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Stochastic differential equations often provide a convenient way to describe the dynamics of economic

and financial data, and a great deal of effort has been expended searching for efficient ways to estimate
madels hased on them. Maximum likelihood is typically the estimator of choice;, however, since the
transition density 18 generally unknown, one is forced to approximate it. The simulation-based approach
sugpested by Pedersen (1995) has great theoretical appeal, but previously available implementations have
been computationally costly, We examine a vanety of numencal techmqgues designed 1o improve the
performance of this approach. Synthetic data gencrated by a Cox-Ingersoll-Ross model with parameters
calibrated o mutch monthly observations of the US. shorl-lenm interest rale are used as o lesl cuse.

Since the hkelthood function of this process is known, the gquality of the approxunutions cun be easily
evaluated. O datasets with 1,000 observations, we are able lo approximate the maxumum likelihood
estimator with negligible error in well under | min. This represents something on the order of a 10, 000-
fold reduction in computational effort as compared to implementations without these enhancements, With
other parameter settings designed to stress the methodology, performance remains stronp. These ideas
are easily generalized to multivariate settings and (with some additional work) to latent variable models.
To illustrate, we estimate a simple stochasue volatility model of the U.S. short-term interest rate.

Stochastic differential equations (SDE’s) often provide a
convenient way to model economic and financial data, and
their use has become increasingly common 1n recent years.
Although the process specified by a stochastic differential
equation 15 defined in continuous tme, the data which arc
available are typically sampled at discrete time intervals, The
resulting estimation problem turns out to be nontrivial, and
considerable energy has been expended in developing compu-
tationally (and staustically) etficient estimation schemes.

In this article, we focus primarily on scalar, time-
homogeneous processes. In particular, we consider the diffu-
sion process generated by an SDE of the form

dX =pu(X.0)dt +a(X;,0)dW
X“n}:}{i: [”

with parameter vector #. Suppose that the sample |X, =
X(1,).i=0....,n] is available for analysis. The observations
need not be equally spaced.

[deally, one would like to know the transition density, which
would allow one o compute the maximum likelithood estima-
tor with its usual optimality properties. Although exact transi-
tion densities are known in only a few isolated cases, several
approaches toward approximating the transition density have
been proposed.

Lo (1988) suggests numerically solving the Fokker-Planck
partial differential equation for each observation. Pedersen

(1995b) suggests a simulation-based approach which involves
integrating out unobserved states ol the process at intermediate
points between cach pair of observations (see also Santa-Clara
1995; Brandt and Santa-Clara 2002). While this approach,
commonly known as simulated maximum likelihood estima-
tion (SMLE), is able to come arbitrarily close to the true tran-
sition density, previously available implementations have been
computationally burdensome.

Other approaches have been proposed which are much less
computationally costly. For example, the process described
by (1) has a first-order approximation given by the discrere-
[Ime process

]

XJ'—I = ‘i:.! + #{Er" H]il —F_U[‘i‘;r: H)&Jl-;EEr
e, ~ N(0. 1). (2)

Under mild regularity conditions, the maximum likelihood
estimator based on this approximation is known to con-
verge o the true maximum hikelihood estimator as the sam-
pling interval goes to zero (Florens-Zmirou 198Y). While this
approach 1s very appealing trom a computational viewpoint,
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the approximation may not be suthciently accurate for the
sampling frequencies at which reliable data are available.

There are various ways in which one might improve upon
this idea. Elerian (1998) suggests replacing the Gaussian
density in (2) by a noncentral chi-squared density which is
derived from the Milstein scheme, an order 2.0 weak approx-
imation to the true process. Shoji and Ozaki (1998) lincarize
the SDE, obtaiming an approximating Ornstein- Uhlenbeck
process (the exact transition density of an Ornstein—-1Thlenbeck
process 1s known). Kessler (1997) approximates the transi-
tion function by a Gaussian density with first and second
moments obtained from higher order Ito-Taylor expansions.
Ait-Sahalia (2001) approximates the transition density using a
Hermite function with coefficients obtained using higher order
Ito-Taylor expansions. Except for Ait-Sahalia (2001), these
methods still require the sampling interval W go to zero to
obtain convergence to the true transition density. While this
requirement also holds for Ait-Sahalia’s approach with a Her-
mite function and Ito-"Taylor expansion of fixed order, Ail-
Sahalia’s approximation may be made arbitrarily accurate with
fixed sampling frequency by using a Hermile [unction and
lto=Taylor expansion of sufficiently high order (given some
regularity conditions).

Various method-of-moments approaches have also been
proposed. Chan, Karolyi, Longstaff, and Sanders (1992)
us¢ momenis based on Equation (2). Duffie and Singleton
(1993), Gallant and Tauchen (1997), Bibby and Serensen
(1995), and Gouriéroux, Monfort, and Renault (1993) com-
pute expectations using simulation-based methods. Hansen
and Scheinkman (1995) and Duffie and Glynn (1996) use
moment conditions obtained from the infinitesimal generator,

The simulation-based methods can be computationally
costly, but have the advantage of being easily adapted o dif-
fusions with unobserved state vanables. Stochastic volatility
maodels and term structure models are umportant applications
where these techniques have been found usetul. The efficient
method of moments proposed by Gallant and Tauchen (1996)
approaches the efficiency of maximum likelihood asymptoti-
cally, and provides a convenient set of diagnostic measures for
model specification.

Markov chain Monte Carlo (MCMC) methods have been
proposed by Eraker (2001), Jones (1999a), and Elerian, Chib,
and Shephard (2001). There 15 a close relationship between
MCMC methods and SMLE. For example, Elenan et al. point
out that their importance sampler can also be used with the
simulation-based approach of Pedersen (1995b) to substan-
tially reduce the computational effort required 10 obtain rea-
sonably accurate likelihood approximations.

In this article, we focus on the SMLE approach. The basic
idea is quite simple. Suppose that one wishes to obtain the
transition density p(x,, r; v, 5). The first-order approximation
p'M(x,. 1: x.,s) defined by (2) will be accurate if the interval
|5, t] is sufficiently short. Otherwise. one may partition the
interval s =7, < 7, < --- < 7, =1 such that the first-order
approximation 1s sufficiently accurate on each subinterval. The
random variables X(7,)....., X(7y,_,) are, of course, unob-
served. and must be integrated out. Becausce the process 1s

Markovian. one obtains

plx,, 05 x,, )= p™Mix t;x,,5) (3)
M- |
=TT p"uys s syt 7)
T m=il
%Ay e i) (4)

where A denotes the Lebesgue measure, and we use the con-
vention u, = x, and u,, = x, Lo conserve notation, Monte Carlo
integration is generally the only feasible way to evaluate this
integral.

The theoretical issues involved with this approach are
already reasonably well understood. Sufficient conditions for
the approximation in (3) to converge are known. While it is
certainly of value to extend these conditions, we do not under-
take this task here. The theories of Monte Carlo integration
and maximum likehhood estimation have also been exten-
sively studied. Nonetheless, although the simulation-based
approach is attractive from a theoretical point of view, the
computational burden associated with previous implementa-
tions has hindered its widespread use. We have lound that it
can be quite costly 1o attain even the degree of accuracy pro-
vided by the simple first-order approximation (2). It is this
shortcoming which we seek to address.

We attack the problem of computational efficiency from
two directions. We first seek to improve the approximation in
Equation (3). This allows one to attain a given level of accu-
racy with fewer intermediate points. We consider extrapola-
tion techmques and the use of allernatives to the first-order
(Euler) approximation of the subtransition densities. Secondly,
we examine techniques to accelerate the convergence of the
Monte Carlo integration. We consider several importance sam-
plers and random schemes. Finally, we consider transforming
the model in such a way as to make the volatility function
constant. Working with the transformed rather than the onigi
nal model turns out to provide a useful improvement in both
the accuracy ol the approximation (3) as well as the perfor-
mance of the Monte Carlo integration used 1o compute (4).

As a test case, we use the square-root specification proposed
by Cox, Ingersoll, and Ross (1985) as a model for the short-
term interest rate. Parameter settings are calibrated to match
monthly observations of the U.S. shori-term interest rate. This
model has the advantage that the transition density is available
in closed form, which allows us to easily evaluate the accuracy
of our approximations. We also tested our techniques using
other parameter settings and models with similar results.

On simulated datasers of 1,000 observations, we arc able
o obtain estimates in well under | min (runming FORTRAN
code on a 750 MHz PC) which differ neghgibly from those
obtamned by maximizing the exact log-likelihood function.
Achieving comparable accuracy without our acceleration Llech-
niques would require something on the order of a 10,000-fold
increase in computational effort,

Much of the discussion in this article may be readily
adapted to the multivanate setting. With some additional work,
the ideas can also be extended to latent variable models. We
outline an approach to approximating the transition density of
a continuous-time stochastic volatility model, and illustrate by



estimating a simple model over weekly observations of the
U.S. treasury bill rate, We speculate that much carries over
to the time-inhomogeneous case as well, however, we have
not examined such extensions carefully. Although 1t should be
possihle to apply techniques similar to those considered here
to jump ditfusions, this is also beyvond the scope of this article.

A more exlensive application illustrating the techniques dis-
cussed in this article may be found in Durham (2000). Further
exploration of these and related techniques in multivanate and
latent variable setungs 15 underway.

The structure of this article is as tollows. Secuon 1 intro-
duces the notation, and provides some theoretical results,
Section 2 describes the benchmarks which we will use for
evaluation of our echmyues, Section 3 examines the perfor-
mance of the simulation-based method without any of our
acceleration technigues, Section 4 considers the issue of bias
reduction. Section 5 considers the issue of vanance reduc-
tion, Scction 6 discusses the results of our numerical experi-
ments, Section 7 extends these ideas 1o the stochastic volatil-
ity model, Section 8 provides an application, and Section 9
concludes.

1. BACKGROUND

To begin, we define some notation, and provide a brief dis-
cussion of the theoretical framework. Let ({2, F, P) be a prob-
ability space, and let W be a Brownian motion defined on
it. Let {,.,r =0} be the filtration gencrated by W and aug-
mented by the P-null sets of 7. Let & be a compact subset
of @¥. We are interested in the parameterized family of scalar
diffusion processes {X(1:0),.0 € ©} generated by the time-
homogeneous SDE

dX =pu(X:0)dr+o(X:0)dW
X{13:8) =&y

Assumption 1. For gach ¢ € 0, (5) has a nonexploding,

umqgue weak solution.

By nonexploding, we mean that there 18 zero probabihity that
the process diverges to infinity over any fixed time interval,
Sufficient conditions ensuring Assumption | are well known
(e.g.. Karatzas and Shreve 1991, sec. 3.3). For example, it suf-
fices that p and o satisfy global Lipschitz and linear growth
conditions. A variety of extensions 15 also available, Explo-
siveness would preclude the existence of a transition density,
and 1s thus disallowed, Note that stationarity 1s not required.

For s < ¢, suppose that X(7;. )| X(s: @) has a transition den-
sity plx,.t: x,, 8, 0), and let

piilx . tow, 0, 6)
= ¢(x,; x, +plx )t —y5), rr:'{._r#}{r -5)), (5

where d(x: i, ) is the Gaussian density, be its first-order
approximation. Let y =1, < --- < 7, = ¢ be a partition of the

interval [s, r], and let

R, TR, &)
u
- [ 7 T SRR e T 2. €7 wy ) (6)
" om=|

where u, = x . uy, = x,, and A denotes the Lebesgue measure.
This will serve as our approximating density. Uor clanty, we
will often refer w p'''(-) as a subtransition density (or occa-
sionally simply subdensitv) when used in this context.

Suppose that one has a set of observations [X, =
X(1568%)s0 = Qpuay n} of the process generated by
(5) with unknown parameter vector 6, and let P,
denote the probahility measure induced by {X,.....X, |
Let [.(6) = X7 ;logp(X;. 13 X 3.45.8) and [YN(A) =
Yo log p™(X 1 X, 1. 6) denote the log-likelihood
functions assoctated with the exacl and approximate densities,
respectively.

Assumption 2. For all s < t, x, in the support of X (s: /),
e And M > |,

the densities p(,r:x,.5 6) and
pMi, x5, 0) exist,

Pedersen (1995a) provides sufficient conditions for
Assumption (2) to hold, as well as regularity conditions ensur-
ing that

Am pMNo B 8 BY = gl tina 808 & LA ()
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We note that Pedersen’s results are obtained f{or multi-
variate processes. Pedersen’s Theorem 2 allows for time-
inhomogeneous processes. While this theorem requires a con-
stant diffusion function, we will see 1n Section 2 that, for
scalar processes at least, this does not impose a material con-
straint. Pedersen’s Theorem 3 allows for a varniable diffusion
tunction. but imposes other conditions.

Although Pedersen’s results assume Lipschitz and linear
growth conditions on gu(-) and e(-) that are not satished for
many applications of economic interest (including notably the
CIR square rool process), we speculate that suitable extensions
should be possible using localizanon arguments along the lines
of, for example, Karatzas and Shreve (1991, thm. 5.2.5). Sim-
tlarly, we will examine subtransition densities other than the
simple first-order approximation shown in (5) (see Section 4)
and alternatuve random number schemes (see Section 3) which
are not covered by Pedersen’s results. Again, these exten-
stons seem plausible, but formal justification i1s left for [uture
work. The goal ol this article 1s practical rather than the-
oretical, and Pedersen’s results will serve as a convenient
starting point. In particular, we assume the following, which

Pedersen’s Theorem 4 shows to be an immediate consequence
of (7).

Assumprion 3. For each # € ),

m!rimmfjj"”[ﬂj =1/ (0)  in probability under £, .
The difficulty is how to efficiently evaluate the integral n
Equation (6). Monte Carlo integration 1s generally the only

fcasible approach. To perform Maonte Carlo integration, one



requires an importance sampler. Fix s < r, x, x,, 0, and M,
and let g(u,y, . ... t,, ) denote a probability density on R* ',
This will be our importance sampler. Some technigues for
constructing efficient importance samplers are discussed in
Section 5.

Let oy = (oey goicns i 30 i Yo d==Tswaas K| be indepen-
dent draws from g, and let

?I MK

/ (%, t; Xx.,5,0)

I - | I:I: | Ju“]{“k,m' Tty Mg el Tip—1 9 H) ;
== (8)

k=] Gl yoens ty ar-1)

where u, = x, and u, ,, = x, for all k. Then, given Assump-
rion 4 below, the strong law of large numbers implies that

Ji;.ll‘;;‘”"’"[,r,. Gx, 8, =M (x, 1 x,5.8)|=0as (9

A somewhat stronger condition provides ,/n convergence [see
Geweke (1989)].

Assumption 4. Let Uy =x., Uy, =x,, # €O, and ¢ be
fixed. and let (U,....,U,_,) be a random vector with den-
sity ¢. Then

E[HLIPH]‘U”:-%?U:H Iy T PUJ] < G

Our goal is to approximate log/,(#) for a given realization
of the process. For this, it will suffice to be able to approxi-
mate p(x,, 1 x,.5,8) for arbitrary s < 1, x,, v, and #. If we
can do this with arbitrary precision, and if the log-likelihood
function is continuous and © is compact, then we can evalu-
ate the maximum likelihood estimator at this realization with
any desired level of accuracy. We do not treat the estimator
obtained by optimizing the approximate log-likelihood with a
fixed setiing of the tuning parameters as an object of indepen-
dent interest.

2. BENCHMARKS

The specification

dX = 0,(0, — X)dt +0,vX dW (10)

with 6, #,, and #, positive was proposed by Cox et al. (1985)
to model short-term interest rates. Since this model has a
known transition density and i1s frequently used in apphca-
tions, it provides a convenient means ol evaluating the effec-
tiveness of our numerical methods. If we let A =r—5 > 0,
¢ =26,/[0;(1—e"3)], and ¥ =2cX, then Y,|Y, is distributed
as noncentral chi-squared with 46,0, /6, degrees of freedom
and noncentrality parameter Y.e %* or, equivalently,

p(x,. 1. x,.8) = ce™" " (v/u)*1,(2/uv) (11)

where u = ex,e™™2, v =cx,. ¢ =20,0,/6; — 1, and I,(-) is
the modified Bessel function of the first Kind of order g.

For any experiments where synthetic data from the CIR
model are required, we generale them directly using draws
trom the noncentral chi-squared.

Our base case uses the parameter seltings 89 = (.06, .5, .15)
and A = 1/12. These settings are identical to those used in
Ait-Sahalia (2001) for ease of comparison, and are said to be
calibrated to match monthly observations of the L1.S. treasury
bill rate. We also test the methods discussed in this article
with other models and parameter settings with similar results.

We have found that better resulls are often obtained if the
SDE is first transformed (o make the diffusion term of constant
magnitude. With the CIR model. for example, setting ¥ = /X
and applying Ito's lemma gives

)
i

H‘l 3
=y — ¥ )—
(0, )= 3y

2Y

o,
t‘.’}’=[ :Itﬂ-l—T'dW.

If py(y,.r: v, 5) denotes the transition density of the trans-
formed process, then the density of the original process is
obtained in the usual manner by

dy | _ ot JE)
dx!| 27 ‘
In general, the appropriate wransformation is given by Y =

GG(X). where G satisfies G'(x) = 1/ar(x). The constant of
integration is irrelevant. lto’s lemma then implies

PLXL 15X, 8) = py(X s Ve, )

. T
dY = G'(X)dX + 5 G"(X)o* (X) di

[mm

|
2 (X) ;cr’{.k’}] dt +dW

_[ele'm] 1
_[U[G"{F]] EG‘[G {}’}l]dr+dw.

In many cases, (G can be obtained analytcally; otherwise, it
may require a numerical integration. This does not pose any
serious difficulties. If the parameter vector enters into ¢ non-
linearly, the transformation will have to be recomputed for
cach candidate parameter, which may be inconvenient.

This transformation goes back to al lcast Doss (1977), and
is also used by Shoji and Ozaki (1998) and Alt-Sahalia (2001),
(In contrast to those papers, our methodology does nol require
that the model be transformed.) The reason underlying its
effectiveness appeuars (o be that it makes the process closer to
Gaussian. This improves the performance of the approxima-
tion p'™, as well as that of the importance samplers.

We compare the effectiveness ol the various approximation
techniques using scveral different measures. First, we look al
some density plots. We fix a value for x,, and consider a range
of values for x,. For each value ol x,, we approximate the
density p(x,, f; x,,5) a number of times using different seeds
for the random number generator. We then compute the dif-
ference between the true and approximate log densitics, and
plot the median and interquartile range of the approximation
errors for each x,.

The figures in this article are obtained using the pro-
cess defined by (10), with A=t —s=1/12, x, = .10, x, &
[.08,.15], and 1.024 repetitions. For reference, the exact tran-
sition density with these settings is shown in Figure 1.

Since the object ol ultimate interest is the log-likelihood,
it seems appropriate to examine the error in the log rather
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than the level of the density, Suppose, for example, that
plx,.1:x., s)= 10, and we are able to compute it with an error
of +.1. This term would contribute an error of £.01 to the
log-likelihoad. On the other hand, il p(x,, t:x,.5) = .2, the
contribution to the log-likelihood of the same approximation
error would be in the range of [=.7, 4]. Il the approximation
error is greater than the level of the density. the computed
density can be neganive. This is clearly catastrophic for the
log-likelithood. These distinctions are obscured if one exam-
ines the approximation error for the level of the density.

The second measure which we examine is the rool meun
squared cerror (RMSE) of the log-density approximation.
We approximate this by generating n = 100,000 simulated
observations from the model, and computing a sample ana-
log. that 1s,

i

1
RMSE = {f (log p(v]x) —log p( rl.tj):p{_h x)dy d.rl (12)

L& > i
= HZ{l“gp('r:-i-’fi'[l}_iug P{""f-rll"‘r'}) , {13}

=1
=

where we have denoted the approximate transition density by
p. It is convenient to assume that the integral in (12) exists. At
any rate, the sum in (13) certainly exists for a lixed realization
{x;s....x,]. which is all we really need in order to compare
across approximation technigues.

Finally, we are interested in the accuracy of the parame-
ter estimates obtained by maximizing the approximate rather
than the exact log-likelihood. To measure this, we generate
J =512 data sets of length 7 = |.000, and compute A for
each repetition using the exact log-likelihood and the various
approximations, We compute the RMSE of the exact maxi
mum likelthood estimates with respect 1o the parameter vector
used 1o actually generate the data, and the RMSL of the simu-
lated maximum likelihood estimates with respect to the exact
maximum hikelthood estimates, that s,

r 1/
i ] Lo "2
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True Transition Densily and Log Transition Density for the CIR Modal Given A=1—-s=1/12, X, = .10, and # — (.5, .06, .15).

A reasonable goal might be 1o oblain an approximation error
on the order of 1% of the error inherent in the MLE itself. We
are able (o casily obtain this goal for our test case.

Virtually any method which one might reasonably consider
should be able to approximate the log-likelihood function with
arbrtrary precision given sufficient time. The Key issue is how
quickly one 1s able to obtain suthciently accurate results. Thus,
we also report computationul costs,

As a matter of implementation, variunce in the Monte Carlo
integral can result in a great deal of jaggedness in the likeli-
hood surtace, which will severely degrade the performance of
the optimizer. However, this issue is easily addressed if, for
each evaluation of the likelihood tunction, one uses the same
seed Tor the random number generator used to draw samples
for the Monte Carlo integration, This is especially critical if
one is computing numerical derivatives. At any rate, for many
of the methods which we examine, it is relatively straightfor-
ward to obtain analytical derivatives.

3. SIMULATION METHOD WITHOUT
ACCELERATION TECHNIQUES

To establish a bascline. we begin by examining the sim-
ulation method as implemented by Pedersen (1995b). that
s, without any of our acceleration techniques. The impor-
tance sampler used by Pedersen s constructed by simulating
paths on each subdivided interval using the Luler scheme.
Supposc that § < 1, x, = X(y), and x, = X(t) are given.
The importance sampler is defined by the mapping 7V .
(Wjanasa Wigo i B) 02 ity iy, ) given by the recursion

oy = W+l NS+ a(u,; )8 "W

Fri=| =

m=0,....M-2 (14)
where u, = x,, d = (r—s)/M, and W = (W, .
multivariate standard normal.

In this case, Equation (8) simplifies considerably, Since the
density of the importance sampler ¢ is identical o the first
M — 1 factors of the numerator, they cancel, and one is left
with
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Figure 2. Approximation Error, logp(X,.t;X,,s) —logp(X,.t;X,,s), Using Pedersen's Method Given A =1 —s - 1/12, X, = .10, and 6 =
(.5,.06,.15). The median and interquartile range over 1,024 repetitions are plotted. The untransformed model is used in panels (a)-(c), and the

transformed model is used in panel (d).

where the (w4 .k = 1,....K] are drawn from the
(M — 1)st component ol ¢. An alternate interpretation of
Equation (15) is to consider the right-hand side as the sam-
ple analog of E[p'" (x,, £; uy_,, Tay—;. #)]. where the expecta-
tion is over u and with respect to the distribution induced by
AT XS ) =X,

Throughout this article, we use the method of antithetic
variates when drawing random numbers. This is a commonly
used variance-reduction lechnigue in simulation-based meth-
ods. To implement antithetic variates, one draws only K/2
samples from the multivanate normal, and simulates two paths
from each: Ti”'[W} = T'"™MI(W) is as described above. and
T'MY(W)=T'"™M(=W) is its “mirror image.” While we have
found antithetic variates to provide only marginal benefit, the
cost is also negligible.

Figure 2 illustrates the approximation error which results
from computing the log density using this approach. The sel-
tings K =256 and M = 8 or M = 32 are used (recall that K is
the number of sample paths and M is the number of subinter-
vals). Panels (a)-(c) use the untransformed model. Panel (d)
uses the transformed model, which appears to provide little
benefit in this case. Increasing M reduces bias, but at the cost
of greater variance. Reducing the variance is costly since it is
(K '"7).

Upon comparison with the tables and figures in Section 6,
the reason why this approach has not seen widespread use is

readily apparent. It would take a great deal of effort even 1o
match the accuracy of the simple first-order approximation, at
least for our test model,

4. BIAS-REDUCTION TECHNIQUES

There are two sources of approximation error which we
wish to address: bias due to the first-order approximation used
in the construction of p™™, and variance resulling from the
Monte Carlo integration,

We begin with the bias. While it is possible to drive the bias
to zero by partitioning the intervals between observations suffi-
ciently finely, this can be computationally costly. We examine
two approaches toward reducing the number of subintervals
required to obtain a given level of accuracy. The first is to
replace the first-order approximation used in Equation (5) by
a higher order method. There are severul possibilities which
one might try.

Elerian (1998) suggests using a transition density derived
from a scheme due 1o Milstein (1978). If the volatility function
r(:) is constant, the density is identical to that of the firsi-
order approximation; otherwise, it is given by
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Note that o'(-) denotes the derivative of .

Kessler (1997) suggests using a Gaussian transition density,
but rather than using the first-order approximations for the
mean and variance, he proposes using higher order Ito-Taylor
approximations. We try a second-order implementation, that
1S,
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Naotice that, for some models and parameter settings, 1l 15 pos-
sible to obtain ° < 0. The code should include a check to
watch out for ths,

Shoji and Ozaki (1998) suggest a method which they refer
to as local linearization. Their approach requires a model with
constant volatility; however, as shown in Section 3, this results
in little loss of generality. Given

dX = u(X)dt +odW

(o 1s constant) and fixed x ., one begins with an application of
lto’s lemma:

b o s ;
dp(X) = ;r.r'p.' (X)dt+u(X)dX.
Using the first-order Taylor expansion, we define
2 IR L 5
falx) = plx) +p'(x)(x, = x )+ o p'(x)(1—5).
The approximale density will be obtained from

dX = (X dt+adW.

which is an Omstein—l/hlenbeck process. One obhtains

audt's

pﬂhﬁc{'}r[‘rﬂ [ "l.f" '*"I} = Q‘){.I'l.:. -‘1* or }

where
o (x,)
2{p'(x,) ]’

pixg)
mx,)
r}.“: r- {E,Jlun:t,}ii._])

2! ()

K+

h=x+ K — p'(x,)A]

K =E—‘-"-'3-l.:'3l_ 1

Nowman (1997) suggests a similar approach, but simply
reating the volaulity as if it were constant on each sample
interval rather than transtorming the model so that it actually
1s constant. While he examines onlv the special case where
the drift function 1s linear., a plausible extension would be
to use a first-order Taylor expansion for the drift function as
described above, The resulting approximation s analogous (o
that of Shoj and Ozaki, but replacing by a(x, ).

While Elerian ( 1998) uses the Milstein density in the con-
text of a simulation-based approach, Kessler (1997), Shoji and
Ozaki (1998), and Nowman (1997) approximate the transi-
tion density between observations directly (i.e.. without using
intermediate points).

Another approach to obtaining higher order methods is
extrapolation. Given, for example, a first-order method, one
may construct a second-order method as tollows:

M= KA+ O(A%)
pM = 4 KA/24+O(AY)

(20 A
.”E a5 Eﬂm.wm IUI {1

= p+0O(AY)

where K is some unknown constant, If the approximate like-
lihoods are stochastic (i.¢., compuled by simulation), extrapo-
lation reduces bias, but at the cost of greater vanance. Since it
Is possible to obtain a negative value for the extrapolated den-
sity, any immplementation of this technique should check for
positivity, and fall back to the nonextrapolated value in case
of trouble.

Extrapolation 1s a well-known bias-reduction technigue for
computing expectations of diffusion processes (sce Kloeden
and Platen 1992, sec. 15.3). That we are able to apply the
lechnique in the present context is because our approach to
approximating the transition density is essentially an expec-
tation. Por Pedersen’s method, it is easy to see from Equa-
tion (15) that

!?['WJ{-JL}. rLx.,5)= I ;"-"“[-1‘;1 BTy . 0) f‘;P;ijl (u)

(16)
iM) 1

where P,, | is the measure induced by the Euler scheme at

Ty . In general, one obtains

(M -
Pt bl Foax)
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: M :
= /p“'{xr, bty BV, Ay ()  (17)
where QJ[.:’_]J 1s the measure induced by the (M — 1)st com-
ponent of the importance sampler and p;;f_]_l is the Radon-
Nikodym denivative of Ff'.,,j:'{]] with respect to Q}.}':’“I, These
cxpressions may also be derived directly tfrom (6).



5. VARIANCE-REDUCTION TECHNIQUES

We examine two approaches to reducing the vartance of the
Monte Carlo integration shown in Equation (8): importance
sampling and random number schemes. Some of the tech-
niques are illustrated in Figure 3.

A basic principle of Monte Carlo integration is that one
should draw peints with higher probabihity in regions where
the integrand is larger. Figure 4 illustrates why Pedersen’s
method performs so poorly. The paths in the figure are sam-

Pedersen's sampler

0.1}

0.11¢

0.11

time

pled using the Euler scheme with x, = .08, A=/t -s=1/12,
and the SDE given in Section 2. The terminal point of each
path represents a draw from Pﬂf_ﬁl. The curve represents the
integrand of the right-hand side of (16) as a function of « with
x, = .11. It is clear that most of the samples are drawn from
regions where the integrand has lhittle mass. The importance
samplers discussed in this section are designed to address this
shortcoming. Elerian ef al. (2001 ) appear to have been the first
to consider the idea of using efficient importance sampling in
this context.

Brownian bridge

lime

Figure 3. Simulated Paths Drawn Using Various Importance Samplers and Random Schemes.



plx vy, )

time

Figure 4. llustration of Equation (16). The terminal points of the
sample paths represent draws from P : the curve represents the inte-
grand.

The first importance sampler we consider is based on the
Brownian bridge. A Brownian bridge 18 a Brownian maotion

started at x, at time s and conditioned to terminate at x, at ime
(. The sampler 1s constructed in a manner similar to the Euler
scheme. In this case, the mapping 7'M (W,, ... Wy i 0)—
(U, ..., Uy ) 1s defined by the recursion

My | = Uy +n'1(“m" Trrr.]ﬁ +J(“m: H}BLJ ’m+]

where the drift is given by

Xy — X

{—7

plx, 1) =

This 1s a true Brownian bridge if and only if o is constant
(which will be the case if we first transform the model as
discussed 1in Section 2).

Although 1t i1s certainly possible to compute the approximate
density directly from (8), there is an interesting interpretation
of this sampler based on Girsanov's theorem. Consider the
processes dX = p(X)dr+ o(X)dW and dX = _.tl[f) df -+
a(X)dW with initial condition X(s) = X(s) = x,. Girsanov’s
theorem tells us that the Radon-Nikodym dernvative of the
probability measure generated by X with respect to that gen-
erated by X is given by

dp = pk(X)dW (18)

with initial condition p(y) = | and

- #(IJ—E-{.I}_
ol(x)

We can thus obtain the continuous-time expression

plx, b x,8) = [P{-"w BTy ) Py () dQyy ()

et

where Q,, , 1s the probability measure induced by X(7,,_,).

The integral is computed by generaling samples

(o T )ik = Loy K} from the joint process
{XIL’:{JI : p:{:f_]l] using the Euler scheme, and then computing

M
M.K)ru 4 i : hy [ a : :
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f=1

&

[t 18 easy to show by direct calculation of pff_]l that this

expression is equivalent to (8), We have found it to be more
stable to base the Euler scheme [or p on

g |

k- =S
d(logp) = ~= dr+k dW

with initial condition log p(s) = O rather than (18).

The second importance sampler which we consider draws
i, from a Gaussian density based on the first-order approx-
imation conditional on u, and x,. That is, treating u,, and
iy, = x, 45 hxed, one draws w,,  , from the density

Pty [ty ttng) = PQity g |t ) (g |t )/ Pty |2)
~d(u,, 0, +mns, as)
X Uyt + 0", 0°8")
=ty u, +@d", a’é™)

1
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where 6 = (1t — 5)/M, 6* =1

o=ul(u,), and

s My — 1 - M—tt=— L\ _;
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Norice that this importance sampler turns out to be iden-
tical to the Brownian bridge sampler, except for the factor
(M —m—1)/(M —m) in the variance. While it is not entirely
obvious that this should be the case. we will see that this mod-
ification results in much better performance. We will refer to
this sampler as the modilied Brownian bridge.

The third importance sampler which we consider was pro-
posed by Elerian et al. (2001). The idea is to approximate the
target density by a multivanate normal with mean and vari-
ance based on a sccond-order Taylor expansion of the log tar-
get density about the mode.

The log target density is given by

Tm'—l" 6-'- e l'l o Tm* ﬁ' = #{”ﬂ'r]-

M -
Vo ™ s g aas g o [X, 285
M—|
=% Teg P e Tuaimuers
=)
One samples u = (u,, 15, ..., 4y ) trom N(p=, 2*), where
p" =argmax, log p(ulx,. x,)
S a- | /| =
= —— log plit. . X .
Ariag CEPULTIX X))

In practice, one obtains u* by starting with & =
(yy ...ty ), where i, = x, +m(x, —x,)/M, and taking a



single Newton step toward the maximum. The derivatives of
log p(ulx,, x,) are straighttorward, but tedious to compute.

The key feature of this sampler is that it draws paths in
onc shot rather than recursively. Ilmplementing this sampler
requires solving a system of M — | linear equations, and com-
puting a Cholesky decomposition. To obtain reasonable per-
formance, it is essential that one take advantage of the tridi-
agonal nature of the relevant matrices,

As always with importance sampling, one should ensure
that the tails of the sampling density are not too thin; other-
wise, it will not he possible o drive down the variance of the
Monte Carlo integral despite using a large number of sam-
ple paths. One way to address this problem is by using Stu-
dent ¢ rather than normal increments in the construction of the
sample paths, One might also try the approach suggested by
Geweke (1989),

The second category of vanance-reduction lechmyues
which we examine is random number schemes. The method
of antithetic variates, as discussed in Section 4, 15 one such
scheme, although our results suggest that it provides only
marginal benefits i this context.

Recall from Equations (16) and (17) that the density
approximation may be thought of as an expectation. Kloe-
den and Platen (1992, sec. 14.1) sugeest that, for comput-
ing expectations, the Gaussian increments (W,, ..., Wy, () in
Equation (14) (and similar expressions for the other iumpor-
tance samplers) may be replaced by other random variables
satisfying appropriate moment conditions.

One possibility is the random variable which takes on the
values 1 and —1, cach with probability 5. In addition to reduc-
ing variance, this scheme gives a speed increase, since gen-
crating normal deviates can be a significant fraction of the
computational effort. Furthermore, if M is sufficiently small,
1l 15 possible to compule the Monte Carlo integral by suimn-
ming over all possible branches of the binomial tree ot length
M — 1. For example, setting M =8 would require the com-
putation of 27 = 128 sample paths, which is entirely feasible.
Using the techniques discussed in Section 4, it 15 possible to
achieve low bias with small M. In particular, since this ran-
dom number scheme produces a method with no variance, i
is ideally suited for use together with extrapolation.

While expectations computed using the binomal tree
scheme are known to converge under appropriate conditions,
the properties of this scheme in the context of this article are
uncertain. Therefore, we also consider a related scheme which
provides much of the same benefit by less drastic means. The
idea is to control the “jaggedness™ of the sample paths by forc-
ing each vector of increments (W,,.... W,, ) to have sample
variance one. This may be accomplished simply by using the
veetor

| ke |
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and may be thought of as a weakening of rhe two-point 1dea,

which forces the sample variance of each individual increment
1o he equal to |,

6. NUMERICAL EXPERIMENTS

We first test our various technigques by approximating the
transition density as described in Section 2. The settings used
for the various approxiumations will be identified by “sampler-
subdensity-M-K " [or example, the Brownian bridge sampler
used together with the first-order (Euler) subtransition densiry,
M =8, and K = 256 will be identified as “bridge-euler-8-256."
The RMSE is also computed for these approximation schemes
(as described in Section 2). The results are summarized in
Table 1.

Figure 5 i1llustrates the performance of the varnous sub-
density methods when used to compute the transition density
directly (1.e., M = 1, no simulation). While the error associ-
ated with the simple first-order approximation is moderately
severe, a factor of 10 improvement is obtained if the model
1s transformed before applying the first-order approximation.
The scheme proposed by Elerian (1998) comes close to obtain-
ing this improvement without needing the transformation step.
When apphed to the transformed models, the techmgues pro-
posed by Shoj and Ozaki (1998) and Kessler (1997) provide
an additional order of magnitude improvement over the Euler
scheme. Although not shown in the figures, we have found
these schemes to be of little benefit when used on the untrans-
formed model. The technique proposed by Nowman (1997)
provides nearly no benefit whatsoever.

Figure 6 tllustrates the Brownian bridge and modified bridge
samplers. The first-order approximation is used for the sub-
transition densities. The transtormation step 1s not used. Using
the Brownian bridge largely solves the main problem associ-
ated with Pedersen’s method. The modified brnidge provides a
further dramatic reduction in variance. Notice that panels (¢)
and (d) of Figure 6 use only K = § sample paths, as com-
pared to K = 256 for panels (a) and (b) and Figure 2(a)—(d)
(Pedersen’s method). We see that increasing the number of
subintervals brings the expected reduction 1 bias.

Figure 7(a) and (b) illustrates the use of extrapolation and
Elerian’s subtransition density scheme, respectively, to reduce
bias. Panel (¢) shows the variance reduction due to normal-
ized variates. Panel (d) demonstrates that one still obtains the
expected reductions in bias and variance [rom increasing M
and K, respectively. All panels i this hgure use the untrans-
tormed model.

Figure 8 illustrates the Eleriun—Chib—Shephard (ECS) sam-
pler. This sampler seems to work well for M relatvely small,
but the variance goes up dramatically as the number of inter-
mediate points increases. It was nol possible to compute the
RMSE of the log density approximation with the ECS sampler
and M = 32 because the sampler often chose points below zero
(1.e., oulside the range of the model). We follow Elerian et al.
(2001) by using the transformation ¥ = log X in this case.

While it is possible to obtain reasonably accurate results
using the untransformed model, Figure 9 shows thal first trans-
forming the model provides significant benefits, especially
when used with the subdensity scheme of Shoji and Ozaki
(1998) and normalized variates, With these settings, we are
able to obtain RMSE =~ 0006 with only M = 8 and K = §.
The computational cost 1s about 16 s to approximate a like-
lthood with n = 100,000 observations using FORTRAN code



Table 1. RMSE of Log Densily Approximalions

Sampler Subdensity M K M Extrap.” RMSE Tima®
Untransformed moadel
None Euler 1 1 13678 2
None Elernan 1 1 03550 2
MNone Nowman 1 1 14467 2
Padarsen Euler 8 256 19353 539.5
Pedersen Euler 8 256 19353 538.3
Pedersen Euler 32 256 66310 21698
Bridge Euler 8 256 053565 550.4
Bridge Euler 32 256 05570 2.211.2
Mod bridge Euler 8 8 03068 17.5
Mod bridge Euler 8 =} X 06103 26.3
Mod bridge Euler 8 a X 02404 191
Mod bridge Euler 32 32 % 01180 299.3
Mod bridge Euler 32 128 X 00713 1,227 .1
Mod bridge Elerian 8 8 03562 246
Mod bridge Elerian 8 8 X 01856 25.0
Mod bridge Elerian 32 32 X 01206 401.2
Mod bridge Elerlan 32 128 X 00656 1.603.8
ECS Elerian A 8 07207 30.4
ECS Elerian 8 8 X 05164 0.3
ECSH Elerian 32 32 X 46920 403 .6
ECS” Elerian 32 128 X 29973 1,582.2
Transformed model

MNone Euler 1 1 03790 2
None Shoji | 1 01412 3
Nane Kesslaer 1 1 00864 2
Padersen Euler & 256 16500 338.2
Pedersen Euler 32 256 57507 1,254.5
Mod bridge Euler 8 8 00812 108
Mod bridge Euler 64 (3] 00255 80.7
Mod bridge Euler 8 8 x 01795 16.6
Mod bridge Shoji 8 8 00070 16.0
Mod bridge Shoji 8 8 X 00057 16.4
Mod bridge Shoji 32 32 X 00030 248.7
ECS Shoji 3 3 X 00072 25.3
ECS Shaoji 32 32 X

00020 315.5

" AN "y in thes column indicates nanmaheed vanates wors sl ofnanase antithetic varates

U An *x” in this column indicates extrapolation was used.

* Compuling time (in séconds) reguired 1o chiain likelihood for n — 100,000 observations using FORTHRAN code on a 750 MHz PC
9 Witk these settings, the sampler frequently chose points x, < 0, thus, following Elerian el al , we wusad tho tansformation ¥ - leg X

on a PC running at 750 MHz. It would be virtually impossible
to obtain anywhere near this level ol accuracy using Peder-
sen's method without our acceleration lechmques.

Tables 2 and 3 show the errors which result from estimating
parameters by maximizing the approximate rather than exact
log-likelthood. Results are shown for several different settings
of the model parameters. The errors are estimated by Monte
Carlo simulation with 512 repetitions over synthetic datasets
of n = 1,000 observations. The SMLE estimates are obtained
using the modified bridge sampler, Shoji and Ozaki's subden-
sity, M = 16 and K = 16. For comparison, we also compute
parameter estimates using the first-order Euler scheme approx-
imation. The transformed model is used for all of the expen-
ments shown in these tables. It should be noted that the Luler
scheme approximations thus obtained can be expected to be
significantly better thun those typically obtained by practition-
ers without implementing the transformation (see Fig. 5).

Table 2(a) uses the baseline model settings, #° =
(.06, .5..15) and A = 1/12. Recall that these are calibrated to
monthly observations of the U.S. short-term interest rate, For
these model settings, we also compute parameter estimates

using Pedersen’s method with M = 8 and K = 256. Peder-
sen's method 1s unable to match even the Euler scheme. On
the other hand. the approximation errors of the SMLE esu-
mates obtained using our techniques are negligible (compare
with the sample distribution of Oy, 5 — 6”).

Panel (b) increases the volatility of the model. Note that
computing the exact likelihood requires the evaluation of a
Bessel function, which in turn requires 26,8, /05 > 1. Setting
#° = (.06,.5,.22) comes quite close to this boundary. For
some samples, the constraint appears to bind when maximiz-
ing the likelihood. These samples are discarded. This model
causes our methodology some difficulry, apparently because
the data often venture close 1o the singularity at zero, The
estimates are nonetheless quite good.

Panel (¢) reduces the maodel's volatility to ), = .03.
Panel (d) sets the mean reversion parameter to ¢, = 4. Again,
the constraint 26,6, /6; > | comes into play. Neither ol thesc
tests presents any difficulty to our methodology.

Panel (e) increases the mean reversion paramcter by a factor
of 10 to #, = 5.0. Panel () uses the baseline setting for 6°,
but stretches the sampling interval 1o two years, Both of these
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Figure 5. Approximation Error, log p( X, ,t; X,.8) =logp( X, .t, X, ,s8), for Various Schemes Without Using Simulation (ie, M=1, K=1) Given A =

t—s=1/12, X, =.10, and # = (.5, .06, .15).

settings result in large biases for the first-order approximation,
but pose little difficulty for the SMLE technique,

7. STOCHASTIC VOLATILITY

While the previous sections have focused on techniques
designed to efficiently approximate the likelihood function for
scalar models, most of these ideas are easily generalized to
the multivariate setting. With some work, they may also be
apphed to latent vanable models. The short-term nlerest rate

and many other financial time series are well known o exhibit
properties such as fat-tails and persistent volatlity patterns
which are inconsistent with time-homogeneous scalar models
(c.g., Ghysels, Harvey, and Renault 1996). A variety of alter-
native models has been proposed. To illustrate our methodol-

ogy, we will examine stochastic volatility (SV) models of the
form

dX = pux(X)dt +oy(X)exp(H)dW,
dH = p (X, H)dr+o,(X, H)dW,.
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Such models have been examined by Gallant and Tauchen
(1998). Andersen and Lund (1997), and Eraker (2001) among
others. The second component, H, corresponds 1o an unob-
served volaulity factor.

In order to obtain a likelihood, the unobserved factor must
be integrated oot. Several ways of going about this have
been proposed for discrete-time models, for example, Daniels-
son and Richard (1993), Jacquier. Polson, and Rossi (1994),
Richard and Zhang (2000), Sandmann and Koopman (1998),
Kim, Shephard, and Chib (1998). and Pitt and Shephard
(1999), In the contnuous-time context, it is less straight-
forward to integrate out the unobserved factor, and alterna-
tive approaches are used. The efficient method of moments
approach has been used by Gallant and Tauchen (1998) and
others, Merthods hased on the empirical characteristic function
have been proposed by Chacko and Viceira (1998) and Sin-
gleton (1997). Markov chain Monte Carlo approaches have
been proposed by Eraker (2001), Jones (1999b), and Elerian
(1999),

We now outline a technique to approximate the likelihood
of continuous time SV models. For simplicity, we will assume
that W, and W, are independent; this is not an essential part
of the methodology. We provide a small Monte Carlo study
which demonstrates that the procedure is effective and reason-
ably fast. The methodology 1s used to estimate an SV model
of the LS. short-term interest rate in Section 8. Further refine-

ments dre undoubtedly possible; a more detailed study is cur-
rently underway.

The basic 1dea is relatively straightforward, We are inter-
ested in the process (X(¢), H(r)), where X 1s observed at
times o, f,....,4, and H is latent. Let X, = X(t,), H. = H(t,),
aid Fo=0(Hp, Koo Xjsoono Xp) PO T= 1,000 % The goal 18
to obtain p( X, |F,). If we knew the distribution of H. |7, we
could use

,”[ X:—'—I

F) = fF[XHI (X b)) dPy 5 ().

We  will approximate H,|F. Given the distribution of
H,_,|F,_,. 1t can be propagated forward using
F[X.'|‘5rr—1‘ H{—I ”J(HJ—I |-‘-}:—|]

P{Hi|'5{'.} = j ptlH.l'|X.l" hf--t}EfPHJ_;l_T,{hI—I}‘

p(H, i|#) =

[t remains only to find H,. The approach we take is to estimate
f, as an unknown paramecter, although one could equally well
integrale il out using an appropriate importance sampler. This
s the basic idea of a particle filter (see, e.g., Pitt and Shephard
1999 and the references therein).

To mmplement this 1dea, we use the following procedure.
Consider the model

dZ = u(Z)dt+ o(Z) dW
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where

W _ i pd Z) f{ay(Z) O (W,
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The problem is to determine the density p(X,, |, ¢), where
Fo=a(Hy, Xo, Xy ooni X;):
The first-order approximation is given by

Pt s 0) =Bz g+ p(2) (0 = 5), 2z (8 —35))

where ¢ 18 the multivariate Gaussian density and X = go’.
Also, let s=1, < T, <+ - < T, =1 be a partition of the inter-
val |s, ¢]. and let

P82, 800)

M
:f .l_[ Pnllwnr' T l'*"*In-r—l'':"'ru—l'ﬁ]{’f’:*"{'."‘:'ll‘"

= |

‘o l[.?_ﬂ,f_| }

where w & R* for m=0,..., M, A is the Lebesgue measure
in R*'Y~1 and we use the convention w, =z, and w,, = z,.
Since H 15 unobserved, it must be integrated oul as well. One
obtains

F'Lmufn 1+ T 0)

X; X
=f;J{.H|((IIF+EI).II+F; (hl)'l Iriﬁ) dPHIIHrlllifl{hjm;i‘!_l_Jr}u
(& ¥

As 1n the scalar case, the integrals are evaluated using
’ : _— "y M+ g
Monte Carlo integration. Let g(vy. (('). (2). ..o (') vy)

be an importance sampler on R*Y, and let
1 Uy ap-

-( L.l)u(ulﬁltlj':) ----- ( ALM 1)1 Llﬁ:.'l‘f)'l
Ve 1 Ve m-1,

be draws from ¢. Then one defines
PN X T )
13 I () i () 7 10)
R | P o) Y ol PR 0 P
with the convention u, , = X; and u, ,, = X, , for all £.

The theoretical framework is essentially unchanged from
the scalar case. In particular, sufficient conditions for

lim p™ (-1

dm P Y= Bt a8 @) in L'(A)

may be found in Pedersen (1995b). For a fixed realization
T . Y, 1). one obtains (with standard regularity condi-

lim p'™ M (x 1 7. 0) = p"(x;,1; F, 0)

K—oo

from the strong law of large numbers in the usual way,
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The 1ssuc of how to construct the importance sampler
remains to be addressed. The approach taken in this article is
as follows. Suppose that the distribution of H.|Z, 1s known.
We need a way to sample

v= (oo () () (i) )

First. draw v, from H,| .. and let 1, = X,. Now, proceed recur-
sively for m=0...., M — 2: given (u,, v, ), draw u,, , using
the modified Brownian bridge sampler described 1in Scction 5:

”m-—l s N': ”rn +-ﬂ"". r.'.!'ﬁ" 'TE a}

X —u

3 +1

#‘J{,ur = ( f = )
'rr'—l-! Tu:

5 - fM—=—m—|
{TI. I == 'I“T_'Ii { o um }

i

M —m
and draw v, , “blindly,”
ks ™~ N0+ iy B O 6)
P = Hplit,. v,)
G5 = (i ,)
where 6 = (1, —(,)/M. And finally, draw v,, using the same
procedure as form=1,... M —1.

Now, we need to propagate the distribution of H.|F. for-
ward. Consider the K draws {v, 4.k = 1...., K} from the
sampler, together with the corresponding weights

rl:.]'r=l :r,:H :I((“* m}’ Tm:l (l‘i . I)‘ TH.'— | » H)

i, m

"h = 1t My 4 ﬁu_.l. 2

4V, 0 (1::} {lfj AR (u:: ), 1"A-.M]
Let (A k=1,..., K} denote the weights after normalizing so
that they sum to 1. The collection {(v, . A ). k=1..... K|

of puints and weights may be thought of as representing a
discrele approximation to the density H, |7, .

Various techniques are available to form a distribution func-
tton from this approximation and draw points from it. While
one could simply use the approximation

Py, (F ) = Y, X

g P < h

the resulting likelihood function is discontinuous in ). and
will cause difficulties for the optimizer. Therefore, we use a
Hermite (unction to approximate the density, and draw points
[rom 1t instead.

We repeat the Monte Carlo experiment of Eraker (2001)
using the methodology described above. Synthetic datasets of
length n = 500 are generated from the model

dX = (0, + 0:X)dt +exp(H/2)X'? dW,

dH = (0 + 0,H) dt + 0.dW, (19)
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with parameter vector #° = (0002, —.002, —.3, —.03, .3).
This model 1s said to be calibrated to the U.S. short-term inter-
est rate with nme measured in days. Data are generated using
the Euler scheme with 50 subintervals. Estimates are obtained
using K = 128 sample paths and M = 8 subintervals. Little is
lost by reducing the number of sample paths to K = 64. We
do not recommend using less than this. Increasing the number
of subintervals does not improve the precision of the estimates
sigmiicantly, The mean, standard error, and RMSE of param-
eler estimates over 512 Monte Carlo repetitions are shown
in Table 4. For comparison, we reproduce Eraker's results as
well. Our results are very similar. The computational cost is

about 1.2 s per evaluation of the likelihood function on a
750 MHz PC.

Note that the estimates of #, and (), appear to be quite
imprecise. This is due to the parametric form of the model.
In contrast, the estimates of #, /6, and #,/#, are quite good.
While we have maintained the model in the form used by
Eraker, it might be better to instead use

dX = 0,(X —p)dt+ o exp(H) X' dW,
.‘:I'H - H_q.H I'-'r“‘ +H5IJW:

where = —#8, /6, and o = exp(—0,/0,),



Table 2. Approximation Errors for Parameter Estimates

f, i, log L
(a) #2 — (.06, .5, 78), A="1;12 dF =530
MLE-TRUE: Mean 000861 04890 00020 1.54137
Std. err. 00796 12532 00340 1.24511
RMSE 00797 13442 00341 1.98074
MLE-EULER! Maan 00026 01781 00374 .189031
Std. err, .00003 01103 00076 54499
HMS3E 00026 02095 00382 B7700
MLE-SMLE": Mean —.00062 —. 00801 —.00223 8.07971
(Pedersen) Std. err, 00256 03681 00175 4 76355
RMS3E 00264 03765 00284 9. 37802
MLE-SMLE"; Mean 00000 —.00005 -.00000 — 00469
Std. err. 00000 00073 .00001 01340
RMSE 00000 00073 00001 01419
(b) 4 = (.06, .5, .22}, A=1/12, df* =248
MLE-TRUE: Mean —.00031 0548713 00012 1.55119
Stdl. err. 01136 12808 00635 1.25344
RMSE 01136 14126 00535 1.99386
MLE-EULER: Mean 000869 04941 00701 3.01730
Std. err, 00014 03111 00136 1.90071
RMSE 00070 05838 00714 3.56548
MLE-SMLE": Mean 00001 — 00357 00018 03479
Sid. ermr. 00014 01678 00119 93214
RMSE 00014 01714 00120 93187
(c) = (.08, .5, .03, A=1/12, 9= 13333
MLE-TRUE: Mean 00005 04378 00001 1.57035
Std. err. 00162 12239 00070 1.29601
RMSE 00162 12982 00070 2 03567
MLE-EULER: Mean 00001 01287 00087 00428
Std. erm 00000 00595 .00015 05930
RMSE 00001 01418 00069 05942
MLE-SMLE?": Mean 00000 —.00011 — 00000 —.00227
Std. err, 00000 00005 .00000 00107
RMSE 00000 00013 00000

00251

NOTE: Results of Monta Carlo study assessing the quality of parametar estimates obtained using various technigues. Each experi-
ment uses 512 replhications, each over synthetic datasets ot 7= 1,000 cbservations. The goal is for the distance from the approsima-
tions 1o the exact MLE to be a small fraction of the distance from the axact MLE 1o the data-generating paramaeter.

A Degrees of freedom of the exact noncentral chi-square transition density.

0 Samplar — Pedarsen, subdensity — Euler. M — B, K — 256, transformed model.

~ Sampler = modified bndge, subdensity = Shoji and Ozaki, M = 16, K = 18, nomallzed varales, transformed model.

Note that our methodology can be easily used to estimate
discrere ime SV maodels by serting M = 1. We have tested the
methodology using some of the models examined by Jacquier
et al. (1994) and others with similar results,

8. APPLICATION

To 1llustrate the methodeologies proposed 1n this article,
we estimate some simple models of the short-term interest
rate. We vse the dataset previously examined by Gallant and
Tauchen (1998), which consists of 1809 weekly observations
of the three-month treasury bill rate (January 5. 1962-August
30, 1996). Rates are annualized and quoted on a discount
basis. The data are plotted in Figure 10,

We first fit a sunple scalar model, dX = (6, + 6. X) dt +
B, X% dW. commonly referred (0 as the constant elasticity of
volatility (CEV) maodel. It has been studied previously (using
other esnmators and data) by Chan et al. (1992), Tauchen

(1995), Aft-Sahalia (1996), Conley, Hansen, Luttmer, and
Scheinkman (1997). and others.
We also fit the stochastic volatility model given by
dX = (0, +0.X) dt + 0, X" e" dW,
dH = 0. H dt +8,dW,

(20)
(21)

with W, and W, independent. Similar models have been exam-
ined by Gallant and Tauchen (1998), Andersen and Lund
(1997), and Eraker (2001). Time is measured in years.
Maximum likelihood estimates and log likelihoods are given
i Table 5. For the scalar model, we have used M = 16 and
K = 16 with the modified bridge sampler, transformed maodel,
normalized vartance random scheme, and Shoji and Ozaki's
subdensity. For the SV model, we use M =8 and K = 256
with the techniques described in the preceding section. Since
the scalar model 18 nested within the SV model, the restriction



Table 3. Approximation Errors for Parameter Estimates, Continued

H, H, #, log L
() = (.06, 4, 15), A=1/12, df* =427
MLE-TRUE: Mean 00077 04589 00008 1.55436
Std. err. 01019 11201 00347 1.28351
RMSE 01022 12099 .00347 201538
MLE-EULER: Mean 00027 01459 00320 27005
Std. err. 00005 01066 00072 80164
RMSE 00027 01807 00328 65920
MLE-SMLE": Mean — 00000 —. 00011 00001 01275
Std. err. 00002 00109 00004 038611
RMSE 00002 00109 00004 03827
(e) 8° =(.06, .5, .18), A =1/12, df =53.33
MLE-TRUE: Mean 00007 01506 00000 1. 58353
Std. err. 00082 AB302 00427 1.39283
RMSE 00082 AB300 00427 211592
MLE-EULER: Mean 00018 83515 00266 31509
Std, err, 00001 16274 00257 73929
RMSE 00019 94919 026879 80325
MLE-SMLE*: Mean .00000 ~,00734 —.00005 —.14917
Std. err. .00000 00423 00002 04223
RMSE 00000 00847 00005 15502
() = (.06, .5, .15), A=2, df*=58.33
MLE-TRUE: Mean 00036 00126 00038 1.52724
Std. err. 00173 04305 00564 1.24582
RMSE 00176 04302 00564 1.87013
MLE-EULER: Mean 00367 21218 05275 21.19312
Std. arr. 00020 02967 00458 5.66304
RMSE 00367 21424 05295 21.83523
MLE-SMLE®: Mean 00006 00712 00041 —-2.63215
Std. err. 00004 00778 000N 95334
RMSE 00007 01054 00100 2.799186

2 Degrees ol freedom ol the exact noncentral chi-square transition density.
9 Sampier — Pedersen, subdensity = Euler, M =B, K = 256, lransformed modol
- Sampler = modified bridge, subdensity = Shoji and Ozaki, M = 16, K — 16, normalized vanates, transtormed model,

can be tested using, for example, the likelihood ratio statistic. SV model results in a huge improvement in the log likelihood.
Although setting 6, = 0 causes #; to become unidentified, this ~ The scalar model does not appear to be plausible.

issue may be addressed along the lines of, for example, Gallant Notice that the estimates for #, and 6, are insignificantly
(1997) or Andrews and Ploberger (1994). In any event, the different from zero in both models. In a more exhaustive study.

Table 4. Monte Carlo Study for SV Mode/

f, i, i, /H, f, fl, ts /8, o,
True 00020 ~.00200 —.10000 30000 —.03000 .10000 30000
SMLE
Mean .00089 -.00886 -.10319 —.43425 04350 10040 31734
RMSE .00102 00986 05523 27931 02802 00483 06888
Eraker (2001)
Mean 00127 -.01271 —-.38174 03873 24297
RMSE 00154 01468 21844 02209 07173

NOTE: Mean and root mean squared error of parameters estimated on synthalic data (n = 500) generated from (19). The sampling
frequency is Al = 1, The pararmeters are callbrated to match U.S. short-term interest rates with time measured in doys The Monte
Carlo expariment was run for 512 repetitions. Monte Carlo resulls fram Eraker (2001) are Included for comparison
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Figure 10. Weekly Observalions of the Three-Month Treasury Bill Rate, 1/5/1962-8/30/1986, n — 1808,

Durham (20000 finds that the constant term in the drift s
needed to avoid having an artracting boundary at zero, but that
the benefits of including additional terms are negligible. This
is true for both the scalar and stochastic volatulity models.
Notice also that the esumates for ¢, and ¢, are similar
for both models (the unconditional mean of H 1s 0, and
thus exp(H) vacillates around 1). The estimates are slightly
lower i the SV model since this model generates conditional
densities with thicker tails, which helps to catch the extreme
events. These parameters are estimated quite precisely in the
scalar model, Including the unobserved component reduces the
precision of these estimates, but not to an unacceptable degree.
There is a great deal of covariance between #, and 6 in the
SV model. Volatility tends ta be high when interests rates are
high: the estimator has difficulty distinguishing whether this

1s due to persistence or a level effect. Much of the lack of

precision In these estimates appears to be due to this.

The wvolatility component is an Ornstein—Uhlenbeck pro-
cess, Its unconditional distribution i1s Gaussian with mean zero
and variance #7/(—265) =~ .34, The mean reversion parame-
ter 18 about —4, which corresponds to a half-life of about two
months.

9. CONCLUSIONS

Despite the theoretical advantages of maximum hkelihood
estimation, 1t has been seldom used in estimating continuous-
time diffusion models. The transition densities are not known
for most models of interest, and previously available approx-
imation techniques have either been of questionable accuracy
or computationally intensive,

The simulation-based approach suggested by Pedersen
(1995b) and Santa-Clara (1995) 1s appealing [rom a theoret-
ical and intuitive viewpoint; however, we find that it can be
prohibitively costly to attain even the accuracy ol the simple
first-order approximation. Eraker (2001), Jones (1999a), and
Elerian ct al. (2001) propose nieresting MCMC approaches
to estimating diffusion models. Elerian et al. suggest the idea
of improved importance sampling to accelerate the conver-
gence ol the Monte Carlo integration at the heart of the
simulated likelihood approach. However, computational cost
remains high.

We build upon this work, examining other importance sam-
plers, alternate random schemes, higher order sublransition
densities, extrapolation, and a variance-stabilizing transtorma-
tion of the model. Combining these ideas results in highly
cfhicient approximations. When applied to synthetic data (n =
1,000) generated by a CIR model with parameters calibrated
to match monthly observations of the U.S. short-term inter-
est rate, we are able to obtain maximum likelihood estimates
with a negligible approximation error in well under | min. The
log-likelthood function itself can be approximated with great
accuracy n about .| s,

Our results suggest that the best performance is obtained
using the modified bridge sampler with the subtransition den-
sity of Shoji and Ozaki applied to the transtormed model. The
number of subintervals M and sample paths K must be deter-
mined by experimentation.

Future work will undoubtedly uncover further refinements
in these techniques, as well as point to situations where one

Table 5. CEV and SV Models Fitted to Weekly Observations of the Three-Month Treasury Bill Rate,
Jan. 5, 1962-Aug. 30, 1996

Maode! log L i, t, H, e, o (s
CEV 312.32 8277 —.1048 1032 1.4502
(.5004) (.1167) (.0038) (.0210)
SV 913.95 176 018 105 1.247 4.104 1.682
(.291) (.06G) (.028) (.154) (.747) (.144)

NOTE: Parameter astimates for CEV model and the SV model in Equation (20), Standard errors are in parentheses below the

parameter estimatas. Time s measured in years



or the other particular vanant may be preferred. While the
main locus of this article i1s on scalar models, an approach
to applying some of the ideas to estimate a two-factor, latent
variable model is also proposed. Extending these techniques
lo models with jump components would also be of interest.
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