertation. 
 
 

Yinghong Qin 
June 16, 2011 
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Abstract: 

In-service hardened concrete pavement suffers from environmental loadings caused 
by curling and warping of the slab. Traditionally, these loadings are computed on the 
basis of treating the slab as an elastic material, and of evaluating separately the curling 
and warping components. This dissertation simulates temperature distribution and 
moisture distribution through the slabs by use of a developed numerical model that 
couples the heat transfer and moisture transport. The computation of environmental 
loadings treats the slab as an elastic-viscous material, which considers the relaxation 
behavior and Pickett effect of the concrete.  

The heat transfer model considers the impacts of solar radiation, wind speed, air 
temperature, pavement slab albedo, etc. on the pavement temperature distribution. This 
dissertation assesses the difference between documented models that aim to predict 
pavement temperature, highlighting their pros and cons. The moisture transport model is 
unique for the documented models; it mimics the wetting and drying events occurring at 
the slab surface. These events are estimated by a proposed statistical algorithm, which is 
verified by field rainfall data. Analysis of the predicted results examines on the roles of 
the local air RH (relative humidity), wind speed, rainy pattern in the moisture distribution 
through the slab. The findings reveal that seasonal air RH plays a decisive role on the 
slab‘s moisture distribution; but wind speed and its daily variation, daily RH variation, 
and seasonal rainfall pattern plays only a secondary role. 

This dissertation sheds light on the computation of environmental loadings that in-
service pavement slabs suffer from. Analysis of the computed stresses centers on the 
stress relaxation near the surface, stress evolution after the curing ends, and the impact of 
construction season on the stress‘s magnitude. An unexpected finding is that the total 
environmental loadings at the cyclically-stable state divert from the thermal stresses. At 
such a state, the total stress at the daytime is roughly equal to the thermal stress; whereas 
the total stress during the nighttime is far greater than the thermal stress. An explanation 
for this phenomenon is that during the night hours, the decline of the slab‘s near-surface 
temperature leads to a drop of the near-surface RH. This RH drop results in contraction 
therein and develops additional tensile stresses. The dissertation thus argues that 
estimating the environmental loadings by solely computing the thermally-induced 
stresses may reach delusive results. It recommends that the total environmental loadings 
of in-service slabs should be estimated by a sophisticated model coupling both moisture 
component and temperature component.  
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Chapter 1 Introduction 

1.1 Motivation 

 Environmental loadings develop through in-service concrete pavement slabs, even if 
the slab is not open to traffic. These stresses are due to differential profiles of temperature 
and moisture through the slab (Yang H. Huang 2004; MEPDG 2004). Non-uniform 
temperature profiles through a slab lead to the curling of pavement slab. They produce 
curling stress because the curling is restrained by the pavement shoulder or adjacent lanes, 
slab‘s self weight, base, etc. Moisture gradients across the slab result in differential 
shrinkage between the top and bottom of the pavement. The mechanism of stress caused 
by this slab deformation is similar to curling, but are termed warping stresses. The 
combination of the curling and warping stresses, in some cases, can be high enough such 
that the concrete slab cracks before the pavement slab is exposed to any traffic loading 
(Heath et al. 2003). 

Curling stresses experience both diurnal and seasonal cycles. Diurnally, temperature 
distributions in a pavement slab depend primarily on the heat flux at the top of a 
pavement slab because the slab surface area experiences higher heat flux than its depth. 
During daytime, the solar radiation heats up the pavement surface whereas the remaining 
portions of the slab remain relatively colder. This different thermal condition leads to 
differential deformation across the slab. It generates compressive stress at the top and 
tensile stress at the bottom. At nighttime, both heat convection and thermal irradiation 
dissipate the absorbed solar radiation and make the near surface colder but the deeper 
slab relatively warmer. This temperature difference creates tensile stress at the top and 
compressive stress at the bottom. Seasonally, the daily peak solar radiation arriving at the 
earth surface follows a pattern ranging from nadir in December to a peak value in July. 
The pattern means that a relatively sharper temperature gradient develops through the 
slab during the summertime and a relatively gentler temperature gradient, during the 
wintertime. Curling stresses during the summertime are thereby higher than that during 
the wintertime. The seasonal solar radiation pattern also results in heat storage under the 
slab during warmer seasons and in heat dissipation during colder seasons. This 
seasonally-cyclic heat storage and heat dissipation influences the temperature at the 
bottom of a slab and affects the non-linearity of the slab-temperature profile through its 
depth. The curling stress developed in a pavement slab thus undergoes both daily and 
seasonal cycles 

The warping stress varies irregularly, strongly depending on the local weather 
conditions. Moisture profiles cause warping (shrinkage) stresses due to their non-
uniformity through the depth of the slab. Unlike the variation pattern of slab‘s 
temperatures, the slab-moisture profile is seldom affected by the daily variation of the 
ambient air RH. This is because the moisture diffusivity of a slab is several orders of 
magnitude lower than the thermal diffusivity. The slab moisture profile depends on the 
ambient air RH, wind speed, local rainfall, slab‘s diffusivity, etc. Such dependencies 
determine that the slab‘s internal RH varies primarily near the top whereas the lower 
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portions of a slab‘s volume remains close to a saturation level, generally greater than 80% 
RH (Chunqiu Li et al. 2008a). This differential slab-temperature distribution results in a 
differential shrinkage within a slab. The shrinkage is also restrained by the self weight of 
the slab, friction of the base, the compatibility of the slab‘s element, etc, leading to 
bending stresses. Development of these stresses is relatively complicate because the 
shrinkage depends not only on the pore RH and its gradient through the slab but also on 
the age of the concrete. This time-dependent nature of concrete deformation has to be 
considered during the computation of the warping stresses since the rate of RH variation 
through a slab is slower than that of the temperature variation. 

These curling and warping stresses introduce damage in rigid pavements. Since 
shrinkage causes significant stresses in the early age of the pavement, hairline cracking 
can possibly occur at the top and make the slab prone to continuous cracking after the 
slab is open to traffic. As time lapses, stress relaxation reduces the warping stresses; but 
the diurnal cyclic curling (thermal) stresses possibly remain significant enough to 
accelerate the fatigue damage of the slab (J.E. Hiller and Roesler 2010). The curling 
stresses do not considerably relax because they depend only on the shape of temperature 
profile, which relies on the thermal state of the slab and is not degraded as time elapse. 
These stresses greatly increase of the amount of bending stress through the slab. In the 
case of high bending stresses, the slab may lose the support of the underlying layers, 
directly leading to slab‘s cracking when a heavy traffics passes on the surface. A 
thorough study on the combined effect of curling and warping stresses necessitates.  

 

1.2 Literature review 

1.2.1 Temperature effects on rigid pavement slabs 

1.2.1.1 In-situ and numerical investigations of temperature profiles  

Experimental testing and numerical methods have been extensively used to study the 
temperature distribution within concrete slabs. In-situ measurements have been 
conducted to record the temperature profiles of rigid pavement slab. The recorded data is 
typically logged by thermocouples that are inserted at different depths to monitor the 
temperature distribution through the slab (Richardson and Armaghani 1987; Yu et al. 
1998; Jeong and Zollinger 2005). This data is accurate for short-term readings, but may 
lead to significant errors due to the zero drift of the thermocouples for long-period 
measurements. Also, extrapolating this data to other sites can be delusive because in-situ 
observations cannot cover all the site-specific conditions influencing heat transfer 
between the slab and the surrounding environment (Richardson and Armaghani 1987; 
Ashraf Mohamed and Hansen 1997; Yu et al. 1998). Numerical models are thus popular 
to simulate the temperature through the pavement slabs (Liang and Niu 1998; Yavuzturk 
et al. 2005). These models usually treat the heat exchange between the pavement and the 
surrounding air as one-dimensional problem (Kapila et al. 1997; Bentz 2000; Minhoto et 
al. 2005). This treatment is reasonable because the width and length of the slab is orders 
of magnitude greater than the thickness of the slab. Temperature distribution through the 
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slab depends primarily on the adoptions of upper- and lower-boundary conditions. The 
upper boundary is treated as a heat-flux boundary. The flux comes from the solar 
radiation, thermal irradiation, and convection. It depends on wind velocity, solar 
absorption, air temperature, roughness of pavement surface, etc. The lower boundary is 
set as either an adiabatic boundary condition (Figure 1.1b) or a Dirichlet boundary 
condition (Figure 1.1a)  (Minhoto et al. 2005; Yavuzturk et al. 2005), where the 
temperature is assumed as a constant (Liang and Niu 1998; Bentz 2000).  

Documented one-dimensional heat models need improvement because the denoted 
boundary conditions are inadequately addressed. At least two limitations exist at the 
specified upper boundary condition. First, methods used to compute the heat convection 
coefficient needs refinement. This coefficient is mainly determined by the local wind 
speed. For instance, the heat convection coefficient is assumed to increase with the wind 
velocity following a 0.7 power-law in Enhanced Integrated Climatic Model (EICM), a 
sub-model embedded in the Mechanistic-Empirical Pavement Design Guide (MEPDG). 
This increasing rate goes against the accepted heat transfer theory (Jiji 2009). According 
to this theory, this coefficient should be a function of the Reynolds and Prandtl numbers 
of the ambient air (Kapila et al. 1997; Jiji 2009). Second, input of the incoming solar-
radiation peak value to the heat transfer model needs a process for refined estimation. 
Currently, the EICM model allows repeated uses of one-year observed solar radiation 
when a long-term temperature prediction is conducted (MEPDG 2004). This repeated use 
overlooks the heat history development of the slab.  

Limitations also exist at the specified lower boundary condition of the documented 
models. The lower boundary condition is usually assumed to either be a constant 
temperature (Bentz 2000) or be null heat flux (Yavuzturk et al. 2005).  On one hand, the 
longer period waves of the seasonal temperature cycle are neglected if the bottom of a 
pavement is regarded as a fixed temperature boundary. On the other hand, the shorter 
period of diurnal temperature cycle goes unaccounted if the bottom of the pavement is 
seen as a null heat flux bottom. For instance, a sunny day predated by a cloudy day could 
result in a positive heat budget to the ground; a null heat flux at the bottom of the 
pavement fails to mimic this positive budget. Actually, the deep ground under the 
pavement structure is a boundary with neither a fixed temperature nor a null heat flux. 
Temperature variation beneath the pavement slab decreases as depth increases, according 
to the extenuating characteristic of the ground temperature profile. Thus there exist a 
depth below which soil temperature maintains a constant value (Andersland and Ladanyi 
1994). This depth is a site-specific condition and is also affected by the net heat flux at 
the pavement surface. An artificial denotation for this depth potentially results in an 
improper prediction of the pavement slab‘s temperature. 
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Figure 1.1 One-dimensional heat transfer models for concrete pavement; a) After Bentz 
(2000), b) After Yavuzturk (2005).  

 
1.2.1.2 Temperature induced stresses 

Thermally-induced stresses developed through concrete slabs were first addressed by 
Westergaard (Westergaard 1927). His assumption of a linear gradient through the depth 
of the slab had been extensively used to estimate the curling stresses of curled concrete 
pavements (Tianxi Tang et al. 1993; Papagiannakis and Masad 2007). His solution to the 
thermal stress across a concrete slab with finite dimensions was popularized by Bradbury 
(1938). Bradbury presumed the linear distribution of temperature through a slab. In his 
solution the thermal stresses developed in a slab can be definitively calculated once the 
temperatures at the top and bottom of slab are obtained. However, later researchers noted 
that the temperature distribution through a pavement slab can be highly non-linear 
(Armaghani et al. 1987; Thompson et al. 1987; Ashraf Mohamed and Hansen 1997). The 
non-linearity is because the near-surface temperature is easily affected by the heat flux at 
the top whereas the internal portions of slabs exhibit relatively less fluctuation. 

The stresses induced by the non-linear temperature profiles were first addressed by 
Thomlinson (Ioannides and Khazanovich 1998). Thomlinson‘s work subdivides the total 
thermal stress into three parts: stress induced by the uniform temperature; stress due to a 
linear temperature gradient; stress caused by the ―internal force‖ as shown in Figure 1.2. 
The stress induced by the uniform temperature causes an expansion or a contraction of 
the slab because of the restraints from the underlying layer‘s friction and from the 
neighboring slabs‘ constraint. The stress due to a linear temperature gradient through the 
slab thickness is restrained by the slab‘s self weight, the underlying layer‘s friction, and 
external loads. The stress caused by the ―internal force‖ is because the non-linearity of 
temperature distribution exerts an internal force to neighboring elements to satisfy 
compatibility requirements. This ―internal force‖ contributes either a tensile or a 
compressive stress to the slab. The specific internal force is a function of the location 
through the depth of the slab. The stress caused by this force is self-equilibrating stress. It 
is significant enough that it should not go unaccounted. 
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Figure 1.2 The components of the total temperature-induced deformation. 
 

Methods used to compute the self-equilibrating stress have been well documented. 
Main difference between these methods lies on the use of either a quadratic or cubic 
polynomial to approximate the temperature profile (Richardson and Armaghani 1987; 
Solaimanian and Kennedy 1993).  By assuming the temperature profile followed a 
quadratic relationship, Hiller and Roesler (J.E. Hiller and Roesler 2008) developed a 
simplified method to capture the self-equilibrating stress on the performance of rigid 
pavement by using a single parameter named NOLA (NOn-Linear Area). This method is 
simple and can link the NOLA to the self-equilibrating stress. Fatigue induced by the 
thermal stresses also can be estimated based on the NOLA. Mohamed and Hansen (1997) 
computed self-equilibrating stress by using an proposed theoretical algorithm that the 
temperature profile is fitted by polynomial of the third degree.  Although the third-order 
polynomial generally provides a better fit than a quadratic function, the non-linearity 
cannot be captured within one single term such as NOLA.  

Whatever the methods to compute the thermally-induced stress, the computation has 
always been based on the elastic theory in rigid pavement structures. It has not 
considered relaxation behavior of the thermally-induced stress developed through the 
depth of in-service concrete slabs. Although this stress depends primarily on the 
temperature profile and less on the stress history, the stress relaxation potentially reduces 
the development of the compressive stress near the top whereas increasing the tensile 
stress at the bottom. This is because during daytime a relatively sharper positive gradient 
is developed within the slab, resulting in the daily maximum-compressive stress 
appearing at the top. Conversely, the stresses developed during nighttime are relatively 
gentler. Cycles of this stress pattern can lead to a compressive creep at the top and tensile 
creep at the bottom. Relaxation behavior of concrete thus may need to be considered 
when the thermal stresses developed through a slab are estimated. 
 
1.2.2 Moisture and moisture distribution 

Moisture distribution within concrete slabs and the resulting warping stresses have 
been extensively investigated. In-situ investigations have shown that the moisture 
gradient varies significantly to a depth of approximately 2 inches, whereas the deeper 
portions of pavement slab remain at approximately 80% percent of saturation or higher 
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(Philip and Vries 1957). Numerical studies concerning both drying shrinkage and creep 
behavior of concrete have gained a great deal of attention, driven by the need to quantify 
the long-term deformation and stability of nuclear reactor containments (Bazant and 
Najjar 1971; Bazant 1983; Bazant and Prasannan 1988; Bazant 1998; Shah and Hookham 
1998; Witasse et al. 2002). Nevertheless, limited numerical studies center on the moisture 
profile through pavement slabs and on the subsequent stresses caused by the moisture 
profile. Typically, moisture gradients in concrete pavement generate differential 
shrinkage between the top and bottom of pavement. They lead to warping stresses in 
which the top of pavement is in tension but the bottom is in compression for a vast 
majority of  time (Janssen 1987).   

 
1.2.2.1 Laboratory and field tests for moisture distribution within concrete slab 

Moisture distribution through a concrete specimen in a laboratory environment is 
typically measured by RH probes that are inserted into concrete to record the internal 
moisture (Andrade et al. 1999; Jin-Keun Kim and Lee 1999). The air RH of the lab 
environment is the decisive factor determining the moisture distribution through the slab 
(Z. Bažant and Najjar 1972). Moisture content across the field concrete slabs is typically 
recorded by the psychrometers that are installed in pavement sections to read the RH of 
pavement slabs (Janssen 1987; Kohler 2005).  The intake and outtake of moisture of 
pavement is primarily controlled by the wetting (absorption dominant) and drying cycles 
at the surface of the pavement (Hanzic and Ilic 2003; Chunqiu Li et al. 2008b).  Unlike 
many other concrete structures, the unique geometry of a pavement slab defines that the 
moisture intake and evaporation is almost always through the slab surface.   

To better estimate the moisture distribution with concrete, laboratory studies have 
been extensively conducted to investigate the diffusivity of the concrete. The factors 
influencing the diffusivity can be categorized into both internal and external factors. For 
the internal factor, the diffusivity is mainly controlled by the concrete porosity, which is 
linked to the water/cement ratio and permeability of concrete. For the external factor, the 
diffusivity strongly depends on internal pore RH. An interpretation to this dependency is 
that moisture migrates under capillary force at high pore moisture content but transports 
under gas pressure at lower pore moisture content (Bazant 1998).  Temperature also has 
been found as an external factor impacting the diffusivity of concrete (Wong et al. 2001; 
Jooss and Reinhardt 2002). Wong (2001) investigated the diffusivity of concrete at the 
saturation state,     , and found that temperature strongly influenced concrete‘s 
diffusivity. For instance,      increases approximately 6-8 times when temperature 
increases from 20 to 40 oC, thereby affecting moisture transport more effectively during 
warmer months for many climates.  

 
1.2.2.2 Numerical study of the moisture transport within concrete slab 

Numerical simulations have been extensively conducted to study the moisture 
transport within concrete (Z. Bažant and Najjar 1972; Xi et al. 1994; Bazant 2001). The 
crux of the simulation is to properly estimate the diffusivity, which depends on the 
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moisture content of concrete, porosity of concrete, internal temperature distribution, etc. 
(Z. Bažant and Najjar 1972). For in-service concrete slabs, another crux lies on 
wetting/drying cycles. Moisture gain of an in-service slab is controlled by the wetting 
cycle at which the absorption is dominant. Moisture loss is determined by the drying 
cycle. This process depends highly on the RH of the ambient air (Šelih et al. 1996; 
Grasley et al. 2006) and the wind velocity at the ground surface.  

 Models used to predict the moisture profile through slabs need improvement for two 
reasons. First, currently most models are based on isothermal conditions. This is the case 
because other structures, unlike pavement slabs that are directly exposed to sunlight, 
experience lower temperature cycles. It is also because the temperature regimes of these 
structures become relatively steady soon after (1 or 2 days) the structure is built. For in-
service slabs, their diurnal temperature variation, however, may significantly affect 
moisture migration within the slab because the concrete‘s diffusivity varies with 
temperature (Jooss and Reinhardt 2002).  Secondly, the denotation of the upper boundary 
condition needs a refined specification. Bazant and Raftshol (1982) experimentally 
investigated the drying shrinkage of specimens and suggested that the upper boundary 
could be set as the RH of the ambient air. This setting is the case for the laboratory 
specimens that do not experience wind effects. However, this assumption overlooks the 
surface moisture emissivity of concrete. The emissivity depends on several factors 
including air velocity, porosity, surface roughness, etc. (Torrenti et al. 1999; Yuan and 
Wan 2002). The impact of these factors on the moisture distribution within an in-service 
slab should be wisely considered because pavements experience varying wind speeds in 
all climatic regions.  
 
1.2.3 Coupled heat transfer and moisture transport 

Models coupling heat transfer and moisture transport have been proposed to predict 
the moisture distribution within concrete structures (Bazant 1970; Kapila et al. 1997; 
Burkan Isgor and Razaqpur 2004). The phenomena relevant to moisture, pressure, and 
temperature distributions are coupled by the assumption that moisture distribution 
affecting the temperature regime is neglected. The driving force for the moisture 
transport within concrete consists of moisture gradient, pressure gradient, and 
temperature gradient (C. L. D. Huang et al. 1979; Hall 1989). Numerical results show 
that the porosity of concrete dominates the moisture transport within concrete (Wong et 
al. 2001). Nevertheless, none of these models were designed to predict the moisture 
distribution of pavement slabs. Burkan‘s model (2004) commissions to compute the 
carbonation process of concrete structures. Kapila‘s work (1997) aims at predicting the 
moisture distribution within early-age hydrating concrete. Very few studies have been 
conducted to investigate the coupled heat transfer and moisture transport through in-
service concrete pavements and then to compute the environmental loading-induced 
stresses through the slab.  With the thermal and moisture-induced stresses in concrete 
pavements constituting a large percentage of stress development due to its geometry, this 
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is a critical task to undertake to better predict the service life of these pavements 
ultimately. 

These environmental loading-induced stresses are seldom investigated because of 
three reasons. First, it is difficult to separate the curling stresses and warping stresses 
from the total stress measured in field. This difficulty suggests that even though a model 
may be sophisticated enough to predict the thermal- and moisture-induced stresses in 
other structures, its reliability to predict the environmental loadings in a pavement is 
almost unverifiable. Secondly, the occurrence of micro-cracking and creep in the 
concrete significantly relaxes the stresses (Yang H. Huang 2004). The stress relaxation 
encumbers a prediction attempting to capture the coupled impact of moisture and thermal 
gradients on the stresses development. Finally, occurrence of wetting and drying cycles at 
the pavement surface remains uncertain to experts in pavement science. Modeling of the 
impact of these cycles on the pavement moisture budget is still conducted by use of 
artificial fixed wetting period, such as 15 or 30 days (Chunqiu Li et al. 2008a; Kefei Li et 
al. 2009). 

 

1.3 Critical appraisal  

Four main limitations, at least, exist in the current documented numerical models that 
aim to predict the heat transfer and moisture transport within concrete pavements.  

 The thermal history of both the pavement slab and the underlying layers is not 
considered. Currently the prediction for the pavement temperature profile usually 
considers only the thermal interaction between the pavement and the subbase (Bentz 
2000; Yavuzturk et al. 2005). In fact, the temperature profile of the subgrade, usually 
10m or even deeper beneath the pavement surface, varies seasonally (Ladanyi 1994) 
because the seasonal temperature wave propagates deeper than the diurnal temperature 
cycle (Pollack and Huang 2000). Without considering the thermal history of the 
underlying layers potentially leads to an unreliable prediction of the pavement 
temperature. 

 The boundary condition at the bottom of the computational domain is improperly 
specified. Documented models assume that the temperature at the bottom of the subbase 
or base is either a constant (Bentz 2000) or an adiabatic boundary (Yavuzturk et al. 
2005).  This assumption results in considerable error because a geothermal gradient exists 
at the deep ground (usually 10-20m) beneath the pavement surface (Ladanyi 1994; Liang 
and Niu 1998).   

 Currently, the moisture transport model used to predict the moisture distribution 
within pavement slab is based on isothermal conditions (Jin-Keun Kim and Lee 1999; 
Leivo and Rantala 2005; Chunqiu Li et al. 2008a). The effect of the temperature on the 
diffusivity of the concrete goes unaccounted.  

 The moisture gain and loss at the pavement surface needs more refined 
specification. Documented models usually overlook the impact of wind velocity on the 
moisture loss at the slab and neglect the influence of wetting/drying cycles on the 
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moisture gain at the surface. For a specific region, such cycles should be determined by 
the local seasonal rainfall distribution and should have a probabilistic distribution. 

 

1.4 Objectives  

This dissertation numerically investigates the coupling heat transfer and moisture 
transport within a concrete slab and evaluates the warping and curling of concrete 
pavement slab. Its goals consist of three parts: 

 The first part develops a proposed heat transfer model to characterize the impacts 
of air temperature amplitude, solar radiation, slab-surface solar absorptivity, and wind 
velocity on the temperature distribution within pavement slabs. It verifies the feasibility 
of the proposed model by use of field slab temperatures. The subsequent analysis 
highlights the difference between the proposed model and the documented models, and 
compares the predicted reliability of these models. 

 The second part develops a moisture transport model to predict the moisture 
distribution through in-service slabs. It proposes a straightforward algorithm to simulate 
the wetting and drying events and validates the algorithm by use of field observations 
concerning the local rainfall distribution. It utilizes both laboratory observed data to 
verify the prediction of the proposed moisture transport model. The associated discussion 
centers on the effects of the wetting/drying cycle and ambient conditions, e.g. wind 
speeds and air relative humidity, on the slab moisture distribution. 

 The third part characterizes the curling stress, warping stress, and the combination 
of them by using a model that considers creep, autogenous shrinkage, and drying 
shrinkage of JPCP slab. It also estimates the evolution of the warping stresses during the 
expected service period of the pavement, especially at early ages of the concrete slabs. It 
computes the total environmental loadings that in-service slabs suffer from. The 
computation considers both the stress relaxation and Pickett effect of concrete slabs. The 
analysis to the developed total stress focuses on the impact of wind speed, air RH, stress 
evolution, construction season, and pavement location on the magnitude of the stress.  
 

1.5 Organization 

The dissertation has 9 Chapters as described below. 
Chapter 2 develops a model to simulate the temperature distribution through in-

service slabs. The model accommodates the roles of air temperature, solar radiation, wind 
speed, dew point, etc on the heat exchange between the slab and the surrounding 
environment. Both short- and long-term field temperature observations are used to verify 
the model. Numerical code for this simulation can be referred to Appendix C. 

Chapter 3 investigates the impact of air temperature on the temperature profile of in-
service pavement slabs. It centers on the impacts of daily temperature swing on the 
temperature variation of the slab. It studies whether the replacement of the observed air 
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temperature with the sinusoidal-approximated air temperature compromises the predicted 
temperature. 

Chapter 4 focuses on roles of wind speed on the temperature development of a slab 
and on formulation of the heat convention coefficient at the pavement surface. It 
investigates the degrees that wind speed reduces the pavement temperature gradient. 
Considering that this formulation determines the heat convention coefficient, this chapter 
highlights the difference between the documented models used to compute the coefficient. 
It emphasizes that the use of the EICM model potentially results in the predicted 
temperature being insensitive to wind speed because this model greatly underestimates 
the heat convection coefficient. 

Chapter 5 examines the impact of the solar radiation and the pavement albedo on the 
temperature distribution through in-service pavement slabs. It considers both the 
probabilistic and deterministic portions of the solar radiation. It examines the impact of 
different site-specific sunrise/sunset time models on the temperature prediction. It centers 
on whether the heat history affects the temperature distribution and thermal-stress 
development of the slab. 

Chapter 6 proposes a model to simulate the moisture distribution through in-service 
slab. It develops an algorithm to evaluate the wetting and drying events occurring at the 
pavement surface. It uses both field data and lab data to verify the model and proposes a 
formulation that characterizes the moisture evaporation rate during the drying events. 
Numerical code for this simulation can be referred to Appendix D. 

Chapter 7 characterizes roles of rainfall pattern, wind speed, seasonal air RH, daily 
variation of RH, water-to-cement ratio, treatment of the upper boundary, etc on the 
moisture prediction through in-service slabs. The associated analysis focuses on the 
different roles between these factors. It also examines the mechanisms that some 
environmental factors play as decisive role on the slab moisture distribution whereas 
others act only in a secondary role. 

Chapter 8 computes the total environmental loadings that in-service slabs suffer from. 
Numerical code for this simulation can be referred to Appendix E. The computation 
method considers both Pickett effect and stress-relaxation behavior of the concrete slab. 
The analysis to the computed stress concentrates on the evolution of the stress after the 
curing ends, on the long-term stress development, and on the impact of construction 
season upon the stress developed. The subsequent discussion primarily concerns whether 
the total stress at the stable state (moisture loss balances the moisture gain) converges to 
the thermally-induced stress. 

Chapter 9 draws the conclusions from the dissertation and proposes the future works 
to build upon work from this dissertation. It discusses the implications of the conclusions 
to the elongation of the rigid pavement performance and summarizes the limitations of 
the dissertation. Future work is expected to study the built-in curling; the stress-softening 
at the post-failure state; fatigue damage of rigid pavements; and the moisture soaking at 
the pavement surface during wetting events. 
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Chapter 2 Model development and verifications 

Prediction of the pavement temperature ties to both the estimate of the maximum 
pavement surface temperature and the computation of the thermally-induced stress 
developed through a slab. Numerical models have been extensively conducted to predict 
the temperature distribution through in-service concrete pavement slabs. These models 
require improvements in the treatment of the lower boundary condition and in the 
computation of the heat convection coefficient. 

This chapter proposes a new heat transfer model to simulate the pavement 
temperature through the depth of the pavement structure. The model specifies a 
geothermal gradient to the deeper soil (20m in depth). It uses the accepted heat transfer 
theory to estimate the heat convection coefficient at the pavement surface. Both short- 
and long-term field temperature observations are used to verify the reliability of the 
model.  

2.1 Numerical simulation of the temperature regime of pavement slab 

 Pavement temperatures are mainly controlled by the heat flux at the top because the 
width and length of a pavement slab is far greater than the thickness. A one-dimensional 
heat transfer model is thus adequate to predict the temperature distribution of a slab and 
its underlying layers. To simplify the model, the following assumptions are made: 

1) Heat conduction dominates heat transfer process in the pavement structure and the 
underlying layers. The heat convection within the ground and the pavement slab 
is neglected; 

2) Occurrence of moisture transport beneath the slab does not significantly affect the 
thermal properties of the underlying layer. Temperature variation does not lead to 
the variations of the thermal conductivities, heat capacities, and densities of the 
pavement and the underlying layers. 

Heat flux at the upper boundary consists of the solar radiation, convection, irradiation, 
and emissivity occurring at the pavement surface (Figure 2.1). The temperature at deep 
ground is mainly affected by the heat flux from the interior of the earth. It exhibits less 
variation. The depth of zero annual temperature amplitude ranges approximately from 10 
to 20m below the ground surface (Andersland and Ladanyi 1994), depending on the site-
specific condition. This study selects 20m beneath the bottom of the pavement‘s base 
layer as the lower boundary, in order to avoid that this depth is lower than the bottom of 
the computational domain. 
 
2.1.1 One-dimensional heat transfer model 

The temperature T of the media (the pavement slab and the underlying layers) can be 
described by the Fourier Equation: 

 

                                                                                     (2.1) 
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where   (W/moC-1) is the thermal conductivity of mediums;   (kg/m3) and   (J/kg/ºC) are 
the density and the heat capacity of mediums, respectively;        (W/m-2) is the internal 
heat generation rate, for hardened concrete,       0. The thermal capacity, density, and 
thermal conductivity of concrete have been well documented by previous researchers 
(Khan 2002; Kook-Han Kim et al. 2003; Chung and Shin 2008). These properties depend 
on concrete mixture characteristics, e.g., water-to-cement ratio, aggregate type, aggregate 
volume, and porosity of the concrete. Detailed values are site-specific and reasonably 
controllable parameters. Table 2.1 tabulates the assumed parameter values and typical 
ranges of these parameters. 

 

 

Figure 2.1 A schematic show for the heat transfer model. 
 

Table 2.1Thermal parameters of the pavement and underlying layers 

Stratum   (W·K−1·m−1)   (KJ·kg−1·K−1)  (kg/m3) 
Slaba 2.5 (1.5-3.5) 1.0 (0.84-1.17) 2350 (2200-2400) 

Asphalt baseb 1.8 (1.5-2.0) 0.9 (0.9-1.3) 2210 (2297-2425) 
Gravel subbasec 1.8 (1.5-1.8) 0.9 (0.7-0.9) 2210 (1792-2405) 

Subgraded 1.5 (0.5-2.0) 0.86 (0.8-0.9) 1560 (1380-1600) 
Note: Values within the bracket are a rough range of the medium‘s thermal properties; 

the exact value is site-specific. a(Morabito 2001); b(Luca and Mrawira 2005); c(Jean and 
Jean-Marie 2005); d(Lu et al. 2006); Density for subgrade is dry density. 

 
2.1.2 Heat flow at the pavement surface 

Heat flux at the pavement surface is affected by factors including the surrounding air 
temperature, dew point, wind velocity, etc. These factors are available at the National 
Oceanic and Atmospheric Administration (NOAA) database. 
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2.1.2.1 Thermal irradiation 

Thermal irradiation is a long-wave heat fluxes between the natural ground surfaces 
and the sky. The total irradiation emitted,     (W/m2), follows the Stefan-Boltzmann law 
and usually is expressed as: 

                      (2.2) 

where    is slab-surface temperature, (oK).  (
2 4Wm K 

) is the Stefan-Boltzmann constant;             ;     (oK) is the effective sky temperature (effective sky temperature is 
the temperature of blackbody radiation having the same flux as the downward 
atmospheric radiation and is not equal to air temperature); and   is the ground surface 
emissivity.        is used in this study and others (Kapila et al. 1997; Rohsenow et al. 
1998) when evaluating pavement temperatures.      can be evaluated by Eq.(2.3): 

                  (2.3) 

where    (oK) is air temperature;     , the sky emissivity, is given by Tang et 

al(Runsheng Tang et al. 2004):                                                                (2.4) 
where     is the dew point. 

The local dew point can be approximated using the following formula:                                                                 (2.5) 
where       ,        oC, and                               . 
 
2.1.2.2 Convection 

Heat convection at the pavement surface is given by: 
                                                                    (2.6) 

 
where       is the convection coefficient, W/moC-1.       is a function of the local 
Reynolds number   , the thermal conductivity of the air      (W·K−1·m−1), the air‘s 
Prandtl number   , and the characteristic length of the medium where wind blows upon. 
According to traditional heat transfer theory (Rohsenow et al. 1998; Jiji 2009),       
consists of two parts: free and forced convections. The heat convection coefficient of 
free air convection on a flat plane is approximately 5.6 W/moC-1 (Jiji 2009). According 
to the Blasius solution (Jiji 2009), the coefficient of a forced convection on a flat plane 
is                       if the airflow is at low speed (e.g.<=6m/s). In this study, the 
Blasius solution is modified by combining the heat convection coefficients at free and 
forced convections. Therefore, the heat convection relationship developed in this study 
is expressed as: 

                                 (2.7) 
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where for the air,           ,      . For the airflow upon an infinite flat plate,       m. The Reynolds number    is: 
 

         (2.8) 

 
where   is the local wind velocity,   (m2s-1) is the air‘s kinematic viscosity and usually 
is 16.01*10-6 (m/s) . 
 
2.1.2.3 Radiation  

Solar radiation propagates energy as a short wave arriving at the ground surface. 
McCullough and Rasmussen (1999) proposed the following formula for the short-wave 
absorption of solar radiation      (W/m2): 

 

                     (2.9) 

 
where      is the surface absorptivity (SA)--or 1- the albedo of the surface;    is the 
intensity factor counting for the sun‘s angle during a 24-hour day; and        is the peak 
value of the solar radiation during a-day period.  

Solar absorptivity      relies on slab‘s surface color, concrete components, abrasion 
of the slab, etc. (Levinson and Akbari 2002). For concrete pavements,      ranges from 
0.5 to 0.9 for new and older concrete, respectively. Considering a rigid pavement slab 
becomes darkened after opening to traffic, this paper uses           unless otherwise 
noted.  

Solar radiation intensity factor    strongly depends on the atmospheric conditions, 
time of day, and incident angle of the sun‘s ray on the ground surface. During nighttime 
conditions, the solar radiation is negligible. During the daytime,    is assumed to follow a 
sinusoidal function (Bentz 2000; Ge 2005). It varies with the time of day and ranges from 
zero at both sunrise and sunset times to a peak value at midday. The sunrise time    (hr) 
and sunset time     (hr) can be computed by: 

                                                             (2.10)                                                             (2.11) 
 

where   is the hour angle. Eqs (2.10) and (2.11) are used during standard time (autumn 
and winter seasons), but during daylight savings times, the number ―13‖ in both 
equations would be ―12‖. To avoid confusion, this study uses standard time only.    is 
calculated by: 
                                                               (2.12) 
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where  ( ) is the latitude of the pavement site (positive in the northern hemisphere, 
negative in southern hemisphere), and   ( ) is the sun declination defined by: 
                                                                        (2.13) 

 
in which     is the day of a year (January 1 is the first day, or      ). 

The peak value        of solar radiation depends on the sky conditions (e.g., cloud 
cover) and on the latitude of the pavement. Rather than providing daily detailed solar 
radiations, weather stations usually provide monthly maximum     , mean      , and 
minimum      solar radiations (units: kWh/m2/day). All of them are usually recorded by 
a flat-plate collector. Typically the observed data contains     uncertainty. In this case, 
inputting the mean vallue to the heat transfer model overlooks the impacts of the 
maximum temperature and heat history on the pavement slab. Inputting solar radiations 
to a slab-temperature predicted model thus have to include the combination of the 
deterministic and probabilistic radiations. The deterministic portion reflects on the       . 
The probabilistic portion fluctuates between the      and     , following a random 
normal distribution whose standard deviation depends on the uncertainty of the 
observation. Therefore, the         to the heat transfer model is: 

 

                                                                (2.14) 

 
where the random(0,1) produces a number according to the standard normal distribution; 
the denotation of the number 1.38 represents the level of uncertainty (9%) of the 
measurements (Patel and Read 1996); and the number 41.67 is the conversion factor from 
units kWh/m2/day to W/m2.  

Therefore, the total heat flux        (W/m2) at the pavement surface can be calculated 
as: 

                       .                                                    (2.15) 
 

2.1.3 Heat flow at the deep ground 

Temperature at the slab‘s bottom is not a constant but a variable. It depends on the 
boundary conditions at the pavement surface and on the physical properties of the 
underlying layers. At a certain point in deep ground, there exists a depth where the annual 
temperature amplitude is zero. This depth and its temperature are site-specific and thus 
are difficult to determine. However, for a specific site, the geothermal gradient at deep 
ground remains a constant (Andersland and Ladanyi 1994). Therefore, a geothermal 
gradient, usually 0.03oC/m (Goering and Kumar 1996), is denoted for the lower boundary 
condition of the computational domain shown in Figure 2.1. This geothermal gradient 
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adds another heat component to the underlying layers and keeps the deep ground thermal 
gradient, not the temperature magnitude, a constant.  

 

2.2 Simulation information 

The computational domain is discretized by 23 three-node elements, with 10 elements 
for the slab, 3 elements for base, and 10 elements for the subgrade. The slab has a 
thickness of 25.4cm (10inch). The base is assumed to be 10cm thick asphalt concrete. 
Time step size is 6 minutes to ensure the convergence of the simulation in realistic time. 
The cubic spline interpolation is used when an interpolation is needed. The initial 
temperature for the pavement structure and underlying layer is obtained by using the 
ground temperature profile from the preceding date. This date‘s temperature profile is 
gained by utilizing the local annual variation of ambient air temperature to simulate the 
ground temperature to a degree such that the temperature profile difference between this 
date and the same date in the previous year is less than 0.01°C. The Crank-Nicolson 
method is adopted to implicitly solve the differential Fourier equation in Eq. (2.1). 
Convergent tests are conducted to verify the accuracy of the results (Ainsworth and Oden 
1997). 

 

2.3 Model verification 

Reliability of the proposed heat transfer model is verified by the documented data that 
was observed in the field. Whether the predicted temperature coincides with the 
monitored temperature of a slab is of primarily concern. However, usually the monitored 
temperature is a relatively short term data, e.g. 1 to 10 days. Agreement between the 
predicted and monitored temperatures does not necessarily mean a long-term predicted 
temperature would coincide with the field temperature of a slab. In this regard, this study 
also verifies the model using the field observations pertaining to both slab temperatures 
and the ground temperatures. Numerical code for this simulation can be referred to 
Appendix C. 

 
2.3.1 Verification of the slab temperature. 

Documented data presented in (Yu et al. 1998) are used to verify the propose heat 
transfer model. The data was measured from an in-situ pavement slab on I-70 on July 12, 
1994. Climatic conditions are obtained from the NOAA database as input parameters for 
the model. The thermal properties, tabulated in Table 2.1 (the value outside the bracket), 
of the pavement slab and underlying layers are obtained from the United States 
Department of Agriculture (USDA) (USDA 2009).  

The numerical results computed from the proposed heat transfer model coincide with 
the in-situ observed data (Figure 2.2). The maximum temperature difference between 
numerical result and in-situ observation is 2.5oC, far lower than the error predicted in 
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documented literatures (Bentz 2000; Yavuzturk et al. 2005). The mean error and standard 
error are -0.17 oC and 1.24 oC, respectively. 

The comparison in Figure 2.2 raises a question that if the variations of the thermal 
parameters of the slab or underlying layers leads to a different validation. To this 
question, I arrange the heat transfer equation such that the slab‘s thermal parameters ( ,  , and  ) are compacted to the thermal diffusivity,  (m2/s). The arrangement turns Eq. 
(2.1) to Eq. (2.16):                                                                (2.16) 

 
where       .  

The dependence of the slab temperatures on thermal diffusivity thus can be used to 
investigate the sensitivity of the slab-temperature prediction to the thermal parameters in 
Table 2.1. This is because heat transfer model is a boundary-value problem in which most 
heat flux comes from the slab surface. The dependency can be estimated by using the 
maximum-, mean-, minimum-thermal diffusivities to simulate the slab temperature, 
respectively. These three diffusivities are tabulated in Table 2.2, which is computed by 
use of the thermal parameters in Table 2.1. 

 

 

Figure 2.2 Predicted versus in-situ observed temperature (dotted data reproduced from 
Yu et al. (1998). Note: air temperature is 19.8oC; daily peak value of the solar radiation 

is 630 W/m2; daily air temperature amplitude is 9.0oC; daily wind speed is 3m/s; the 
slab‘ thickness is 12inch therein. 

 
The prediction confirms that the variation of the thermal diffusivity affects on the slab 

temperature prediction indiscernibly. The predictions are respectively compared to the 
observed temperature illustrated in Figure 2.2. The comparison demonstrates that the 
validation is notably improved or worsened when different slab‘s diffusivities are used 
(Figure 2.3). This consistence is further confirmed in the statistical comparisons, which 
yield standard deviation less than 0.0043oC. Therefore, selection of the mean value of the 
thermal parameter tabulated in Table 2.1 is suitable to predict the temperature distribution 
of a slab; also, the slab temperatures possibly are more sensitive to the weather conditions 
such as wind speed, air temperature, solar radiation, etc. 
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Table 2.2 Variation range of the thermal diffusivity of the slabs 

Thermal diffusivity maximum mean minimum             1.89 1.06 0.53 
 

 

Figure 2.3 Validation of observed temperature by use of maximum, mean, minimum 
slab‘s diffusivity. 

 
Considering that a-day temperature prediction is a short-term temperature 

observation, this study verifies the model using a 12-day field observed temperature with 
a slab. The monitored temperature was recorded at a slab in Rantoul IL (Kohler 2005). 
The inputted weather conditions to the model, according to the weather station at 
Rantoul, are plotted in Figure 2.4. Some days are rainy day such that the solar radiation is 
less than 200W/m. Other information needed to simulate the slab‘s temperature is relative 
humidity and wind speed, which are takes as 0.68 and 3m/s, respectively. The albedo of 
the slab is 0.5 because the slab was not open to the traffic (Kohler 2005). 

The predicted temperatures statistically and visually coincide with the observed 
temperature (Figure 2.5). A relatively lower of the regression coefficient is possibly due 
to that the temperature variations were relatively smaller so that the predicted error was 
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magnified. Also, a relatively higher of the standard deviation comes from the predicted 
temperature at depth of 1.27cm because of the uncertainties of the inputted weather 
conditions at the pavement surface. For instance, the wind speed during a specific may 
vary irregularly. 

 

 

Figure 2.4 The inputted weather conditions at Rantoul, Illinois from Aug 17 to Aug 29, 
2003. Note: some days are rainy data such that the solar radiation is less than 200W/m. 

 

 

Figure 2.5 Verification of the temperatures observed from a slab in Rantoul, IL. 
 

2.3.2 Verification of the deep ground temperature 

Temperature at the bottom of a slab varies not only during a day period but also a 
seasonal cycle. It exhibits a seasonal cycle. Therefore the agreement of the short term 
temperature prediction does not necessarily mean that the long-term temperature 
prediction is reliable. This study also provides a long-term temperature verification of the 
model by use of the long-term ground temperature observation. Normally, such long-term 
data is unavailable because the field observation of a slab temperature is easily broken by 
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the overlain traffic. In this study, the temperature monitoring under the nature ground in a 
test section on the Qinghai-Tibet plateau, China is use to verified the long-term prediction 
of the model. The ground surface‘s albedo is assumed 0.22 (           ); the 
relative humidity is 0.6 during the whole year. It merits noting that modeling the ground 
temperature in the cold region like the Qinghai-Tibet plateau needs a formulation of the 
phase change issue of the ground soil. Details in this issue can be found at (Qin and Hiller 
2011a). This inputted weather conditions are plotted in Figure 2.6. 

 

 

Figure 2.6 The seasonal weather condition at the Qinghai-Tibet plateau. 
 

The predicted temperature statically and visually coincides with and observed data. 
The predicted temperature series at depth of the 0.5m show excellent agreement with the 
observed data, with a standard derivation of 0.76oC and an R-squared of 0.97. The 
proposed model can well predict the zero-curtain of the near ground temperature, as 
shown in the magnified plot in Figure 2.7b. Considering the temperature at depth may be 
deviated from the prediction, the temperature profiles on the February 10, 2002 (the 
coldest day at depth of 0.5m) and August 19, 2009 (the warmest day at depth of 0.5m) are 
also compared with the predicted profiles. Almost overlaps between the profiles (R2>0.96) 
signify that the proposed model is capable of credibly predicting the shallow ground 
temperature. 

2.4 Summary 

This chapter develops a heat transfer model to simulate the pavement slab 
temperature distribution. It verifies the reliability of the model by using the field 
observation. The model distinguishes itself from the documented model in the following 
aspects: 

 The model adopts a geothermal gradient to the deeper soil of the subgrade. The 
adoption makes the predicted results contained the information of the thermal history. It 
also makes the predicted results unaffected by specification of the lower boundary 
condition. 
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 The model computes the heat convection coefficient at the pavement by using of 
the accepted heat transfer theory. The estimated coefficient is impacted by the air thermal 
conductivity, air Prandtl number, and the characteristic length airflow, etc. 

 The model considers both the probabilistic and deterministic portions of the local 
solar radiation at the pavement surface. It is capable of characterizing the impact of heat 
history (solar radiation at the previous day or days) on the pavement temperature 
distribution. 

 
 

 

Figure 2.7 The verification of the predicted model by the use of 5-year observed ground 
temperature in the Qinghai-Tibet Plateau. 
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Chapter 3 Impact of air temperature
1
 

 Concrete pavements in the field are subject to temperature gradients and 
subsequently thermal stresses (Dempsey et al. 1985; Jensen and Hansen 1999). The 
surrounding air temperature controls the heat convection at the ground surface and plays 
a crucial role on slab temperature distributions. This role is hardly recognized from field 
investigations because slab temperature is concomitantly affected by other weather 
conditions like wind speed, solar radiation, etc. A numerical model capable of reasonably 
characterizing this role is thus necessary. 

Temperature distribution within a slab has been widely modeled (Solaimanian and 
Kennedy 1993; Ramadhan and Al-Abdul Wahhab 1997). However, the documented 
models still need improvement, especially in the way to characterizing the impact of 
ambient air temperature on the heat convection and thermal irradiation at the pavement 
surface. For example, in the Enhanced Integrated Climatic Model (EICM),  the free heat 
convection coefficient used in this model is minimal (MEPDG 2004). This negligible 
coefficient goes against the accepted heat transfer theory, in which a coefficient ranging 
from 5-7 W/m2 is adopted depending on the ground‘s surface condition. In the EICM 
model, the thermal irradiation is evaluated by a series of complex formulas containing 
several uncertain, empirical parameters (MEPDG 2004). Other models are relatively 
simpler and consist of less uncertain coefficients (Bentz 2000; Yavuzturk et al. 2005; Gui 
et al. 2007). However, these models usually adopt a Dirichlet lower boundary, potentially 
leading to delusive predicted results. These brief reviews necessitate a new model to 
properly characterizing the role of air temperature on temperature development within a 
slab.  

This study investigates the impact of air temperature on the temperature distribution 
in concrete pavement slabs. It uses the proposed model in Chapter 2 to simulate the 
temperature of the pavement slab servicing in different regions. The predicted results 
center on the impact of the daily air temperature swing on the slab temperature 
distribution, on the feasibility of using the sinusoidal-approximated air temperature, and 
on impact of air temperature on pavement-surface thermal irradiation. The associated 
discussion highlights the difference between the proposed model and documented models, 
especially the EICM model. 

3.1 Study area 

This study evaluates thermal regimes of rigid pavements in Los Angeles, California 
(coastal region) and Reno, Nevada, USA (mountainous desert region), respectively. To 
assess the extreme case, the pavement‘s temperature regime on July 22, 2010 is simulated. 
The thermal parameters of the pavements in these two regions are assumed with the same 
values to eliminate the effect of the controllable factors (e.g., media thermal 
conductivities, slab thickness, etc.) on the predicted temperature distributions and to find 
                                                 
1 The material contained in this chapter was previously published in the journal of Construction Building 
Material. The copyright permission is attached in the Appendix A. 
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the differences due to the regions alone. The thermal parameters of the media are 
tabulated in Table 2.1 (outside the bracket). The slab thickness is 25cm. The 
uncontrollable environmental factors such as wind velocity and dew point are set to the 
same values as well. These assumptions are practical because (1) on this date, the mean 
wind velocity in Reno is about 3m/s and that in Los Angeles is 2.8m/s, and (2) the 
variation of dew point only slightly affects the irradiation at the slab‘s surface as its effect 
on the sky emissivity of Eq.(2.4)  is minimal.  

The ambient daily air temperatures (DAT) of these two regions are considerably 
different, as shown in Figure 3.1. The DTA (obtained by using least square fitting) in Los 
Angeles and Reno are 4.8 and 17.2oC, and the mean air temperatures are 21.2oC and 
26.4oC, respectively. This difference in temperature wiggle may result in appreciably 
different temperature profiles across the slabs.  

3.2 Simulation results 

3.2.1 Temperature distribution through slabs 

3.2.1.1 Slab-surface Temperatures and air temperature 

Slab surface temperatures (Ts) are always higher than the ambient air temperatures 
(Ta), but the magnitude of       varies with time. During the daytime, the pavement 
slab in Los Angeles experiences higher      . This slab is thus able to dissipate more 
absorbed heat to the air and experiences a lower surface temperature, as shown in Figure 
3.2a. Conversely, during the nighttime, the pavement slab in Reno undergoes higher       (Figure 3.2b). In Reno, a hotter slab during the daytime is partially heat-stored 
and thus keeps the slab warmer during the nighttime. This heat storage makes the slab in 
Reno hotter than that in Los Angeles. This different pavement surface temperature 
necessitates an understanding of through-depth temperature profiles, because these 
profiles determine the thermal stress development within a slab.  

 

 

Figure 3.1 Air temperatures on July 22, 2010 in Los Angeles and Reno. 
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Figure 3.2 Air temperature and slab-surface temperature. 
 
3.2.1.2 Temperature across the slab 

Pavements in Reno experiences greater nonlinear temperature gradients, especially 
during the nighttime. During the daytime, the temperature contours of pavement in Los 
Angeles are spaced further apart than in Reno, indicating a higher temperature changes 
through the depth of the slab (Figure 3.3). The maximum temperature differences 
between the top and bottom are approximately +9oC for the pavement slab in Reno and 
+7oC for the slab in Los Angeles. This difference occurs owning to that in Reno, the 
relatively greater air temperature at daytime declines the heat loss from the pavement slab 
(Figure 3.2 a).  

Also, during the nighttime, higher negative temperature gradients develop at the 
pavement in Reno. As shown in Figure 3.3, the temperature differences between the top 
and bottom during night hours are approximately -8oC for the pavement slab in Reno and 
-4oC for the slab in Los Angeles. This difference happens due to that heat convections 
cools the slab surface rapidly but the remaining parts of the slab remain hotter (the 
bottom of the slab in Reno is about 5oC higher than that in Los Angeles). 

 

 

Figure 3.3 Temperature contours of JPCP slabs in Reno and Los Angeles (contours at 
1oC spacing). 
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3.2.1.3 Heat flow at the pavement surface 

The pavement surface in Reno experiences higher heat-loss and -gain cycles 
compared with that in Los Angeles. During the daytime, the total heat flux into the 
pavement in Reno is higher than that in Los Angeles (Figure 3.4a). During the nighttime, 
the pavement in Reno also experiences higher heat loss. Total heat flux was declined 
after 13:00, the peak-value appeared time of the solar radition. But the peak value of the 
pavement surface temperature appeared around 16:00. This difference occurs because 
after the midday, the total heat flux at the ground surface still is positive (Figure 3.2) and 
this positive budget may be higher than the downward-propagated heat budget. This 
positive daily thermal budget results in that surface temperature still increases after the 
midday. The budget suggests that whether the peak surface temperature occurs after or 
before the peak air temperature depends on the solar radiation, heat convection, and 
thermal irradiation. 

Different total heat fluxes of these two slabs are due primarily to the different heat 
convection and thermal irradiation at the slab surfaces. For heat convection, the pavement 
in Reno undergoes less convection during the daytime (Figure 3.4b) because the high 
surrounding air temperature hinders the heat dissipation from the surface. Conversely, 
during the nighttime, the pavement in Reno experiences more heat convection as the 
higher       in Reno (Figure 3.2b) facilitates heat outflow from the slab surface.  

Thermal irradiation primarily depends primarily on the slab surface temperature (Eq. 
(2.2)). Because the slab surface temperature in Reno is always higher than that in Los 
Angeles, the thermal irradiation of the pavement in the former region is always higher 
than that in latter (Figure 3.4c). During the nighttime, the pavement in Los Angeles 
experiences approximately 30 W/m2 heat loss than that in Reno because the       of 
the slab in Los Angeles is close to zero at this time (Figure 3.2b).  
 

 

Figure 3.4 Heat flux at the top of the slabs. 
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3.2.2 Use of sinusoidal-approximated air temperature (SAAT) 

3.2.2.1 The significance of using SAAT  

The impacts of the local air temperature on the slab‘s temperature distribution 
demonstrate at the numerical results shown in the above sections. However, a detailed 
air-temperature series of a given day may be missing from a database, especially when 
the long-term temperatures through a slab are estimated. Even though such series are 
available in NOAA database in one hour intervals, the temperatures between intervals 
have to be interpolated since the step time of the numerical model is far less than 1 hour 
to achieve convergence. According to a formula presented by (Gui et al. 2007), the 
minimum time step would be approximately 6 minutes if quadratic elements are used and 
the element length is 1cm, in order to make the simulation reasonably converged.  

Therefore, a question may arise. Can the daily air temperature input to our models be 
approximated as a sinusoidal function? If the error resulting from this approximation is 
minimal, the inputted DTA into a computational model can be parameterized by the mean 
daily air temperature and its amplitude. 

 
3.2.2.2 The feasibility of using SAAT 

Replacing the field air temperature (FAT) with the SAAT does not affect the 
numerical results significantly. Figure 3.5 shows the heat fluxes at the surface and plots 
the temperatures of the slab when the model replaces the FAT with the SAAT. 
Regression coefficients for this replacement are consistently higher than 0.98. The errors 
resulting from this replacement are tabulated in Table 3.1. Errors of the simulation for the 
slab in Los Angeles are almost the same magnitude as those in Reno, although the 
regression coefficient for the air temperature in Los Angeles is significantly lower 
(Figure 3.1). Therefore, replacing FAT with SAAT is feasible when predicting 
temperature distribution through a slab, even if the air temperature does not necessarily 
follow a sinusoidal pattern rigorously.  

This approximation is feasible because the net thermal budgets resulting from this 
replacement are minimal. As shown in Figure 3.5a, this replacement influences the heat 
flux at the pavement surface more than it does temperatures distribution (Figure 3.5b and 
c). Using the SAAT as a substitute of the FAT makes the input air temperature different 
from the field air temperature. It thus results in the heat convection and thermal 
irradiation deviating from the field conditions. However, the deviation is compensated 
during a day period, and therefore the average of these deviations is close to zero (-1.1 
W/m and 0.43 W/m, for Reno and Los Angeles, respectively).  

 
3.2.3 Impact of air temperature on the thermal irradiation 

Air temperature influences the heat convection explicitly (Eq. (2.6)) and also affects 
the thermal irradiation implicitly. The implicitness presents in Eq. (2.3), in which the air 
temperature directly correlates with sky temperature. In the Stefan-Boltzmann law, the 
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thermal irradiation linearly decreases with     . This quadruple power-law linking    to    merits a thorough examination and review.  
 

 

Figure 3.5 The feasibility of using sinusoidal approximated air temperature input 
(SAAT). 

 
Table 3.1 The errors of using SAAT in the numerical model 

Error 
Heat flux(W/m2) 

 
Temperature(oC) 

Los Angeles Reno 
 

Los Angeles Reno 
Standard error 12.07 11.72 

 
0.12 0.17 

Maximum error 27.02 20.52 
 

0.58 0.67 
Mean error -1.10 0.43 

 
0.10 -0.12 

 
 

3.2.3.1 The correlation between air and sky temperature in the literature 

The sky temperature is determined primarily by the surrounding air temperature and 
also to a certain extent, by other factors including the dew point, water vapor pressure, 
sky cloud cover, etc. The simplest formulations to evaluating the sky temperature are Eq. 
(3.1) (Dreyfus and Hilleary 1962) and Eq.(3.2) (Swinbank 1963): 

                                                                        (3.1)                                                                        (3.2) 
These straightforward, easily-obtained formulas fail to consider the impacts of the 

factors like dew point. One model that considers the impact of the water vapor tension    
(mmHg) is Eq. (3.3) (Centeno V 1982): 

                                                                     (3.3) 
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Because    is a function of air temperature (Ahren 2007), Eq. (3.3) does not count the 
effect of the dew point on the sky temperature. Another model that considers this effect is 
Eq. (3.4) (Berdahl and Fromberg 1982) 
                                                                 (3.4) 

 
The sky emissivity can be also a function of the combined effect of cloud cover, 

water vapor pressure, and dew point. Formulations for this function are overly 
complicated. One of these formulations, proposed by Walton (Walton 1985), uses the 
combination of Eq.(3.5) and (3.6). 

 

                                             (3.5) 

 
where        is a cloud cover factor calculated as follows:  
 

                                       (3.6) 

 
where N is cloud cover, taking value between 0 to 1.0.  
 
3.2.3.2 Impact of air- and sky-temperature correlation on numerical results 

The predicted slab temperature depends, to a certain extent, on the correlation utilized 
between the sky and air temperatures. Numerical results from the different models 
presented in Eqs.(3.1) to (3.6) are compared to the temperatures recorded by Yu et al 
(1998), which has been verified in Figure 2.2. Comparisons between the predictions from 
different model are demonstrated in Figure 3.6. The models (Dreyfus et al., and 
Swinbank) that directly link the sky temperature to air temperature tend to overestimate 
the temperature of a slab, whereas the Swinbank‘s formula appears to better predict the 
pavement slab‘s temperature (Figure 3.6a). The models that consider the dew point 
and/or the cloud cover show a higher level of reliability to predict the slab surface 
temperature (Figure 3.6b). These models predict temperatures results in a regression 
coefficient greater than 0.91.  

However, this does not necessarily indicate that some models are capable to correctly 
predict the pavement temperature whereas others are not (Qin and Hiller 2011b). As 
shown in Figure 3.6a, the temperatures predicted using the formulas of Dreyfus et al., and 
Swinbank shows approximately 3-4oC higher than the measured temperatures. An 
adjustment of the input parameters, e.g., wind velocity and/or daily solar-radiation peak 
value, can generate predicted temperatures from this model to better match the observed 
temperature. In this regard, better predictions of the temperature distribution in a 
pavement slab require proper characterization of the correlation between sky and air 
temperatures. Further investigation is expected to refine this determination between sky 
temperature and air temperatures.  
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Figure 3.6 Predicted slab temperatures computed from different sky-temperature 
formulas; Note: In Walton model, N=0.1 is used as the sky condition is unusually clear 

during the summer near the Kansas-Colorado border. 
 

3.3 Discussion 

3.3.1 Applications to other regions 

All the presented data and associated analysis are based on an extreme summer 
weather condition in either Reno or Los Angeles. Extents of them to other regions or to 
other seasons provoke, at least, four questions.  

 
3.3.1.1 Does the augment that       still hold true? 

The inequality of       fails to hold true in other seasons, especially in the high 
altitude regions. To illustrate this issue, we consider the weather conditions in the polar 
region during the winter time. In this case, the solar radiation is negligible. The thermal 
irradiation and the heat convection dominate the heat convection at the pavement surface. 
The pavement (ground) surface temperatures should satisfy the following inequality: 

                                                                      (3.7) 
 

This inequality holds because:  
1) If      , both the thermal irradiation in Eq.(2.6) and heat convection in Eq. 

(2.2) consists of the heat loss from the surface.    thus must rapidly decline until      . 
2) If      , then         and        because         (      ). Therefore,    still has to decrease and thus      . 
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These three reasons indicate that the inequality of Eq. (3.7) must hold in polar regions 
during the wintertime. In other regions, this inequality may hold depending on the 
altitude of the location. In seasons other than winter time, the inequality may also hold 
depending on the available solar radiation. Therefore, one cannot conclude that       
consistently or vice versa.  

 
3.3.1.2 Does the daily air temperature still appreciably influence the thermal gradient 

across a slab? 

The influence of the daily air temperature on the temperature gradient of a slab is still 
notable in other regions or seasons. In other regions during the summertime, the 
incoming solar radiation heats up the pavement surface temperature rapidly during the 
daily time. A higher swing of the surrounding air temperature thus decreases the heat 
convection, resulting in a greater temperature positive temperature profile developing 
within a slab.  

During other seasons such as winter time, the incoming solar radiation becomes less 
dominant on the heat exchange at the ground surface. The air temperature still controls 
the heat convection at the top. A greater daily air temperature variation leads to a greater 
temperature variation at the pavement surface. In this regard, a greater daily air 
temperature variation still results in a steeper gradient of the temperature profile within a 
pavement slab. 

 
3.3.1.3 Is replacing field air temperatures with SAAT still feasible? 

Replacing the field air temperatures within SAAT does not compromise accuracy of 
the predicted temperature, regardless of the regions or season. In this study, the 
simulation uses the weather conditions in extreme cases. Such cases make the predicted 
results being magnified. This means that the replacement will be certainly feasible in 
other regions and in other common daily air-temperature swing cases.  

Here now considers uncommon cases that the air temperature either increases or 
drops suddenly. Supposed that a sudden drop of the air temperature of 10oC occurs in a 
summer day, the ground surface temperature has to decline. However, this decline is 
greatly less than the 10oC owning to three reasons.  

(1) In this case, the regression air temperature yields lower daily temperature 
amplitude than the difference between maximum and minimum air 
temperatures, as shown in Figure 3.1b. 

(2) The existence of both the temperature boundary layer and speed boundary 
layer (wind effect) make the surface temperature dampened to the sudden 
variation of the ambient air temperature. 

(3) The heat development within the slab is inherited (Figure 3.3). The heat 
inheritance from the previous time frame supplies heat to the pavement 
surface, preventing an extreme sudden temperature drop at the top. 

These three arguments strengthen the feasibility of the replacement of field air 
temperatures with SAAT, even as a sudden air temperature drop occurs. An example of 
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this feasibility is shown in Figure 3.1b. A sudden air temperature variation about 4oC 
occurred from 09:00 to 10:00 and from 16:00 to 18:00. However, the prediction using the 
SAAT agrees well with the prediction using the field air temperatures, with little notable 
deviation (Figure 3.5a). These same arguments can be made in terms of an abrupt air 
temperature increase as well. 

 
3.3.1.4 Do the methods of estimating the sky temperature still notably influence the 

predicted temperature?   

The methods to computing the sky temperature still appreciably affect the pavement 
temperature regardless of the regions and the seasons. Normally, the dew point can be 5-
10oC lower than the air temperature, depending on the local air relative humidity 
(Centeno V 1982). The hold of the inequality of Eq.(3.7) thus proves this impact during 
the winter seasons. During the summer time, the surface temperature is heated up by the 
solar radiation, magnifying the role of the sky temperature on the thermal irradiation 
according to Eq. (2.2). 

 
3.3.2 Difference between the proposed model and EICM model 

One distinguishable feature of the proposed model from the documented models, 
particularly the EICM model, relates to the specification of the lower boundary condition. 
The EICM model, as well as other models like Bentz model (Bentz 2000), adopts a 
constant temperature at a certain depth below the pavement surface, assuming that the 
soil at this depth is capable of supplying infinite heat to keep temperatures therein 
constant. 

When considering the role of the air temperature, the difference between the various 
models‘ methods of estimating the heat convection and thermal irradiation is distinct. 
This is due to the air temperature appearing explicitly in Eq. (2.6) and implicitly in Eq. 
(2.2).  

 
3.3.2.1 Heat convection in different models 

The method for computation of the heat convection coefficient       in the EICM 
model is somewhat unreliable.  This model evaluates       use Eq. (3.8) 

                                                                      (3.8) 
 

where    (oK) is the average of the surface and air temperatures (Dempsey et al. 1985);   
is constant,        . Setting wind velocity to    , the       is close to zero because                     is minimal. This indicates that the EICM model adopts zero 
convection in the case of free convection (no wind velocity). This zero free convection 
goes against the accepted heat transfer theory (Jiji 2009). Another unreliable factor of Eq. 
(3.8) is that the pavement surface temperature must always be higher than the air 
temperature, otherwise       would be a complex number. This is not always the case as 
demonstrated in Eq. (3.7). 
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To further show the impact of the EICM method to compute      ,, Figure 3.7 plots 
the       calculated from the proposed model, EICM model, and Bentz‘s model, the last 
of which uses Eq. (3.9). 

                                                                                   (3.9) 

 
Details pertaining to the difference between Bentz‘s model and the proposed model 
involve analysis on the heat transfer theory relevant to the topic of heat convection and 
thus are out of the scope of this dissertation. However, Figure 3.7 clearly illustrates the 
difference between the models. Use of the       computed from EICM model 
significantly underpredicts the heat convection occurring at the pavement in comparison 
with the Bentz and proposed models. Since this convection normally accounts for the 
heat loss from the ground, adoption of EICM model would overpredict the pavement 
temperature. In addition, this predicted temperature from the EICM is insensitive to 
variations of wind speed, as illustrated through the calculated       (Figure 3.7). 

 

 

Figure 3.7 Comparison between inputted heat convection coefficients for different 
models. Note: when the       in the EICM model computed,         oC is used in 
order to magnify the computed       of the model.      <0 oC results in a complex 

number using Eq. (3.8). 
 
3.3.2.2 Thermal irradiation in different models 

It is necessary to compare the thermal irradiation in the proposed model with the 
EICM model because the EICM is the most widely-used tool to predict the temperature 
distribution in PCC pavements. Unfortunately, the EICM does not use the sky 
temperature to formulate the thermal irradiation at the slab surface. The impact of sky 
temperature on the pavement temperature distribution thus cannot be directly estimated. 
However, the formulation of thermal irradiation in both the proposed model and Bentz 
model are simpler and rely on less uncertain parameters (MEPDG 2004). In EICM 
model, the parameters to compute the thermal irradiation from the sky emissivity 
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includes cloud base factor, average cloud cover during day and night, air vapor pressure, 
and several empirical coefficients (G,  , and J) , etc.  

For the sake of the simplicity and clearance, use of the formula in the EICM model to 
compute the thermal irradiation at the ground surface is not recommended. According to 
heat transfer theory (Jiji 2009), the irradiation should be evaluated using the sky 
emissivity. Methods to this account for sky emissivity are highlighted in the Eq. (3.1) to 
Eq.(3.5), depending on the available local weather data. Tang‘s formula (Eq.(3.4)) is 
recommended and utilized in the proposed model. It links the sky temperature to dew 
point for the best accuracy of temperature prediction in concrete slabs whereas not 
requiring the cloud factor, which can be a highly uncertain parameter. 

 

3.4 Conclusions 

The impact of air temperature on the temperature distribution through pavement slabs 
has been presented from three aspects: (1) the impact of DTA on pavement temperature 
distribution through the slabs, (2) the feasibility of using the sinusoidal-approximated air 
temperature, and (3) the predicted thermal profile results dependence on the correlation 
between the air and sky temperatures. Also, the difference between the proposed model 
and documented models, especially the EICM model, is highlighted in terms of how 
these models characterize the impact of air temperature on the heat convection and 
thermal irradiation. From this study, the following points can be drawn: 

 The daily temperature amplitude affects the temperature distributions across a 
pavement slab during the daytime more than during nighttime. Pavements in regions with 
higher daily air temperature amplitude experience greater negative temperature gradients 
during the nighttime hours.  

 Replacing the field air temperature with the sinusoidal-approximated air 
temperatures does not affect the predicted slab temperature. The occurrence of a sudden 
air temperature drop or increase does not compromise this agreement significantly. 

 Uses of the correlations between air and sky temperatures in a slab-temperature 
predicted model notably influences the predicted results. Methods that estimate the 
thermal irradiation by link the sky emissivity to dew point should be included in a slab-
temperature predicted model.  

 The EICM model tends to significantly underestimate the heat convection 
coefficient and thus overpredict the pavement temperature, compared with the proposed 
and other published models. The use of the EICM model potentially results in the 
predicted temperatures highly insensitive to wind speed variations. 
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Chapter 4 Impact of wind speed
2
 

In-service jointed plain concrete pavements (JPCPs) suffer from diurnal temperature 
variations and lead to thermal deformations across the pavement slab. Stresses caused by 
these deformation depend, to a certain extent, on the pavement geometry and the 
underlying layer support but primarily on the temperature distribution within a slab. They 
thus mainly rely on the in-situ weather conditions, e.g., solar radiation, air temperature, 
wind velocity, and the combination of these factors. Among these conditions, the role of 
wind speed on the pavement temperature distribution merits a thorough study because 
wind velocity greatly determines the amount of heat convection occurring at the 
pavement surface.  

The impact of wind conditions on the temperature profile of a pavement structure has 
been well documented (Kapila et al. 1997; Bentz 2000; Burkan Isgor and Razaqpur 2004; 
Yavuzturk et al. 2005); but formulation of the wind speed on the heat convection 
coefficient remains contentious. Such a coefficient at pavement surface nonlinearly 
increased with wind speed (MEPDG 2004). Currently use of the nonlinearity is based on 
the empirical regression of laboratory experiments. It overlooks the impact of the air 
thermal properties like thermal conductivity, air-flow Reynolds number, etc. on heat 
convection. This impact had been considered by  Kapila et al.  (1997), which connected 
the heat coefficients to the Reynolds and Prandtl numbers of the air. However, Kapila et 

al. assumed that the characteristic length used to compute the Reynolds number is the 
width of the pavement. This characteristic length used is significantly larger than that 
computed from traditional heat transfer theory (Jiji 2009). Although the heat convection 
coefficients calculated from the aforementioned models deviate from each other, it is 
clear that wind velocity directly influences the heat convection at ground surface. If this 
influence is of considerable magnitude, a proper estimate of the heat convection will be 
critical in predicting this influence on both temperature profiles and thermal stresses in 
JPCPs.  

This chapter investigates the impact of wind velocity on the temperature distribution 
in JPCPs and evaluates the role that the heat convection coefficient plays with respect to 
stress profiles in the slab. It centers on the degree that the variation of wind speed on the 
temperature distribution and thermal-stress distribution through a pavement slab. It 
highlights the difference between the methods to computing the heat convection 
coefficients in different models. The reliability of these models is analyzed on the basis 
of the accepted heat transfer theory and of the predicted feasibility. 

4.1 Simulation results 

This chapter estimates the temperature and thermal stresses of a JPCP in Reno, 
Nevada. To assess the maximum stress effect, the pavement temperature regime for July 
12, 2010 is simulated. The thermal parameters regarding the underlying soils under I-80 
                                                 
2 Part of the material contained in this chapter was submitted to Journal of Transportation Engineering for 
considering publication. 
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at Rainbow Ridge Park (in Reno) are obtained from USDA. The slab‘s thickness is 
25.4cm and the local air temperature, dew point temperature, etc., are obtained from 
NOAA. The air temperature series and wind speeds on July 12, 2010 are demonstrated 
Figure 4.1a and Figure 4.1b, respectively. The temperature series can be approximated to 
a sinusoidal period, whereas the wind speed exhibits more randomized deviation with a 
maximum speed of 9m/s. Because of these varying wind velocities in field, the following 
simulates both the temperature profiles and developed thermal-stress profiles of a slab 
under different wind velocities.  

 

 

Figure 4.1 Air temperature and wind speed on July 12, 2010, in Reno, Nevada 
 

4.1.1 Effect of different wind velocities on temperature development 

An increase of wind speed from 0-6 m/s greatly declines the temperature of a slab. 
Degree of the decline depends on the time of a day and on the amount the incoming solar 
radiation (Figure 4.2). During the daytime, the top of the slab declines roughly 2oC if the 
weather is a cloudy day; whereas the temperature difference at the bottom seems 
negligible. During a sunny day, the decline at the top would be up to approximately 14oC 
at the top and about 8oC at the bottom. The reason that wind blow can reduce the 
temperature more in a sunny day is that wind flow at such a day is capable to dissipate 
more energy from the pavement surface. At the night, although the solar radiation 
vanishes, wind still notability affects the pavement temperature, especially during a 
sunny day. This is because the heat inherited during the daytime makes the thermal state 
of the slab different from the state of the surrounding air. At the night time of a sunny 
day, increase of wind speed from 0-6m/s reduces the 4oC at the top and 6oC at the 
bottom. Therefore, the effect of the wind speed on the pavement slab varies with time and 
depends on the available solar radiation. 

The increase in airflow helps mitigate the nonlinear temperature gradients through the 
slab, especially during the daytime of a sunny day. This gradient reduction is visualized 
at the density of the temperature contours shown in Figure 4.2. During the daytime of 
sunny day, the slab experiencing 6m/s airflow has temperature contours that are spaced 
further away (Figure 4.2d) than those under no wind (Figure 4.2c), indicating higher 
temperature gradients in the slab. The gradient reduction can be also estimated from the 
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temperature cycles that the bottom and top of the slab suffer from. As illustrated in Figure 
4.2, during a sunny day, the amplitude of slab-top temperatures is 38oC in the case of 
0m/s wind speed and 28oC in the case of 6m/s wind speed. 

 

 

Figure 4.2 Temperature contours of a slab experiencing different wind velocities. Note: 
coordinate system is considered positive downward and measured from the slab‘s top. 

 
 

4.1.2 Computation of the curling-induced stress within a slab 

Curling of rigid pavement slabs has captured considerable attention (Ashraf R. 
Mohamed and Hansen 1996; Ashraf Mohamed and Hansen 1997; Yu et al. 1998; J.E. 
Hiller and Roesler 2008). Several methods have been proposed to compute the exact 
amount of curling-induced stress (Hong et al. 1997; Ashraf Mohamed and Hansen 1997; 
Jacob Eskel Hiller 2007) within JPCP slab. They usually use elastic plane theory to 
compute the thermal stresses within a pavement slab, assuming negligible uniform 
temperature effects. Any temperature profile      results in a specific strain profile      : 

 
( ) ( )T z T z                                                           (4.1) 

 
where   (10−6/°C) stands for the thermal expansion coefficient of the slab. The strain in 
Eq. (4.1) results in a stress profile proportional to the temperature profile if the stresses 
within the slab develop freely. This stress profile, called free stress profile, is: 
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                                                                 (4.2) 

 
where   is the conventional Young‘s modulus of concrete (Pa);   is the Poisson ratio of 
the slab.  

Stresses estimated in Eq. (4.2) are free stresses. They automatically redistribute to 
minimize the stress energy according to the principle of minimum potential energy. The 
redistributed stress is the real stress that the slab subjects to. It can be definitely computed 
by use of 3-D finite element method to evaluate Eq.(4.2) (Pane et al. 1998). However, 
considering that pavement engineering is more of practical importance than theoretical 
importance in nature, this dissertation uses the method proposed by Mohamed and 
Hansen to compute the redistribution of the free stresses (Ashraf R. Mohamed and 
Hansen 1996). This method, easily followed by engineers, is briefly presented in the 
following. 

The stresses in the Equation (4.2) generate a normal internal N (N) and a bending 
moment M (Nm2). These two forces are: 
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                                              (4.4) 

 
where   is the thickness of the slab;   is the coordinate that is perpendicular to the slab 
surface and has an origin at the middle of the slab.  

Both the force in Equations (4.3) and the moment in Eq. (4.4) make the slab being in 
a un-equilibrium state. It is thus necessary to impose an equal, opposite force N and 
moment M to balance the resulting stress distribution. These forces come from the self-
weight of the slab and from the reaction among the slab, base, and roadway shoulder. 
Therefore, the self-equilibrating stress      (MPa) resulting from the constraints of 
compatibility is: 
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                                                       (4.5) 

 
where the second term of the Eq.(4.5) stands for the stress coming from the moment  ; 
the third term, from the force  . 

Other than     , a temperature profile through the slab results in linear stresses 
developed in the slab. This development is due to the restraint of the slab‘s self weight to 
the bending moments M . This moment results in a bending curvature,  ; their 
relationship can be estimated by Eq. (4.6): 
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                                          (4.6) 

 

where x  and y are the bending curvature induced by the    and    respectively, as a 

schematic show in Figure 4.3. 
 

 
Figure 4.3 Schematic showing the bending moment induced by a temperature profile. 

 
Equation (4.6) indicates that if the slab is weightless,   would make the slab deforme 

to a curve with curvature of  . When the temperature variation occurs along z  direction 

only (1-D model), x yM M M  and x y    . Therefore, Equation (4.6) can be re-

arranged to: 
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where  
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here 
*M (m2) is constant depending on the free stress profile. The curling induced by the 

bending moments is equal to a nominal linear temperature gradient     : 
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Therefore, the linear stress can be computed by (Westergaard 1927; Bradbury 1938): 
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where    and     are the stresses in the transverse and longitudinal directions, 
respectively;    and    are two variables of the stress correction factor (Bradbury 1938).  
These two variables are determined by the dimension of the slab and by the support of the 
subgrade. This dissertation uses the following parameters: 

 Coefficient of thermal expansion 9 / C    

 Young‘s modulus         
 Poisson ratio        
 Slab dimension: X=3.6m (transverse); Y=6.0m (longitudinal); 
 Modulus of subgrade reaction, k=50MPa/m 

When these parameters are used, the stress correction factor for the slab‘s width and 
slab‘s length are          and        , respectively (Westergaard 1927; Bradbury 
1938). The stresses plotted and discussed in this dissertation are the longitudinal stresses, 
which are generally greater than the transverse since       for most instances. 

 
4.1.3 Impact of wind speed on the curling stress 

4.1.3.1 Stress profile 

The airflow helps mitigate the linear and self-equilibrating stresses (Figure 4.4). The 
linear stress significantly decreases when the wind blows across the pavement surface. 
This decrease occurs since the airflow-induced heat dissipation from the slab lessens the 
temperature difference between the top and the bottom and thus reduces the bending 
moment in the slab. The self-equilibrating stress also decreases due to an increased 
airflow. Since wind directly affects the surface only, this influence occurs more at the top 
than the bottom (compare Figure 4.4a and c).  

The total stress is remarkably reduced when wind speed increased from 0 to 6m/s. It 
decreases more notably at daytime than at nighttime. At daytime, when wind speed is 
0m/s, the compressive stress at the top and the tensile stress at the bottom are -3.6MPa 
and 2.2MPa, respectively; when the wind speed increase to 6m/s, these stresses would be 
-2.5MPa and 1.6MPa, respectively. At night, such decreases of the maximum tensile 
stress at the top are less notable (0.2MPa reduction with 6 m/s wind). 
4.1.3.2 Stress contours 

In less windy conditions, the slab bottom suffers from more tensile stress than the top. 
The top of the slab suffers from tensile stresses at nighttime while the bottom experiences 
tensile stresses at daytime. The bottom of the slab, despite experiencing lower absolute 
temperature variation, suffers from higher tensile stresses than the top (Figure 4.5a and 
c). This is because during the daytime, the slabs in less windy regions have more bending 
stress, resulting in the bottom of the slab suffering from a relatively higher tensile stress. 
An increase of wind speed lessens this bending stress and makes the stress bottom 
experienced less tensile stress (Figure 4.5b and c).  

The effect of wind speed on the slab‘s stress distribution depends on the available 
solar radiation. At noon of a cloudy day, the tensile stress at the bottom is not 
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significantly influenced by the airflow speed (comparing Figure 4.5a and b). But on a 
sunny day, the impact of wind velocity on the stress distribution through the depth of the 
slab becomes pronounced in that the stress contours near the top and the bottom are 
densified. This is because during a sunny day, the wind speed dissipates a relatively more 
heat energy from the pavement surface. More heat dissipation leads to less temperature 
gradient near the surface and thus mitigates the stress gradient near the top. 

 

 

Figure 4.4 The predicted thermal stress profile through a slab on a sunny day. Note: 
negative—compressive; positive—tensile. 
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Figure 4.5 Predicted stress distribution in the slab for different wind velocities and 
weather conditions (contours at 0.5 MPa spacing). 

4.1.4 Thermal stresses and wind velocity 

Magnitude of maximum tensile stress to which the slab is subjected linearly decreases 
with an increase in the wind speed, as illustrated in Figure 4.6. The decreasing rates of 
these stresses on a sunny day are significantly higher than that for a cloudy day (Figure 
4.6a and b). This rate at the slab‘s bottom is approximately one-and-half times that at the 
top, regardless of whether it is a sunny day or a cloudy day. This difference further 
suggests that the increase of wind speed decreases the tensile stress at the bottom more 
pronouncedly than it does to the tensile stress at the bottom. It also implies that in a less 
windy condition, the bottom of the slab is prone to fatigue damage. 
 

 

 

Figure 4.6 Maximum tensile stresses in the JPCP as a function of wind speed. 
 

4.1.5 Heat convection coefficients in different models 

Since the wind speed notably affects the temperature development and stress 
development of a JPCP slab, it is necessary to compare the heat convection coefficients 
used in different documented models. This coefficient used in the EICM model is 
computed by Eq. (3.8): 

                                                                          (3.8)   
                                     

Eq. (3.8) results in a free convection (no wind velocity) at the ground surface 
approaching zero because       vanishes when    . This zero free convection goes 
against the accepted heat transfer theory (Jiji 2009). The most unreliable factor of 
equation (3.8) is that the slab‘s surface temperature must be higher than the air 
temperature, otherwise       would be a complex number. Because the sign of       
can be either negative of positive (Eq. (3.7) in Section 3.2.3.1), the way the EICM model 
computes the       is questionable. 

Priestley and Thurston (Priestley MJN 1979) recommends a simple formula to 
evaluate the heat convection coefficient as follows  
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                                                                        (4.11) 
 

The free convection in Eq. (4.11) is 13.5W/m2oC, approximately twice of the value 
(6.855W/m2oC) computed in traditional heat transfer theory (Jiji 2009). This equation 
also demonstrates that the heat convection linearly increases with the wind velocity. Use 
of this relationship potentially overestimates the role of wind speed on the heat 
convection. 

Bentz (Bentz 2000) use Eq. (3.9) to predict the heat convection coefficient for 
concrete: 

                                                                                        (3.9) 

 
In Eq. (3.9), the free convection at the pavement surface is 5.6W/m2 oC. This value is 

close to the convection coefficient estimated in the traditional heat transfer theory (Jiji 
2009). However, use of the rate of either       or   overrates the role of wind speed on 
the      . 

The heat convection coefficients used in the Bentz model, EICM model, and the 
Modified Blasius model are plotted in Figure 4.7a. Visually, the coefficient computed 
from the EICM model is appreciably lower than that from the proposed model and Bentz 
models. Predicting the pavement temperatures by the use of these models to predict the 
convection will lead to different predicted results. 

Use of the computed heat convection coefficient greatly affects the predicted 
temperature across the pavement. Figure 4.7b plots the wind velocity versus the slab‘s 
maximum temperature on a partly sunny day in July (maximum solar radiation intensity 
of 700 W/m2). The slab is assumed in Reno, Nevada. Intuitively, in such a day the 
maximum temperature ranging from 51 to 55 oC is unreasonable but from 30 to 45 oC is 
more acceptable. In the EICM model, the wind velocity slightly affects the slab‘s 
maximum daily temperature. This insensitivity occurs because the heat convection 
coefficient computed from the EICM model is remarkably less than the other two models 
(Figure 4.7a). Among other two models, the effect of the heat convection computed from 
the Bentz model is more pronounced than that from the proposed model. The reason is 
that the increasing rate of the heat convection coefficient computed from the former 
model (Bentz model) is greater than the rate of the latter. 

Use of the computed heat convection coefficient also influences the predicted 
maximum tensile stresses in a JPCP (Figure 4.7c and d). A distinction between these 
models is pronounced at two aspects: (1) the sensitivity of the stress to wind speed and 
(2) the magnitude of the predicted stresses. First, the maximum tensile stresses estimated 
from the EICM model become less sensitive to the wind velocity than other models. This 
is because compared to the other two models, EICM model results in the heat convection 
coefficient being insensitive to the wind speed. Second, the maximum tensile stress 
estimated in the EICM model is always higher than the other two models. During the 
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nighttime (Figure 4.7c, tensile stress at the top occurs at nighttime), this difference is 
relatively less pronounced because the       during the night hours is comparatively 
lower. During the daytime (Figure 4.7d), the difference becomes more notable because a 
relatively high of       (induced by the solar radiation) magnifies the role of the heat 
convection on the heat loss from the pavement.  

 

 

Figure 4.7 Difference heat convection coefficients and their impacts on the temperature 
and stress through a slab. 

4.2 Discussion 

4.2.1 What the ways to estimate the heat convection coefficient tell us? 

The predicted pavement temperatures from the EICM model are insensitive to the 
wind speed but are sensitive to the slab‘s thermal properties, e.g. thermal conductivity. 
As plotted in Figure 4.7, the predicted results from the EICM model exhibits less 
variation in range of 0m/s to 6 m/s. The insensitivity may help explain, in part, the 
extreme sensitivity of the EICM model‘s prediction to the slab‘s thermal conductivity 
(J.E. Hiller and Roesler 2008; Johanneck and Khazanovick 2010). The higher the thermal 
conductivity, the lower temperature gradient developed in the pavement slab. A slab with 
higher thermal conductivity facilitates the absorbed heat downward propagating to the 
bottom of the slab, making the slab having a relatively uniform temperature gradient. 
Conversely, lowering the slab‘s thermal conductivity will greatly increase the 
temperature gradient development within a slab. The EICM model underestimates the 
heat loss from the pavement surface. It thus results in heat retentions at the top of the 
pavement, increasing the thermal gradient and subsequent thermal stress developed. 
Therefore, the predicted results from the EICM model are sensitive to the variations of 
the thermal conductivity. 
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The Bentz model tends to overstate the impact of wind velocity on the heat 
convection number. This may lead to underestimation of the thermal stresses in the slab, 
especially in high wind speed. As shown in Figure 4.7a, the       computed from Bentz 
model linearly increases with the wind speed. It means that the wind speed can infinitely 
decrease the slab temperature. This goes against the accepted heat transfer theory. The 
proposed model should be a more accurate formula to evaluate the heat convection at the 
pavement surface. This is because it relies on site-specific parameters such as viscosity of 
the air, characteristic length of the JPCP slab, the air‘s thermal conductivity, air Prandtl 
number, and wind velocity. Use of the proposed model, however, may be troublesome 
when the airflow is at turbulent flow levels (>15m/s). Moreover, a specific value for the 
characteristic length for a pavement slab in a pavement still needs further investigation.  

Wind velocity may be troublesome when placing concrete in a fresh state as it may 
cause significant plastic shrinkage cracking of the mix. Although the increase of the wind 
velocity in field can reduce the thermal gradients of the slab, it can also accelerate the 
moisture loss from the slab‘s top and induces higher undesirable drying shrinkage near 
the surface. These drying shrinkage-induced stresses are also significant and may 
compensate or exceed those thermal stresses reduced by the impact of wind. A deep 
understanding the role of airflow to the pavement performance needs a more 
sophisticated model capable to capture the wind velocity‘s impact on the moisture-
temperature profiles of a JPCP slab. The role of wind speed on the moisture escape from 
the pavement slab would be discussed in Section 7.2.1.2. 

 
4.2.2 Does wind speed still greatly influence both the thermal stress and temperature 

across the slabs in other regions? 

Both the discussion in the above section and the predicted results in the Section 4.1 
represent only the sensitivity of the slab temperature and slab thermally-induced stress to 
wind speed in Reno in July 12. In other regions and other seasons, they hardly directly 
reflect either slab-temperature distribution or slab-stress distribution. It thus merits 
discussing whether this impact is notable in other regions and other time. The discussion 
in the following two paragraphs assumes that the proposed model is used. 

This impact in other regions depends strongly the available solar radiation. In lower 
latitude regions, the influence of wind speed on the heat convection at the pavement 
surface is magnified because the relatively higher solar radiation heats up the ground 
surface and increases the      . In higher latitude regions, the role of solar radiation 
declines because     is of a relatively less value. Temperature development within a 
slab primarily depends mainly on the air temperature fluctuation. Therefore, the impact of 
wind speed on temperature development and thermal-stress development relies on where 
the in-service pavement slab locates. 

This impact in other seasons would be lower than that in July. This study uses the 
weather condition in July to distinct the role of wind speed on the pavement temperature 
distribution. In other seasons, the solar radiation wanes so that the       decreases. The 
wind speed only carries limited heat from the pavement surface. It thus plays 
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unnoticeable roles on the slab temperature distribution and thus on the thermal stress 
developed through the slab. 

 

4.3 Conclusions 

The following points can be drawn through the simulation of the temperature 
development and stress development of JPCPs experiencing different wind speeds. 

 The impact of wind velocity on the thermal stresses in JPCPs depends on the 
locations of the pavement. In lower latitude region, the solar radiation heats up the 
pavement surface and increases the difference between the slab surface temperature and 
the air temperature (      . A relatively higher       facilitates the wind drawing 
more heat from the pavement and thus reduces the temperature gradient and thermal 
stress development through the slab.  

 This impact varies seasonally. In summer the       is maximal and the role of 
wind speed is magnified. In other seasons, the solar radiation wanes so that the       
decreases. The wind speed carries only a limited heat from the pavement surface. It thus 
plays unnoticeable roles on the slab temperature distribution and on the developed 
thermal stresses. 

 In summer season with less windy conditions, the temperature gradients near the 
top increase greatly and thus remarkably raise the tensile stress at the bottom during the 
daytime. This stress exceeds the tensile stress at top during the nighttime. Therefore, 
pavement in less windy conditions potentially suffers from greater tensile stress at the 
bottom than the top. 

 Use of the heat convection coefficient from the EICM to predict the temperature 
profile of a slab tends to produce increased thermal stresses in a JPCP. This may help 
explain some of the sensitivity of the coefficient of thermal expansion to the predicted 
fatigue cracking performance in JPCPs. Moreover, the EICM heat convection formula 
embeds an assumption that the temperature at the pavement surface must be higher than 
the air temperature. This assumption is not always true and results in the thermal stresses 
being less sensitive to wind speed. The proposed model considers the factors of the 
viscosity of the air, characteristic length of the JPCP slab, the air‘s thermal conductivity, 
air Prandtl number, and wind velocity. It tends to be more realistic in characterizing the 
heat convection coefficient for a JPCP structure.  
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Chapter 5 Impact of solar radiation
3
 

Temperature distribution of in-service pavement slab depends on both the incoming 
solar radiation (SR) and the slab‘s short-wave surface absorptivity (Richardson and 
Armaghani 1987; Hermansson 2000). The available SR directly influence the  pavement 
temperature because it heats up the slab surface directly  (McCullough and Rasmussen 
1999; Bentz 2000; Ge 2005). This absorbed heat is partially inherited and stored 
underneath the pavement surface layer (Asaeda et al. 1996). The inheritance reflects as a 
net heat loss in the winter season and a net heat gain in warmer seasons. Heat absorption 
at the pavement surface also depends on the slab‘s short-wave surface absorptivity (SA). 
This absorptivity determines the amount of the absorbed heat because it is directly 
multiplied to the available SR. For rigid pavement, the SA usually is not a constant. It 
ranges from 0.65 to 0.85, depending on the texture, color, and worn conditions of the 
pavement surface. The impact of the SR absorption on the slab pavement temperature 
distribution thus merits a deep investigation. 

Further researches are still required to understand the detailed amount of daily solar 
radiation and to estimate the impact of heat history on a pavement slab. Firstly, the 
available SR to a numerical heat transfer model has not gained adequate attention. For 
short-term predictions, McCullough and Rasmussen (1999) proposed a SR of 300W/m2 
on cloudy days and 1000W/m2 on sunny days. Use of these SR values overlooks the 
preceding-date thermal conditions of both the pavement surface layer and its underlying 
layers. For a long-term prediction, documented literature usually fails to provide details 
concerning the input of the available SR (Asaeda et al. 1996; Masad et al. 1996; Minhoto 
et al. 2005; Yavuzturk et al. 2005). At a specific site, the inputted SRs in a specific year 
should be parameters consisting of both deterministic and probabilistic factors. The 
deterministic factor is the monthly mean SR, a series ranging from a peak value in 
summer to a nadir value in winter. The probabilistic radiation swings between the 
observed monthly maximum and minimum SR. Secondly, the degree to which the SR 
history affects the temperature distribution and thermal-stress distribution through the 
slab needs further investigation. Asaeda et al (1996) studied the heat storage effects on 
the temperature profile across a concrete slab, but failed to study the resulting stresses 
developed in the slab. Kannekanti and Harvey (2006) used the EICM and MEPDG 
models to simulate the impact of absorptivity on the predicted pavement distress, but the 
degree of heat storage was neglected.  

This chapter estimates the effect of the SR on the slab temperature distribution and 
thermal stress distribution through a JPCP slab. Temperatures through both the slab and 
underlying layers are evaluated by the one-dimensional heat transfer model proposed in 
Chapter 2. Yearly inputted SR at the pavement surface is computed by the combination 
of the monthly maximum, mean, and minimum SR observations in the field. This 
computation assumes that the SR variation during a month follows a random normal 

                                                 
3 The Material contained in this chapter has been accepted for publication in KSCE Journal of Civil 
Engineering. The copyright permission is included in Appendix B. 
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distribution, whose standard deviation depends on the uncertainties of the field 
observation. Considering that the SR is available only between the sunrise/sunset times, 
this study also evaluates whether using different sunrise/sunset algorithms affects the 
predicted temperature through a slab.  

 

5.1 Results and discussion 

The following simulation assumes the pavement locates in Reno, Nevada, USA. It 
estimates the temperature distribution and thermal-stress distribution of a JPCP slab. 
Figure 5.1 plots the inputted air temperature, relative humidity, and wind speeds. Any 
data other than on the data-recording date is calculated by the use of cubic spline 
interpolation. The relative humidity is used to compute the dew point by use of the Eq. 
(2.5). The daily peak value of the inputted SR, computed by Eq. (2.14), is plotted in 
Figure 5.2. Due to the uncertainty of the field observations, the variations of the SR in 
some cases are out of the range between the     and     . The used SA is 0.85. 
 

 

Figure 5.1. Inputted meteorological data for the pavement in Reno, Nevada, USA for (a) 
Air temperatures, and (b) air relative humidity and wind Speed. 

 

 

Figure 5.2. The observed and inputted solar radiation. 
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5.1.1 Slab temperature distributions during summer and winter seasons  

SR dominates the slab temperature distributions. Figure 5.3 plots the predicted 24-
hour temperatures through the depth of pavement during the maximum SR days in 
January and July, respectively. Pavement slab in a summer season (Figure 5.3b) is 
remarkably hotter and experiences higher temperature cycles, compared with the 
pavement during the winter time (Figure 5.3a). The maximum slab-surface temperatures 
are approximately 48°C in summertime and 16°C in wintertime. Although the air 
temperature amplitude (maximum – minimum monthly temperature) through the year is 
almost the same (Figure 5.2a), the pavement-surface temperature amplitudes are vastly 
different at 22°C in January and 34 °C in July. In summertime, this hotter state and 
higher daily-temperature amplitude are due to the increased SR notably amplifying the 
pavement temperature during the daytime.  

Pavement in summer experiences greater temperature gradient than in winter. The 
maximum positive gradients are about 12°C in January but 18°C in July. The maximum 
negative gradients were -8 and -12°C in January and July, respectively. These different 
temperature gradients also present in the level of non-linearity of the temperatures. This 
level is much higher during the summer months in comparison to the winter month, as 
denoted by the spacing of the contour lines (Figure 5.3). This is because the absorption of 
SR increases pavement surface temperatures immediately but it takes a longer period of 
time to warm deeper portions of the slab. 

 
5.1.2 Thermal stress regime of JPCP 

The stress computed in this section uses the stress computational method proposed in 
the Section 4.1.3.1. All the used parameters are the same. Here, only the total thermal 
stress is concerned.  

 

 

Figure 5.3. Slab‘s temperature distributions in the maximum SR days of both January and 
July. 

 
5.1.2.1 Thermal stresses during a daily cycle 

JPCP slabs in the summer season suffer from higher stress cycles than in the 
wintertime. Figure 5.4 plots the predicted slab stresses over a 24-hour period during the 
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maximum SR days in January and July. At the top of the slab, the maximum compressive 
stresses are -2.0 and -2.4MPa in January and July, respectively; the maximum tensile 
stresses, 0.8MPa and 2.0MPa. Similarly, the slab‘s bottom suffers from more aggressive 
stress state in July than in January. 

 

 

Figure 5.4. Predicted stress distribution in JPCP slabs during the maximum SR days in (a) 
January and (b) July (Tensile is Positive); 

 
Both tensile and compressive stresses are lower than typical Portland cement concrete 

strengths. However, according to the exponential characteristic of the Paris Law (Paris et 
al. 1999), thermal stresses would greatly increase fatigue damage of the slab. This is 
because when combined with external loading stresses from traffic, the amount of tensile 
thermal stress makes the total stress of a slab close to the flexure tensile strength. 
 

Figure 5.5 plots the monthly maximum thermal tensile stress in a JPCP slab. It 
indicates the following points: 

1. The maximum tensile stresses are relatively lower in January and December. 
They gradually increase from the winter to summer seasons, having a 2.3MPa 
peak tensile stresses at the top of the JPCP slab in July. 

2. The top of a slab undergoes higher maximum thermal tensile stresses than the 
bottom. 

3. The pattern of maximum tensile thermal stresses that a slab suffers from is 
similar to the pattern of the inputted SR plotted in Figure 5.2. 

More tensile stress occurring at the top of the slab verifies the dominated effect of the 
SR on the temperature distribution and stress distribution in a JPCP slab. Tensile stress at 
the bottom occurs during the daytime; that at the bottom occurs during the daylight. 
Because the temperature gradient during the daytime is greater than during the nighttime, 
the linear component of the temperature distribution should cause more tensile stress at 
the bottom than at the top. However, this is not the case as demonstrated in Figure 5.5. It 
means that the level of non-linearity is significant enough to create substantial self-
equilibrating tensile stresses that are more prevalent at the top of the slab. This level can 
be verified the spacing of the contour lines in Figure 5.3, where the top has a denser 
temperature gradient. This denser gradient at the top further verifies the dominated effect 
of the SR on the temperature and stress distributions in a JPCP slab. 
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Figure 5.5. Maximum stresses of a slab with different solar absorptivities. 
 
5.1.2.2 Impact of SA on thermal stress development 

The solar absorption of slab depends not only on the available SR, but also on the SA. 
Figure 5.5 plots the influence of different SA (    =0.65 and 0.85) on the monthly 
maximum tensile stresses developed in a slab. An increase of the slab‘s SA results in the 
increase of the developed thermal stress up to approximately 10% in the summer months. 
At the top and bottom, the maximum stress difference between slabs with 0.65 and 0.85 
SA occurs throughout a year. Its magnitude varies with time, having a nadir in January 
and a zenith in July. This variation further validates the dominated impact of the solar 
radiation on the stress developed within a slab because solar radiation also has a nadir in 
January and a zenith at July. 

 
5.1.3 Effect of the used sunrise/sunset algorithm  

5.1.3.1 Algorithms to compute sunrise/sunset times 

There exist several ways to estimate the sunrise/sunset time of a specific region. The 
simplest method to compute these times are the used set parameters: sunrise 7:00 and 
sunset 19:00, sayed R7S19. They are unaffected by the time of the year. Another option 
is an estimated sunrise/sunset (ESS) time, neglecting solar ecliptic and solar mean 
anomalies. It is proposed at the algorithm of Eqs. (2.10) to (2.13). A more precise and 
complicated algorithm (Hill and Braun 2001) estimates the sunrise/sunset time by 
considering the solar mean anomaly, solar ecliptic, and other factors. This algorithm is 
noted as the Julian Date of sunrise and sunset (JDSS).  

Here uses of these three ways to estimate the sunrise/sunset times in Reno, Nevada, 
USA (latitude = 39.52o). Figure 5.6a plots the inputted sunrise/sunset times in Reno, 
Nevada, USA. The ESS times and the JDSS times are quite similar but are notably 
different from the constant R7S19 times. The maximum deviation of R7S19 times from 
JDSS times are approximately 1.5 hours, which potentially either over or underestimate 
the SR absorbed in a JPCP depending on the season.  
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5.1.3.2 Effect of different sunrise/sunset algorithms on the numerical results 

The standard results can be set as the numerical results predicted by the proposed heat 
transfer model that uses the JDSS time. This is because the JDSS times precisely 
characterize the local time available for SR. These standard results are used to verify the 
feasibility of using either simpler ESS of R7S19 sunrise/sunset time model. When an 
individual sunrise/sunset time is used, the predicted slab‘s temperatures (one-hour 
intervals) can be saved as matrix with elements of          (24—hours of a day, 
21—the total discrete-element nodes of the slab, 12—the monthly maximum SR days). 
That is, three matrixes are obtained. Each of them is rearranged by the same arrangement 
method to be a vector. The calibration is conducted by use of the standard result as the X-
coordinate and use of the other two vectors as the Y-coordinate.  

Use of different sunrise/sunset models does not appreciably influence the slab‘s 
temperature prediction (Figure 5.6b). When slab‘s temperatures are predicted, using ESS 
as the inputted sunrise/sunset times obtains almost the same temperature predicted by the 
use of JDSS. The results predicted by use of the R7S19 model also agree well with by use 
of the JDSS model, although the scatter of predictions is slighter larger. Even though the 
highest source of error between these two methods occurs at extreme temperature 
approaching 50°C, these deviations count only for a small portion of the prediction, as 
demonstrated on the regression    list on the Figure 5.6b. Therefore, the prediction using 
the R7S19 model is still fairly accurate even though these times deviated by almost 1.5 
hours in extreme cases. 

 

 

Figure 5.6 (a) Difference between sun time algorithms and (b) their impact on the 
temperature distribution of a slab. 

 
Use of different sunrise/sunset models does not affect the slab‘s temperature 

prediction owning to three seasons. First, amount of the available SR to the slab surface 
is the same during a day period regardless of the used sunrise/sunset algorithm. This is 
because this amount is determined by the observed solar radiation is provided by     ,      , and      but not by the use of the sunrise/sunset algorithm. This same energy 
absorption results in the thermal budget of a pavement structure being unchanged even 
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though different sunrise/sunset times are used. Secondly, although the sunrise/sunset 
times computed from each algorithm are different, the specific times of the peak SR are 
almost the same (13:00). Thus, the maximum temperatures recording during the midday 
are similar. Finally, the available SR at or around the sunrise/sunset times are relatively 
low. Therefore, the SR-relative heat flux at the pavement surface around the 
sunrise/sunset times is minimal when compared with the heat convection and thermal 
irradiation near hour 13:00.  

 
5.1.3.3 Applicability of the sunrise/sunset algorithm 

Using the above algorithms to compute the sunrise/sunset times in high latitude 
regions (approximately > 65o) can bring troublesome results. The R7S19 times are out of 
use in regions such as Alaska, which experiences polar night in winter and undergoes 
polar days in summer. The computation of the JDSS and ESS time requires Eq. (2.12), in 
which    must be in the range of -1 to 1 in order to satisfy the limitations of Eq. (2.10). 
However, if assuming the latitude   is 68 o and sun declination is 23o,           
occurs and thus Eq. (2.12) provides unreasonable results. Therefore, all of these 
algorithms to compute the local sunrise/sunset times at high altitude regions should be 
used with caution.  
 
5.1.4 Effect of SR history 

Because SR dominates the slab‘s temperature distribution, it is necessary to 
investigate the influence of the SR history on the temperature dsitribution and stress 
distributions within a JPCP slab. Heat absorption of slab‘s surface is partially dissipated 
to the air and partially transferred downward to heat up the remaining portions of the slab 
(pavement bottom and underlying layers). Some fractions of the downward transferred 
heat possibly stores in the ground during the warm season and then dissipates in the 
subsequent cold season. The history of the SR potentially influences the thermal response 
of a rigid pavement. 

To characterize this influence, a simulation of six continuous days with different 
weather conditions is conducted by replacing the six continual inputted peak SRs in 
Figure 5.2 with artificial peak SRs. As shown in Figure 5.7, the days of 1st (July 15) and 
2nd day are set as sunny days, and the subsequent 3rd and 4th days are set to cloudy days 
(Note: 1—July 15, 2—July 16, etc; 1, 2, 5, 6 are Sunny Days; and 3, 4 are Cloudy Days). 
After the 4th day, the 5th and 6th day is set to sunny days. A sunny day has a SR peak 
value of 1000 W/m2; a cloudy day, 300 W/m2(McCullough and Rasmussen 1999). 

 
5.1.4.1 SR history impact on temperature distributions 

SR history affects the slab‘s temperature, most notably at the bottom. Figure 5.8 plots 
the temperatures at the top and bottom of a slab on the 3rd, 4th, 5th, and 6th date. For the 
cloudy days, the slab-top temperatures on the 3rd day, which is preceded by a sunny day, 
are slightly higher than that on the 4th day. For the sunny days, the slab-surface 
temperatures on the 5th date, preceded by cloudy day, are slightly lower than those on the 
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6th date. Compared to the top, the impact of the SR history on the slab-bottom 
temperature becomes more pronounced (Figure 5.8a and Figure 5.8b). For instance, the 
slab-bottom temperatures on the 4th date are approximately 3-4oC lower than those on 
the 3th day.  

This pronounced impact is due to the heat dissipation at the top being at a higher, 
more effective way than the bottom. One factor of the heat loss from the top is the heat 
convection and thermal irradiation. Another factor is due to the absorbed heat transferring 
downward to heat up deeper portions of the slab. Therefore, although the surface 
absorbed considerable levels of SR, the slab surface is only slightly affected by the SR 
history of previous days. Conversely, the heat loss and gain cycles of the bottom are 
blocked by both the slab and the underlying soils. They thus occur indirectly and slowly. 
This time-dependent process records the SR history (especially short-term SR history) at 
the bottom of the slab.   

 

Figure 5.7  Simulated weather changes during a simulated 6-Day period. 
 

5.1.4.2 SR history impact on JPCP thermal stress 

The impacts of the SR history on the slab‘s thermal stress are visualized at Figure 5.9. 
At the top of the slab, the slab‘s thermal stresses on a day preceded a sunny day (    , 
3rd day) is 0.1-0.3MPa higher than those on a day preceded by a cloudy day (    , 4th 
day). At the bottom of the slab, this difference has an opposite sign, ranging from 0-
0.1Mpa. Since the heat of slab on the 3rd day is inherited from the sunny 2nd day, this 
inheritance results in an equilibrated negative gradient being built in the slab for the 3rd 
day. This gradient leads to a higher tensile stresses at the slab top and a lower tensile 
stress at the slab bottom.  

Conversely, a sunny day experiences higher thermal stresses at the top and less stress 
at the bottom if it is preceded by a cloudy day. In this case, an equilibrated positive 
gradient is built in the slab because the preceding two cloudy days cools the bottom of the 
slab. Compared with the thermal stresses on the 6th date (    ), those on the 5th day 
(    ) are lower at the top and higher at the bottom. For this simulation, the SR from the 
preceding day can result in thermal stress changes ranging from  0.3MPa at the top and  0.1MPa at the bottom of the JPCP slab.  

Thermal stresses depend on the mechanical properties, e.g., Young‘s modulus and 
Poisson ratio; and they also rely on the construction conditions, e.g., slab thickness and 
slab dimension. The impact of the heat history on the thermal stress development through 
other slabs may be different from the stresses plotted in Figure 5.9. But the value of the 
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thermal stress will not vary appreciably. One reason is that both Young‘s modulus and 
Poisson ratio of normal Portland concrete slab does not vary greatly even though 
difference water-to-cement ratio is used (Mindness et al. 2002). Other reason is that the 
stress correction factor (   and   ) is insensitive to variations of the slab thickness and 
slab dimension (Westergaard 1927; Bradbury 1938). In others words,    and    vary 
slightly when slab‘s thickness increases from 25cm to 30cm (normal thickness). 
Similarly, a slab with 3m*6m has almost equal    and   with other slab with 4m*7m 
(smaller dimension like 1m*1m slab are out of the scope of this study). 

 
5.1.5 What the dominant role of SR on slab temperatures tell us? 

 

5.1.5.1 Impact of SR on heat transfer model in long-term slab-temperature prediction 

The impact of SR absorption on the slab temperature distribution suggests that 
selection of the inputted yearly SRs is crucial in numerically predicting the environmental 
loadings that rigid pavements suffer from (Qin and Hiller 2011c). Currently, the EICM 
model embedded in the MEPDG repeatedly uses the observed solar radiation as the SR 
input when long-term temperature profiles of a rigid pavement are predicted (MEPDG 
2004). This repeated use ignores the occurrence of small probability events. Extreme 
cases such as a summer day with a maximum SR of 1200 W/m2 or such as continual 10-
or-even-30 sunny days may not occur during a particular year observation. But they may 
occur during a 10 or 20 year observation. Therefore, a rational prediction of the thermal 
loadings of the rigid pavements may need considering the probabilistic factors of the 
input solar SR.   
 

 

Figure 5.8. Influence of heat history condition of a JPCP on slab temperatures 
development. 
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Figure 5.9. The effect of heat history on the stress developed in a JPCP slab (a) top and 
(b) bottom of a JCPC slab. 

 
5.1.5.2 Estimations of pavement surface temperature 

The negligible impact of the heat history on the pavement surface temperature 
delivers two signals. Firstly, estimation for the maximum/minimum yearly temperature at 
the pavement surface (such estimation is of extreme importance to asphalt pavements) 
requires only simulation of the temperature on the maximum/minimum SR days. 
Pavement surface temperatures are primarily controlled by the current SRs but are 
negligibly influenced by SR history. This suggests that the extreme pavement surface 
temperatures must appear on the extreme SR days. Estimate to the maximum pavement 
surface temperature, however, needs the long-term local SRs, which are influenced by the 
observational uncertainties of the climatic data.  

Secondly, reproducing the observed temperature results of a pavement slab is 
possible. This type of reproduction can help verify the proposed numerical model which 
aims to simulate the pavement temperatures and subsequent thermal stresses. In 
documented literatures that model the pavement slab temperatures, details concerning 
inputted parameters such as solar radiation are usually not stated (Hermansson 2000; 
Minhoto et al. 2005). Since the inputted SR strongly affects the temperature distribution 
through a slab, any attempt to reproduce the results of a documented heat transfer model 
must estimate the inputted SRs. Reproduction of these models requires intelligent 
deductions for the peak solar radiation values assigned to the specific day by the use of 
the observed pavement surface temperature. This is because this temperature is less 
affected by the solar radiation history (Figure 5.8).  

 
5.1.5.3 Evaluation of pavement surface‘s absorptivity 

Correctly predicting the thermal loadings on rigid pavements also requires a rational 
estimate to the evolution of the slab-surface thermal properties. Use of a constant SA in 
EICM tends to overestimate the developed thermal stresses across the slab (not just 
JPCP) in the first serviced period of a pavement. Currently the EICM model assumes a 
0.85 SA for rigid pavement slabs. However, measured SAs ranging from 0.5 to 0.65 have 
been observed (Levinson and Akbari 2002; Kannekanti and Harvey 2006; Gui et al. 
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2007). As materials become designed to limit urban heat island effects, the SA of the 
concrete surface will be designed to start and remain at a lower value. In the EICM, a 
lowered SA of an actual field pavement slab would lead to an over-prediction of the 
developed thermal stresses and to an unconservative design. The amount of the 
overestimation of this thermal stress depends on the available solar radiation.  

An evolvable, variable inputted SA to the EICM model may be an alternative to allow 
better predictions of the temperature profiles and subsequent performance of a rigid 
pavement. According to experimental research (Levinson and Akbari 2002), the matured 
SA of an unexposed and abraded concrete slab depends on the albedos of the concrete‘s 
components including aggregates, cement, etc. Allowance of a flexible SA input will help 
the pavement engineer provide better input to the thermal model, according to the used 
concrete mixture. It also help estimate the subsequent predicted performance, e.g., 
faulting, transverse cracking, etc., of a rigid pavement. 

To illustrate the effect of the SA on the slab‘s temperature distribution, this study 
artificially set the SA to 0.65 and 0.85. However, the process and rate of SA evolution of 
in-service concrete slabs remains unknown. This SA evolution may be affected by factors 
such as the abrasion of open traffic, the soiling and wetting of local climate, further 
hydration, aggregate polishing, carbonation, etc. 

 

5.2 Conclusions 

This chapter reaches the following conclusions: 
 The SR absorption at the pavement surface dominates the temperature distribution 

and thermal-stress distribution through a slab. In summertime, pavement experiences 
higher temperature gradients and suffers from higher thermal stress, compared with 
winter months.  

 The role of SR absorption on the slab surface becomes more pronounced when 
pavement surface became darkened. The maximum thermal tensile stress of a slab can 
increase up to 0.3MPa when the pavement surface‘s solar absorptivity rises from 0.65 to 
0.85. 

 Algorithms to predict the sunrise/sunset times through a given year do not 
influences the predicted temperature distribution and predicted thermal-stress distribution 
through a slab servicing in middle and low latitude regions. They may become 
unreasonable when the pavement temperatures at higher latitude regions require 
estimation.  

 Heat history of slab can remarkably affect the temperatures of the bottom of a 
slab. When the weather shifts from a sunny day to a cloudy day, an equilibrated negative 
gradient is induced in the slab. Conversely, an equilibrated positive gradient develops in 
the slab when the weather shifts from a cloudy day to a sunny day. Multiple days of 
cloudy weather can amplify these gradients because continuous cloudy days lead to more 
cold energy stored under the slab. The SR from the preceding day can results in a  0.3MPa variation in thermal stress at the top and  0.1MPa at the bottom of the slab.  
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 Impact of the heat history on the pavement surface is negligible. The computation 
of the maximum pavement temperature thus requires only predicting the pavement 
temperature in the day with an extremely high solar radiation. However, estimates of this 
extreme solar radiation needs consideration due to the observed uncertainties of site-
specific weather.  
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Chapter 6 Slab-moisture prediction: model development and verification
4
 

Relative humidity (RH) of an in-service concrete slab is tied to both durability and 
performance of concrete including drying shrinkage, chloride ion ingression, sulfate 
attack, etc. Field observations of this internal humidity generally can lose its 
representation because the observation is concurrently affected by local weather 
conditions and their probabilistic nature. Extrapolation of this observation to other 
regions or other time periods potentially leads to delusive interpretation. Moisture 
distribution within a slab is thus more practical to be predicted through a numerical 
model, particularly for design purposes. Certainly, such a model involves determining the 
drying and wetting events on the slab surface. Drying cycles involve moisture loss from 
the slab, whereas wetting process governs the moisture gain. A model capable of credibly 
characterizing these loss and gain processes could then provide reasonable predictions of 
the pore moisture through the slab. 

Numerical simulations have been extensively conducted to study the moisture 
transport within concrete (Z. Bažant and Najjar 1972; Xi et al. 1994; Bazant 2001); but 
only a few adopted a variable boundary condition. Bazant proposed a highly nonlinear 
formula to characterize the moisture transport within a concrete structure at both 
saturated and unsaturated states (Bazant and Najjar 1971; Z. Bažant and Najjar 1972; 
Bazant et al. 1982). These studies normally adopted a constant ambient air RH because 
the used concrete structure was shielded from cyclically-wetting and -drying events. 
However, this controlled boundary condition can not reflect the boundary of in-service 
concrete slabs. These slabs experience uncertain rainfall events, varying ambient air RH, 
and stochastic local wind speed. Inability to accommodate these environmental factors in 
a model aiming to predict slab‘s pore humidity impedes the understanding of stress 
distribution and performance in concrete pavements. 

This study proposes a numerical model to simulate the moisture distribution within 
in-service concrete slabs, considering the occurrences of the wetting and drying cycles. 
The model accommodates the local wind speed, ambient air relative humidity, rainfall 
pattern, etc. It is verified by use of the observed pore humidity of concrete prisms and by 
use of field recorded RH through an in-service slab.  

 

6.1 Model development 

6.1.1 Moisture transport equation 

A one-dimensional finite element model suffices to simulate the moisture transport 
within the concrete slab because the width and length of the slab is typically an order of 
magnitude greater than its thickness. The moisture content within concrete can be termed 

                                                 
4 The material of this chapter, excluding the Section of 6.2.3, has been submitted to journal of Construction 
Building Material for considering publication.  



59 

 

as RH (unit, 1). According to the law of mass conservation, the moisture transport 
equation can be expressed as (Jin-Keun Kim and Lee 1999): 

 

( ( )) sRHRH
div D grad RH

t t


  

 
                                      (6.1) 

                                          
where            is a function of time and depth; moisture diffusivity   (m2/s) is a 
function of both humidity and porosity of concrete (Jin-Keun Kim and Lee 1999; 
Chunqiu Li et al. 2008a); and   is time,  ;       is the RH‘s dissipation rate, which 
depends on the hydration rate for early age concrete. For hardened concrete,         .  

At saturation, capillary suction dominates the moisture transfer within concrete, 
whereas at unsaturated conditions, vapor- and gas-pressure gradients govern (Hall 1989). 
Slab moisture diffusion thus depends on the pore moisture. This non-linear moisture 
transport can be characterized by an effective diffusivity (Z. Bažant and Najjar 1972): 
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where    is the moisture diffusivity at saturation;   is a regression coefficient describing 
nonlinearity of the diffusivity with respect to   , ranging from 6 to 16 for concrete 
(Leech et al. 2003);         , where    is the diffusivity of concrete with 0% RH;    , typically ranging from 0.75 to 0.80, is a bifurcate below which the moisture 
migration occurs owning to gas pressure but above which the migration is driven by 
capillary suction (Figure 6.1). 

Eq.(6.1) needs to be transformed to a normalized equation in order to reasonably 
simulate the moisture transport within a concrete slab. Moisture diffusivity is orders of 
magnitude lower than the dimension of the slab, making the condition number of FEM 
stiffness matrix too large to ensure the transient moisture prediction to be correct and 
efficient. To circumvent this problem, a dimensionless scale is applied to rearrange 
Eq.(6.1). This rearrangement begins by introducing the following dimensionless 
variables: 

0 0

,
t z

t z
t l

                                                            (6.3) 

where    is a dimensional scale denoting the depth within the slab       ;    is the 
thickness of the slab;    (s) is the characteristic time of the diffusivity,          ,    is 
therefore a dimensionless scale referring to the time.  Substituting Eq. (6.3) into (6.1) 
yields: 
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                                                    (6.4) 

where     is the Péclet number regarding mass transport, defined as: 
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Figure 6.1 Diffusivity and RH according to Eq. (6.2). Note:       , RH=0.75. 
 

Eq. (6.4) becomes easier to adapt the element length and time step to ensure the 
convergence of the mass transport Eq. (6.1) (Zdeněk Bažant and Kim 1991). It thus 
overcomes the singularity of the stiffness matrix in the mass transport model under the 
finite element framework.  

    
 

6.1.2 Boundary conditions 

For in-service slabs, moisture transport in soil deep in the subgrade is driven by the 
temperature gradient, capillary force, moisture gradient, etc. The existence of an asphalt 
or gravel base beneath the concrete slab tends to separate the moisture migration between 
the PCC pavement slab and the underlying soils. Therefore, modeling the moisture 
migrations at the slab surface and at the slab bottom is sufficient to estimate the RH 
through the slab depth. 

A numerical solution to Eq. (6.1) thus needs specify a proper boundary condition to 
both the bottom and the top of a pavement slab. Moisture at the bottom is relatively stable 
and less affected by the moisture exchange between the slab and the underlying layers, 
owning to the separated effect of the subbase or subgrade (Chunqiu Li et al. 2008a). In 
this regard, the bottom of a pavement slab can be considered as a Neumann boundary 
with null moisture flux (         . 

The occurrence of wetting and drying cycles complicates the mass transport at the 
pavement surface. During the drying cycles, the top of the slab is treated as a convection 
boundary. The moisture convection at the slab surface depends on the ambient air RH, 
wind speed, RH value at the top of the slab, etc. During the wetting cycles, RH at the top 
can be set to      (Z. Bažant and Najjar 1972). The set is practical because although 
the absorption may dominate the moisture intake in the top and the case of RH>1 may 
occur therein, the wetting front penetration usually locates at a depth of <1cm in a normal 
rain event (Z. Bažant and Najjar 1972). An estimate for the upper boundary thus requires: 
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(1) determination of when the wetting or drying events occur around a year cycle; and (2) 
characterization of the moisture evaporation rate during the drying cycles. 

 
6.1.2.1 Determination of wetting time and wetting intensity 

The time and duration of a specific rainy event need to be known to determine when 
the top of the slab is wet. Usually, meteorological data collected from weather stations 
provides the rainfall intensity at that location. Sophisticated statistical models have been 
proposed to predict the rainfall duration of a specific location (Menabde et al. 1997; 
Sivapalan and Blöschl 1998; Fife and Nokes 2002). However, these algorithms are fairly 
complicate and not commonly used by pavement engineers. For concrete slabs, the 
impact of wetting and drying cycles on the moisture distribution within concrete has 
typically been limited to laboratory studies (Chrisp et al. 2002) and by arbitrarily setting 
wetting and drying cycles in laboratory conditions (Kefei Li et al. 2009; Lin et al. 2010).   

To remedy this issue, this study proposes a new, simple algorithm to compute 
occurrence of wetting and drying events. This algorithm is based on a weighted function 
that uses the observed monthly rainy data as the local rain duration. For example, if the 
expected annual rain hours are 100hr and if each rain event last only 1 hour, then the 
probability of rain event in any given hour is 100/8760 provided that the observed 
monthly rain distribution is uniform. In this case, a specific rainy hour is determined by 
using the uniform distribution to randomly generate a number from 0-1 and by specifying 
an hour as a rainy hour if the number is not greater than 100/8760.  

However, determination of rainy events at a local site tends to be more complex due 
to the variation of the rain duration (generally not equal to 1 hour) and due to the non-
uniformity of rain distribution. For a specific weather station, the annual precipitation 
provides both the precipitation-event number and the monthly rainfall intensity. But the 
duration of each rainy event remains unknown (Western-Regional-Climate-Center 2010). 
Thus, to determine the rain distribution around a given year, two factors are still required: 
(1) the duration of each rain event and (2) the annual distribution of these rain events. 

 
6.1.2.1.1 Assumptions to duration of each rain events 

This study assumes the rainy duration       as follows: 
 Rain with 0.254mm intensity (I) keeps the slab surface wet for 1 hour; 
 Rain with 1.27mm intensity, for 4 hours; 
 Rain with 12.7mm intensity, for 8 hours; 
 Rain with 25.4mm intensity, for 10 hours (e.g.,             ;           , 

etc.). 
 

6.1.2.1.2 Algorithm to compute the annual distribution of these rain events 
Annual distribution of the on-site rainy events is obtained according the local 

observed monthly rain intensity function      (Western-Regional-Climate-Center 2010), 
as shown in Figure 6.2a (black dotted line). Here, the steps to determining the rainy event 
hour    in the case of        (keep the slab surface wet for 4 hours) are illustrated: 
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 Randomly produce a 8760-element vector                  according to 
the uniform distribution (This distribution is applied because the rainy 
probability in any individual hour should be the equal before knowing the     ); 

 Discretize      to a 8760-element vector                   by use of a 
cubic spine interpolation method; this step adds the seasonal precipitation 
distribution; 

 Compute the percentage    of each element in the vector,           and      ; this step normalizes the seasonal precipitation distribution; 

 Determine the rain event index                            , where      and      

signify that slab surface is wet and dry, respectively. This step detects whether 
a specific hour is rainy or not; 

 Consider the duration of a specific rainy event.  If     , then                 ; this means that if the ith hour is detected to be a rainy hour and 
the rain keep the slab surface wet for 4 hours (      ). This step considers 
the rainy duration of a specific rainy event. 

 Determine the next rainy event by increasing the indices of   from   to     
(because this rainy duration is 4hr). 

In the cases of          , 12.7mm, and 25.4mm,  the rainy index parameter    can 
be obtained by the same algorithm provided above. For an individual hour, summation of    at each case of   yields the annual rainy index    (the sum of    at          ,         ,         , and         ). It should be noted that       may occur 
for a specific index  . This occurrence means that the computation of    at different   is 
overlapped. The overlap, however, has a small probability because from most locations, 
the total wetting events are one order of magnitude less than the total drying events. 
Despite this, a method to circumvent the overlap issue is provided when the feasibility of 
the algorithm is verified.  

 
6.1.2.1.3 Verifications of the rainy-duration assumptions and of the proposal 
algorithm 

Verification pertaining to the rainy events in Rantoul, Illinois is conducted to test the 
feasibility of the proposed method. Figure 6.2 (dotted black data) plots the annual 
precipitation in this region, while Table 6.1 tabulates the number of annual rainy events. 
Use the algorithm provided above to compute the rainy events of this region yields the 
inputted rainy hours series   . A regression analysis between the total monthly rainy 
hours and the monthly rainfall intensity results in a coefficient of determination (R2) of 
0.921. This agreement signifies the feasibilities of the algorithm and that of the rainy 
duration assumption.  

It merits noting that the regression coefficient of determination is a random number 
because the     is a random 8760-element vector. In this case, denoting a threshold, e.g.        , could minimize the problem of     . 
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Table 6.1 Number and intensity of annual rainy events in Rantoul, Illinois 

Location 
Number of rainy days (time)  >0.254mm  >1.27mm  >12.7mm  >25.4mm 

Rantoul, IL 99 69 26 9 
 

6.1.2.2 Drying condition 

6.1.2.2.1 Moisture convection formulation 
Moisture convection during the drying process (    ) controls the mass flow at the 

pavement surface. Its magnitude depends on the concrete‘s porosity, air humidity, RH of 
pavement surface, in-situ wind velocity, etc. Influences of these factors on the moisture 
evaporation of the concrete surface are encapsulated in a widely-used formula named 
Dalton‘s formula (Dalton 1802), which is defined as: 

                                                              (6.6) 
 

where   = weight (kg) of water evaporated (kgm-2hr-1),     = pressure of saturated vapor pressure at the concrete surface (kPa),   = pressure of vapor pressure of the surrounding air (kPa), and     = wind function at which the local wind speed measured at 0.5m above the 
evaporating surface (m/s). 

 

 

Figure 6.2 Monthly rainfall intensity in Rantoul, Illinois, and the computed monthly rainy 
hours. 

 
Initially, Eq. (6.6) was used to compute the bleed water escaping from the concrete 

surface. Its application was then extended to the moisture evaporation over a hardened 
concrete surface covered by water and to the convection of the moisture when the 
hardened concrete surface was free from water content (Mather 1985; Yuan and Wan 
2002). In this drying case, the difference between air RH and concrete-surface humidity 
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is regarded as the driving force because in an isothermal condition, RH linearly correlates 
to the vapor pressure. Using this force, the moisture convection equation becomes: 

                                                                 (6.7) 
 

where   is a dimensionless scale specifying the moisture loss from the slab surface;      and     are the RH of the pavement surface and the surrounding air, respectively; 
and for an isothermal problem,     , called moisture convection coefficient, is only a 
function of the wind speed.      may have a complicate analytical solution. However, it can be approximated to 
a linear function, as shown in Eq. (6.8), if a direct Taylor expansion as a derivative point 
of    truncates the higher order terms. 

                                                                  (6.8) 
 

where   =               and         ; A and B stands for the capacities of 
surface emissivity and free evaporation.  The use of  Eq.(6.9)  yields: 
                                                            (6.9) 

 
6.1.2.2.2 Computation of the near-surface wind speed 

Eq. (6.9) raises a question: how to input the wind speed read from a local weather 
station into the equation? The speed used in Eq. (6.9) should be near a concrete specimen 
surface (0.5m), whereas both weather stations and local airports often collect wind data at 
9m above a flat ground surface. A transformation of the collected wind speed to the wind 
speed at 0.5m above ground surface can be roughly estimated by Eq. (6.10) (Uno 1998). 

                                                              (6.10) 
 

where      is the recorded wind speed provided by a weather station;      (m) is the 
height at which the wind speed is measured by weather stations,       ; and   (m) the 
height of the required wind speed   thus      . Eq. (6.10) thus becomes: 
                                                           (6.11) 

 
Eq.(6.11) indicates that the recorded wind speed provided by a local weather station is 
one and a half times larger than the wind speed at 0.5m above the ground surface. 
Therefore, Eq.(6.9) can be rewritten as: 
                                                           (6.12) 
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6.2 Modeling verification 

With the moisture diffusivity in Eq. (6.2) and the boundary condition provided in the 
section 2.2, the analytic solution to both Eq. (6.4) and Eq.(6.1) is unique. Achieving such 
a solution, however, is difficult and typically has to be solved to a numerical 
approximation method, such as finite element analysis. In this study, the finite element 
method used is based on the Galerkin weak-solution framework. The specimen is 
discretized by 40 quadratic elements. The time step size is chosen as 1hr as the moisture 
mass transfer is relatively slow process for low diffusivity materials such as concrete. The 
cubic spline interpolation is used when an interpolation is needed. The initial RH within 
the slab is assumed to be 1 throughout the depth of the slab. The Crank-Nicolson method 
is used to implicitly solve Eq. (6.4) and convergence tests are conducted to verify the 
accuracy of the results (Ainsworth and Oden 1997). Numerical code for this simulation 
can be referred to Appendix D. 

 
6.2.1 Verification using laboratory data 

Laboratory data of concrete prisms observed by Kim et al is used to verify the 
moisture diffusion Eq. (6.4). Details relative to the laboratory observation can be referred 
to (Jin-Keun Kim and Lee 1999). The predicted values coincide visually and statistically 
with the observed data, having R

2 values generally over 0.95 (Figure 6.3). This 
coincidence signifies that the proposed model can accurately predict the moisture 
diffusion within the concrete specimens. Table 6.2 notes the moisture diffusivity 
parameters    used to obtain the best fits between experimental and predicted values. 
With no wind speed in this lab experiment, the verification of the parameters in Eq. (6.12) 
yields          . Exact values for   and   require further verification relative to 
the concrete slabs exposed to natural weather conditions. 

 

 

Figure 6.3 Predicted RH compared to the laboratory observed values at different depths; 
Note: measured data is reproduced from Kim et al (Jin-Keun Kim and Lee 1999). 
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R2 (1) Mean(1) Std(1) 

3cm 0.982 0.010 0.002 
7cm 0.982 0.006 0.002 
12cm 0.933 0.003 0.005 

 

 
R2 (1) Mean(1) Std(1) 

3cm 0.992 0.005 -0.001 
7cm 0.949 0.003 0.006 

12cm 0.746 0.003 0.004 

 

 
R2 (1) Mean(1) Std(1) 

3cm 0.973 0.013 -0.005 
7cm 0.978 0.009 0.004 

12cm 0.977 0.005 0.004 
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Table 6.2 Regressed moisture diffusivities (units: m2/h*10-6) 

 
w/c=0.28 w/c=0.40 w/c=0.68    0.86 1.59 2.57 

 
6.2.2 Verification using field observed data (isothermal model) 

To provide further verification of the proposed numerical model, this study applies 
relative humidity observed in an in-service concrete pavement at Rantoul, Illinois (Kohler 
2005). Weather data in Rantoul is used to compute the wetting and drying condition at 
this site. The monthly rain hours of this region has been plotted in Figure 6.2. Other 
weather conditions including the wind speed and ambient air RH are illustrated in Figure 
6.4. The initial pore RH through the slab is assumed to be 1.0 uniformly. Due to the use 
of fly ash in the concrete mix (Kohler 2005), an equivalent water-to-cement ratio of 0.32 
was used to interpolate the moisture diffusivity the slab.  

The verification indicates that the proposed model can also reliably predict the RH for 
in-service concrete slabs (Figure 6.5). The verification considers the on-site wind 
variations and thus the calibration obtains parameter  =40.32. Recalling that           in the above section, one can obtain that         . Therefore, during the drying 
cycles, the Eq. (6.12) becomes the following: 

                                                                  (6.13) 
 
The arrangement of Eq. (6.13) with a term of               is used to compare 

with Menzel‘s formulas, as shown in Eq.(6.14), that has been widely used to compute the 
evaporation rate occurring at concrete surface covered with water. 

                                                                     (6.14) 
 

 

Figure 6.4 Local wind speeds and seasonal ambient air relative humidity in Rantoul, IL. 
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Figure 6.5 Field observation of internal RH and the predicted values. Note: Field data is  
reproduced from Kohler (Kohler 2005). 

 
6.2.3 Verification using field observed data (couple model) 

The verification plotted in Figure 6.5 is based on the moisture predicted from the 
isothermal model. It means that the daily variation of the local relative humidity is 
independent to the daily temperature variation. Such verification thus fails to characterize 
the wiggle of the daily RH variation because the pore humidity increases with 
temperature. 
 
6.2.3.1 Theoretical basis  

Diffusivity   varies with temperature. Theoretically their correlation obeys the rate 
process theory and can be characterized by the following equation: 

                                                                  (6.15) 

 
where   is absolute temperature;    is reference temperature (0

K), normally is selected as 
room temperature;    and    are the values of saturated diffusivity at temperatures   and   , respectively; Q is the activation energy (enthalpy) of diffusion process. The value of 
the activation energy was found to be roughly 1300cal/mole for harden concrete.  

The pore humidity varies with temperature as well. Because the moisture-diffusion 
process is orders of magnitude less than the thermal-diffusivity process, the water content 
within a pore could be seen as a constant during a short period such as an hour. But the 
temperature during this hour may greatly change. Thus, RH within a slab varies the 
temperature. The correlation can be characterized by the hydrothermic coefficient   (oC-1). 
It obeys the following equation: 

                                                                        (6.16) 

 
where the    is the local pore RH;      is the equivalent pore humidity at temperature 
of   . It merits noting that at varying   and   , the saturated diffusion    should be 
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estimated by use of      (Z. Bažant and Najjar 1972). That is, the local saturated 
diffusivity has to be estimated by the Eq. (6.17) 
                                                                   (6.17) 

 
In a numerical simulation that considers the varying  , the    has to be estimate by 

use of the Eq. (6.16) at each nodal point and at each time step. This estimation still needs 
the value of hydrothermic coefficient   (Z. Bažant and Najjar 1972). 

This coefficient is always positive because the water content is known to decrease 
with   at constant   . The approximate dependence of the   upon    can be roughly 
evaluated by use of Eq.(6.18), according to Bazant (Z. Bažant and Najjar 1972) 

                                                             (6.18) 
 

A plot pertaining to    and   is demonstrated in Figure 6.6. It illustrates that the pore    is insensitive to temperature variation in both total-unsaturated and saturated states 
and becomes greatly sensitive when    ranges approximately from 0.6 to 0.8. 
 

 

Figure 6.6 Approximated value of hydro-thermal coefficient at different RH. 
 
6.2.3.2 Verify the field measure by use of couple model 

The verification, first of all, requires to validate whether the predicted slab 
temperature coincide with the observed temperature. The validation uses the weather 
conditions including the wind speed, air temperature, and solar radiation in Rantoul, 
Illinois, to predict the slab temperature. The verifications are conducted to verify the 
temperature at depth of 1.27cm and 11.43 cm (Figure 2.5). 

Use of the coupling thermal- and moisture- transfer model to predict the pore RH 
through a slab requires the following procedures (coupled in series): 

(1) Predict the slab‘s temperatures around a specific year; 
(2) Provide an initial      through the slab; 
(3) Use the predicted temperatures and the previous time-step      to compute the 

saturated moisture diffusivity    by use of Eqs.(6.15) and (6.17); 
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(4) Input the    values (   is different across the slab) to Eq. (6.1) and then use the 
wetting and drying boundary conditions to simulate the      in the next step; 

(5) Use the predicted      to estimate the real    in Eq. (6.16); 
(6) Repeat the steps from (3) to (5) to estimate all the    at all time steps. 
Using of the coupling model greatly increases the confidence of the validation (Figure 

6.7). In Figure 6.7, the embedded graph manifests that the variation of the predicted RH 
coincides with the prediction. The statistical regressions also demonstrate better 
agreement than the results from the isothermal model, which is plotted Figure 6.5. 
 
6.2.4 What the verification tell us? 

The drying evaporation rate (Eq.(6.13)) is used to compute the moisture convection at 
the in-site concrete surface during a drying cycle; the Menzel formula, however, 
commissions to compute the water evaporation from a bleed water surface. Similarity 
between both formulas lies in that a coefficient of           is multiplied to the 
observed wind speed from a weather station. The Similarity suggests that in both drying 
and wetting cases, the wind speed plays a similar role to the water loss from the concrete 
surface. Both equations have a constant value of     if the wind speed is set to zero. This 
constant is the rigid transform parameter between the vapor water pressure and the 
relative humidity. The difference between the two formulas reflects in the terms of        
and 0.253. These two constants characterize the free convection coefficients of drying 
surface and wetting surface, respectively. Therefore, free convection during wetting 
cycles may be appreciably different from that during drying cycles. 

 

 

Figure 6.7 Field observation of internal RH and the predicted values by the use of 
coupled thermal transfer and moisture transport model. 

 
In the case of free convection, evaporation from the concrete surface occurs 

appreciably during wetting cycles whereas the escape of moisture from a drying concrete 
surface is negligible. For the wetting condition, both terms of       and              are similar in magnitude for a range of normal wind speed (     = 0~6 m/s). This 
infers that not only windy weather can lead to rapid water loss from the slab surface, but 
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free convection can also be significant. Conversely, for the drying condition, free 
convection plays a secondary role to the decrease of the near-surface moisture. As       
is one-order of magnitude lower than               at lower wind speeds, the escape 
of moisture from a drying concrete surface is minimal in the case of free convection. This 
negligible role is verified by the difference between the RH drops in the lab specimen and 
in on-site concrete slab. For laboratory specimens, Figure 6.3a and b demonstrate that a 
RH drop from 0.98 to 0.95 needs about 20-40 days at a 3cm depth (w/c=0.40 in Figure 
6.3b). For in-service concrete slabs, a similar drop of the RH at 1.27cm requires only 
about 1-2 days (Figure 6.4a). This difference in drying-time scales confirms that during 
the drying cycle, wind dominates moisture loss from the concrete surface whereas water 
loss caused by free convection plays a secondary role.  

This different role is most pronounced during the period immediately after the 
wetting concludes. During this time, the difference between       and     (         ) magnifies the influence of the wind speed on the moisture escape from the surface, 
as demonstrated in Eq.(6.13). After this time,           is close to zero and makes 
the moisture loss less sensitive to the wind velocity. 
 
6.2.5 Differences among pore RH, isothermal RH, and equivalent RH 

Until now, the study predicts the RH distribution through in-service slabs using the 
RH predicted by the isothermal RH (      , the equivalent RH (      , and the real 
pore RH (  ). Figure 6.8 plots the entire-year predictions that include these three types 
of RHs at 1.27 and 11.43cm depths of the slab in Rantoul, Illinois. Difference pertaining 
to these humidity merits notating.  

The prediction of       includes an assumption that the temperature within a slab is 
uniform distribution and is 22oC everywhere. This is not the case even in a region with a 
calm seasonal temperature pattern. In the case that the activation energy (enthalpy)   of 
diffusion process is a lower magnitude such as 100 (J), the diffusivity of concrete 
depends less on the temperature variation. The moisture predicted from the isothermal 
model can be close to the equivalent relative humidity of the slab. As show in Figure 6.8, 
the       is roughly equal to the       when the        is used. 

The      experiences only a seasonal variation and exhibits negligible daily 
variations. This is because the heat transfer process with a slab is several orders-of-
magnitude greater than the moisture diffusion. In the regard, the       signifies the 
slab‘s pore water content, because variation of such content is minimal during a day 
period. 

The    is the pore RH that can be logged by a moisture sensor such as psychrometer. 
It reflects the real pore humidity within a slab. This means that under the same water 
content, an increase of temperature would increase the         , and vice versa. As 
demonstrated in Figure 6.8, during the colder season, the predicted        is greatly 
lower than both       and the      . But during the summer, the        is slightly 
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higher those two because the average daily temperature across a slab is usually larger 
than 22oC, room temperature.  
 

 

Figure 6.8 RH predicted by the isothermal model, the equivalent RH, and the real RH. 

6.3 Conclusions 

1) The wind speed observed from a weather station cannot be directly inputted into 
the Menzel‘s formula to compute the evaporation rate of bleed water from a casting 
concrete surface. The observed wind speed of weather stations in most locations (e.g. 
airports) generally is one-and-half greater than the wind velocity used in Menzel‘s 
formula due to the height of the measurements. 

2) During wetting conditions, both wind speed and free evaporation (zero wind 
speed) significantly affect the moisture escape from the concrete surface. During the 
drying cycle, wind velocity dominates the moisture loss at slab surface, especially during 
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the transition time that the relative humidity at the top approaches the ambient air 
humidity. Free evaporation at a drying concrete surface plays a secondary role to the 
moisture escape in cases with wind at the surface. 

3) Variation of the temperature strongly influences pore RH through an in-service 
slab. Not only does the slab‘s diffusivity depends on the temperature, but  the pore 
relative humidity strongly varies with the temperature variation. Uses of the relative 
humidity predicted by the isothermal model or by the equivalent relative humidity (a 
relative humidity estimated at room temperature) potentially overestimate the slab 
relative humidity during the cold seasons. 
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Chapter 7 Slab-moisture prediction: sensitivity study
5
 

 Relative humidity through the depth of an in-service concrete slab depends on the 
combined effect of local weather factors including wetting/drying events, ambient air 
relative humidity, wind speed, etc. Some of these factors may perform a determinative 
role whereas others possibly act as a secondary role. An investigation to these different 
roles can help to predict the slab‘s RH-associated performance in terms of sulfate attack, 
chloride ion ingress drying shrinkage, warping/curling, and its associated stress 
development. 

Numerical studies of concrete moisture distribution rarely consider a variable ambient 
RH upper boundary condition (Z. Bažant and Najjar 1972; Bazant 2001; Kefei Li et al. 
2009). Lab calibrations of moisture distribution models typically use a constant 
controlled RH to assess its effect on concrete specimens. However, this stable ambient 
RH does not properly mimic scenarios for in-service pavements, which experience not 
only variable air humidity but also wetting/drying cycles. The role of such cycles on the 
RH in concrete has been cursorily studied by artificially adopting fixed wetting and 
drying cycles, such as 15 days or 60 days (Kefei Li et al. 2009; Lin et al. 2010). This 
adoption of fixed cycles neglects the probabilistic nature of the local weather conditions 
and, to a great extent, fails to truly reflect the impact of unpredictable weather timing on 
the concrete‘s RH distribution. It is thus necessary to simulate the impacts of these cycles 
on the moisture budget of in-service slabs.  

This study uses the model proposed in Chapter 6 to simulate moisture distributions 
through the depth of in-service concrete pavement slabs. It examines the impact of 
external factors including the rainfall pattern, wind speed and its daily variation, and 
ambient air RH and its daily variation on the internal RH distribution. It also investigates 
the impact of internal factors like the water-to-cement ratio (w/c ratio) and examines the 
sensitivity of the predicted moisture to the adoption of the numerical boundary conditions. 
The subsequent discussion to the predicted results centers on the following: 

 Why the seasonal air RH plays a dominant role on the slab‘s moisture 
distribution whereas the other weather factors act only in secondary roles? 

 What do these different roles imply with respect to the predicted in-service 
concrete pavement performance? 

 

7.1 Site information 

This study simulates the RH though the depth of a concrete pavement slab located in 
Reno (RE), Nevada to assess the influence of weather condition. This simulation uses the 
following parameters, unless otherwise noted: 

 Monthly precipitation distribution and inputted rainy hours plotted in Figure 7.1a.  

                                                 
5 The material of this chapter has been submitted to journal of Construction Building Material for 
considering publication. 
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 Ambient air RH and local wind speed shown in Figure 7.2b. During a specific day, 
the local wind speed and RH is regarded as constants. 

 A w/c ratio of 0.45. This ratio is used to interpolate the moisture diffusivity. Other 
parameters for the diffusivity include       ,   , and    =0.75 are utilized 
(See in Chapter 6). 

 

 

Figure 7.1 Rainfall distribution, air RH, and wind speed in Reno, Nevada. 

7.2 Results 

Five-year simulations are conducted to examine the evolution of the RH through the 
slab, beginning with the end of the curing. The curing is assumed terminating at the end 
of June 30. The initial RH through the slab at this time is 1.0 uniformly. Usually, the RH 
profiles at the half-time (December 30, 2nd year) and full-time (June 30, 5th year) of the 
prediction are plotted to demonstrate the difference between the predictions that use 
different boundary conditions. 

 
7.2.1 Effect of external factors 

Relative humidity within a slab serviced in Reno is compared to that Los Angeles 
(LA) in order to study the impact of the environmental factors on the moisture 
distribution within in-service slabs. Environmental factors in LA are shown in Figure 7.2. 
The reason of selecting these two regions is due to their discernable seasonal weather 
patterns. First, Reno‘s rainfall pattern (Figure 7.1a) is more uniform than the LA‘s 
(Figure 7.2a) whereas the accumulated rainfall amount in both regions is almost the same 
(seen from the integral of two curves). Second, the total number of rain events in both 
regions are roughly the same, as tabulated in Table 7.1. Third, both wind speed and 
seasonal air RH in Reno is consistently lower than those in LA.  

The notable distinction of weather conditions in both regions leads to remarkably 
different moisture distributions through the slabs during a five-year simulation (Figure 
7.3). The slab in Reno has a lower RH than the slab in LA. Notable differences embody 
not only the near-surface moisture (Figure 7.3c) but also deeper in the slab (Figure 7.3d 
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and e). They infer that the external weather information considerably influences the entire 
moisture profile of the slab.  

However, since all the weather factors including rainfall pattern, wind speed, and air 
RH are different in both regions,  the impact of each of these individual factors on pore 
moisture cannot be discerned. Therefore, an analysis to separate these factors is presented 
in the following. 

 

 

Figure 7.2 Rainfall distribution, air RH, and wind speed in Los Angeles (LA), California. 
 

Table 7.1 Number and intensity of rainy events 

Location 
Number of rainy days (time)  >0.254mm  >1.27mm  >12.7mm  >25.4mm 

Reno, NV 52 21 3 1 
Los Angeles, CA 35 23 10 4 

 
 

7.2.1.1 Impact of rainfall pattern 

To assess the impact of the rainfall pattern on the slab-moisture distribution, the rainfall 
patterns of LA is entered into the simulation model with the other weather conditions of 
Reno.  This modified ―LA rainfall pattern‖ can then be compared to the model 
predictions for Reno by use of its own weather factors.  The rainfall pattern does show 
some small influence on the near surface moisture distribution, but shows little impact on 
the deep-slab moisture (Figure 7.4). The near-surface RH difference is partially due to the 
contrasting rainfall distribution of the two regions. However, at a closer look,  it is 
primarily due to the probabilistic factors of a local rain event resulting in a different rainy 
duration and intensity. That is, even if the same rain pattern is used, rain occurring during 
a specific hour in the previous year does not necessarily indicate that rain would happen 
during the same time in the next year. Despite these probabilistically-induced deviations, 
the statistical mean difference between the prediction is 0.005, demonstrating that the 
rainfall pattern does not appreciably affect the moisture profile of concrete slabs in the 
field. 

 

JanFebMarAprMayJun Jul AguSepOctNovDec
0

1

2

3

4

M
on

th
ly

 p
re

ci
pi

ta
ti

on
 (

In
ch

)(a) Monthly precipitation and inputted rainy hours

 

 

R2=0.95608

JanFebMarAprMayJun Jul AguSepOctNovDec
0

20

40

60

80

In
pu

tt
ed

 r
ai

nn
y 

ho
ur

s 
(h

r)

Precipitation
Rainy hours

JanFebMarAprMayJun Jul AguSepOctNovDec
60

65

70

75

80

R
el

at
iv

e 
hu

m
di

ty
 (

%
)

(b) Relative humidity and wind speed

 

 

JanFebMarAprMayJun Jul AguSepOctNovDec
3

3.5

4

W
in

d 
sp

ee
d 

(m
/s

)

Relative humidity
Wind speed



76 

 

 

 

Figure 7.3 Predicted RH distributions in slabs in Reno and LA with time and depth. 
 

 

Figure 7.4 Impact of seasonal rainfall pattern on the moisture distribution within a slab. 
 

7.2.1.2 Impact of wind speed 

To assess the impact of wind speed on the predicted moisture distribution, a similar 
exercise is performed where the measured wind speed for LA is substituted for Reno 
wind speeds in the Reno climate. The prediction indictes that seasonal wind speed plays a 
negligible role on the moisture distribution of in-service pavement slab as illustrated in 
Figure 7.5. This is true even though the mean monthly wind velocity in LA is always 0.2-
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1.0m/s greater than the wind speeds in Reno. Overlaps of the RH profile in Figure 7.5a 
(summer day) and Figure 7.5b (winter day) verify the neglegible role of the sesaonal 
wind pattern on an in-service slab‘s moisture distribution. Unlike the deviation of the 
predicted near-surface RH illustrated in Figure 7.4 when substituting rainfall patterns, 
two RH series at 2.54cm depth exhibit higher agreement when wind speed is exchanged 
in the model. Both the agreement and the statistical analysis demonstrate excellent 
agreement between the two swapped wind speeds (Figure 7.5d), further suggesting that 
the seasonal wind speed pattern plays a minimal effect on the moisture within a slab. 

The negligible role of seasonal wind pattern on the slab-moisture profile may further 
imply that the daily variation of the wind speed works as a secondary role as well. To 
confirm this implication, a random number is specified to the daily wind speed according 
to a standard normal distribution. Use of this random number does not alter the monthly 
average wind speed, but vary the wind speed at any specific time.  

Predicted results indicate that the daily wind speed notably influences near-surface 
RH in some cases, but does not affect the RH at greater depths. As illustrated in Figure 
7.6a, predicted RH sparingly deviates from the line of equality when considering RH at 
all depths of the slab, inferring the impact of the daily wind speed variation. However, a 
truncated view of the RH from depths of 1.27cm to 25.4cm, as plotted in Figure 7.6b, 
yields regression coefficient of 1.0; standard deviation of the difference between hourly 
and daily RH variation of 0.001; and maximum deviation of RH from these two methods 
of 0.0016. This statistical agreement, together with the sparse deviation shown in Figure 
7.6a, demonstrates that hourly wind speed does affect the near-surface moisture content, 
but does not influence the moisture budget at even small depths of a concrete slab.  
 

 

Figure 7.5 Impact of the seasonal wind speeds on the pore RH through in-service 
concrete slabs. 
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Figure 7.6 Impact of daily wind variation on the RH distribution within a slab. 
 

7.2.1.3 Impact of the ambient air RH 

Seasonal ambient air RH decisively controls the moisture distribution within in-
service slabs (Figure 7.7). Data labeled with ―LA RH pattern‖ are from the simulation 
that adopts all the weather parameters in Reno except the seasonal air RH, which is 
supplanted by the seasonal air RH pattern in LA. Comparison of the simulated results 
distinguishes the difference between the predicted RH of these two slabs. The plotted 
moisture profiles at both December 30, 2nd year and June 30, 5th year exhibit greatly 
differences, when compared with the data plotted at Figure 7.4 or Figure 7.5. These 
differences infer that the seasonal air RH primarily determine the moisture distribution 
within in-service slabs. 

The determination also can be seen from the similarity between the seasonal near-
surface RH and the seasonal air RH. A relatively larger difference between the RHs of 
the two simulations takes place around June, whereas a relatively less difference occurs 
around December (Figure 7.7c). Similarly, the differences between the seasonal air RHs 
of two regions also have a zenith around June and a nadir around December (Figure 7.1b 
and Figure 7.2b). Such coincidences further infer that the ambient seasonal air RH chiefly 
controls the moisture budget of in-service concrete slabs 

Although the seasonal ambient RH plays a primary role on the RH within a slab, 
slab‘s moisture is not distinctly influenced by the daily variation of ambient air RH. In 
this study, a sinusoidal wave of amplitude 0.08 is utilized for daily air RH changes to 
approximate the monitored ambient RH provided by the weather station at the Reno 
airport. Adoptions of this amplitude in the predicted model result in a band-shape 
deviation along the line of equality, with a standard deviation of 0.041 and maximum 
deviation of 0.007 (Figure 7.8a). A truncated comparison (Figure 7.8b) focusing on only 
the RH values from 1.27 to 25.4cm depth exhibits a better agreement. Therefore, the 
daily variation of the air RH slightly affects only the very near-surface moisture 
distribution. 
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Figure 7.7 Impact of the seasonal air RH on the RH within in-service slabs 

 

Figure 7.8 Impact of the daily air RH variation on the moisture distribution within slabs. 
 
7.2.2 Effect of w/c ratio 

While external factors such as wind speed and ambient RH have varying impacts on a 
slab-RH profile, controllable factors such as the w/c ratio can also potentially play a 
major factor. This study investigates the impact of concrete material properties on the 
internal RH distribution by use of concrete slab with three w/c ratios (0.30, 0.40, and 
0.50). The saturated diffusivity of the concrete with a specific w/c ratio is computed on 
the basis of spline interpolating the diffusivity in Table 6.2. 

Low w/c-ratio concrete has capacity to avoid a rapid moisture escape from the surface, 
but high w/c-ratio concrete does not. The difference between the RHs at specific depths 
of a slab is not proportional to the difference in the w/c ratio (Figure 7.8a and b). Lower 
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w/c ratio concrete slabs have greater pore RH and are less affected by the wetting and 
drying cycles at the slab surface. Unlike the impact of the local weather conditions, a 
variation of the water-to-cement ratio influences the deep-slab moisture greatly but 
affects the near-surface moisture unremarkably. This is primarily because the deep-slab 
RH is primarily controlled by the slab moisture budget but the near-surface moisture 
depends mainly on the boundary condition. As the used boundary is the same, so the near 
surface exhibits less difference. Concrete slab with a higher w/c ratio, however, has a 
greater diffusivity and thus results in the moisture deeper in the slab being easier depleted. 

 

 

Figure 7.9 Impact of water-to-cement ratio on the moisture distribution within slabs. 
 
7.2.3 Effect of the treatments of the upper boundary conditions 

7.2.3.1 Wetting cycles 

While ambient air RH is shown to have a pronounced effect on RH profiles in 
concrete slabs, wetting cycles must also be considered in the numerical model to 
understand the daily variation of the RH profile on a daily and even hourly basis. Figure 
7.10 plots two data sets: one marked by ―with wetting cycle‖ considers the wetting cycle 
whereas the other does not. Notable divergences of the plotted profiles (Figure 7.10a and 
b) confirm the remarkable impact of the wetting cycles on the moisture distribution of in-
service slabs. More deviation appears at winter time (Figure 7.10c, X=0.5, 1.5, etc) 
because in Reno this time period signifies the rainier season of this location. This infers 
that the occurrence of wetting events appreciably impacts the moisture budget within a 
slab. This impact visualizes in the statistical analysis illustrated in Figure 7.10d. The 
analysis demonstrates that when the wetting cycles go unaccounted for, the 
underestimation of the RH of the whole step with a standard deviation of 0.028 (Figure 
7.10d). 
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7.2.3.2 Use of Dirichlet and Neumann upper boundaries during drying cycles 

From a numerical point of view, the specification of the upper boundary conditions 
may lead to different predicted results. The formulation of the upper boundary condition 
is either to fix the moisture value of the variable on the slab surface (Dirichlet type 
boundary condition, representing perfect moisture transfer) or to impose the moisture flux 
normal to the surface (Neumann boundary conditions). Currently, debate still centers on 
whether the upper boundary should be treated as a Dirichlet boundary or a Neumann 
boundary (Torrenti et al. 1999; IDIART 2009).  

 

 

Figure 7.10 Effect of wetting cycles on moisture profiles in a concrete slab. 
 

 

Figure 7.11 RHs within an in-service slab under different boundary conditions. 
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The RHs predicted from a model that uses a Neumann upper boundary are compared 
to that uses a Dirichlet upper boundary, in order to highlight the impact of the adopted 
boundary on the predicted results. A model adopting a Neumann upper boundary results 
in a higher more profile compared to the model using a Dirichlet upper boundary (Figure 
7.11a and b). The RH series at depths of 1.27cm also exhibits discernable deviations 
when different upper boundary conditions are specified (Figure 7.11d). The statistic 
deviations of the entire-slab RH have a standard deviation of 0.021 and a mean deviation 
of 0.05 (Figure 7.11d). These considerable deviations confirm that the adoptions of the 
upper boundary condition in a numerical model that aims to predict in-service slab‘s RH 
greatly influences the predicted results.  

7.3 Discussion 

7.3.1 Why the roles of each weather pattern on the moisture of in-service slab are 
different? 

The data from Figure 7.3 to Figure 7.11 reflect only the moisture distribution within 
in-service slabs in Reno and partially, in LA. In the followings, the discussion will not 
refer to any specific weather pattern and any specific region so that the discussion can be 
extended to the other regions.  

 
7.3.1.1 Decisive role of seasonal air relative humidity 

Seasonal ambient air RH is the determinative factor affecting the moisture budget of a 
slab. This determination can be analyzed from the convection formula shown in Eq.(6.12):                                                               (6.12)                                     
Details regarding the physical meanings of the parameters in the Eq.(6.12) can be 
referred to in Chapter 6. In this case,          and         .  

After the curing terminates or a wetting event ends, the slab has a greater RH than the 
surrounding air. Moisture within the slab escapes from the surface to the air. However, 
this moisture outflow cannot maintain at a certain non-zero constant or wiggle around a 
positive constant; otherwise the moisture within the slab will be rapidly depleted to 0. 
That is, the moisture exchange will eventually move toward a state that moisture inflow 
roughly balances moisture outflow. At such a state, the wetting processes lead to 
moisture gain and the drying events result in moisture loss. The data plotted from Figure 
7.3 to Figure 7.11 indicates that the time from the end of the curing to such a stable state 
lasts a period of 5 or more than 5 years.  

This long period means that after a wetting event terminates, the moisture outflow 
must follow an exponential decline and then become negligible; otherwise, the stable 
state will quickly achieve. Usually the interval of the exponential decline lasts 3-5 hours 
(Al-Fadhala and Hover 2001; Hover 2006). Therefore, at most of the time the state of     holds in Eq.(6.12) because accumulative time of these intervals and of wetting 
events are orders of magnitude less than accumulative drying time. That is, at most of the 
time the       must wiggle around the     because the condition of     is satisfied 
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only when            . Therefore, the seasonal air RH mainly dominates the pore 
RH at the top of the slab.  

As the moisture diffusion within a slab is a boundary-value problem, this domination 
infers that      dominates the resulting RH profile. This is because the drying period is 
typically one-order of magnitude greater than wetting period. Therefore, seasonal 
ambient air RH dictates the moisture distribution within in-service concrete slabs 
regardless of the regions. 
 
7.3.1.2 Role of wind speed 

Seasonal wind speed acts a secondary role on the slab-moisture distribution, but this 
mechanism needs to be examined during wetting and drying time in order to clarify its 
impact in other regions. During the wetting time, slab surface is wet and         such 
that the role of wind speed is eliminated. During the drying cycle, the condition is 
relatively complicated. Here, this drying period can be divided into two scales: transition 
time (     and total-drying time (    . During this transition time, variation in wind 
speed alters the moisture outflow  . However, an increase of wind speed only shortens 
the length of the transition time, and vice versa. For instance, windy weather after a rain 
event accelerates the moisture loss from a slab surface, making the surface drying faster; 
but it cannot vary the total amount of the evaporation required because this amount is 
determined by the free vapor content at the slab surface. During the total-drying time,     diminishes the role of wind speed on the slab-surface moisture exchange. 

The analysis regarding the transition time infers that daily wind variation affects the 
near-surface RH. In Eq.(6.12), a great variation of wind speed      for instance from 2 to 
15m/s (a gust) can appreciably change the value of   by one order of magnitude. During 
the transition time, the term of           is greater than that during the drying time, 
thereby magnifying the role of daily wind variation on moisture convection at the slab 
surface. 
 
7.3.1.3 Influences of wetting cycles and rainfall pattern 

It seems a self-contradiction that the occurrence of wetting cycles influences the 
moisture distribution within a slab, but the rainfall pattern does not affect the slab‘s 
moisture budget. To clearly explain this mechanism, it merits noting that the wetting 
cycle characterizes whether the slab surface is wet or dry whereas the rainfall pattern 
depicts the rainfall distribution in a specific region. 

Nonlinearity of the concrete‘s diffusivity (Figure 6.1) results in the slab‘s RH being 
easily influenced by the wetting cycles, although the measure of the wetting time is one-
order magnitude lower than that of the drying time. During the wetting cycles, absorption 
and permeability dominate the moisture intake. Capillary force makes the concrete 
surface rapidly absorb free water at the surface. The moisture transport during these 
wetting cycles is significantly higher than the water vapor migration during the 
subsequent drying cycle. During the drying cycles, the concrete surface rapidly becomes 
dry whereas the concrete below the surface is still wet. Drying of the surface lowers the 
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near-surface diffusivity, thereby blocking the rapid evaporation of the moisture absorbed 
during the wetting time. In other words, concrete easily absorbs moisture when wetting 
but does not lose it when drying as easily. This phenomenon of the diffusivity leads to the 
wetting cycles greatly affecting the magnitude of the moisture budget within an in-service 
slab, even if the wetting cycles accounts only for a small probability of occurrence (e.g., 
approximately 180/8760 in Reno),  

Moisture budgets of in-service slabs are unremarkably influenced by the local rainfall 
pattern because the slab surface has adequate time to absorb the moisture at each wetting 
event. Usually, the transition time requiring for     is 3-5hr (Al-Fadhala and Hover 
2001; Hover 2006), shorter than time between two adjoining rainy events. This is always 
the case. According to our common knowledge, normally the ground becomes drying 
rapidly after a specific rainy event, and the subsequent rain comes following a relatively 
longer period. This normal phenomenon possibly fails to hold owning to the probabilistic 
characteristic of rainy event in some abnormal cases; e.g., the occurrence of two adjacent 
rains is too close, such as 2hr. These cases, however, are small probability events. In this 
regard, concrete surface has sufficient time to absorb the moisture during each individual 
rainy event. Therefore, once the total rain events are known, the effect of wetting cycles 
on the slab-moisture intake is determined regardless of the seasonal rainy-events 
distribution. Therefore, the rainfall pattern, seasonal rainy-events distribution, acts only a 
secondary role on the moisture budget of an in-service slab. 
 
7.3.1.4 Effect of w/c ratio 

As the concrete‘s moisture diffusivity controls the moisture transport within the slab, 
the w/c ratio affects the entire moisture profile of the slab. During casting, the internal 
RH is initially 1.0 due to free and bleed water appearing in the slab. However, the 
monthly ambient air RH is definitely less than 1. This difference results in a negative 
moisture budget after casting the slab. Concrete with higher w/c ratio has a greater 
diffusivity and becomes easier prone to loss its internal moisture.  

 
7.3.1.5 Why the treatments of the surface boundary influences the predicted results 

remarkably? 

A specification of the Dirichlet upper boundary uses a lower boundary value, leading 
to an underestimation of the RH within in-service slabs. It is noteworthy that a sole 
analysis to the plotted data in Figure 7.11 is inadequate to confirm this underestimation. 
Analysis to this underestimation needs refer to the model verification in Chapter 6 
(Figure 6.7), which uses a Neumann upper boundary and results in visual, statistical 
agreement between the predict results and the observed values. Therefore, the verification 
will result in the predicted results being lower than the observed data if the verification 
uses a Dirichlet upper boundary. This is because the predicted RHs from a model with a 
Dirichlet upper boundary are always less than those from a model with a Neumann upper 
boundary (Figure 7.11). 
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This underestimation is due to two reasons. First, the use of Dirichlet upper boundary 
neglects the transition time as       approaches   . During the drying cycle, the       
is slightly greater than     (                  . Therefore, the wetting cycles 
still influence the near-surface moisture intake for a relatively long period after the 
wetting commences. Secondly, the use of Dirichlet upper boundary also ignores the 
moisture boundary layer existing at the slab surface; the difference between the     and       exists in this layer. This ignorance is equal to assuming that the wind velocity at 
the ground surface is infinite and that thickness of the boundary layer vanishes. In fact, 
the existence of this layer makes the slab relatively less sensitive to the daily fluctuation 
of the ambient air RH. In addition, existence of this layer results in the       being 
generally slightly greater than the     so that the negative moisture budget lasts 5year or 
more (Figure 7.3-Figure 7.11). Therefore, adoption of Dirichlet upper boundary uses a 
lower-boundary value and thus consistently under-predicts the RH profile within a slab. 

 
7.3.2 What do the sensitivity studies imply? 

These sensitivity studies and their working mechanisms have implications on the 
construction season selection and optimum w/c ratio design. 

 
7.3.2.1 Construction designs 

Construction of a pavement slab during a season with a low probability of 
precipitation is not necessarily ideal. As shown in Figure 7.10b, a slab in Reno has a 
lower RH within the slab when sheltered from rain. A relatively steep moisture gradient 
is then formed through the slab and would result in greater differential drying shrinkage 
strain. Alternatively, concrete material design that promotes more reversible shrinkage 
and higher creep may help alleviate some of these moisture-induced shrinkage stresses. 

Selection of proper construction seasons can also elongate the longevity of a concrete 
pavement slab. For example, in Reno, the ambient air RH is lowest during the summer. 
Due to the determinative role of the ambient air RH, construction of concrete pavement 
slabs during these seasons can lead to the rapid evaporation of bleed water at the 
pavement surface (Jeong and Zollinger 2003). In this case, adequate curing would be 
critical to avoid the over-development of undesirable drying shrinkage during early ages, 
and to prevent the rapid moisture loss occurring at the surface. In addition to needing 
adequate curing during the early ages of the concrete, a pavement slab in arid climates 
may require greater thickness or shorter joint spacing than in wetter regions to resist this 
differential drying shrinkage.  

 
7.3.2.2 Optimum w/c ratio design 

Designs using a low diffusivity concrete in marine region may be crucial to insulate 
the ingression of chloride ions to the concrete. This type of concrete reduces the ion‘s 
penetration depth during the wetting cycle and declines the moisture exchange between 
the concrete and the external environment.  
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Design of a moderate w/c concrete in mountainous desert regions is decisive to help 
ensure the long-term performance of a slab. On one hand, a high w/c ratio concrete tends 
to make the concrete prone to the variation of the environment factors such as wetting 
and drying cycles. It also facilitates the moisture loss from the concrete and induces a 
great amount of undesirable shrinkage during the service of the slab. On the other hand, a 
lower w/c ratio concrete probably increases the self-desiccation or autogenous shrinkage 
of the slab. Both of them increase the uniformly distributed shrinkage-induced stress 
within the slab and widen the pavement‘s cracking or joints space. 

7.4 Conclusions 

Moisture distribution within in-service slabs is affected by both external and internal, 
controllable factors. Predictions of these RH profiles are also affected by modeling 
parameters such as the treatment of the upper boundary condition. Proper characterization 
and understanding of these factors have distinct implications on the performance of 
concrete pavement slabs. 

1)      Seasonal ambient air relative humidity (RH) plays a dominant role on the 
moisture distribution within an in-service slab. The seasonal rainfall pattern, monthly 
wind speed, and variation of daily RH influence the slab‘s internal RH profile in a 
secondary role. To offset the moisture gradients in arid climates, increasing thickness or 
reducing joint spacing may need to be applied in comparison with wetter regions. 

2)      Daily variation of the local wind speed notably affects the near-surface RH 
because this helps accelerate the escape of water immediately after a wetting event ends. 

3)      Use of a Dirichlet upper boundary greatly underestimates the moisture profiles 
within a slab. This is because this boundary assumes that the pavement surface dry 
immediately after a wetting event ends. After a wetting cycle, there exists a transition 
time during which the moisture escape from the pavement surface exponentially declines 
to zero. Conversely, use of a Neumann convective boundary is more appropriate to model 
moisture movement during drying cycles.  

4)      Concrete easily absorbs moisture when wetting, but typically loses water much 
slower due to the non-linearity of slab‘s moisture diffusivity. Therefore, although the 
probability of precipitation is typically one order of magnitude less than drying in many 
locations, magnitude of the wetting events still control the moisture budget of in-service 
slabs to a large degree.  
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Chapter 8 Total environmental loadings developed through in-service slabs 

Environmental loadings that in-service pavement slabs suffer from include not only 
thermally-induced stresses (curling stress) but also moisture-induced stress (warping 
stresses). Different from the curling stress, the warping stress exhibits a less-regular 
swing of amplitude. These changes in warping stresses depend mainly on the slab 
moisture diffusion and slab mechanical parameters, e.g., creep compliance. The 
dependency on the moisture diffusion suggests that the warping stress potentially remains 
in a higher stress state immediately after the curing ends. This is because during this 
period, the moisture loss from the slab surface is significantly greater than the other 
period. The dependency on the mechanical parameters suggests that this greater stress 
state may relax progressively since concrete slab have a viscosity properties. An 
investigation to the evolution of the total environmental loadings developed through in-
service slabs potentially serves as the basis for a credible estimate the performance of  in-
service concrete pavement slabs. 

Moisture-induced stresses within concrete specimens have been investigated in 
laboratory conditions, for which both moisture distribution and temperature distribution 
within the specimen are controllable. Series studies of Bazant‘s group have been 
dedicated to the shrinkage-induced stress through lab specimens (Bazant and Raftshol 
1982; Bazant and Chern 1985; Bazant 1998; 2000). These studies consider both the basic 
creep behavior and Pickett effect of concrete slab. The stress-strain response of the 
varying moisture distribution within the slab can be regarded as both elastic and viscous 
behavior, which for concrete, can be characterized by use of a simple Maxwell model 
(Bazant and Asghari 1974; Bazant and Tsubaki 1980; Bazant and Chern 1985). 
Nevertheless, these studies do not center on the environmental loadings developed 
through in-service concrete pavement slabs. The stress-strain response of these slabs is 
relatively complicated because they experience both moisture variation and temperature 
variation. The total environmental loadings developed through an in-service slab may 
exhibit a totally different scenario from the thermally-induced stress when the component 
of the moisture-induced stress is added to the total environmental stress. In extreme 
cases, this total environmental stress may be higher than the bending tensile stress of a 
slab. 

This chapter estimates the total environmental loadings developed through in-service 
slabs. These concrete slabs are regarded as a viscoelastic material, which is characterized 
by use of a Maxwell model. The viscoelasticity of the concrete includes the basic creep 
and drying-induced creep components. The total stresses and the thermal stress are 
analyzed to highlight their differences. The study focuses on the stress developed 
immediately after the curing ends and on relaxation history of the total stress. It also 
concentrates on the influences of the construction season, pavement location, mechanical 
parameters (Young modulus, Poisson ratio, etc.), local weather conditions, and the 
concrete mix properties on the total stress developed through a jointed plain concrete 
pavement slab. 
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8.1 Computational theory to warping and curling stresses  

8.1.1 Creep and relaxation 

The elastic method used to compute the curling stress overlooks the stress relaxation 
and creep behavior of concrete. In the short-term, this assumption may not lead to a 
significant reduction of the curling stresses but possibly reduces these stresses during a 
long period. Therefore, this time-dependent behavior should be considered during the 
computation of the total environmental loadings that in-service pavement slabs suffer.  

An alternative is to regard the slab as a viscoelastic material. Viscosity of a concrete 
slab can be described by several viscoelastic models including the Maxwell chain model 
(Figure 8.1a), Kelvin chain model (Figure 8.1b), or the combination of these model like 
the standard linear solid model (Figure 8.1c). Although the standard linear solid model is 
more accurate than the Maxwell and Kelvin-Voigt models in predicting material time-
dependent stress responses, it mathematically more difficult to assess than the other two 
models. The developed stress cannot be seen as a constant as thermal stresses vary 
rapidly as shown in Chapter 4. Thus, in-situ pavement slabs experience more stress 
relaxation than creep. Therefore, the Maxwell model, capable to more accurately predict 
the relaxation phenomenon, is suitable to estimate the stress behavior of the in-service 
pavement. One added benefit of a simple Maxwell model is the ability to estimate the 
time-dependent stress behavior through a single variable, the viscosity of the concrete. 

For hardened concrete, relaxation of concrete can be computed from the following 
equation modeling the Maxwell chain (Figure 8.1a): 

                                                                      (8.1) 

 
where   is the viscocity of the concrete (     ,    is the time derivate of the thermal 
stress (referred hereinafter that any variable with a dot above stands for the time derivate 
of the variable). 
 

 

Figure 8.1 Schematic representations of different viscoelastic models. 
 

    

E E1 

E2 

E   

b) Kelvin-Voigt model c) Standard linear solid model a) Maxwell model 
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8.1.2 Warping stresses 

Shrinkage contributes a great portion of the concrete deformation, especially for an 
early-age concrete slab. The shrinkage of a slab depends on the time elapsed and on the 
internal RH distribution of pores within a concrete slab. This shrinkage can be computed 
by the following equation according to the B3 model (Bazant 2000): 

                                                                   (8.2) 
 

where      (    is the total or ultimate shrinkage;   (day) is the time the slab begins 
service, usually        days (Bazant 2000);    is the day at which the shrinkage 
stress is concerned;    represents the term of the reversible shrinkage; and       
represents the irreversible shrinkage. They can be computed by the following equations 
(Bazant 2000): 
 

                                                                (8.3) 

                      
(8.4) 

 
where     (day) stands for size dependence and usually         days is used (Bazant 
2000).  

Another parameter needed in Equation (8.2) is the ultimate shrinkage     (µε). 
According to Mindess et al (2002),  it ranges from 415 to 1070 µε for normal Portland 
concrete and          µε is recommended if a measured value not available.  

Creep behavior has to be considered when warping stresses of a pavement slab are 
computed. Unlike the curling stresses, the warping stresses have longer periods which are 
usually 10-90 days in length. This longer period allows the shrinkage-induced stress to 
relax to some degree depending on the viscosity of the concrete material in the slab at 
that time. Considering the viscosity of concrete, the stress-strain correlation due to 
shrinkage can be characterized by Eq. (8.1), in which, for this case, the     is replaced by 
the     . 

 
8.1.3 Drying creep (Pickett effect) 

The deformation of a concrete specimen under sustained loads exceeds the 
summation of a load-free specimen‘s drying shrinkage and of the deformation of a 
specimen that does not dry. This phenomenon was first observed by Pickett (Pickett 
1942). Its mechanism has been thoroughly studied by Bazant et al (Bazant and Chern 
1985; 1998).  
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Figure 8.2 Pickett effect (drying-induced shrinkage. 
 

Considering this phenomenon, the computation of the environmental loading-induced 
stresses through an in-service pavement slab has to be modified as (Bazant and Chern 
1985):  

 

 
                      (8.5) 

 
where      and        stand for the relaxation rates that are induced by     and   , 
respectively. They can be estimated by Eq. (8.6) and Eq. (8.7): 
                                                                    (8.6)                                                                      (8.7) 

 
where for hardened concrete              ;   and   ranges from        to       , 
in which         is the bending tensile stress of concrete;   is an empirical constant and 
usually           is used (Bazant and Chern 1985). It should be noted that when both 
the combination of warping and curling stresses are computed,             is used in 
Eq. (8.5). 

The stress development through the slab is still based on the Mohamed and Hansen  
method (1997), which has been proposed from Eq. (4.1) to (4.10). That is, one can obtain 
the total stress developed through a slab by use of algorithm from Eq. (4.1) - (4.10) to 
compute the redistribution of the free strain at Eq.(8.5). It should be noted that the 
method used to calculate the free stress is viscoelastic-based but the method used to 
compute the real stresses (the re-distribution of the free stress) is elastic-based. The stress 
redistribution can be computed from the elastic theory because the redistribution occurs 
simultaneously with the development of free stresses. 

 

Sealed +load unseal Unsealed+load
1 2 3

1 2 3   
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8.2 Simulation details 

This study computes the total stress in Eq. (8.5) using the explicit central difference 
method, a method can be referred to any normal numerical analysis textbook (Burden and 
Faires 2000). This method is also used to evaluate rates of moisture- and temperature- 
variations in Eq. (8.6). The viscosity of concrete is a time-dependent function, ranging 
from 0.7*106 to 1.4*106       as demonstrated in Figure 8.3 (Bazant 2000).  
 

 

Figure 8.3 Evolution of the viscosity of a slab.  Note: Laboratory observed data is 
reproduced from Bazant (Bazant 2000). 

 

The curing of the concrete is concluded after 3 days the slab casting, i.e.     . The 
simulation assumes the slab is cast at 3 day before April 1, July, 1, and October 1, 
respectively,  in order to analyze the influence of the construction season on the 
developed stress. It uses the thermal stress at 12:00AM as the initial stresses. The 
concrete is assumed having a water-to-cement ratio of 0.45. The bending tensile strength 
of concrete is assumed as 4.6MPa; i.e.       . This simulation estimates the total stress 
evolutions during 5 years after the curing commences. Numerical code for this simulation 
can be referred to Appendix E. 

8.3 Results 

8.3.1 Stress evolution immediately after the curing 

After the curing commences, the top of the concrete slab almost suffers from tensile 
stress even if the slab curing terminates at the hottest season (Figure 8.4). In such 
weather, during the daytime, the slab surface is hot and results in positive temperature 
gradient across the slab. Compressive stress develops at the top if the through-depth slab 
RH is uniform. However, this positive temperature gradient is overwhelmed by the 
ongoing shrinkage, which induces tensile stresses. Therefore, after the curing ends, the 
top of the slab suffers from tensile stress all day round. 

This increase of tensile stress near the top results in the increase of compressive 
stresses developed the bottom; however, the bottom experiences relatively less stress than 
the top of the slab. The total stress at the slab‘s bottom cycles between approximately -
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1.5 to 1.5 MPa for the slab in Reno and between -1.0 and 1.0 for the slab in Los Angeles 
(Figure 8.4). One reason for the stress amplitude differences between the slabs of these 
two regions is that the temperature variation in Reno is relatively greater and leads to 
more thermal stress developed within the slab. The other reason is that Reno has a 
comparatively lower ambient relative humidity and results in the slab undergoing more 
rapid moisture loss and subsequent drying shrinkage. 

The concrete slab in Reno experiences stress relaxation over daily cycles whereas that 
in Los Angeles does not. In both regions, the tensile stresses at the slab top immediately 
increase after the curing terminates. This is because the rapid moisture escape from the 
slab surface leads to a sharp negative RH gradient near the top. For the slab in Reno, the 
wiggle of daily-maximum tensile stress at the top in some time exhibits a plateau (Figure 
8.4a). This infers that the developed stress is greater than the bending tensile stress; thus 
the top of the slab experience stress softening. In Los Angeles, stress softening does not 
occur at the top, even though the total stress is greatly higher than the thermal stresses. 

 

 

Figure 8.4 Stress developments at the top and bottom of the slab for one month after the 
curing ends. Note: tension is positive. 

 
8.3.2 Long-term stress developments 

The stress plotted in Figure 8.4 exhibits reduction of both tensile stress at the top and 
compressive stress at the top. These reductions suggest that the stress developed through 
the slab can possibly relax progressively. To show this stress relaxation, Figure 8.5 plots 
the daily maximum tensile stress at the top and the daily maximum compressive stress at 
the bottom over a five-year period following concrete casting and curing. 

The developed stresses exponentially decline after the curing ends. They become 
stable approximately 3-6 months after the casting of the slab. The exponential decrease of 
the developed stress is conspicuous for the stress near the slab surface. The developed 

June 30 Jul 5 Jul 10 Jul 15 Jul 20 Jul 25 Jul 30
-3
-2
-1
0
1
2
3
4
5

Date

St
re

ss
 (

M
Pa

)

(a) Stress developed after the curing ends (Reno, top)

 

 


total


thermal

June 30 Jul 5 Jul 10 Jul 15 Jul 20 Jul 25 Jul 30
-3
-2
-1
0
1
2
3
4
5

Date

St
re

ss
 (

M
Pa

)

(b) Stress developed after the curing ends (Los Angeles, top)

 

 


total


thermal

June 30 Jul 5 Jul 10 Jul 15 Jul 20 Jul 25 Jul 30
-3
-2
-1
0
1
2
3
4
5

Date

St
re

ss
 (

M
Pa

)

(c) Stress developed after the curing ends (Reno, bottom)

 

 


total


thermal

June 30 Jul 5 Jul 10 Jul 15 Jul 20 Jul 25 Jul 30
-3
-2
-1
0
1
2
3
4
5

Date

St
re

ss
 (

M
Pa

)

(d) Stress developed after the curing ends (Los Angeles, bottom)

 

 


total


thermal



93 

 

tensile stress drops to a nadir after approximately 6 months duration. After this period, 
the shrinkage-induced stresses become stable since the subsequent nadirs and zeniths 
appear roughly at the same time and in same magnitude (Figure 8.5). 

The duration required for this stabilized time is not significantly affected by the 
weather conditions. Reno has both lower ambient relative humidity and fewe rain events, 
but experiences higher wind speed than Los Angeles. These aggressive weather 
conditions make the concrete slab in Reno experience a quicker moisture loss after the 
curing ends. However, in both regions, the time required for  the total stresses to become 
cyclically stable coincides well (Figure 8.5). The reason behind this phenomenon is that 
only a notable moisture-varying rate can lead to warping stress. However, an 
inconspicuous rate does not result in distinguishable stress difference as both the Pickett 
effect and relaxation behavior of the slab can immediately relax the stresses induced by 
this slight moisture varying rate. This means that the shrinkage-induced stress 
progressively loses its domination. Therefore, after several months the stresses induced 
by the moisture variations are minimal because the stress relaxation dissipates these 
stresses. 

 

 

Figure 8.5 Stress relaxation during 5 years after the curing ends. 
 
8.3.3 Does the stress at the stable state converge to the thermal stress? 

The stress at the cyclically-stable state diverts from the thermal stress. This is because 
the slab pore RH strongly relies on the temperature variation. Daily variations of the 
temperature result in the swing of the internal concrete pores‘ RH and thus in the swing 
of total stress. To illustrate this issue, the total-stress profile and thermal-stress profile are 
plotted (Figure 8.6) and the daily total-stress contour and thermal stress contour on June 
30, 5th year are depicted (Figure 8.7).  

At the stable state, the stress during daytime coincides with the thermal stress whereas 
the stress during the nighttime does not. During daytime (top is compressive stress), the 
temperature at the top is greater than the room temperature (usually 22oC). The RH near 
the top thus slightly increases such that the total compressive stress at the top should be 
slightly greater than the thermal stress. But at the cyclically-stable state, the estimated 
total stress coincides with the thermal stress and, in some cases, slightly higher than the 
thermal stress (Figure 8.6). This is because the creep effect and Pickett effect make the 
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elastically-developed stress relax to some degree. During the night time (top is tensile 
stress), the top of the slab is at a lower temperature and the bottom of the slab remains 
relative hot. This different thermal condition results in contraction occurring at the top 
and develops tensile stress therein. The estimated total tensile stresses are remarkably 
greater than the computed thermal stresses (Figure 8.6). 

At the cyclically-stable state during the summer months, the top of the slab suffers 
from a total tensile stress greater than the thermal stress owning to two reasons. First, 
both terms of      and      in Eq.(8.6) are less than 1 when the local slab is in 
tension; but these terms are greater than 1 when in compression. This difference results in 
a greater portion of the developed compressive stress being relaxed during the day hours 
(compressive at the top) than the night hours. Secondly, during the night time, the RH 
declines within the slab as the temperature drops (Eq. (6.16)). The decline of the pore RH 
through the slab magnifies the term of      in Eq. (8.6). It thus increases the reversible 
component of the shrinkage during this time and enlarges the developed tensile stress 
near the top of the slab. These two reasons result in the developed stress relaxing to a 
lesser magnitude during the night hours, and results in the estimated total stress diverging 
from the thermal stress during the nighttime. 
 

 
Figure 8.6 slab-stress profiles at the cyclically-stable time suggest that the total stresses 
divert from the thermal stress; maximum tensile stress at the bottom appears 13:00PM, 

maximum compressive stress the top at night time (In Reno). 
 
8.3.4 Impact of construction season on the developed stresses 

Stress relaxation depends on the RH, stress, slab‘s viscocity, etc. This dependency 
suggests that construction season may greatly influence the stress developed within a 
slab. To illustrate this influence, this study assumes that pavement slabs in Reno and Los 
Angeles are cast and commencing curing on at March 30, June 30, and September 30, 
respectively.  
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Figure 8.7 Thermal stress versus total stress on June 30, 5th year  (In Reno). 
 

The developed total stresses after the curing ends are greatly affected by the 
construction seasons (Figure 8.8). In Reno, the slab built in June experiences largest 
stress whereas slabs paved in September potentially suffer from the lowest total stresses 
(Figure 8.8a). In Reno, the ambient RH from September to December is relatively higher. 
Another reason for this phenomenon is that the autumn season in Reno is less-windy than 
April and July (Figure 7.1b). Therefore, the slab built in September experiences a lower 
rate of moisture escaping from the surface. It thereby suffers from less moisture-induced 
stresses developing within the slab when compared to the slab paved in October. 
However, this does not necessarily mean that any slab built in October will be subject to 
less environmental loadings over the course of its service life. For instance, in Los 
Angeles, a slab paved in March tends to suffer from greatest stress but that one paved in 
June experiences a relatively lower stress, especially immediately after the curing ends 
(Figure 8.8b). This is because in Los Angeles the ambient RH in June is at its zenith, 
resulting in a lower rate of moisture escaping from the surface and thus in a less tensile 
stress at the top.   Therefore, it is critically important to note the site-specific ambient RH 
patterns to construct concrete pavement slabs that undergo lower total stress 
development, thereby promoting long-term pavement performance with respect to fatigue 
cracking development. 

 
8.3.5 Environmental loadings of concrete slabs in different regions 

8.3.5.1 Stress developed in coastal and arid regions 

The concrete slabs in the region within less air RH tend to experience higher stress. 
Figure 8.9 plots the daily maximum-tensile stress developed through slabs in Reno, 
Nevada; Las Vegas, Nevada; Los Angeles, California; Astonia, Oregon. The former two 
regions attribute to lower ambient RH, arid regions. Concrete pavements in these arid 
regions tends to experience more stress across the slab. The latter two regions are coastal 
locations with a higher ambient RH. The slabs built in these regions undergo less stress; 
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the softening of stress does not occur at the top under the assumed geometry and 
construction date. 

An interesting result is that the slab in Las Vegas suffers from less total stress 
development compared to the slab in Reno, Nevada (Figure 8.10a). Since Las Vegas has 
lower seasonal ambient RH, this is contradicting to the conclusion that the slabs in 
regions with lower ambient RH experience higher total stresses. This phenomenon occurs 
for distinct three reasons. 

First, moisture escaping from the slab in Reno occurs more rapidly than in Las Vegas. 
In Las Vegas, the ambient RH is lower than that in Reno (Figure 8.10b). Thus, the RH 
near the top of slab dramatically drops because the ambient RH directly controls the RH 
near the surface. The drop of slab-surface RH reduces the near-surface diffusivity and 
thus blocks rapid moisture escape from the surface. This is because the slab moisture 
diffusivity highly decreases at lower pore RH (Figure 6.1). Thus, after the curing ends, 
the slab in Las Vegas tends to suffer from less shrinkage stress. 
 
 

 

Figure 8.8 Influence of the slab-constructed seasons on the stress developed within slab 
after the curing ends. 

 
Secondly, the RH of the slab in Reno is more easily affected by temperature 

variations. The hydrothermic coefficient reveals that the internal concrete RH is sensitive 
to temperature variation when the RH ranges from 0.4-0.6 (Figure 6.6). This sensitivity 
forces the slab in Reno to incur higher tensile stresses because the daily reductions of the 
RH near the top of the slab are relatively larger. This reduction is dramatic during the 
nighttime, as shown in the temperature decrease of the slab in Reno (Figure 3.3b). 

Finally, the windier climate in Las Vegas (Figure 8.10c) reduces the thermal stress 
developed through the slab and reduces the diffusivity of the slab. The wind speed in Las 
Vegas is typically 1.0-1.5 m/s greater than in Reno. This windy climate in arid regions 
can reduce the environmental loading developed through a slab due to three reasons. 
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Figure 8.9 Daily maximum slab-tensile stresses developed in different regions. 
 
 

 

Figure 8.10 Slab‘s stress development and weather conditions. 
 

1. First, this windy climate reduces the nonlinearity of the temperature 
gradient near the top and lessens the bending stress across the slab. It thus reduces the 
thermal stress developed and thus the total stress. 
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2. The windy climate in Las Vegas reduces the temperature across the slab. It 
thereby decreases the moisture diffusivity of the slab since the slab moisture diffusivity 
increases with temperature (Eq. (6.15)). 

3. The windy climate in Las Vegas does not notably affect the moisture 
distribution within the slab. As there are very few rain events occurring in either region, 
the slab surface is in drying conditions most of the time. These conditions make the slab 
moisture distribution insensitive to the wind speed, as illustrated in Chapter 7. 

These three reasons confirm that the windy climate in Las Vegas can decrease the 
total environmental loadings developed through the slab therein.  
 
 
8.3.5.2 Application to other regions 

Although the data from Figure 8.4 to Figure 8.8 reflects only the moisture distribution 
within in-service slabs in Reno and partly represent that in Los Angeles, the predicted 
total stress developed within the slabs can be extended to other regions. 

A rapid escape of moisture from the slab surface is the main reason resulting in the 
larger tensile stress near the surface. After the curing ends, concrete pavement slabs are 
satured through their depth regardless of region; whereas the surrounding air has 
relatively lower RH. This difference results in a rapid moisture loss from the slab surface 
and induces tensile stress at the top. In regions with a relatively higher ambient RH (e.g. 
RH>0.75), the moisture escape occurs for a shorter duration because the moisture 
diffusion within a saturated slab is greater than within an unsaturated slab. Therefore, the 
developed stress relaxes soon after the curing terminates (Figure 8.8 and Figure 8.9). In 
regions with a  lower ambient RH (e.g. RH<0.75), the moisture near the concrete slab‘s 
surface would quickly equilibrate to the ambient RH. However, the portion of the slab 
deeper in the slab is still saturated because the lower RH near the slab surface (less 
diffusion near the surface) blocks the continuous, rapid loss of moisture from the slab 
surface. A greater negative RH gradient thereby develops near the surface. This 
formation of this gradient results in the stress softening occurring at the slab surface, but 
the deeper portions of the slab remain at  a relatively lower stress state (Figure 8.9a and 
c).  

Arguments in the above paragraph confirm that the developed stress through slabs in 
other regions still experience similarly developed total stresses to those  in Reno and Los 
Angeles. That is the following:  

 Tensile stresses at the top would be close to the bending tensile strength. This 
is the case since the moisture escape is so quick that the rate of the shrinkage-
induced stress development overwhelms rate of stress relaxation. 

 The relaxation of the stress to a cyclically-stabilized state lasts several months. 
The rate of moisture loss reduces several days after the curing terminates. This 
is because in regions with higher ambient RH, the moisture loss declines. This 
is also because in regions with less ambient RH, the nonlinearity of the 
moisture diffusion impedes the moisture loss rates exponentially. When the 
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rate of stress relaxation is quasi-balanced with the rate of the shrinkage-
induced stress, the total stress reaches a cyclically-stabilized state. 

 The total stresses at the cyclically-stable state possibly divert from the thermal 
stresses. The degree of the divergence may exhibit different scenarios, 
depending on the daily temperature amplitude of the slab. In regions where 
the slab undergoes a relative lower temperature variation, the total stress may 
eventually converge to the total stress because    and    in Eq. (8.6) are 
minimal so that the Pickett effect and the viscosity behavior can relax the 
developed stress immediately.  

 The construction season influences the developed stresses after the curing 
ends. This influence may also exhibit different scenarios than what is plotted 
in Figure 8.8. This is because other regions have different seasonal ambient 
relative humidity, wind speed, solar radiation, etc. It also may not reach a 
solution that a slab paved in September would be result in a lower stress 
developed immediately after the curing ends. However, it can be concluded 
that paving a slab in a season with less daily temperature amplitude and with 
higher ambient RH increase the likelihood  of better performance of in-service 
slabs due to the reduced environmental stresses developed. 

 

8.4 Discussion 

8.4.1 Sensitivity of the developed total stress to the pavement slab 

The simulation in this study hardly exhausts the possible factors that influence the 
total stresses developed through a slab. These factors can be divided into four sets: 
pavement structure constraints; slab mechanical parameters; slab shrinkage 
characteristics; and environmental factors. 

 
 

8.4.1.1 Slab mechanical parameters 

The total stress development also relies on the slab‘s mechanical parameters such as 
the viscosity of the slab. An increase of the viscosity will elongate transition time that the 
developed total stresses become stable. Conversely, a reduction of the slab‘s viscosity 
reduces the shrinkage-induced stress. In this case, the plateau of the stress curve in Figure 
8.8a may not be present, meaning that the softening of the total stress would not occur. 
Therefore, the detailed magnitudes of the total stress strongly rely on the mechanical 
parameters of the slab.  

Dependency of the total stress development on the elastic mechanical parameters is 
relatively complicated. Intuitively, an increase of the Young‘s modulus raises the 
estimated total stress and thermal stress; whereas increase of the Poisson rate declines 
those stress. A rise of Young‘s modulus from 20GPa to 30GPa would results in a 1.5 
factor increase of the plotted stresses shown in Figure 8.4 to Figure 8.8. However, this 
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factor actually acts in a more complicated behavior because increase of these stresses 
promotes the drying shrinkage of the slab (Hansen and Almudaiheem 1987). This is 
because the variation of the stress alters both the creep effect and the Pickett effect of the 
slab. Nonlinearity of these effects complicates the role of the elastic mechanical 
parameters on the total stress development. 

 
8.4.2 Slab mixture properties 

Decrease of water-to-cement ratio reduces the total stress developed through in-
service concrete slabs. This study does not refer to those slabs mixed with cementitious 
materials such as fly ash and only considers the mixture properties of normal Portland 
cement concrete. Provided that all the other conditions are the same, the slab containing 
different water-to-cement ratio results in different estimated total stresses. A lower w/c 
ratio concrete slab impedes a faster moisture escape from the concrete slab so that there 
should be less shrinkage-induced stress after the curling ends. Such a slab also has a less 
ultimate shrinkage     (Hansen and Almudaiheem 1987; Bissonnette et al. 1999). It thus 
has less reversible and irreversible shrinkage and experience relatively less environmental 
loadings.  However, extremely low water-to-cement ratios (< 0.30) may exacerbate the 
autogenous shrinkage component within the ultimate shrinkage level. 

A lower water-to-cement ratio concrete slab also results in the final total stress 
diverging to a lesser degree from the thermal stress. In the cyclically-stabilized state, the 
equivalent relative humidity       ) of a slab is stable such that the daily moisture-
varied rate of the pore RH depends on the daily temperature cycle, but not on the 
variation of the pore water content. This means that in a specific region, the      depends 
only on the ultimate      (Eq. (8.2)). A decrease of the water-to-cement ratio thus 
reduces the      and according to Eq. (8.2), leads to the reduction of the warping-induced 
stress. 

 
8.4.3 Impact of wetting cycles 

The occurrence of the wetting events reduces the shrinkage-induced stress. This is the 
case if the events occur after the curing ends and after the stabilized state reaches. 
Undoubtedly, the occurrence of wetting events after the curing ends reduces the rate of 
moisture loss and thus diminishes the shrinkage induced tensile stresses. After the 
cyclically-stabilized state is reached, a rain event can make the slab suffers from less 
thermal gradient and less daily variation of slab‘s RH. The latter reduces the warping 
stress. Also, rainy events increase  the near surface moisture content and RH. This 
reduces the term of reversible shrinkage because the term of the reversible shrinkage (   
in Eq.(8.3)) decreases as    increases. Therefore, a rainy event during the cyclically-
stabilized state decreases both thermal stresses and the shrinkage-induced stresses.  
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8.4.4 What does the estimation of total-stress evolution tell us? 

A sophisticated model is needed to estimate the total environmental loadings that an 
in-service slab is subjected to. Without a credible model, these loadings would potentially 
be improperly characterized, especially the tensile stress near the top. First, a sole 
analysis to the thermal stress may delude us to believe that after the curing ends, the hot 
climate makes the slab surface slab compressed, but this is not the case. The developed 
shrinkage-induced tensile stress is so great that the tensile stress overwhelms the 
compression resulting from the temperature increase. Secondly, even when moisture 
evolution within a slab is in a quasi-balanced state, the dependency of the slab‘s RH on 
the temperature variation still results in the total stress at the stable state diverting from 
the thermal stress. 

 

8.5 Conclusions 

This study estimates the total warping and curling stress developed through in-service 
slabs after the curling ends. The following conclusions can be drawn: 

(1) Immediately after the curing is terminated, the shrinkage-induced stress 
overwhelms the thermal stress. During several days after the curling, the slab top still 
suffers from only tensile stress but not compressive stress, even during a hot season. The 
total tensile stresses during the night time can be greater than the bending strength of 
normal Portland concrete, inducing slab surface softening through microcracking at 
shallow depths. However, this stress softening only occurs near the top; it may not occur 
in the regions with higher surrounding air RH. 

(2) Decrease of water-to-cement ratio reduces the total stress developed through in-
service concrete slabs. A lower w/c ratio concrete slab impedes a faster moisture escape 
from the concrete slab so that there should be less shrinkage-induced stress after curling 
ends. Such a slab typically also has a less ultimate shrinkage, unless extremely low w/c 
ratio concrete is placed. It thus has less reversible and irreversible shrinkage and 
experiences less environmental loadings. A lower water-to-cement ratio concrete slab 
also results in the final total stress diverging less from the thermal stress because of the 
lower ultimate shrinkage of this slab. 

(3) Dependency of the total stress development on the elastic mechanical parameters 
is relatively complicated. Intuitively, an increase of the Young‘s modulus raises the 
estimated total stress and thermal stress; whereas increase of the Poisson rate reduces 
those stresses. The role of these two parameters, however, acts in a more complicated 
behavior since an increase of these stresses promotes the drying creep of the slab. This is 
because the variation of the stress alters both the creep effect and the Pickett effect of the 
slab. Nonlinearity of these effects complicates the role of the slab‘s elastic mechanical 
parameters on the total stress development. 

(4) The developed stress through the slab relaxes exponentially. Approximately 3-6 
months are required to make this stress cyclically-stabilized. At the cyclically-stabilized 
state, the total stress does not converge to the thermal stresses. This is because the RH 
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through a slab varies the temperature fluctuation across the slab. Variation of temperature 
leads to variations in both the internal pore RH and reversible shrinkage rate, which make 
the total tensile stress divergent from the thermal stress. Thus, it may lead to delusive 
results if the environmental loadings that the in-service slab subjects to are estimated by a 
model that solely analyzes the thermal stress. 
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Chapter 9 Conclusions and future works 

This dissertation investigates the total environmental loadings that in-service slabs are 
subjects to by estimating the thermal- and shrinkage-induced stresses. The thermally-
induced stress is evaluated by use of a 1-D dimensional heat transfer model to predict the 
temperature distribution through the slab and by use of the elastic theory to compute the 
stress induced by the predicted temperature profile. The shrinkage-induced stress is 
evaluated by use of the visco-elastic theory to compute the stress induced by the moisture 
gradient developed though the slab. Moisture distribution is predicted by a proposed 
model that considers the wetting and drying cycles occurring at the pavement surface. 
The computation of the total environmental loadings considers the relaxation behavior 
and Pickett effect of the concrete. 

 

9.1 Conclusions 

(1) Air temperature 
The daily temperature amplitude affects the temperature distributions across a 

pavement slab during the daytime more than during nighttime. Pavements in regions with 
higher daily temperature amplitudes experience greater negative temperature gradients 
during the nighttime hours. Using a sinusoidal approximation function as an input of air 
temperature in a numerical model does not compromise the prediction, even if a sudden 
air temperature drop or increase occurs. There exists several correlations between air and 
sky temperatures. Uses of different correlations result in different temperature 
distributions through a concrete slab. Methods that directly link the sky emissivity to dew 
point are recommended in a numerical model commissioning to predict pavement 
temperatures. 

 
(2) Wind speed 
Impact of wind velocity on the thermal stresses in JPCPs depends on the climatic 

location of the pavement. In lower latitude regions, the solar radiation heats up the 
pavement surface and thus increases the difference between the slab-surface temperature 
and the air temperature (      . A relatively higher       facilitates the wind drawing 
more heat from the pavement and thus reduces the temperature gradient and thermal 
development through the slab. This impact varies seasonally. In summer, the       is 
maximal and the role of wind speed is magnified. In other seasons, the solar radiation 
wanes so that the       factor decreases. The wind speed only carries a limited heat 
away from the pavement surface. It thus plays un-notable role on the slab temperature 
distribution and thus on the developed thermal stress.  

Using the heat convection coefficient from the EICM to predict the temperature 
profile of a slab tends to overestimate thermal stresses in a JPCP. This may help explain 
some of the sensitivity of the thermal expansion coefficient to the predicted fatigue 
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cracking performance in JPCPs. Moreover, the EICM heat convection formula embeds an 
assumption that the slab surface temperature must be higher than the air temperature. 
This assumption is not always true. Furthermore, the heat convection coefficient estimate 
from the EICM model is significantly less than the value computed from accepted heat 
transfer theory. Use of this model potentially results in the thermal stresses being less 
sensitive to wind speed. The proposed modified model considers the factors of the 
viscosity of the air, characteristic length of the JPCP slab, the air‘s thermal conductivity, 
air Prandtl number, and wind velocity. It tends to be more realistic in characterizing the 
heat convection coefficient for a JPCP structure.  

The wind speed observed from a weather station cannot be directly inputted into the 
Menzel‘s formula to compute the evaporation rate of bleed water from a casting concrete 
surface. The observed wind speed of weather stations in most locations (e.g. airports) 
generally is one-and-half times greater than the wind velocity used in Menzel‘s formula. 
This is because the heights of the measurements are different than wind speeds that affect 
the surface directly.  

During wetting conditions, both wind speed and free evaporation (zero wind speed) 
significantly affect the moisture escape from the concrete surface. During the drying 
cycle, wind velocity dominates the moisture loss at slab surface, especially during the 
transition time that the relative humidity at the top approaches the ambient air humidity. 
Free evaporation at a drying concrete surface plays a negligible role to the moisture 
escape in cases with wind at the surface.  

 
(3) Solar radiation (SR) 
The temperature distribution and thermal-stress distribution through a slab are mainly 

determined by the SR absorption at the pavement surface. Because more SR energy is 
available during the summer season, the pavement experiences higher temperature 
gradients and thus suffers from higher thermal stress in comparison with winter months. 
The impact of the heat history on the pavement surface is negligible. Computation of the 
maximum pavement temperature thus needs only to predict the pavement temperature in 
the day with the extremely high solar radiation. The estimate of this extreme solar 
radiation, however, needs to consider the observed uncertainties of the local weather.  

The role of SR absorption on the slab surface becomes more pronounced when with 
darken pavement surfaces. The maximum thermal tensile stress of a slab can increase up 
to 0.3MPa when the pavement surface‘s solar absorptivity rises from 0.65 to 0.85. 

 
(4) Internal relative humidity of concrete 
Seasonal ambient air relative humidity (RH) plays a dominant role on the moisture 

distribution within an in-service slab. The seasonal rainfall pattern, monthly wind speed, 
and variation of daily relative humidity influence the internal RH profile of the concrete 
in a secondary role. To offset the moisture gradients in arid climates, increased thickness 
or reduced joint spacing may need to be applied in comparison with wetter regions.  

Concrete easily absorbs moisture when wetting. It typically loses water much slower 
due to the non-linearity of moisture diffusivity. Thus, although the probability of 
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precipitation is typically one order of magnitude less than drying in many locations, the 
magnitude of the wetting events still control the moisture budget of in-service slabs to a 
large degree. 

Variation of the temperature strongly influences pore RH of an in-service slab. Not 
only does the slab‘s diffusivity depend on the temperature, but also the pore RH strongly 
varies with the temperature variation. Use either of the RH predicted by the isothermal 
model or of the equivalent relative humidity (a relative humidity estimated at room 
temperature) potentially overestimate the slab RH during the colder seasons. 

 
(5) Total environmental loadings that in-service slabs suffer from 
Immediately after the curing terminates, the shrinkage-induced stress overwhelms the 

thermal stress such that several days after the curling, the slab top suffers from only 
tensile stress but not compressive stress, even in a hot season. The total tensile stress 
during the night time can be greater than the bending strength of normal Portland 
concrete and make the slab surface undergo softening. However, this stress softening 
only occurs near the top; it may not occur in the regions with higher air RH.  

Decrease of water-to-cement ratio reduces the total stress developed through in-
service slabs. A lower w/c ratio concrete slab impedes a faster moisture escape from the 
concrete slab so that there should be less shrinkage- induced stress after curling ends. 
Such a slab also has a less ultimate shrinkage, except in extremely low w/c ratio cases. It 
thus has less reversible and irreversible shrinkage and experiences relatively lower 
environmental loadings. A lower water-to-cement ratio concrete slab also results in the 
final total stress diverging less from the thermal stress because of the lower ultimate 
shrinkage of the concrete. 

Dependency of the total stress development on the elastic mechanical parameters is 
relatively complicated. Intuitively, an increase of the Young‘s modulus raises the 
estimated total stress and thermal stress; whereas an increase of the Poisson rate declines 
those stress. The role of these two parameters, however, is played in a more complicated 
behavior because an increase of these stresses promotes the drying shrinkage of the slab. 
This is because the variation of the stress alters the creep effect and the Pickett effect of 
the slab. Nonlinearity of these effects complicates the role of the elastic mechanical 
parameters on the total stress development. 

The developed tensile stress at the top relaxes exponentially. Approximately 3-
6months are required to make this stress stabilized (cyclically). At the stabilized state, the 
total stress does not converge to the thermal stresses. This is because the pore RH through 
a slab varies with the temperature variation. Variation of temperature leads to variations 
in both the pore RH and reversible shrinkage rate, which make the total tensile stress 
divergent from the thermal stress. Thus, it may lead to delusive results if the 
environmental loadings that the in-service slab subjects to are estimated by solely 
analyzing the thermal stress. 

 
(6) What is needed to be done at the next step? 
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It is needed to develop a sophisticated model to estimate the total environmental 
loadings that in-service concrete slab are subject to. Without a credible model, these 
loadings would potentially be improperly characterized, especially the tensile stress near 
the top. First, a sole analysis to the thermal stress may delude us to believe that after the 
curing ends, the hot climate make the slab surface slab compressed. But this is not the 
case. The developed shrinkage-induced tensile stress is so great that the tensile stress 
overwhelms the compression resulting from the temperature increase. Second, even when 
moisture evolution within a slab is in a cyclically stable state, the dependency of the 
relative humidity on the temperature variation still results in the final stress diverting 
from the thermal stress. 
 

9.2 Future works 

(1) Characterize the built-in curling 
This dissertation centers on the temperature distribution and moisture distribution 

through in-service hardened concrete pavement slabs. The hydrating concrete is out of 
consideration. However, in-service slabs usually have a built-in curling, which is induced 
by non-uniformity of the hydrating heat releasing during the hydrating state. This heat 
normally results in a negative built-in temperature gradient because the released heat is 
trapped at the bottom of the slab but effectively escapes from the pavement surface. Only 
this gradient results in a tensile stress occurring at the near surface. That is, the 
computation of the thermal stresses should be super-positioned with the built-in curling. 
Although the built-in curling will eventually relax to some degree, neglecting this built-in 
curling stress may either underestimate or overestimate the thermal stress developed 
through the slabs. 

 
(2) Compute the stress-strain relationship after the stress-softening takes place. 
This dissertation does not consider the stress-softening of the slab. When the stress is 

greater than the bending tensile strength of the concrete, stress yield is assumed. Actually, 
this yield leads to damage and may initialize micro-cracking. The post-yield stress-strain 
correlation is thus more complicated. For instance, micro-cracking may take place so that 
the bending stress across the slab is relaxed dramatically. Further investigations need to 
be dedicated to this post-yield stress-strain response and to how this stress softening may 
initiate larger structural cracks under external traffic loadings. 

 
(3) Estimate the fatigue damage of rigid pavement 
Estimating the total environmental loadings that the slab is subject to is not the 

ultimate goal. In practice, the fatigue damage of the rigid pavement is of greater concern. 
The environmental loadings themselves, especially in the long term, do not lead to the 
cracking or even failure of the slab in most cases. Accumulation of fatigue damage is of 
primary concern especially in that both these loadings are of seasonal and daily cycles. 
Future researches need to center on this topic. 
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(4) Developed 2-D model to predicted the moisture and temperature through the slab 
The models proposed in this dissertation are based on 1-D dimension heat and mass 

transfer theory. Use of these models means that edge of the slab has the same boundary 
as the middle of the slab. This leads to some errors because the media near the edge can 
have different thermal properties and different diffusivity than the media beneath the 
center of the slab.  

 
(5) Considering the soaking effect on the moisture distribution within the slab 
The proposed mass transfer used to simulate the pore RH distribution through in-

service slabs adopts      when the slab surface is wetting. In fact, the wetting 
concrete surface has RH>1. This means that the proposed mass transfer model uses a 
lower upper boundary value and possibly underestimates the moisture uptake during the 
wetting condition. The underestimation of the upper boundary may lead to some 
underestimation of the moisture distribution through the slab, although the total wetting 
time is an order-of-magnitude lower than the drying time. Future studies expect a model 
considering the soaking effect during the wetting time. 
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Appendix C—1-D heat transfer model 

% this program deals with 1-d heat transfer problem 
% written by Yinghong Qin, all right reserved 
% beta=0.5 is used to reduce the error. 
clc; 
clear; 
%% geometry constants and thermal constants 
para=xlsread('thermalpara.xls'); 
mat=length(para(:,1)); 
heatcon=para(:,2); 
density=para(:,3); 
heatcapa=para(:,4); 
% 
%% climatic input 
% (1) solar radiation 
latitude=39.5; % latitude of reno, NV 
[sunrise,sunset]=sunrscal(latitude); 
solar=xlsread('climatedata.xls','reno','C11:N13'); 
solarmean=solar(1,:); %mean solar radiation; in month; unit==kWh/m2/day; 
solarmin=solar(2,:);  %min solar radiation; in month 
solarmax=solar(3,:);  %max solar radiation ; in month 
solarmean=solarmean*41.666; %http://en.wikipedia.org/wiki/Insolation; unit==w/m^2; 
solarmin=solarmin*41.666; % convert 
solarmax=solarmax*41.666; % convert 
[daterefmin,daterefmax,datenum]=manudata(solarmax,solarmean,solarmin); 
solarannual=12*pi*datenum./(sunset-sunrise); 
% (2) inputted date referred 
dewpoint=xlsread('climatedata.xls','dewpoint'); % unit 0F 
dateref=[0;dewpoint(:,1);365]; 
% (3) daily temperature 
temperature=xlsread('climatedata.xls','reno','C61:N63'); 
anmeanannual=temperature(1,:); 
au=anmeanannual(1)/2+anmeanannual(end)/2; 
anmeanannual=[au,anmeanannual,au]; 
flucannual=temperature(3,:)-temperature(2,:); %calculate 
au=flucannual(1)/2+flucannual(end)/2;  
flucannual=[au,flucannual,au]*0.5; 
anmeanannual=interp1(dateref,anmeanannual,(0:365)','spline'); 
flucannual=interp1(dateref,flucannual,(0:365)','spline'); 
% (4) wind velocity 
windannual=xlsread('climatedata.xls','reno','C69:N69'); % unit m/s 
au=windannual(1)/2+windannual(end)/2; 
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windannual=[au,windannual,au]; 
windannual=interp1(dateref,windannual,(0:365)','spline'); 
% (5) air relative humidity 
RHannual=xlsread('climatedata.xls','reno','C68:N68'); % unit m/s 
au=RHannual(1)/2+RHannual(end)/2; 
RHannual=[au,RHannual,au]; 
RHannual=interp1(dateref,RHannual,(0:365)','spline'); 
%% other parameters 
% 
Q=0; % heat generation; 
emiss=0.93; %emissivity 
sigma=5.669e-8; %stefan-boltzmann constant 
cover=0.1; % cloud cover 
absorp=0.78; 
ch_length=0.151; %characteristic length 
visco=16.01*10^-6; %viscocity of air 
pr=0.7; % Pr numver of the air 
kair=0.027; % wiki 
%% space discrete 
tbase=0.10; 
enslab=10; 
tslab=0.25; %unit m, 10in=0.254m 
enbase=3; 
[elink,coorlink,nelement,coorslab]=discrete(tslab,tbase,enslab,enbase); 
slabelink=elink(1:10,:); 
%% initial conditions 
% give the initial temperature 
nnode=length(coorlink(:,1)); 
%% 
tt=xlsread('initial.xls','initial_reno');  
tt=interp1(tt(:,1),tt(:,2),coorlink,'spline'); 
%% simulate preparation 
tempall=[]; % used to store the temperature in the max solar radiation day of each month. 
initialtemp=[]; 
years=1; 
simu_days=365*years; % how much days is expected to be simulated 
datecount=1; % use for save the initial temperature 
solarradiation_annual=[]; 
for DAY=1:simu_days 
    %% get the climatic data in the given day 
    DAYAU=mod(DAY,365); 
    anmean=anmeanannual(DAYAU+1); 
    fluc=flucannual(DAYAU+1); 
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    vwind=windannual(DAYAU+1); 
    RHday=RHannual(DAYAU+1); 
    solarr=solarannual(DAYAU+1); 
    %% 
    hr=24; %how much hours do you want? 
    t=hr*60*60; 
    dt=600; 
    U_day=[]; % a vector used to store the temperature of slab 
    countmax=1; 
    % 
    for time=0:dt:t 
        cc=sparse(zeros(nnode,nnode)); 
        kk=sparse(zeros(nnode,nnode)); 
        rr1=zeros(nnode,1);  
        %% loop over elements for stiffnes matrix 
        for i=1:nelement 
        % get the node number of element 
        n1=elink(i,1); 
        n2=elink(i,2); 
        n3=elink(i,3); 
        %determine which layer the element within------------------------ 
        if n2<tslab 
            nmat=1; 
        end 
        if n2>tslab&&n2<tslab+tbase 
            nmat=2; 
        end 
        if n2>tslab+tbase 
            nmat=3; 
        end 
        % finish material properties determination----------------------- 
        lelement=coorlink(n3)-coorlink(n1);% calculate element length 
        klocal=heatcon(nmat)/lelement*[7/3.,-8/3.,1/3.;-8/3.,16/3.,-8/3.;1/3.,-8/3.,7/3.]; 
        clocal=density(nmat)*heatcapa(nmat)*lelement*[2/15.,1/15.,-
1/30.;1/15.,8/15.,1/15.;-1/30.,1/15.,2/15.]; 
        rq=Q*lelement*[1.0/6;2.0/3;1.0/6]; 
        %assemble kk and cc 
        kk(n1,n1)=kk(n1,n1)+klocal(1,1); 
        kk(n1,n2)=kk(n1,n2)+klocal(1,2); 
        kk(n1,n3)=kk(n1,n3)+klocal(1,3); 
        kk(n2,n1)=kk(n1,n2); 
        kk(n2,n2)=kk(n2,n2)+klocal(2,2); 
        kk(n2,n3)=kk(n2,n3)+klocal(2,3); 
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        kk(n3,n1)=kk(n1,n3); 
        kk(n3,n2)=kk(n2,n3); 
        kk(n3,n3)=kk(n3,n3)+klocal(3,3); 
        cc(n1,n1)=cc(n1,n1)+clocal(1,1); 
        cc(n1,n2)=cc(n1,n2)+clocal(1,2); 
        cc(n1,n3)=cc(n1,n3)+clocal(1,3); 
        cc(n2,n1)=cc(n1,n2); 
        cc(n2,n2)=cc(n2,n2)+clocal(2,2); 
        cc(n2,n3)=cc(n2,n3)+clocal(2,3); 
        cc(n3,n1)=cc(n1,n3); 
        cc(n3,n2)=cc(n2,n3); 
        cc(n3,n3)=cc(n3,n3)+clocal(3,3); 
        rr1(n1)=rr1(n1)+rq(1); 
        rr1(n2)=rr1(n2)+rq(2); 
        rr1(n3)=rr1(n3)+rq(3); 
        end 
    % boundary condition giving 
    % 1) air temperautre 
    hour1=time/3600; 
    airtemp1=anmean+fluc*sin(pi*(hour1-7)/12); 
    [dewpointin]=dewcompute(RHday,  airtemp1); 
    wind=vwind; 
    tt1=tt(1); 
    % 2) convection 
    [qconv1]=reynolds(tt1,airtemp1,wind,ch_length,visco,kair,pr); % function 
    % 3)irradiation 
    refnum=2; % refnum 1--bentz model, 2--berdahl model, 3--Swinbank model 
    [qirra1]=irrbentz(tt1,airtemp1,dewpointin,cover,sigma,emiss,refnum); % refnum 1--
bentz model, 2--berdahl model, 3--Swinbank model 
    % 4)solar absorption 
    
[qabsorp1]=solarradiation(hour1,absorp,solarr,sunrise(DAYAU+1),sunset(DAYAU+1)); % 
function 
    % 5) give heat flux to the top of slab 
    rr1(1)=qconv1+qabsorp1+qirra1; 
    rr1(nnode)=0.03*heatcon(3);  
    %heat flux from the bottom of the earth 
    % finish heat flux------------------------------- 
    renewcc=cc/dt+0.5*kk; 
    renewrr=0.5*rr1+(cc/dt-(1-0.5)*kk)*tt;%b=0.5; 
    tt=renewcc\renewrr; 
    %% 1) save the data on the maximum solar-radiation days 
    if DAY/365>years-1 
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        if mod(time,3600)==0&&time~=0 
            U_day=[U_day;tt(1:2*enslab+1)']; 
            countmax=countmax+1; 
        end 
    end 
    %% 2) save the data on the minimum solar-radiation days 
    end 
    tempall=[tempall;U_day]; 
end 
tempall=[coorlink(1:2*enslab+1)';tempall]; 
tempall=[(-1:8759)'/24,tempall]; 
xlswrite('tempall.xls',tempall,'reno_wholeyear'); 
xlswrite('initial.xls',[coorlink,tt],'initial_reno');  
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Appendix D—couple heat- and mass-transfer model 

% this program and its associated subroutines are designed to compute the 
% moisture profile within the concret pavement slab; 
% written by Yinghong Qin, all right reserved 
clear all; 
clc; 
format long g; 
%% 1) load weather conditions 
days=365; % provide how much day you want to simulate 
dayloopbegin=1; 
slen=0.254; %meter, 12in=30.48 centimeter 
eslab=40; % how much elements you want 
nodeslab=2*eslab+1; % total number of the slab 
coor=linspace(0,1,nodeslab)'; 
% ************************************** % finish the discretization 
slabelink=zeros(eslab,3); 
for i=1:eslab 
    slabelink(i,1)=2*i-1; 
    slabelink(i,2)=2*i; 
    slabelink(i,3)=2*i+1; 
end 
% ++++++++++++++++++++++++++++++++++++++ % finish the link 
%% 3)^^^^^^^^^^^^^^^^^^^^^^^^^ % give the parameter relative to diffusivity 
wc=0.45; % water cement ratio 
% 3) porosity of concrete slab 
C1_25=[0.28,0.86;0.4,1.59;0.68,2.57]; 
C1_25=interp1(C1_25(:,1),C1_25(:,2),wc,'spline')*10^-6; 
alpha0=0.10; 
hc=0.75; 
n=6; % see bazant paper 
QR=1300; % Q/R see bazant paper 
temp_ref=22; 
T0=temp_ref+273; % reference temperature; 
%% give the initial boundary conditions 
initialcon=[0*0.0254 1;0.5*0.0254,1;1*0.0254 1; 2*0.0254 1;3*0.0254 1;4.5*0.0254 1; 
5*0.0254 1; 6*0.0254 1;8*0.0254 1;9*0.0254 1;10*0.0254 1]; 
coorindex=coor*slen; 
RHa=interp1(initialcon(:,1),initialcon(:,2),coorindex,'linear'); 
%RHa=0.98*ones(nodeslab,1); 
%% 
A=199.65976; % 186.65976; 
% *************************************** 
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%% 4) other parameters 
  
%  &&&&&&&&&&&&&&&&  finish the inital condition 
incre=days*24*1; % increment of time unit hour 
URH=zeros(incre+1,nodeslab); % a vector used to store the moisture of slab 
URH_real=zeros(incre+1,nodeslab); 
count=1; 
%% interpolation the weather data 
% (1) wind speed and air relative humidity 
windrhdata=xlsread('climatedata.xls','reno','C68:N69'); 
rhdata=windrhdata(1,:); % get the relative humidity 
winddata=windrhdata(2,:); % get the wind speed; 
% 
%windrhdata=xlsread('climatedata.xls','losangeles','C68:N69'); 
%rhdata=windrhdata(1,:); % get the relative humidity 
%winddata=windrhdata(2,:); % get the wind speed; 
% 
% (2) rainfall information 
consthour=1; % the hour of construction 10---10AM; 
slag=xlsread('slag.xls','reno_d'); % "reno_d' or 'losa_d' 
%% 2)************************************** % discretize the space 
[vwind]=datacomputenoflu(winddata,incre,dayloopbegin,1);%197 suggest the 
construction at the middle of the July; 
% air relative humidty 
airrehum=xlsread('climatedata.xls','losangeles922','S32:T56'); 
[xreno,rhfit,R2]=rhamplitude(airrehum); % retude the amplitude of daily relative 
humidity 
[RHair]=airrh(rhdata,incre,dayloopbegin,consthour,xreno); 
%% 
temp=xlsread('tempall.xls','reno_wholeyear'); 
temp_all=[]; 
for i=2:length(temp(2:end,1))+1 
    temp_au=interp1(temp(1,2:end),temp(i,2:end),coorindex(1:2*eslab+1),'spline'); 
    temp_all=[temp_all;temp_au']; 
end 
temp_all=[temp_all;temp_all(1,:)]; 
coeff=[]; 
rh_real_initial=RHa; 
%% all the inputted data would be arranged here by use of the "shiftinfo" 
%% function to meet the construction-season requirement. 
dateindex=(0:8760)'/24+1; % the first not the 0th day but 1day 
construct_begin=181;  %220; 
construct_hour=1; 
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[RHair]=shiftinfo(RHair',construct_begin,construct_hour); 
[slag]=shiftinfo(slag,construct_begin,construct_hour); 
[vwind]=shiftinfo(vwind',construct_begin,construct_hour); 
[temp_all]=shiftinfo(temp_all,construct_begin,construct_hour); 
%% 
yearrun=5; 
moisture_all=[]; 
moisture_all_equ=[]; 
for yearrun=1:5 
     
%% 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++ 
for step=1:incre+1 
    % 
    T1=mean(temp_all(step,:))+273; 
    coef=T1/T0*exp(QR/T0-QR/T1); % hydrocoefficient; 
    C1=C1_25*coef; 
    tlen=slen^2/(C1); %tlen=t0 
    t_max=days*24/tlen; 
    timest=linspace(0,t_max,incre+1); 
    dt=timest(2)-timest(1); 
    % 
    cc=sparse(zeros(nodeslab,nodeslab)); 
    kk=sparse(zeros(nodeslab,nodeslab)); 
    rr=zeros(nodeslab,1); 
    % the temperature of the slab is expected to be input from here 
    % but it should be noted that the time step and the increment is the 
    % same and also the calculated should be one by one step 
    %% loop over elements for stiffnes matrix 
    for i=1:eslab 
        % get the node number of element 
        n1=slabelink(i,1); 
        n2=slabelink(i,2); 
        n3=slabelink(i,3); 
        lelement=coor(n3)-coor(n1);% calculate element length 
        %determine the position of is wet of dry------------------------ 
        %if RHa(n1)==1 
            %Cfir=D0w*exp(Nwet*RHa(n1))*kama; 
        %else 
            Cfir=C1*(alpha0+(1-alpha0)/(1+((1-RHa(n2))/(1-hc))^n)); % ??????????????? 
        %end 
        %if RHa(n2)==1 
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            %Csec=D0w*exp(Nwet*RHa(n2))*kama; 
            Csec=C1*(alpha0+(1-alpha0)/(1+((1-RHa(n2))/(1-hc))^n)); 
        %if RHa(n3)==1 
            %Cthi=D0w*exp(Nwet*RHa(n3))*kama; 
            Cthi=C1*(alpha0+(1-alpha0)/(1+((1-RHa(n2))/(1-hc))^n)); 
        audiag=[(Cfir*tlen)/slen^2,(Csec*tlen)/slen^2,(Cthi*tlen)/slen^2]; 
        Pe=diag(audiag,0); % peclet number 
        % finish material properties determination---------------------- 
        klocal=1/(lelement)*Pe*[7/3.,-8/3.,1/3.;-8/3.,16/3.,-8/3.;1/3.,-8/3.,7/3.]; 
        clocal=lelement*[2/15.,1/15.,-1/30.;1/15.,8/15.,1/15.;-1/30.,1/15.,2/15.];        
        %assemble kk and cc 
        kk(n1,n1)=kk(n1,n1)+klocal(1,1); 
        kk(n1,n2)=kk(n1,n2)+klocal(1,2); 
        kk(n1,n3)=kk(n1,n3)+klocal(1,3); 
        kk(n2,n1)=kk(n1,n2); 
        kk(n2,n2)=kk(n2,n2)+klocal(2,2); 
        kk(n2,n3)=kk(n2,n3)+klocal(2,3); 
        kk(n3,n1)=kk(n1,n3); 
        kk(n3,n2)=kk(n2,n3); 
        kk(n3,n3)=kk(n3,n3)+klocal(3,3); 
        cc(n1,n1)=cc(n1,n1)+clocal(1,1); 
        cc(n1,n2)=cc(n1,n2)+clocal(1,2); 
        cc(n1,n3)=cc(n1,n3)+clocal(1,3); 
        cc(n2,n1)=cc(n1,n2); 
        cc(n2,n2)=cc(n2,n2)+clocal(2,2); 
        cc(n2,n3)=cc(n2,n3)+clocal(2,3); 
        cc(n3,n1)=cc(n1,n3); 
        cc(n3,n2)=cc(n2,n3); 
        cc(n3,n3)=cc(n3,n3)+clocal(3,3); 
    end 
    %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++ 
    % 1) wet at the slab's surface 
    if slag(step)==1 
        RHa(1)=1; % relative humidity at the top of the specimen 
        renewcc =cc/dt; 
        renewrr=(renewcc-kk)*RHa; 
        ccff=renewcc(2:nodeslab,2:nodeslab); 
        rrff=renewrr(2:nodeslab); 
        ccfp=renewcc(1:1,2:nodeslab); 
        rrff=rrff-RHa(1)*ccfp'; 
        RHf=ccff\rrff; 
        RHa(2:end)=RHf; 
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        % begin the C-R method 
        renewcc=cc/dt+0.5*kk; 
        renewrr=(cc/dt-0.5*kk)*RHa; 
        ccff=renewcc(2:nodeslab,2:nodeslab); 
        rrff=renewrr(2:nodeslab); 
        ccfp=renewcc(1:1,2:nodeslab); 
        rrff=rrff-RHa(1)*ccfp'; 
        RHf=ccff\rrff; 
        RHa(2:nodeslab)=RHf;   
    % 2) drying cycle--need consider the convection at the ground surface 
    else if slag(step)==0  
        rr(1)=A*(0.253/21.89+0.216*vwind(step)*0.66)*(-RHa(1)+RHair(step)); % provide 
a variable air relative humidity and vwind speed 
        % 0.096 refers to Zawde berhane's paper 
        renewcc=cc/dt+0.5*kk; 
        renewrr=rr+(cc/dt-(1-0.5)*kk)*RHa;%b=0.5; 
        RHa=renewcc\renewrr; 
        end 
    end 
    for cor=1:length(RHa) 
        if RHa(cor)>=1 
            RHa(cor)=1; 
        else if RHa(cor)<=0; 
                RHa(cor)=0; 
            end 
        end 
    end 
    % 
    [rh_real]=realrh(RHa,temp_all,step,rh_real_initial,temp_ref); 
    rh_real_initial=rh_real; 
    for cor=1:length(rh_real) 
        if rh_real(cor)>=1 
            rh_real(cor)=1; 
        else if rh_real(cor)<=0; 
                rh_real(cor)=0; 
            end 
        end 
    end 
    % 
    URH(count,:)=RHa'; 
    URH_real(count,:)=rh_real'; 
    count=count+1; 
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    % 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
end 
moisture_all=[moisture_all;URH_real(1:end-1,:)]; 
moisture_all_equ=[moisture_all_equ;URH(1:end-1,:)]; 
URH=zeros(incre+1,nodeslab); % a vector used to store the moisture of slab 
URH_real=zeros(incre+1,nodeslab); 
count=1; 
end 
% 
moisture_all=[moisture_all;rh_real']; 
moisture_all_equ=[moisture_all_equ;RHa']; 
index=(0:length(moisture_all(:,1)))'/24; 
moisture_all=[coorindex';moisture_all]; 
moisture_all=[index,moisture_all]; 
moisture_all_equ=[coorindex';moisture_all_equ]; 
moisture_all_equ=[index,moisture_all_equ]; 
% 
xlswrite('moisture_all.xls',moisture_all,'reno'); 
xlswrite('moisture_all.xls',moisture_all_equ,'reno_equ_rhnodaily'); 
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Appendix E—compute the total environmental loads 

clear all; 
clc; 
temp_all=xlsread('temp_more.xls','reno_beta'); 
moisture_all=xlsread('moisture_more.xls','reno_beta'); 
visco=xlsread('visco.xls','viscofit'); 
% 
% 
coor_temp=temp_all(1,2:end); 
coor_moisture=moisture_all(1,2:end); 
total_stress=[]; 
thermal_stress=[]; 
[initialstress]=thermalstressprofile(temp_all(1:2,2:end)); 
% 
total_stress=[total_stress;initialstress]; 
thermal_stress=[thermal_stress,initialstress]; 
shrinkagemax=600; 
dayload=3; 
% 
[M,N]=size(temp_all(2:end,2:end)); 
hour=(1:M+2)'; 
[visco_hour]=visco_compute(visco,hour); 
% 
deformtrack=[]; 
creep=zeros(1,N); 
% 
for i=3:M 
    visco=visco_hour(i)*10^6; 
    temp=[coor_temp;temp_all(i-1:i+1,2:end)]; 
    moisture=[coor_moisture;moisture_all(i-1:i+1,2:end)]; 
    day=dayload+i/24; 
    %[thermalstress,moisturestress,totalstress, 
initialstress,deform]=stresscalculaterevise(temp,moisture,initialstress,shrinkagemax,visco
,dayload,day); 
    [thermalstress,totalstress, 
initialstress,deform]=stresscalculaterevise(temp,moisture,initialstress,shrinkagemax,visco
,dayload,day); 
    total_stress=[total_stress;totalstress]; 
    thermal_stress=[thermal_stress;thermalstress(2,:)]; 
    %moisture_stress=[moisture_stress;moisturestress]; 
    deformtrack=[deformtrack;deform]; 
end 
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xlswrite('stress_all.xls',[temp_all(1:M,1),total_stress],'totalstress_reno'); 
xlswrite('stress_all.xls',[temp_all(1:M,1),thermal_stress],'thermalstress_reno'); 
% this function is designed to computed the thermal induced stress, 
% moisture induced stress, and the total stress 
function [thermalstress,totalstress, 
initialstress,deform]=stresscalculaterevise(temp,moisture,initialstress,shrinkagemax,visco
,dayload,day) 
EMOD=2.0586e10; 
NU=0.15; 
EXP=9e-6; % the expansion 
Emulti=EMOD/(1-NU); 
%% 
% interpolate data according to the initial strss coor 
tempuse=[]; 
for i=1:3 
    au=interp1(temp(1,:),temp(i+1,:),moisture(1,:),'spline'); 
    tempuse=[tempuse;au]; 
end 
moistureuse=moisture(2:4,:); 
au=interp1(initialstress(1,:),initialstress(2,:),moisture(1,:),'spline'); 
initialstress=[moisture(1,:);au]; 
temp=[moisture(1,:);tempuse]; 
% 
% 
threshold=2; 
% 
[DEDsh]=desh_dt(day,dayload,shrinkagemax,moistureuse); 
[DeDT]=tempratedeformation(EXP,tempuse); 
[DeDsh]=pickettmoisture(shrinkagemax,moistureuse, initialstress(2,:)); 
[DeDtemp]=picketttemp(tempuse, initialstress(2,:)); 
devisco=initialstress(2,:)/visco*1e6; 
% pickett effect refuced stress 
%for INDEX=1:length(devisco) 
    %if sign(devisco(INDEX))==sign(DeDsh(INDEX)) 
        %DeDsh(INDEX)=-1*DeDsh(INDEX); 
    %end 
    %if sign(devisco(INDEX))==sign(DeDtemp(INDEX)) 
        %DeDtemp(INDEX)=-1*DeDtemp(INDEX); 
    %end 
%end 
DeDT=DeDT-Mean(DeDT); 
detotal=-DEDsh-DeDT-devisco-DeDsh+DeDtemp; 
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%detotal=-DEDsh-DeDT-devisco-DeDsh+DeDtemp;%+DeDsh+DeDtemp-devisco;%-
creep; 
%% -devisco is must-term to ensure the converge 
%% -DeDsh is also a must-term to reflect the phenomenon 
%% ----detotal=-DeDT-devisco-DeDsh+DeDtemp; 
% 
dsigma=detotal*Emulti*1e-12;  
stress_au=initialstress(2,:)+dsigma; 
totalstress=stressprofile(initialstress(1,:),stress_au); 
[thermalstress]=thermalstressprofile([temp(1,:);temp(3,:)]); 
%initialstress=[initialstress(1,:);thermalstress(2,:)]; 
[totalstress]=deformcontrol(totalstress, 4.6); 
initialstress=[initialstress(1,:);totalstress]; 
deform=detotal; 
end 
% 
%% (0) 
% 
function [DKh_Dt,Kh]=khcompute(moistureuse,interval) 
M=length(moistureuse(2,:)); 
DKh_Dt=zeros(1,M); 
Kh=zeros(1,M); 
for i=1:M 
    au=moistureuse(2,i); 
    Kh(i)=1-au^3; 
    DKh_Dt(i)=-3*au^2*(moistureuse(3,i)-moistureuse(2,i))/interval; 
end 
end 
%% (1) 
function [gradient]=gradientcom(temp,interval,index) 
% this function aims to compute the gradient of the inputted "temp"; It 
% return a row with 1*n elements 
% ************************************************** 
% temp is a 3*n matrix, 
% internal is the step time 
% index is the differential method, 1, forward, 2 central, 3 backward 
% ************************************************** 
if index==1 
    gradient=(temp(2,:)-temp(1,:))/interval; 
end 
if index==2 
    gradient=(temp(3,:)-temp(1,:))/(2*interval); 
end 
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if index==3 
    gradient=(temp(3,:)-temp(2,:))/interval; 
end 
end 
%% (2) 
% 
function [DEDsh]=desh_dt(day,dayload,sh_all,moistureuse) 
%******************************************************************* 
% new 
% this function computes the differential rate of the shrinkage.  
% day stands for the current day 
% dayload stands for the load-begining day 
%   (1) day is the day the curing ends 
%   (2) dayload is the day we want to compute 
%   (3) sh_all is the total shrinkage 
%   (4) rh(1) is the previous hour 
%   (5) rh(2) is the current hour 
%   (6) tsh is the ultimate shrinkage 
%% 
%**************************************************************** 
tsh=600; % unit day 
au=(day-dayload)/tsh; 
tanhvalue=tanh(au^0.5); % an auxiliary variabl 
[DKh_Dt,Kh]=khcompute(moistureuse,1);% 1 is one-hour interval, compute Kh and its 
rate 
%term1=-sh_all*3*DKh_Dt*tanhvalue; 
term2=-sh_all*Kh*(1-tanhvalue^2)*0.5/(tsh^0.5*(day-dayload)^0.5); 
DEDsh=term2;%+term1; 
[DEDsh]=deformcontrol(DEDsh, 8); % threshold 10ue 
end 
%% (3) 
% 
function [DeDT]=tempratedeformation(EXP,temp) 
% new 
% this function designed to compute the deformation induced by temperature 
% rate; detail refers to the line 771 in the prelim meeting 
[gradient]=gradientcom(temp,1,2); % 2 central different method 
DeDT=EXP*gradient*10^6; %10^6 is used to convert the deformation to ue 
[DeDT]=deformcontrol(DeDT, 45); % threshold 50ue 
end 
%% (4) 
% 
function [DeDsh]=pickettmoisture(sh_all,moistureuse, initialstress) 
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% new 
%% this function is design to compute the pickett moisture induced 
%% shrinkage. Details can be referred to Eq.(29) in the prelim meeting 
% rh1=moistureuse(2,:); 
% rh2=moistureuse(3,:); 
% sh_all=800; 
% new 
ft=4.6; 
g=2; % use to compute the \Psi 
r=0.3/ft; % compute the coefficient r, see Bazant's paper 
psi=-g*3*moistureuse(2,:).^2; 
[gradient]=gradientcom(moistureuse,1,2); 
DeDsh=sh_all*psi.*(1-r*initialstress); 
DeDsh=DeDsh.*gradient.^2;%gradient; % 
DeDsh=DeDsh.*sign(gradient); 
[DeDsh]=deformcontrol(DeDsh,1.0); % threshold 5ue 
end 
%% (5) 
% 
function [totalstress]=thermalstressprofile(temp) 
% this function computes the total, linear, residual stresses induced by 
% themal gradient within a slab. 
%************************************************************** 
% (3) temp must be a 2*N matrix, in which 1st row is coor, 2rd temp 
% if temp is a matrix with >2*N matrix, the totalstress only compute the 
% stress induced by the 2nd-row temperature profile 
%************************************************************** 
coor=temp(1,:); 
if coor(1)==0 % if the coor begin from the top 
    coor=coor-abs(coor(end))/2; 
end 
% 
tslab=abs(coor(1))+abs(coor(end)); %the thickness of concrete slab 10in 
EXP=9e-6; % the expansion 
EMOD=2.0586e10; 
NU=0.15; 
k=50*10^6;% unit pa 
Xlen=3.6; %slab transverse dimension unit M 
Ylen=6; %slab longiditunal dimension unit M 
lsmall=((EMOD*tslab^3)/(12*(1-NU^2)*k))^0.25; 
lx=Xlen/lsmall; 
ly=Ylen/lsmall; 
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cxcycurve=[1.05755  1.96403 2.56835 2.8705  3.07194 3.17266 3.22302 3.32374 3.3741  
3.42446 3.57554 3.6259  3.77698 3.97842 4.07914 4.28058 4.48201 4.68345 4.93525 
5.13669 5.33813 5.58993 5.84173 6.2446  6.54676 7   7.55396 8.10791 8.71223 9.06475 
9.51799 10.2734 11.0288 11.7338 12.3381 12.9928 
0.00845917  0.047735    0.0915013   0.126571    0.170464    0.205597    0.240746    
0.280275    0.315424    0.368156    0.412064    0.4604  0.504309    0.53941 0.58773 
0.631623    0.679911    0.723804    0.772077    0.811574    0.84228 0.87297 0.912452    
0.951886    0.98256 1.01319 1.03939 1.0524  1.05661 1.0521  1.04756 1.03853 1.0295  
1.02049 1.0247  1.02449 
]'; % this parameter never change 
CX=interp1(cxcycurve(:,1),cxcycurve(:,2),lx,'spline'); 
CY=interp1(cxcycurve(:,1),cxcycurve(:,2),ly,'spline'); 
% 
tempdata=temp(2,:); 
pars=polyfit(coor,tempdata,3); 
% initial the polyfit parameters 
A=pars(4); % constant 
B=pars(3); % z 
C=pars(2); % z^2 
D=pars(1); % z^3 
  
h2=abs(coor(1)); %half deep of the slab 
Mstar=EXP*(B/3.0*h2^3+D/5.0^2*h2^5); 
Nstar=EXP*(A*2.0*h2+C/3.0*2*h2^3); 
DT=-12*Mstar/(EXP*(2*h2)^2); 
con=EMOD/(1-NU); 
residualstress=con*(-EXP*tempdata+12*Mstar*coor/((2*h2)^3)+Nstar/(2*h2)); 
linearstress=DT*EXP*EMOD/((1-NU^2)*2*h2)*(CX*NU+CY)*coor;  
totalstress=(residualstress+linearstress)*10^-6; 
totalstress=[coor+abs(coor(end));totalstress]; 
end 
%% (6) 
% 
function [DeDtemp]=picketttemp(tempuse, initialstress) 
% new 
%% this function aims to compute the pickett deformation induced by 
%% tempeature variation 
% 
ft=4.6; 
alpha_1=0.63; % a constant see bazant paper ,0.063 
rho=0.3/ft;  
[gradient]=gradientcom(tempuse,1,2); 
DeDtemp=alpha_1*(1-rho*initialstress).*gradient; 
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DeDtemp=DeDtemp.*sign(gradient); 
[DeDtemp]=deformcontrol(DeDtemp, 50); % threshold 5ue 
end 
%% (7) 
% 
function [stressp]=stressprofile(coor,stress) 
% this function compute the stress redistribution with a concrete slab 
% using the Nforce and Mforce Mforce method proposed in Mohamed and Hansen 
% paper, the stress distribution was computed using elastic model since the 
% redistribution is finished immediately 
%% parameter given 
space=(abs(coor(1))+abs(coor(end)))/200; 
coorau=coor; 
coor=coor(1):space:coor(end); 
stress=interp1(coorau,stress,coor,'spline'); 
EMOD=2.0586e10; 
NU=0.15; 
CX=0.69; 
CY=1.03; 
EXP=9e-6; % the expansion 
%% 
% interpolation 
Nforce=0; 
Mforce=0; 
h=2*abs(coor(end)); 
%% compute the force 
for i=1:length(coor)-1 
    dz=coor(i+1)-coor(i); 
    z=(coor(i+1)+coor(i))/2; 
    Nforce=Nforce+(stress(i)/2+stress(i+1)/2)*dz; 
    Mforce=Mforce-z*(stress(i)/2+stress(i+1)/2)*dz; 
end 
%% compute the stress 
stressres=stress+coor*12*Mforce/h^3-Nforce/h; 
Mstar=(1-NU)*Mforce/EMOD; 
DT=-12*Mstar/(EXP*(h)^2); 
stresslin=DT*EXP*EMOD/((1-NU^2)*h)*(CX*NU+CY)*coor; 
stressp=stressres+stresslin; 
stressp=interp1(coor,stressp,coorau,'spline'); 
end 
%% (8) 
% 
function [DE]=deformcontrol(DE, threshold) 
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% this function aims to limited the free deformation occurence at the 
% surface 
%************************************************ 
% DE is a vector, 
% threshold is a scale, must be a positive number 
%************************************************ 
for i=1:length(DE) 
    if abs(DE(i))>threshold 
        if DE(i)>0 
            DE(i)=threshold; 
        else DE(i)=-threshold; 
        end 
    end 
end 
end 
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