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 A B S T R A C T 

An existing algorithm for the fretting contact of homogeneous materials is 

enhanced by incorporating a novel technique for rapid calculation of 

stresses and displacements in the coated body. State-of-the-art methods 

for computation of convolution products in the Fourier transform domain 

allow for fine spatial discretization and accurate reproduction of the 

loading history. The algorithm is structured on three levels of iterations, 

and the acceleration of the convolution calculation in the innermost level 

promises well converged solutions. The frequency response functions 

derived in the literature are used for the conversion of the required 

influence coefficients, allowing computation of the half-space response to 

prescribed loading. The computer program is first validated against the 

analytical solution for the fretting loop of homogeneous and similarly 

elastic materials. The refined method is then employed to study the 

influence of the elastic moduli ratio between the coating and the substrate, 

on the contact tractions and stresses in the stabilized fretting contact. The 

presented simulation scenarios prove the method ability to advance the 

understanding of the transient coated contact. © 2020 Published by Faculty of Engineering  
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1. INTRODUCTION 

 

Numerous industrial mechanisms undergo 

oscillating load conditions, as induced for 

example by vibration, which result in minute 

repeated relative surface motion in the 

mechanical contacts. This fretting condition and 

its damages, i.e. the fretting wear and the 

fretting fatigue, degrade the quality of the 

surface layer by inducing micropits, and 

decrease the fatigue strength of the contacting 

components. Although fretting is intrinsically a 

multidisciplinary process, comprising adhesion, 

oxidation, abrasion and pitting, a chief role is 

attributed in the literature to the contact 

stresses. Derivation of these stresses is 

especially difficult in the contact of dissimilarly 

elastic materials, case that requires 

computationally intensive numerical solutions, 

such as the finite element method (FEM). A 

particularly interesting alternative, based on the 

boundary element method (BEM), capable of 

elegant and accurate solutions achieved with 

limited computational resources, was designed 
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and improved in the literature of contact 

mechanics, and will be employed and enhanced 

in this paper as well. 

 

An important breakthrough in the numerical 

modelling of the contact processes was achieved 

with the contact solver advanced by Polonsky 

and Keer [1], and with the technique [2,3] for the 

calculation of convolution products in the 

frequency domain. Subsequent iterations 

allowed for the numerical solution of the fretting 

contact of homogeneous materials. Gallego et al. 

[4] modelled the sliding fretting contact by 

solving repeatedly the contact problem in the 

normal direction, with consideration of the 

change in conformity due to wear. A solution for 

the derivation of tangential tractions in the 

partial-slip contact was later advanced by Chen 

and Wang [5]. They predicted the effect of a 

monotonically increasing tangential force in the 

point contact between dissimilarly elastic 

materials, but without reproduction of the 

loading path. The partial slip contact under a 

tangential force and a twisting moment was 

further analyzed by Wang et al. [6]. Method 

refinement was subsequently achieved by 

reproduction of the loading path, although the 

solution convergence was not properly discussed. Gallego, Nélias, and Deyber [7] 

provided a fully working numerical model for 

the fretting contact of homogeneous materials, 

whereas Wang et al. [8] extended the model 

proposed in [5] to the case of a layered half-

space, and Wang et al. [9] applied the latter 

model to the fretting contact. An alternative 

approach, capable of simulating the transient 

frictional contact with slip and stick over a 

prolonged period of service, was proposed by 

Spinu and Glovnea [10], and by Spinu and 

Amarandei [11], whereas Spinu and Frunza [12] 

studied the hysteretic effects in the fretting 

contact of dissimilarly elastic materials. Nyqvist 

et al. [13] recently advanced a new three 

dimensional model for non-conformal contacts 

of multilayered rough surfaces subjected to 

normal and tangential surface loads, but only the 

gross sliding case was considered. 

 

The static contact of layered materials was 

studied [8,9,14-16] under different regimes and 

conditions by making use of the frequency 

response functions (FRF) describing the 

response of the layered half-space to load, 

calculated in the frequency domain. Important 

research efforts [3,8,14,17] were dedicated to 

the assessment of the closed form expressions of 

these FRFs, concluding with the recurrent 

expressions recently derived by Yu, Wang and 

Wang [18]. 

 

This paper presents new results concerning the 

contact stresses attained in the fretting contact 

once a periodic stability is reached. The 

influence of the coating on the contact tractions 

and on the subsurface stresses is assessed by 

computer simulation. The accuracy of the 

numerical results is guaranteed by the fine 

spatial meshing of the contact region, and also 

by the small load increments imposed in the 

reproduction of the loading path. These well-

converged solutions are achieved with a 

reasonable computational effort due to a newly 

proposed method of derivation of the required 

influence coefficients from the FRFs. 

 

 

2. FRETTING CONTACT MODEL 

 

The fretting contact is best described in the 

frame of the partial slip contact, in which, 

although no sliding occurs between the bulks of 

the contacting bodies, there exist micro-slip at 

specific points on the contact area. The 

analytical description of this contact process was 

independently established by Cattaneo [19] and 

by Mindlin [20], and relies on the fact that a 

contact area in full stick does not obey the laws 

of linear theory of elasticity, as infinite stresses 

result for the periphery of the contact zones. 

Consequently, a slip (often referred to as micro-

slip) region has to be assumed, which grows 

from the boundary to the inside of the contact 

area with the tangential load level, until full slip 

(i.e., between the bulks of the bodies) occurs at a load level defined by the Amontons’ law of 
friction. Assuming that the tangential load 

oscillates around zero (i.e., alternates in sign) 

with an amplitude smaller than the 

aforementioned limiting load, a model for the 

fretting contact becomes readily available.   

 

Although contact scenarios with gross slip are 

employed in experimental investigations of 

fretting due to the straightforward set up of the 

testing apparatus, most fretting problems 

encountered in practice, e.g. bolted or riveted 

connections or dovetail roots of turbine blades, 

do not involve gross sliding.  The framework of 
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the frictional contact undergoing partial slip, 

established in the literature of contact 

mechanics [21], is thus the starting point in the 

modelling of the fretting contact processes. The 

non-conforming point contact is usually 

considered as reference as it provides conditions 

that are controllable and repeatable in 

experimental investigations, and allows for the 

use of the half-space approximation in the 

displacement computation. The main model 

relation is constructed by equating the 

geometric parameters before and after the 

elastic deformation caused by the load 

transmitted through the contact. By reporting 

the contact problem to a Cartezian coordinate 

system 1 2 3( , , )x x x  with the origin in the initial 

point of contact and with the 
3x -axis pointing 

inward the coated body (i.e., the normal 

direction of the contact process), the sum 
iu , 

1,2,3i  , of displacements of the contacting 

bodies can be expressed in matrix form as: 

 

1 1 1

2 2 2

3 init 3

u s

u s

u h h





       
              
          

, (1) 

where s ,   denote the relative slip distances 

and the relative displacements between distant 

points in the two contacting bodies, respectively, 

in the directions indicated by the subscript, and 

inith and h  the initial (i.e., prior the deformation) 

and the final gap between the bounding surfaces 

measured along the normal direction. A 

schematic of the considered contact model in the 

plane 1 3( , )x x  is depicted in Fig. 1.  

 

 

Fig. 1. Fretting contact schematic. 

Nonetheless, the contact study performed in this 

paper addresses the three-dimensional case. 

While both contacting bodies are considered 

elastic, the lower body is a coated half-space, 

whereas the upper body is a homogeneous 

spherical indenter having the same elastic 

properties as the substrate of the counter body. 

The coating is assumed perfectly bonded to the 

substrate. 

 

The relations for the tangential directions 
1x  and 

2x  must be considered in incremental form, as 

suggested by the finite difference symbol   in 

equation (1), accounting for the fact that, unlike 

the case of the purely normal load when the final 

state depends on the loading level alone, the 

tangential contact solution is path-dependent 

and require the reproduction of the loading 

history. This hysteretic behaviour, discussed in 

detail in [11], is also suggested by the presence 

of friction as a dissipative process.  

 

The analytical solution [19,20] is valid for the 

contact of similarly elastic materials, and cannot 

be translated to the case considered in this 

paper without significant loss of precision. The 

treatment of the frictional contact of dissimilarly 

elastic materials requires numerical methods, 

such as the FEM, the BEM or the semi-analytical 

methods (SAM). The latter has the advantage of 

computational efficiency, related primarily to 

the fact that discretization is needed only in a 

domain enveloping the contact region, as 

opposed to FEM which requires the meshing of 

the bulk. SAM is constructed around the so-

called influence coefficients [1], which result 

from integration of fundamental solutions for 

stress and displacements induced in a half-space 

by unit point forces over elementary domains. 

The influence coefficients provide support for 

the numerical calculation of displacement and 

stresses induced by prescribed contact tractions, 

thus allowing for an iterative search of the 

unknown regions of interest: the contact area 

and its slip/stick partition.  

 

In this paper, a rectangular mesh is considered 

in the common plane of contact, expected to 

contain the contact area, and the problem 

parameters are assumed piecewise constant, as 

thoroughly described in [1]. As contribution of 

each contact traction jq , 1,2,3j  , to the 

displacement along the i -axis, 1,2,3i  , can be 
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expressed as a convolution product (denoted by the “ ” symbol) involving the relevant 
influence coefficients, the displacement field can 

be expressed using Einstein summation 

convention: 

 
(2) (1) (2) (2) (1) (1)

i i i ij j ij ju u u C q C q      , (2) 

where the superscript denotes the referred 

contacting body. The influence coefficients ( )k
ijC  

thus describe the displacement along the 

direction of 
ix  induced in the body k  by the 

contact traction jq . Considering that (1) (2)

j jq q   

for 1,2j  , and (1) (2)

3 3q q , as from the definition 

of contact pressure, a simplified notation will be 

used in the following relations, by defining the 

contact tractions (2)

j jq q , 1,2,3j  . Using 

matrix notation, the displacement field in 

equation (2) becomes: 

  u C q , where (3) 

 

(2) (1) (2) (1) (2) (1)
11 11 12 12 13 13

(2) (1) (2) (1) (2) (1)
21 21 22 22 23 23

(2) (1) (2) (1) (2) (1)
31 31 32 32 33 33

C C C C C C

C C C C C C

C C C C C C

   
 
    
 

    

C . (4) 

The calculation of 
(1)
ijC  (i.e., for the homogeneous 

body) is now classical [1] in the SAM framework 

and straightforward due to the existence of the 

closed–form solution to the Boussinesq and 

Cerruti problems for the homogeneous half-

space. The Discrete Convolution Fast Fourier 

Transform (DCFFT) algorithm [2] presents itself 

as a state-of-the art technique providing both 

efficient and precise calculation of the 

convolution products. The continuous linear 

convolution in equation (2) is converted into a 

discrete cyclic convolution by means of the 

DCFFT, and the convolution calculation is 

carried out on a virtual domain just two times 

the initial domain in each physical (in our case, 

tangential) direction. It is asserted [2] that the 

DCFFT technique brings no additional error (i.e., 

no periodicity error) other than the 

discretization error. 

 

However, the treatment of the coated half-space 

and of the 
(2)
ijC  involves a more elaborate 

procedure, as the counterparts of the 

Boussinesq and Cerruti problems for the coated 

half-space have closed-form solutions only in the 

frequency domain. A procedure for the 

derivation of the elastic response (i.e., stresses 

and displacements) of the coated half-space 

from the latter solutions (also referred to as the 

frequency response functions) was previously 

derived by Spinu [22], involving calculations in 

the frequency domain on an extended virtual 

domain to avoid the periodicity error. In this 

paper, an alternate technique is proposed, 

aiming to obtain the influence coefficients in the 

space domain from the FRF, thus allowing the 

use of the DCFFT technique for coated body as 

for the homogeneous one. The details of this 

more computationally effective implementation 

are given in the next section.  
 

Once the calculation of the displacement field 

can be achieved for prescribed distributions of 

surface tractions, the solution of the transient 

contact problem can be pursued. The latter 

solution was previously obtained [10] for the 

fretting contact of homogeneous bodies, but 

translates well to the case of heterogeneous 

materials. Basically, the set of equations (1) is 

divided into two set of equations, one for the 

normal and the other for the tangential contact 

direction. By plugging equation (2) into relation 

(1), one can obtain for the normal direction: 

   31 1 32 2 33 init 3C q C q C p h h         . (5) 

The solution in p  of the latter equation can be 

achieved for prescribed yet arbitrary shear 

tractions 1q  and 2q  by using the algorithm 

proposed by Polonsky and Keer [1]. This 

algorithm involves an iterative search of the 

contact area and of the pressure distribution, 

which must satisfy simultaneously equation (5), 

the static force equilibrium: 

 1 2 ,pdx dx W  (6) 

as well as the boundary conditions, requiring 

that, on the contact region, 0p   and 0h  , as 

opposed to the non-contact parts of the 

computational domain, where 0p   and 0h  . 

The conjugate gradient method is employed to 

solve efficiently the linear system of equations 

resulting from the digitized counterpart of 

equation (5), with nodal pressures as unknowns. 
 

The contact process in the tangential direction is 

described by the incremental equation: 
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1
11 12 13 1 1

2
21 22 23 2 2

q
C C C s

q
C C C s

p




 
                    

, (7) 

from which a linear system having the 

increments of the shear tractions as unknowns, 

can be formed under the assumption of known, 

yet arbitrary, pressure distribution. The 

solution of the latter system can be obtained 

through an algorithm with the same structure 

as the one for the normal direction, as detailed 

in [10]. To achieve a unique solution, the static 

force equilibrium: 

 1 1 2 1 2 1 2 2,q dx dx T q dx dx T   , (8) 

as well as the boundary conditions, 

differentiating between the slip and the stick 

regions, should be added. In the slip regions, a 

new load increment yields relative displacement 

between initially matching points on the 

contacting surfaces, so that 2 2
1 2( ) ( ) 0s s    , 

and the shear stresses obey a kinetic type law of 

friction: 2 2
1 2q q p  . Here,   is the 

coefficient of friction, assumed uniform on the 

contact area and constant during the loading 

history. However, this assumption is not a model 

limitation, as a mapped (in both time and space) 

distribution of   can also be considered. In the 

stick regions, on the other hand, the 

displacements related to the new load increment 

are the same on both contacting bodies, i.e. 
2 2

1 2( ) ( ) 0s s    , and stresses follow a static 

frictional regime: 2 2
1 2q q p  . 

 

In should be noted that the static equilibrium 

equations (6) and (8) tacitly assume that there 

exist no bending or torsional moments. A 

bending moment 1M  or 2M  could only be 

transmitted through a surface (i.e., conformal) 

contact, whereas the case considered in this 

paper is concentrated. The torsional moment 

3M  is also neglected for brevity, meaning only 

the fretting modes I (transversal slips) and II 

(radial slips) are considered, while the fretting 

mode III (circumferential slips) is not 

accounted for. However, a complete contact 

solver comprising the complete force and 

moment static equilibrium was developed in a 

previous work [11]. 

 

In other words, contact pressure and contact area 

can be calculated if the shear tractions are known, 

yet arbitrary, and vice versa, the shear tractions 

can be assessed for known, yet arbitrary, pressure. 

This is a first inner level of iterations in the 

solution of the fretting contact problem. An outer 

level can be designed [10,11] to stabilize the 

contact processes in the normal and in the 

tangential directions, thus accounting for the 

interdependence between the two set of 

equations. It involves solving successively the 

normal and the tangential systems of equations 

until one major parameter (e.g., contact pressure), 

does not vary significantly from one iteration to 

the next. This is the second (intermediate) level of 

iterations, which is charged with finding the 

contact solution for a specific load level. The third 

and outer level of iteration reproduces the loading 

history by application of the load in increments 

small enough to assure solution convergence. 

Adding the time parameter in the contact model 

may be misleading, because the contact 

parameters or the material properties does not 

depend on time, as in the case of viscoelastic 

materials, and the speed at which the load is 

applied is of no consequence, as the contact is 

considered quasi-static. The algorithm flow-

chart outlining the intermediate and the outer 

levels of iterations is presented in Fig. 2, 

whereas the inner loop is depicted in Fig. 3. A 

detailed description of the algorithm steps, 

allowing for efficient implementation in a 

programming language, can be found in [11]. 

The algorithm can also be used for gross slip, in 

which case the shear tractions are simply 

calculated as the product between pressure and 

the frictional coefficient. With this simplification, 

the intermediate loop is eliminated, being 

replaced by a single instance of the inner loop 

employed to obtain the contact pressure.  

 

Moreover, when the contacting materials have 

similar elastic properties, the outer level of 

iterations is only necessary if the tangential load 

changes monotony. More precisely, for similarly 

elastic materials, each change in the sign of the 

tangential load increment requires exactly one 

load increment. The contact of materials with 

different elastic parameters however requires a 

very fine temporal mesh to avoid jagged stresses 

profiles. This translates in a significant 

computational burden related to the calculation 

of the convolution products in equation (2). 
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Aquire the 

contact state at 

the previous  load 

increment

Solve eq. (5) with 

vanishing q1 and q2. 

Obtain a pressure 

estimate p.

Solve eq. (7) with 

the newest p. 

Obtain q1 and q2.

Pressure 

converges?

START

No

Yes

Solve eq. (5) with the 

newest q1 and q2. 

Obtain a new 

pressure estimate p.

End of loading 

history?

Apply a new 

load 

increment
No

STOP

The intermediate loop

The outer loop

Inner loop

Inner loop Inner loop

 

Fig. 2. The flow-chart of the outer and the intermediate loops, including three instances of the inner loop. 

 

Adopt the guess 

values for the 

unknown contact 

tractions

Compute the relative 

displacement fields 

using eqs. (3) and (4) 

Solve the linear system 

arising from eqs. (5) or (7) 

using the conjugate gradient 

method

The boundary 

conditions are 

verified?

START

Yes

The static 

equilibrium is 

verified?

No

STOP

The contact 

tractions

 converge? Yes

NoNo

Yes

 

Fig. 3. The flow-chart of the inner loop. 

 

As the derivation of both pressure distribution 

and shear stresses is achieved in an iterative 

manner, the displacement calculation has to be 

performed on each iteration of the inner loop. If 

1N , 2N  and 3N  denote the number of iteration 

of the inner, the intermediate and the outer 

level of iterations, respectively, then the 

number of convolutions to be computed for a 

contact simulation is 1 2 32N N N . Increasing the 

computational efficiency of the convolution 

calculation is of paramount importance to allow 

fine spatial meshes and/or an accurate 

reproduction of the loading history. The DCFFT 

technique is currently state-of-the-art for 

discrete cyclic convolution calculation, but 

cannot be applied directly to layered materials, 

because the analytic relation (i.e., the Green’s 
function for the layered material) needed for 

the calculation of the influence coefficients in 

the space domain, is missing. A method of 

derivation of the required influence coefficients 

from the FRFs (i.e., counterparts of the Green’s 
functions in the frequency domain) is explored 

in the next section. 
 

 

3. ACCELERATION OF COMPUTATION 
 

The source of the computational efficiency of the 

DCFFT stems from the calculation of the 

convolution in the frequency domain, where the 

mathematical operation of convolution, of order 
2( )O N  for series with N  members, is converted 

into an element-wise product of order ( )O N , 

according to the convolution theorem. The 

downside consists in the need for transfer to and 

from the frequency domain, which can be 

accomplished by the fast Fourier transform 

(FFT) in ( log )O N N  operations, and more 

importantly, the implicit problem periodization 

that contaminates the result. Practically, when 

no additional treatment is performed, the 
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calculated output is not only due to the 

considered non-periodical input, but to an 

infinitely extended periodical input having the 

discretization window as period. The DCFFT 

allegedly avoids completely this periodicity 

error by performing the calculations on a virtual 

domain twice (in every physical direction) the 

problem domain.  
 

In case of problems with known frequency response functions but unknown Green’s 
functions, the calculation can be performed 

directly in the frequency domain, as suggested in 

[15], but the required extension of the problem 

domain is much larger [16] and introduces a 

heavy computational burden. Considering that 

the bulk of the computational resources in the 

fretting contact solution is spent on convolution 

calculations, reducing that load is of utmost 

importance. A method of obtaining the influence 

coefficients needed in the DCFFT algorithm, 

from the frequency response functions, is 

proposed in this paper. The advantages of this 

approach consist in: (1) the DCFFT code can be 

used for the calculation of displacement in the 

coated body as well, and (2) the number of 

transfers to and from the frequency domain, 

calculated on an enlarged domain, is reduced 

from 2 to 1. Practically, only the derivation of the 

influence coefficients requires calculations in the 

inflated domain, and the remaining 

computations are performed on a domain just 

double (in every direction) the original one, as 

demanded by the DCFFT.  
 

The complete description of the newly proposed 

conversion technique is given as algorithm steps 

in the following part. For simplicity and clarity, 

the relations are presented for one dimension 

only, but extension to multi-dimensional cases is 

forthright. Let us assume a problem physical 

domain of length L  meshed into N  elementary 

domains on which the problem parameters are 

assumed piecewise constant. The domain 

extension should be performed with at least 

preservation of the data interval L N   to 

keep the aliasing under control, so that the 

virtual computational domain is described by 

parameters L  and N , where   should be 

chosen in the interval (1 12)  depending on the 

required precision (higher values lead to more 

precise results). This meshing in the spatial 

domain translates in the frequency domain to a 

domain of length 2   and a grid step 2 ( )L  . 

It should be noted that both domains in the 

space and in the frequency domain are centered 

on origin (i.e., zero Cartesian coordinate and 

zero frequency, respectively). Moreover, it is 

reasonable to choose both   and N  as powers 

of 2, as the FFT algorithm is performed by zero-

padding to the next power of 2. The FRF for the 

needed output f  is then calculated at the 

established grid points in the frequency domain, 

resulting in a discrete complex series f̂ : 

 ˆ ( ),i if f  where (9) 

 2 ( 2) ( ), 1i i N L i N       . (10) 

The direct evaluation of the term 2
ˆ

Nf  at zero 

frequency may be impeded by the fact that most 

FRFs are singular in origin. A circumventing 

solution was suggested by Nogi and Kato [15], 

who replaced the missing sample by the 

numerically evaluated average on the 

elementary cell centered in origin: 

 

( )

2

( )

ˆ ( )
2

L

N

L

L
f f d

 


 

  
 

  . (11) 

The terms of the series f̂  are then rearranged 

by translating the ones corresponding to 

negative frequency (i.e., for 0i  ) after those 

calculated for positive frequency. A new series 

ˆig , 1i N , is thus created, so that: 

 
1 2

1 2

ˆˆ , 1 2 1;

ˆˆ , 2 2 .

i i N

i i N

g f i N

g f i N N







 

 

 

   


  
 (12) 

Inverse FFT is then applied to the latter series, 

resulting in a series ig , 1i N , in the spatial 

domain, from which the influence coefficients 

iC , 1 2i N  needed in the DCFFT algorithm 

are extracted an positioned so that: 

 

( 2)

, 1 ;

0, 1;

, 2 2 .

i i

i

i i N

C g i N

C i N

C g i N N 

  


  
   

 (13) 

The above series iC  is exactly the series of 

influence coefficients (with zero-padding and 

rearranged in wrap-around order) needed in 

the DCFFT algorithm, which accomplishes the 

convolution calculation devoid of any 

periodicity error. 
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The two-dimensional FRFs needed for the 

calculation of the influence coefficients (2)
ijC , 

, 1,2,3i j  , were expressed in closed-form in the 

literature by taking the double Fourier 

transform of the appropriate Papkovich-Neuber 

potentials, and by imposing the boundary 

conditions and the continuity conditions at the 

layers interface. On the surface (i.e., at 
3 0x  ), 

the normal and tangential tractions must obey 

the boundary conditions corresponding to a 

frictional contact problem: 

 (1)

33 1 2 1 2( , ,0) ( , )x x p x x   , (14) 

 (1)

3 1 2 1 2( , ,0) ( , )i ix x q x x   , 1,2i  , (15) 

whereas the continuity condition of tractions 

and displacements at the interface yields: 

 (1) (2)

3 1 2 c 3 1 2 c( , , ) ( , , )i ix x h x x h  , 1,2,3i  , (16) 

 (1) (2)

1 2 c 1 2 c( , , ) ( , , ), 1,2,3.i iu x x h u x x h i   (17) 

Additional constraints yield from the condition 

that, at infinity in the half-space (i.e., for large 

3x ), the solution must remain bounded: 

 (2)

1 2( , , ) 0, 1,2,3iu x x i   , (18) 

 (2)

1 2( , , ) 0, , 1,2,3ij x x i j    . (19) 

In equations (14)-(19), superscripts (1) and (2) 

refer to the coating and the substrate, 

respectively, whereas ch  denotes the coating 

thickness. The explicit expressions given in [3], 

obtained without any partial derivatives existing 

in other formulations [9], were found more easy 

to implement in the present numerical approach. 

The conversion procedure reduces the 

computational burden and the memory 

requirements by performing the convolution on 

series with just 2N  members instead of N , 

with   going as high as 12 [8]. The derivation of 

the influence coefficients with the procedure 

described above still requires application of 

inverse FFT to a series of N  members. 

However, this calculation should be executed 

one time only, because the influence coefficients 

depend on the distances between the grid points 

and on the elastic properties of the material, and 

both of which do not change during the contact 

process. On the contrary, the other convolution 

member (i.e., the contact tractions) changes 

from one iteration to the next, and therefore it is 

convenient to limit the size of the domain on 

which the FFT of these tractions is calculated. 

Thus, with the above technique, the 

computational cost per iteration is thus reduced 

to FFTs of series of 2N  members instead of N . 

The savings become important as the numbers 

of iteration increases, as in the case of the 

fretting contact. The contact simulations 

described in the following sections proved that 

the improved method provided a reduction of 

34% in the program execution time compared to 

the existing method [15]. This reduction is 

expected to become more significant with longer 

loading histories.  

 

 

4. RESULTS AND DISCUSSIONS 

 

A spherical homogeneous indenter of radius 

0.018R  m, with the Young modulus 2 210E   GPa and the Poisson’s ratio 2 0.3  , is loaded 

against a coated half-space following the loading 

path depicted in Fig. 2. The elastic parameters of 

the coating are denoted by 1E , 1 , whereas the 

substrate is assumed similarly elastic with the 

indenter. In the following simulations, 2E , 2  

and 1 2   are kept constant, whereas the 

elastic moduli ratio 1 2E E  is varied. A normal 

load max 1W  kN is first applied, and 

subsequently an oscillating tangential force is 

added while keeping the normal load constant. 

Without losing generality, the tangential force is 

assumed in the direction of 1x , and its amplitude 

is 1max 0.9T W .  

 

 

Fig. 4. The loading path. 

 

As depicted in Fig. 4, the simulation 

reproduces the first three loading trajectories. 
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It should be noted that in Fig. 4, the time axis 

features a sequence of discrete times 

normalized by the length of the simulation 

window  , and the absolute magnitude of the 

time intervals is of no consequence as the 

contact is assumed quasi-static. Although in 

the loading window (0 0.1)  no tangential 

force is applied, the contact state at 0.1t   

cannot be accurately predicted from a pure 

normal contact model.  

 

Due to the dissimilarity in the elastic 

properties of the contacting materials, initially 

matching points on the contact surface 

undergo different tangential displacements, 

leading to a tendency to slip that will be 

resisted by friction. This gives birth to self-

equilibrating shear stresses that in their turn 

affect the pressure distribution. Consequently, 

the contact state 0.1t   requires 

reproduction of the loading path and load 

incrementation, backed by the consideration 

of the tangential effects. A comparison of the 

pressure and shear stress profiles in the plane 

2 0x  , obtained with and without 

reproduction of the loading history, is shown 

in Fig. 5. 

 

 

Fig. 5. Dimensionless shear stresses at 0.1t  , 

1 2 2E E  . 

 

The newly advanced program for the simulation 

of the fretting contact involving coatings was 

benchmarked against the analytical solution [21] 

for a fretting loop in the contact between 

similarly elastic materials. To this end, the case 

1 2 1E E   was simulated. Whereas the influence 

coefficients for the upper body (1)
C  were 

calculated from integration of the Boussinesq 

and Cerruti fundamental solutions for the 

homogeneous half-space, the conversion 

technique advanced in this paper was 

implemented in the (2)
C  computation. A perfect 

equality (1) (2)C C  would lead to vanishing 

shear stresses at time 0.1t  . The stress 

depicted in figure 6 is very close to that, 

although some numerical oscillations exist. This 

is to be expected giving the complexity of the 

involved mathematical model.  

 

The frequency response functions given in the 

literature [3] were implemented in the (2)
C  

conversion. The stress profiles at subsequent 

times follow the analytical solution (depicted 

using grey lines) with no evident deviations. 

This good validation gives confidence in the 

capability of the numerical tool to accurately 

reproduce and predict the investigated fretting 

contact process. 
 

 

Fig. 6. Dimensionless shear stresses in the fretting 

contact of similarly elastic bodies. 
 

The influence of the coating on the contact 

stresses is assessed by varying the elastic moduli 

ratio between the coating and the substrate. The 

shear stress profiles in the coated half-space, 

predicted for various load levels and elastic 

moduli ratios between the coating and the 

substrate, are depicted in figure 7. The Hertz 

contact for the case 1 2 1E E   is taken as 

reference and its parameters, namely the contact 

radius Ha  and the central pressure Hp , are used 

as normalizers.  
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a) 

 
b) 

 
c) 

Fig. 7. Dimensionless shear stresses 1 H( )q p  in the 

plane 2 0x  : (a) 1 2 0.5E E  ; (b) 1 2 2E E  ; (c) 

1 2 4E E  . 

 

These results were obtained on a 256 256  grid 

established in a rectangular domain of side 

lengths H H2.4 2.4a a , centered on the initial 

point of contact. The process path depicted in 

Fig. 4 was reproduced by imposing 3 1000N   

load increments, from which the first 100 were 

reserved for the time period (0 0.1) . The 

averages values for the inner and the 

intermediate loops were 2 7N   and 1 20N  . A 

contact simulation for a fixed elastic moduli 

ratio 1 2E E  was completed on a quad-core 

3.2GHz CPU in less than 3 hours. The frictional 

coefficient was fixed at 0.3  , and the coating 

thickness at Ha .  

 

The simulations suggest that a periodic stability 

is achieved after the first loading cycles, as 

shown by the coincidence of the stress curves 

predicted for 0.8t  , 0.9t   and t  , with 

those for 0.4t  , 0.5t   and 0.6t  , 

respectively. Practically, only the first loading-

unloading (i.e., from 0t   to 0.4t  ) generates 

truly unique profiles. The stick area is slightly 

moved opposite to 1x  for 
1 2 1E E   and in the 

direction of 1x  for 
1 2 1E E  . The stress state 

attained when the tangential force reaches its 

maximum value, 1 1maxT T , is generally a 

reversal (i.e., with respect to both in-plane axes) 

of that achieved for the 1 1maxT T  . 

 

The shear stresses for 0.1t   are self-

equilibrating in any radial direction, as 

suggested by the streamlines of the shear 

vectors 1 2( , )q qq  presented in Fig. 8. The shear 

vectors point to the outside on the more 

compliant body and to the inside on the stiffer 

counter body. This is consistent with the general 

contact theory stating that the direction of the 

shear tractions opposes relative motion of the 

surfaces, i.e.: 

 sgn( ) sgn( )t   q u , (20) 

where the time-derivative of the relative 

displacement (2) (1)u u u , with upper indexes 

denoting the two contacting bodies, should be 

considered as finite differences between discrete 

values corresponding to the time moments in 

which the loading history is replicated. 
 

The streamlines of the shear vectors for the last 

simulated increase of the tangential load (i.e., 

from 0.8t   to t  ) are depicted in Fig. 9 for 

the case 1 2 0.5E E   and in Fig. 10 for 1 2 2E E  . 
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a)                                                                                                    b) 

Fig. 8. Streamlines of the shear vectors 
1 2( , )q qq  at: (a) 

1 2 0.5E E  ; (b) 
1 2 2E E  . 

         

                                     a)                                                                  b)                                                              c) 

Fig. 9. Streamlines of the shear vectors 1 2( , )q qq , 1 2 0.5E E  : (a) 0.8t  ; (b) 0.9t  ; (c) t  . 

     
                                   a)                                                                 b)                                                            c) 

Fig. 10. Streamlines of the shear vectors 1 2( , )q qq , 1 2 2E E  : (a) 0.8t  ; (b) 0.9t  ; (c) t  . 

 

A typical stick ratio defined as the ratio between 

the stick and the (instantaneous) contact area is 

depicted in Fig. 11. The curves for various elastic 

moduli ratios are similar, and prove that, when 

the tangential force increment changes its sign, 

instantaneous stick sets in, immediately 

followed by reverse slip at the edge of the 

contact area. The latter slip covers gradually 

previous slip regions of the opposite sign, 

resulting in oscillating slip on specific regions of 

the contact area. The plot also show that there 

also exists frictional slip during the normal 

indentation (i.e., prior to 0.1t  ). Small normal 

load increments in the beginning of the loading 

curve are essential to solution convergence. 

 

The tangential displacement of one body relative 

to the other is plotted in Fig. 12 as a function of 
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the applied tangential force, forming a complete 

hysteresis loop, whose area accounts for the 

work done by the tangential force during a 

complete cycle. The latter work is dissipated by 

frictional micro-slip, and repeated load 

oscillation will generate wear in the annulus of 

oscillating slip, producing, often in the presence 

of corrosion, the specific surface damage known as “fretting”. The latter is hold responsible for 

the premature failure of machine elements by 

fatigue, especially when the components also 

carry high steady stress. 

 

 

Fig. 11. The stick ratio. 

 

 

Fig. 12. Load-displacement cycles. 

 

Although not apparent due to the very good 

superposition, two complete hysteresis loops are 

depicted in figure 12: the first one for the time 

period (0.2 ;0.6 ]t   , and the second one for 

(0.6 ; ]t   . At every pass of the tangential force 

through its extreme values 1 max( ) 0.9T W   , i.e. 

at specific times 0.2 ,0.4 ,0.6 ,0.8t t t t t , 

instantaneous full stick occurs, as shown in Fig. 11 

where the stick ratio St CA A  approaches unity. 

The unique branch starting from origin in Fig. 12 

corresponds to the time period (0.1 ;0.2 ]t   . 

Although the hysteresis curves for the first two 

fretting loops are very similar, there exist 

dissimilarities in the tractions profiles predicted 

for corresponding points from the two loops, as 

shown in Fig. 7. The extended loading history in 

Fig. 4 was considered to confirm a stabilized 

periodicity in both the hysteresis loops and the 

tractions profiles after the first loading cycles. 

 
Knowledge of the contact tractions indicates 

the oscillating slip region were the attrition of 

the contact interface is expected to occur, but 

also allows calculation of the subsurface 

stresses, in the same manner as the 

displacements. In the following examples, the 

stress calculation is performed in 256 layers 

parallel to the free surface, covering a depth of 

H2a . The iso-contours of the von Mises 

equivalent tension, which is a measure of the 

plastic yield propensity in the elastic contact, 

corresponding to the end of the simulated 

loading window, i.e. t  , are depicted in Fig. 

13 for different elastic moduli ratios between 

the coating and the substrate. Position of the maximum is indicated with the “X” mark and its 
magnitude is specified on each plot. The 

numerical results suggest that the maximum 

stress intensity is located in the more 

compliant coating, i.e. when 1 2 0.5E E  , Fig. 

11a, whereas increasingly harder coatings 

place the maximum on the free surface, Fig. 

11b, and at the interface between the coating 

and the substrate, Fig. 11c. The latter position 

is particularly detrimental because is the 

source of cracks probable to originate in the 

thinner coatings [23]. The shift of the stress iso-

contours in the direction of 1x  is a direct result 

of the distributions of shear tractions depicted 

in Fig. 7, showing the influence of the elastic 

mismatch 1 2E E  on the position of the stick 

region. As a result of the elastic dissimilarity 

between the contacting materials and of the 

coupling between the normal and the tangential 

effects, the stick zone is moved toward negative 

1x  for 1 2 1E E   and in the opposite direction for 

1 2 1E E  , which also perturbs the symmetry of 

the subsurface tractions. 
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a) 

 
b) 

 
c) 

Fig. 13. Iso-contours of the dimensionless von Mises 

equivalent stress VM Hp  in the plane 2 0x   at 

t  : (a) 1 2 0.5E E  ; (b) 1 2 2E E  ; (b) 1 2 4E E  . 

The established contact model can be further 

coupled with a wear model that quantify the 

wear of a sliding contact, e.g. [24,25], resulting in 

a efficient contact analysis tool capable of 

predicting the wear volume and the 

accompanying change of the surface geometry 

due to wear, as a function of the sliding distance, 

the applied normal load, the hardness of the 

softer material and the frictional coefficient. 

However, more complex mechanisms such as 

the creation and the ejection of debris that 

modify the frictional coefficient, should be 

considered for realistic contact simulations.  

 

 

5. CONCLUSIONS 

 

The performance and service life of the 

mechanical coated contact subjected to fretting 

relies on the accurate prediction of the slip 

regions and the stress state in the contacting 

bodies. These chief goals are achieved in this 

paper by numerical simulation assisted by the 

fast Fourier transform. 

 

A contact solver originally proposed for 

homogenous but dissimilarly elastic bodies is 

enhanced to the case of layered materials. The 

huge computational burden related to the 

stress and displacement calculation in the 

heterogeneous body is partially relieved by 

proposing a method of conversion of the 

influence coefficients from the frequency 

response functions available in the literature 

for the bilayered material. In this manner, a 

state-of-the-art technique for the acceleration 

of convolution computation, previously applied 

to homogeneous solids, can be employed to 

coated bodies. The computational advantage 

allows the consideration of a well-converged 

reproduction of the loading path, including the 

initial normal indentation which is often 

neglected in the literature. The considered 

loading window was long enough as to predict 

the attainment of a periodic stability after the 

first unique loading branch. 

 

The predictions of the newly proposed 

computer program compare well with the 

closed-form solution for the fretting of similarly 

elastic homogenous bodies. New and accurate 

distributions of contact tractions and 

subsurface stresses are presented for various 

elastic moduli ratios between the coating and 
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the substrate. The performed numerical 

simulations prove the method ability to solve 

the complex problem of fretting in the coated 

contact with high accuracy, within the limits of 

a reasonable computational effort. 
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