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INTRODUCTION 
In offshore engineering, the pipeline laid on or partly buried in 

the porous seabed is widely used for fluid transportation, such as 

water intake, sewage disposal, subsea tunnel and hydrocarbons 

transportation. These submarine pipelines are subjected to 

dynamic forces due to the strong action of ocean waves. Clearly, 

the wave-seabed-pipeline interaction problem plays an important 

role in the determination of force which significantly influences 

the stability and performance of marine pipeline. When an 

identical pipeline is placed close to another (the so-called twin 

pipelines with tandem configuration), it may strongly disturb the 

flow field and wave pressure around the pipeline and consequently 

leads to changes in the forces on the pipelines (Cokgor and Avci, 

2003). 

Although the interaction between waves, seabed and a single 

pipeline has been extensively investigated by the coastal 

researchers in the recent years (Magda, 1999; Vijayakumar et al., 

2003, 2005; Xu et al., 2010; Neelamani and Al-Banaa, 2012), the 

studies on the wave-seabed-twin pipelines are still very limited. 

For example, Bearman et al. (1985) investigated theoretically and 

experimentally the in-line forces on cylinders of general cross-

section under sinusoidal flows, and evaluated corrections to the 

standard in-viscid inertial force at low Keulegan-Carpenter (KC) 

numbers. Cokgor and Avci (2003) measured the forces on a 

cylinder partly buried in the seabed with a parallel twin dummy 

cylinder nearby and without it. The forces around the cylinder in 

the tandem cylinder case are smaller than those in the single 

cylinder case, and their values largely depend on the 

configurations of parallel tandem cylinders and burial depth.  

Cokgor and Avci (2006) further performed laboratory experiments 

to study the hydrodynamics forces under the coexisting flow 

(wave and current) on the partly buried, tandem twin pipelines. 

The generated flow field around the pipelines (diffraction or 

vortex shedding regime) is dependent on the magnitude of the 

pipeline diameter and the incident wave characteristics, as well as 

on KC and Re numbers at the pipeline. All aforementioned 

research results indicate that the interaction between waves, 

porous seabed and twin pipelines is very complicated and may 

significantly affect the hydrodynamics forces on the pipelines. 

In this study, a vertical two-dimensional mathematical model 

based on Volume-Averaged Reynolds-Averaged Navier-Stokes 

(VARANS) equations, a two-equation k-ε turbulence closure and 

internal source term wave maker is applied to numerically study 

the wave propagation around and hydrodynamics force on twin 

pipelines in sandy seabed. In this model, the sandy seabed is 

treated as a rigid porous material, and it is described in terms of 

porosity and mean particle diameter in the governing equations. 

One of the advantages of this mathematical model is to describe 

the whole wave-seabed-twin pipelines interaction using a set of 

VARANS equations only. 

MATHEMATICAL MODEL 
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Governing Equations 
The VARANS equations for the flow motion due to wave-

seabed-twin pipelines can be expressed as (Hsu et al., 2002): 
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in which xi is Cartesian coordinate, ui is flow velocity, t is time, ρ 
is water density, P is fluid pressure, τij is viscous stress tensor of 

the mean flow, gi is gravitational acceleration, and n and D50 are 

the porosity and the equivalent mean diameter of the porous 

material. cA denotes the added mass coefficient, calculated from 

cA=0.34((1-n)/n). α and β are empirical coefficients associated 

with the linear and nonlinear drag force, respectively (Lin and Liu, 

1999). The influence of turbulence fluctuation on the mean flow, 

denoted as <ui’uj’>, is obtained by solving the modified k-ε 
turbulence model where k is the kinetic energy and ε is the 

dissipation rate of kinetic energy (Rodi, 1993). The over-bar 

represents the ensemble average and the prime denotes turbulent 

fluctuations with respect to the ensemble mean. The “< >”, 

Darcy’s volume averaging operator, is defined as: 


fV
adV

V
a

1

                       
(3) 

in which V is the total averaging volume, and Vf is the portion of 

V that is occupied by the fluid. The “< >” is the intrinsic 

averaging operator, which is defined as: 
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f
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V
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1

                                                                  (4) 

The relationship between the Darcy’s volume averaging 

operator and intrinsic volume averaging is: 
f

ana 
                                                                              (5) 

The internal source term wave maker proposed by Lin and Liu 

(1999) is used for the wave generation in this study. 

Numerical Methods 
 In the model, finite difference solutions to the VARANS 

equations for the mean flow field and the modified k-ε turbulence 

model for the turbulent field are obtained on a non-uniform mesh. 

A two-step projection method is adopted for the mean flow 
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Figure 1. Sketch of laboratory experiments of  Neelamani and Al-Banaa (2012)  
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Figure 2. Distribution of pressure sensors around 

pipeline partly buried in soil bed. 
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solutions, aided by the incomplete Cholesky conjugate gradient 

technique solving the Poisson equation for the mean pressure 

field. To accurately track the free water surface, the volume of 

fluid (VOF) method proposed by Hirt and Nichols (1981) is 

applied. As regards the modeling of the free surface about VOF 

method using a two-phase flow, this approach seems not to affect 

the flow field and hydrodynamics forces on the pipelines. The idea 

of VOF method is to define a function of F to represent the 

fractional volume of water fluid. F =1 indicates that the cell is full 

of water, while F =0 corresponds to a cell fully occupied by air. 

Cells with a value of 0< F <1 contain a water free surface, and the 

piecewise linear interface calculation (PLIC) method of Rider and 

Kothe (1998) is used to reconstruct air-water interface. The 

algorithm consists of two steps: a planar reconstruction of air-

water interfaces within a cell; and then a geometric calculation of 

volume fluxes of air and water cross cell faces. In the numerical 

simulation, both air and water are solved. 

 

In the simulation, appropriate boundary conditions are required. 

For the mean flow field, no-slip boundary condition is imposed on 

the sea floor surface, and the zero-stress condition is adopted on 

the mean free surface by neglecting the effect of air flow. For the 

turbulence field, the log-law distribution of mean tangential 

velocity in the turbulent boundary layer is applied in the grid point 

next to sea floor, and the zero-gradient boundary conditions are 

imposed for both k and ε on the free surface. The damping zones 

are located at two vertical boundaries far away from the concerned 

region. The detailed implementations of boundary conditions can 

be found in Hsu et al. (2002) and Zhang et al. (2012). To obtain 

the computational stability, the time interval (Δt) during 

simulation is automatically adjusted at each time step to satisfy 

Courant-Friedrichs-Lewy condition and the diffusive limit 

condition (Liu et al., 1999). 

RESULTS AND DISCUSSION 
To validate the mathematical model, the numerical results will 

be compared with the experimental data of Neelamani and Al-

Banaa (2012). This validated model is then further used to study 

the effects of center distance and burial depth of twin pipelines on 

the distribution of dynamic pressures and flow velocity. 

Model Validation 
Neelamani and Al-Banaa (2012) carried out a series of physical 

experiments in the wave flume to investigate the wave force 

variation due to burial of submarine pipelines in uniformly graded 

and low hydraulic conductivity soil. The wave flume has a length 

of 54.5 m, depth of 1.2 m and width of 0.6 m. As shown in Figure 

1, the still water depth near the wave maker is 0.9 m and it is 0.45 

m at the test section. The soil bed has a depth of 0.45 m and length 

of 2.0 m. The external diameter (D) of pipeline is 0.2 m, and 12 

pressure sensors are uniformly distributed around the pipeline for 

the measurement of wave pressure (see Figure 2 for the position of 

each sensor). In the experiments chosen for model validation, the 

main parameters are defined as: soil porosity n =0.36, equivalent 

mean diameter of soil particle D50 =0.000295 m, hydraulic 

conductivity of soil ks =0.000286 m/s, wave height Hi =0.15 m, 

wave period T =3.0 sec, water depth d =0.45 m, and the ratio of 

pipeline burial depth to pipe diameter e/D =0.5. 

In the numerical simulation, a computational domain with a 

range of -80 m ≤ x ≤ 40 m and 0 m ≤ y ≤ 1.2 m is used. The two 

damping zones are located at -80 m ≤ x ≤ -60 m and 25 m ≤ x ≤ 40 

m, respectively. The original of Cartesian coordinate is located at 

the left sub-corner of soil bed. The cells are non-uniformly 

distributed in x direction with a minimum Δx =0.005 m around the 

pipeline, while it is uniformly distributed in y direction with Δy 

=0.005 m. The desired waves are generated at the cross section x 

=-40 m. In each simulation, the model was run 20 wave periods 

(i.e. 60 seconds), and the numerical results averaged from the last 

5 wave periods are used for comparing with the laboratory 

experiments. 
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Figure 3. Comparisons of simulated and measured dynamic 

pressure at different points (a) P1, (b) P4, (c) P7 and (d) P10. o: 

measurement; --: simulation 
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(b) Velocity field with x/D =0.5 
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(b) Velocity field with x/D =0.75 
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(f) Pressure field with x/D =0.75 

 

Figure 4. The period-averaged velocity field and pressure field around twin pipelines with different value of x/D. (a-c): velocity field; (d-

f): pressure field  
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(c) Velocity field with e/D =0.5 
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Figure 5. The period-averaged velocity field and pressure field around twin pipelines with different value of e/D. (a-c): velocity field; (d-

f): pressure field  
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Figures 3 shows the comparisons of simulated and measured 

dynamic pressures at points P1, P4, P7 and P10 in the half buried 

case (e/D =0.5), indicating a good agreement between simulation 

and measurement. The results indicate that the mathematical 

model has a great ability in predicting the complex wave-seabed-

pipeline interaction and the resulting dynamic pressures around 

the pipeline. As shown in Figure 3, the nonlinear feature of the 

dynamic pressures is obvious due to the interaction between 

waves, porous seabed and twin pipelines. As mentioned by 

Neelamani and Al-Banaa (2012), the difference in magnitude 

and phase lag between P1 and P7 is mainly responsible for the 

horizontal force on pipeline, while the difference in magnitude and 

phase lag between P4 and P10 make the main contribution to the 

vertical force on pipeline. It is worth noting that the horizontal and 

vertical forces are dependent on the contribution of several 

pressure sensors, as a function of the sensor arrangement sketched 

in Figure 2. 

Model Application 

In the engineering practice, the stability of marine pipeline may 

be enhanced by the presence of a dummy pipeline. When an 

identical dummy pipeline is constructed in the adjacent of the 

existing measurement pipeline, it may largely modify the flow 

field around and hydrodynamics force on the measurement 

pipeline. In the numerical example here, an identical dummy 

pipeline is replaced downstream of the existing pipeline. The 

distance between cylinder centers (x/D) and the burial depth (e/D) 

of these two tandem pipelines are changed to see how these 

configurations affect period-averaged velocity field and pressure 

force on the measurement pipeline. 

In the example, the distance between cylinder centers (x/D) are 

defined as 1.25, 1.5 and 1.75, with a gap between these two 

pipelines are 0.25, 0.5 and 0.75, respectively. Figure 4 shows the 

period-averaged velocity field and pressure field around twin 

pipelines. As shown in Figure 4(a-c), the velocity field in the gap 

between the cylinders looks complex but similar when the value of 

x/D varies. The strong vortices can be identified both for the free 

side (left-hand-side) and the lee side (right-hand-side) of the 

dummy cylinder, as a function of x/D. The numerical results also 

indicate that the velocity magnitude around twin pipelines 

increases with an increasing x/D, leading to a decrease of wave 

pressure (see Figure 4(d-f)). 

To investigate effect of the burial depth (e/D) of marine 

pipelines on wave-seabed-twin pipelines interaction, three 

different value of burial depth (e/D =0, 0.25, 0.5) are adopted in 

the study. The value of e/D =0 means that these twin pipelines are 

laid on the surface of seabed with zero burial depth. The period-

averaged velocity field and pressure field are shown in Figure 5. 

When burial depth becomes small, the space around twin pipelines 

for flow development is available. As shown in Figure 5(a-c), a 

larger vortex can be formed in the front and lee side of the tandem 

pipelines with a stronger velocity in the case with small burial 

depth. It is also noted that the wave pressure in the lee side of 

dummy cylinder is smaller in the case with a smaller burial depth 

(see Figure 5(d-f)). 

It is reminded that the black points in Figures 4(a-c) and 5(a-c) 

indicate velocity fields with a very small velocity magnitude 

inside porous non-movable seabed. 

CONCLUDING REMARKS 
In this study, the interaction between wave and twin pipelines in 

porous seabed has been numerically investigated by solving a set 

of VARANS governing equations only. This mathematical model 

is validated by the laboratory experiments of Neelamani and Al-

Banaa (2012) in term of dynamic pressures, showing a good 

agreement between measurement and simulation. This model is 

then further used to study distance between cylinder centers and 

burial depth of twin pipelines on the period-averaged wave 

velocity and pressure fields around the pipelines. Based on the 

numerical results, the following conclusions can be drawn. 

(1) When the distance between cylinder centers varies, a 

complex and similar velocity field can be seen in the gap 

between twin pipelines. An increasing distance x/D leads 

to an increasing velocity magnitude and a decreasing 

wave pressure around marine pipelines. 

(2) The strong vortices can be identified both for the free 

side (left-hand-side) and the lee side (right-hand-side) of 

the dummy cylinder, as a function of x/D. 

(3) When the burial depth of marine pipelines becomes 

smaller, a vortex with larger size and stronger velocity is 

formed in the front and lee side of twin pipelines, with  a 

smaller wave pressure behind the pipelines. 
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