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NUMERICAL TESTING OF THE STABILITY
OF VISCOUS SHOCK WAVES

LEON Q. BRIN

Abstract. A new theoretical Evans function condition is used as the basis
of a numerical test of viscous shock wave stability. Accuracy of the method
is demonstrated through comparison against exact solutions, a convergence
study, and evaluation of approximate error equations. Robustness is demon-
strated by applying the method to waves for which no current analytic results
apply (highly nonlinear waves from the cubic model and strong shocks from
gas dynamics). An interesting aspect of the analysis is the need to incorporate
features from the analytic Evans function theory for purposes of numerical
stability. For example, we find it necessary, for numerical accuracy, to solve
ODEs on the space of wedge products.

1. Introduction

Stability is an important issue for any evolutionary system. It is the arbiter in
questions of possible asymptotic states and physically attainable solutions. The
problem of stability of viscous shock waves dates back to treatment of the scalar
case in the late 1950’s [20]. Despite the efforts of many since then, no analytic
results exist which determine the stability of strongly nonlinear viscous shocks.
However, a theoretical stability criterion (necessary and sufficient condition) has
been developed by Zumbrun and Howard [22] in terms of the Evans function. The
Evans function is an analytic function introduced by Evans [5, 6, 7, 8] for the
purpose of locating eigenvalues of nonnormal ordinary differential operators, and
developed into its present form by Alexander, Gardner and Jones [1]. The objective
of this paper is to develop a flexible computer program which evaluates the criterion
in a way that is suitable for rapid determination of stability of all types of viscous
shock waves.

The present work is related to that done by Daniel Michelson [18, 19]. He carried
out a numerically assisted proof of the stability of the Bunsen flame profiles in the
Kuramoto-Sivashinsky equations. However, there are some differences between his
work and the present work. Michelson dealt with an operator with no kernel, and
he used an interior method. That is, he performed a numerical calculation on a
grid of points covering a region of the complex plane. In this work, we will deal
with an operator with kernel, and use a method requiring calculations only on a
grid along the boundary of a region of the complex plane.
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1072 LEON Q. BRIN

In addition to Michelson’s work, several other developments in Evans function
theory were critical to the development of the present algorithm. Alexander, Gard-
ner and Jones [1] proved the analyticity of the Evans function away from the essen-
tial spectrum, in particular in the right complex half plane. More recently, Gardner
and Zumbrun [10] and Kapitula and Sandstede [13] independently proved that the
Evans function can be analytically extended part way into the essential spectrum,
thus the left complex half plane. A version of this result is presented in Theorem 1.
This result, paired with Zumbrun and Howard’s necessary and sufficient condition
for stability, leads to our numerical algorithm for determining linear stability of
viscous shocks.

As in the work of Michelson [18], the problem is first reduced to counting the
zeroes of the Evans function in a bounded region. In contrast to [18], a winding
number argument is then used to count the zeroes. Some issues that arise and are
resolved include the following.

First, the second fastest growing mode of a particular ODE cannot be computed
individually since the fastest growing mode dominates the numerical solution. This
is a type of stiffness which is handled by doing the computation in wedge space (see
subsection 3.3).

Second, inherent in the computation of the Evans function is the possibility
that numbers of nearly equal magnitude will be subtracted, resulting in a large
loss of significance: loss of 4 significant digits has been encountered. This leads
to the need for sharp error estimates. Linearity of the eigenvalue equation and of
the Runge-Kutta method are exploited to derive a posteriori error estimates which
approximate the actual error within a few orders of magnitude (see subsection 3.4).

Third, the Evans function must be evaluated at sufficiently many points on the
boundary of the bounded region that the reported winding number is correct. An
adaptive stepping algorithm based on the values of the Evans function and its
derivatives is developed for this purpose (see subsection 3.3).

In Section 4, application of the algorithm to several test cases will demonstrate
accurate evaluation of the Evans function (and therefore accurate prediction of
stability or instability), plus stability of viscous shock waves to which no current
analytic results apply.

2. Preliminaries

2.1. Basic definitions.

Definition 1 (Viscous shock wave). A viscous shock wave is a traveling wave so-
lution, u, of the n-component conservation law

ut + (f(u))x = (B(u)ux)x(1)

such that u′(±∞) = 0, u(±∞) = u±.

Such waves are found by using the ansatz u(x, t) = u(x − st) (a traveling wave
where s is the speed of propagation) in equation (1). Integrating from −∞ to x
and enforcing the boundary conditions gives the traveling wave ODE

−s(u− u−) + f(u)− f(u−) = B(u)u′.(2)
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Any solution to this equation with appropriate behavior at ±∞ is a viscous shock
wave for equation (1). Having fixed u− and s, the Rankine-Hugoniot condition

−s(u+ − u−) + f(u+)− f(u−) = 0(3)

is used to solve for the possible values of u+ = u(∞).

Definition 2 (Viscous shock wave manifold).

M = {uδ : uδ is a viscous shock wave solution of (1), δ ∈ U ⊆ R`, U open}

is called the viscous shock wave manifold for (1) if δ continuously indexes all viscous
shock wave solutions of (1) with fixed end states, u±.

Definition 3 (Orbital stability). A viscous shock wave u is called orbitally stable
if, for each solution u of (1) with |u(x, 0) − u(x)| sufficiently small, there exists
δ(u) ∈ R` such that uδ ∈M and

u→ uδ as t→∞.

Exactly how small |u(x, 0)−u(x)| should be is still under investigation. Current
results [22] require |u(x, 0)− u(x)| ≤ ε(1 + |x|)−r for some r ≥ 3/2.

2.2. The Evans function. The linear evolution operator associated with equation
(1) is obtained by making the change of variables τ = t, ξ = x− st, and linearizing
about the resulting stationary viscous shock wave solution. The result is wτ = Lw,
where

Lw = −(A(ξ)w)ξ + (B(ξ)wξ)ξ(4)

and A is defined by

A(ξ)w = f ′(u(ξ))w − sw −B′(u(ξ))wu′(ξ).(5)

Stability is related to the spectrum of L, but not in a direct way, since the
essential spectrum accumulates at the origin [22]. The precise relation comes from
analysis of the Evans function.

To define the Evans function, rewrite the eigenvalue equation, Lw = λw, using
(4) to get

(B(ξ)w′)′ = (A(ξ)w)′ + λw w(±∞) = 0, w′(±∞) = 0,(6)

where a prime denotes a derivative with respect to ξ. Now let W = ( ww′ ) and
express (6) as the first order system

W ′ = Ã(ξ)W, W (±∞) = 0,(7)

where

Ã(ξ) =
(

0 I
B−1(ξ)(λI +A′(ξ)) B−1(ξ)(A(ξ) −B′(ξ))

)
.(8)

Further, let Y − ≡ {W−1 (ξ), . . . ,W−n−(ξ)} be a basis for the solutions W which
decay to 0 as ξ → −∞, and let Y + ≡ {W+

1 (ξ), . . . ,W+
n+(ξ)} be a basis for the
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solutions W which decay to 0 as ξ →∞. If n−+n+ = 2n, then the Evans function
is defined by

D(λ) = det



W+
1 (0)
...

W+
n+(0)

W−1 (0)
...

W−n−(0)


.

Notice that D(λ) = 0 implies linear dependence of the vectors in Y − ∪ Y +.
Since Y − and Y + are (individually) linear independent sets, linear dependence of
the vectors in Y − ∪ Y + implies the existence of a vector, W0 (determined by some
linear combination of the W+

i (0) or W−i (0)), such that the solution of (7) with
initial conditions W (0) = W0 decays in both forward and backward time. In other
words, λ is an eigenvalue of L.

Now, since u approaches constant values at plus and minus infinity, Ã
also approaches constant values, Ã±, at plus and minus infinity. In fact,
limξ→∞ |Ã+ − Ã(ξ)| = O(eα

+ξ) for some α+ < 0, and limξ→−∞ |Ã− − Ã(ξ)| =
O(eα

−ξ) for some α− > 0. So, for each negative eigenvalue µ+
i of Ã+ and positive

eigenvalue µ−i of Ã−, the asymptotic estimate (similar to one in [4])

W±i (ξ) =
(

1 +O(eα
±ξ)
)
eµ
±
i ξV ±i , i = 1, 2, . . . , n±,(9)

can be used to approximate W±i (ξ±0 ) for some large |ξ±0 | (see Theorem 1 below).
In essence, estimates (9) solve equation (7) on the complement of (ξ−0 , ξ

+
0 ). These

values can then be used as “initial” conditions in solving equation (7) for the needed
quantities W±i (0).

However, using equation (9) assumes knowledge of µ±i and V ±i , the eigenvalues
and eigenvectors of Ã±, which generally will be obtained numerically. But, when
the eigenvalues and eigenvectors of A± are known and B = I, determining µi and
Vi is trivial [2]. Also, when B = I and Re(λ) > 0, Ã± has n positive and n negative
eigenvalues [2], implying n− + n+ = 2n, and the Evans function is well defined in
the right half plane.

2.3. The Gap Lemma. A critical tool in the development of our algorithm is the
Gap Lemma. As applied in the context of the previous section, it provides a means
for computing the W±i (0) necessary for evaluation of the Evans function. Just as
importantly, it supplies a condition for establishing the analyticity of the W±i (0)
(and therefore the Evans function) as functions of λ. A definition and a standard
lemma of matrix theory [14] are necessary to elucidate its statement.

Definition 4 (Spectral gap). Let A be a matrix and µ one of its eigenvalues. Then
the spectral gap g is given by

g(µ) = Re(µ)−max{Re(ξ) : ξ ∈ σ(A), ξ 6= µ}.

Lemma 1. Let A be a matrix and γ = max{Re(ξ) : ξ ∈ σ(A)}. Then, for any
γ̃ > γ, there exists C(γ) so that

|eAt| ≤ C(γ̃)eγ̃t.
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Theorem 1 (The Gap Lemma). Let A(x, λ) be a matrix such that there exist con-
stants M > 0, C1 > 0, and α > 0 so that |A(y, λ) − A(−∞, λ)| ≤ C1e

αy for all
y ≤ −M . If µ(λ) is an eigenvalue of A(−∞, λ) with associated eigenvector V (λ)
such that

(i) A(−∞, λ), µ, V are analytic in λ in a neighborhood of λ0,
(ii) g(µ) > −α at λ0, and
(iii) M is so large that C1C2e

−Mα/(γ̃+α) < 1/2 where γ̃ and C2 are the constants
guaranteed by Lemma 1,

then there exists a solution ϕ(x, λ) of W ′ = AW with

|ϕ(x, λ) − eµ(λ)xV (λ)| ≤ 2C1C2e
αx

γ̃ + α
|eµ(λ)xV (λ)|(10)

for all x ≤ −M . Further, ϕ is analytic in λ in a neighborhood of λ0.

This is a special case of the Gap Lemma proved in [10, 13] with error bounds
explicitly stated for numerical use. The Gap Lemma extends standard results (e.g.,
[4]) to the case of negative spectral gap. See [2] for proof. The analogous statement
for A+ holds as well of course.

2.4. Stability criterion. The main driving force for the algorithm of this paper
is the following theorem [22].

Theorem 2 (Stability criterion). A necessary and sufficient condition for linear
orbital stability of viscous shock waves is that the number of zeroes of the Evans
function in {Re(λ) ≥ 0} equals the dimension ` of the viscous shock wave manifold
M .

This result reduces the question of stability to counting zeroes of the analytic
Evans function.

3. The algorithm

3.1. Overview. Theorem 2 suggests the following algorithm.
1. Find a bounded region, Ω ⊂ C, which contains all the zeroes of D in the

closed right half plane.
2. Apply the argument principle [21] to Ω to find the number of zeroes of D in

the closed right half plane.
3. The viscous shock wave is stable if and only if the number from 2 equals the

dimension of the viscous shock wave manifold.

3.2. Bounding the search. By an energy estimate [2] on equation (6), the zeroes
of the Evans function must lie in the truncated wedge

V = {λ ∈ C : Im(λ) + Re(λ) ≤ r, Im(λ) − Re(λ) ≥ −r, Re(λ) ≤ r/4},
where r = ‖f(ξ)‖2∞/‖B‖2, f(ξ) = ‖A(ξ)‖2 (see Figure 1). Obviously, this is not a
bounded region, though. By Theorem 2, the search may be limited to the portion
of the wedge intersecting the closed complex right half plane, so we take Ω =
V ∩ {λ ∈ C : Re(λ) ≥ 0}. Also, we define Γ .= ∂Ω.

Since the argument principle will be used to count the zeroes inside Ω, care
must be taken that Γ does not contain any of the zeroes. However, D(0) = 0
with multiplicity at least the dimension of the viscous shock wave manifold [12], so
the argument principle may not be applied to any region whose boundary includes
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Figure 1. Stability is reduced to counting zeroes of the Evans
function in a truncated wedge.

r

r/4

-r

C

Figure 2. Modification of Ω to accommodate the origin, where
D = 0.

the origin. Luckily, the Gap Lemma indicates a domain of analyticity including a
neighborhood of the origin. So it is allowable to modify Ω slightly to accommodate
the origin. A natural choice is to extend Ω in a semicircular fashion around the
origin, and for simplicity force the straight line boundary segments of Ω parallel to
the axes (see Figure 2). Of course, there is a limit, depending on α, to the size of
the semicircle. For example, its radius is usually limited by the branchpoints of µ±i
when n = 2.

Taking Ω as in Figure 2 leads to counting the zeroes of D in the right half plane,
at the origin, plus, potentially, some in the left half plane. So when the computed
winding number exceeds the dimension of the viscous shock wave manifold, the
“extra” eigenvalues must be located at least approximately. If they have negative
real parts (i.e., they lie in the semicircle), then the wave being tested is stable;
otherwise, the wave is unstable. The occurence of an “extra” eigenvalue arises in
testing viscous shock waves for the cubic model, for example (see subsection 4.2).

3.3. Applying the argument principle. The first problem in calculating the
winding number of D[Γ] lies in evaluating D(λ) for a fixed value λ. This appears
to be easy. As described in subsection 2.2, equation (7) must be solved for W (0)
once for each of 2n different “initial” conditions. A naive approach might be to do
this directly, solving equation (7) 2n times. However, the numerical solution of (7)
is dominated by the fastest growing mode. So, regardless of the initial conditions
W (ξ0), |ξ0| large enough, the numerical solution for W (0) will be a scalar multiple
of the fastest growing mode, which of course is incorrect. A second attempt might
be to solve for all of the modes simultaneously, subtracting from the slower growing
modes their components in the direction of the faster growing modes at each step.
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However, in practice this is equally unsuccessful in producing the correct values for
the slower modes at 0.

It turns out that solving for the modes simultaneously is a good idea, but or-
thogonalization is not how to do it. Instead, the wedge product should be used.
The wedge product as used here is strictly a bookkeeping tool. No reference to
differential forms is made or implied. Instead, we consider the operator ∧ defined
on the standard basis vectors of Cm by the properties

ei ∧ (ej + xek) = ei ∧ ej + xei ∧ ek,
(ei + xej) ∧ ek = ei ∧ ek + xej ∧ ek (bilinearity),

and

ei ∧ ej = −ej ∧ ei (antisymmetry).

This definition extends to an operation

∧ : C(mi ) × C(mj ) −→ C( m
i+j )(11)

by writing each vector as a linear combination of its basis vectors. A vector v ∈
C(mi ) in this context is referred to as an i-form. For example, if m = 4 and
x, y ∈ C(m1 ) (i.e., x and y are 1-forms), then the 2-form x ∧ y is computed as
follows:

(12) x ∧ y =


x1

x2

x3

x4

 ∧

y1

y2

y3

y4

 =

(
4∑
i=1

xiei

)
∧

 4∑
j=1

yjej


=

4∑
i=1

4∑
j=1

xiei ∧ yjej =
4∑
i=1

4∑
j=1

xiyiei ∧ ej

=
3∑
i=1

4∑
j=i+1

(xiyj − xjyi)ei ∧ ej =


x1y2 − x2y1

x1y3 − x3y1

x1y4 − x4y1

x2y3 − x3y2

x2y4 − x4y2

x3y4 − x4y3

 .

It follows that the Evans function,

D(λ) = det



W+
1 (0)
...

W+
n+(0)

W−1 (0)
...

W−n−(0)


(13)

can also be written as

D(λ) = W+
1 (0) ∧ · · · ∧W+

n+(0) ∧W−1 (0) ∧ · · · ∧W−n−(0)(14)

where, again, the wedge product is to be interpreted as an element of C( 2n
2n ) = C.
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Using the notation

W± = W1 ∧ · · · ∧Wn± ,

the Evans function is expressed as

D(λ) =W+ ∧W−.

Moreover, since each W±i satisfies the linear ODE W ′ = ÃW , W± satisfies the
linear ODE

(W±)′ =
n±∑
i=1

W±1 ∧ · · · ∧W±i−1 ∧ (W±i )′ ∧W±i+1 ∧ · · · ∧W±n±

=
n±∑
i=1

W±1 ∧ · · · ∧W±i−1 ∧ ÃW±i ∧W±i+1 ∧ · · · ∧W±n± .(15)

Relationships (15) then define matrices A± such that

(W±)′ = A±W±.(16)

Now to evaluate the Evans function, it is only necessary to solve the two equations
(16). As an example, take n = 2 and B = I, implying n+ = 2 = n−. In the
following calculation, the ± superscripts are suppressed since the same formula
applies in both cases. In fact, we will adopt this as a standard notation—absence
of the ± superscripts implies that the statement holds in both cases.

Lemma 2. If n = 2 and B = I, then

A(x, λ) =


0 0 1 −1 0 0
−A′12 A11 A12 0 0 0
λ−A′22 A21 A22 0 0 1
A′11 − λ 0 0 A11 A12 −1
A′21 0 0 A21 A22 0
0 A′21 λ−A′11 A′22 − λ −A′12 A11 +A22

 .(17)

Proof. Let

W1 =


x1

x2

x3

x4

 and W2 =


y1

y2

y3

y4

 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERICAL TESTING OF THE STABILITY OF VISCOUS SHOCK WAVES 1079

Then using equations (8), (12) and (15),

W ′ = (W1 ∧W2)′ = W ′1 ∧W2 +W1 ∧W ′2
= ÃW1 ∧W2 +W1 ∧ ÃW2 = ÃW1 ∧W2 − ÃW2 ∧W1

=
4∑
i=1


Ã1ixi
Ã2ixi
Ã3ixi
Ã4ixi

 ∧W2 −
4∑
j=1


Ã1jyj
Ã2jyj
Ã3jyj
Ã4jyj

 ∧W1

=
4∑
i=1


Ã1i

Ã2i

Ã3i

Ã4i

 ∧ (xiW2 − yiW1) =
4∑
i=1


Ã1i

Ã2i

Ã3i

Ã4i

 ∧

xiy1 − x1yi
xiy2 − x2yi
xiy3 − x3yi
xiy4 − x4yi


= A(W1 ∧W2) = AW .

As before, “initial” conditions for (16) are supplied by Theorem 1, so it is nec-
essary to have the eigenvalues and eigenvectors of A. They are derived easily from
the eigenvalues and eigenvectors of Ã, as the following lemma demonstrates.

Lemma 3. Let A be defined as in equation (16). Then the eigenvalues and eigen-
vectors of A are µi1 + · · ·+µin and Vi1 ∧ · · · ∧Vin for 1 ≤ i1 < · · · < in ≤ m, where
µij and Vij are the eigenvalues and eigenvectors of the 2n× 2n matrix Ã.

Proof. Using relation (15),

A(Vi1 ∧ · · · ∧ Vin) =
n∑
j=1

Vi1 ∧ · · · ∧ Vij−1 ∧ ÃVij ∧ Vij+1 ∧ Vin

=
n∑
j=1

Vi1 ∧ · · · ∧ Vij−1 ∧ µijVij ∧ Vij+1 ∧ Vin

=

 n∑
j=1

µij

Vi1 ∧ · · · ∧ Vin .

To emphasize the utility of the wedge product, recall that W−1 , . . . ,W
−
n− are the

only modes of W growing from −∞. Therefore, Lemma 3 implies that W−1 ∧ · · · ∧
W−n− is the fastest growing mode of W from −∞. Hence, it should be expected
(and in fact is observed) that numerical approximation of this mode is accurate.
The analogous argument from +∞ also holds.

The second problem in calculating the winding number ofD[Γ] lies in partitioning
Γ into subcontours Γi such that D[Γi] lies in a slit plane; a slit plane being a subset
of C of the form C\{rα : 0 6= α ∈ C, 0 ≤ r ∈ R}. This will ensure that the
calculated winding number is correct. But this is a difficult criterion to check. It
is easier to partition Γ so that D[Γi] is contained in a half plane whose boundary
passes through the origin.

For w, z ∈ C, define 〈w, z〉 to be the dot product between the real 2-vectors
(Re(w), Im(w)) and (Re(z), Im(z)):

〈w, z〉 .= Re(w)Re(z) + Im(w)Im(z).(18)
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Figure 3. The projection of D(si + ∆s) onto D(si).

Let a prime denote derivative with respect to s, the variable parametrizing Γ. Then
if Γ(si) is the starting point of Γi, it suffices to find si+1 and β ∈ [0, 1) such that

〈D(si + ∆s), D̂(si)〉 > β|D(si)|(19)

for 0 ≤ ∆s ≤ si+1 − si; here D̂ = D/|D|. In other words, the component of
D(si + ∆s) in the direction of D(si) should be a positive multiple of D(si) (see
Figure 3). Strictly speaking, the right side of inequality (19) could simply be 0.
However, for quick stability determination, exact values for D will not be given at
any point, and therefore some leeway is called for (and given by β|D(si)|). This
condition allows us to check whether a given partition is appropriate. But a more
useful condition gives si+1 based on information at si, and thus forms the partition.

After expanding D(si+∆s) in a Taylor series, condition (19) becomes, to second
order,

|D(si)|+ ∆s〈D′(si), D̂(si)〉+ (∆s)2〈D′′(si), D̂(si)〉/2 > β|D(si)|.
Thus, ∆s is given by solutions of the following quadratic inequality at si:

(1/2)〈D′′, D̂〉(∆s)2 + 〈D′, D̂〉∆s+ (1− β)|D| > 0.

Notice that ∆s = 0 always satisfies this condition (since D 6= 0 on Γ), so there
will always be a positive value of ∆s to choose. It is natural to try the value that
satisfies

(1/2)〈D′′, D̂〉(∆s)2 + 〈D′, D̂〉∆s+ (1− β)|D| = 0.

But if 〈D′′, D̂〉 > 0, there may be no solution or two negative solutions. In each case,
the condition allows us to pick any positive value for ∆s. Clearly, this is not useful.
So, we force the sign of the second order term by noting that 〈D′′, D̂〉 > −|D′′|.
This leaves us with the generally more conservative condition that ∆s satisfy

−(1/2)|D′′|(∆s)2 + 〈D′, D̂〉∆s+ (1− β)|D| = 0,(20)

or solving for ∆s,

∆s =
〈D′, D̂〉+

√
〈D, D̂〉2 + 2(1− β)|D′′| · |D|

|D′′| .(21)

Note that ∆s is well defined since the value given by equation (21) is always real
and the other possible value is negative.

Using forward differences to approximate the derivatives of equation (21) leads
to an algorithm suitable for quick (and apparently quite accurate) determination
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of stability, typically on the order of 2 minutes per wave on a Pentium based PC.
Also, in practice, β can usually be 0. However, in case of poor results, a positive
value of β should be chosen as this will lead to smaller values for ∆s.

3.4. Error estimates. Since the computation of D involves the numerical solution
of an ODE, we must determine how accurate the computed values are. The analysis
of a particular computation will reveal the sensitivity of the issue. For cubic model
viscous shock 2 (see Figure 4, located in Section 4), and λ = −0.00351563,

W+(0) ≈ (0.763,−0.187,−0.341, 0.0959, 0.187,−0.00291), and

W−(0) ≈ (0.0829,−0.0212,−0.0431, 0.0116, 0.0227, 0.000219).

The max norms of W+(0) and W−(0) are approximately 1 and 0.1, respectively.
However,

D(λ) =W+(0) ∧W−(0) ≈ 4.7(10)−5,

so in calculating D by wedging the two 2-forms, numbers of nearly equal magnitude
must be subtracted. As a crude approximation, two numbers of magnitude 1 are
being subtracted with a result of magnitude 10−4. So it can be expected that 3 or 4
significant digits are lost in this calculation of D. Since the relative error in D must
be less than 1, the relative error in W±(0) must be no larger than 10−4. This is
the required global relative error for a Runge-Kutta integration over a domain that
may exceed length 100. But this is only an issue for points along the semicircular
portion of Γ. The magnitude of D for other points along the contour is comparable
to the max norms of W+(0) and W−(0).

Standard a priori error estimates will not yield such stringent bounds. Instead,
the linearity of both equation (16) and the Runge-Kutta method will be exploited.
Starting with some standard analysis, for a one step numerical scheme of the form
wn+1 = wn + hnΨ(wn, xn, hn) solving the equation w′ = f(x,w), derivation of
global error bounds leads to the recursion

en+1 = en + hnτn + hn[Ψ(wn, xn, hn)−Ψ(w(xn), xn, hn)].

Here hn is step size, en is the difference between the actual solution and approx-
imate solution, and τn is a local truncation error. Taking norms on both sides
and approximating Ψ(wn, xn, hn)−Ψ(w(xn), xn, hn) with the help of the Lipschitz
constant L̃,

|en+1| ≤ (1 + |hn|L̃)|en|+ |hnτn|.(22)

This gives an upper bound on the growth of |en| from one step to the next.
Specializing to the case of an explicit Runge-Kutta scheme and f(x,w) = A(x)w

yields a much more useful error estimate. A general explicit Runge-Kutta scheme
can be written

wn+1 = wn +
m∑
i=1

ciki,(23)

where

k1 = hnf(xn, wn),

ki = hnf(xn + aihn, wn + bikn−1), i = 2, 3, . . . ,m,
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and the ai, bi, ci,m are constants depending on the particular method [3]. Defining

A1 = A(xn),

Ai = A(xn + aihn)(I + biAi−1), i = 2, 3, . . . ,m,

the scheme becomes

wn+1 = wn + c1hnA(xn)wn +
m∑
i=2

cihnA(xn + aihn)(wn + bikn−1)

= wn + c1hnA1wn +
m∑
i=2

cihnA(xn + aihn)(I + biAn−1)wn

= wn + hn

[
m∑
i=1

ciAi

]
wn

= [I + hnM(xn, hn)]wn,

where M(xn, hn) =
∑m
i=1 ciAi. Hence Ψ(wn, xn, hn) = M(xn, hn)wn, and en+1 =

en + hnτn + hnM(xn, hn)(wn − w(xn)), which simplifies to

en+1 = [I + hnM(xn, hn)]en + hnτn.(24)

So, in this case, an exact error recursion results. But this recursion is not directly
useful since only the magnitudes of e0 and τn are known in practice.

A useful, rigorous error equation comes from solving the exact error recursion
explicitly:

eN = P (N, 0)e0 +
N−1∑
i=1

hiP (N, i)τi,

P (N, i) =
N∏
j=i

[I + hjM(xj , hj)].

(25)

Take norms on both sides to get the bound

|eN | ≤ |P (N, 0)| · |e0|+
N−1∑
i=1

|hiP (N, i)| · |τi|.(26)

Estimate (26) is generally much sharper than estimate (22) since the essential dif-
ference is that between the norm of a product and the product of norms.

4. Applications

4.1. A contrived system. The eigenvalue equation

w′′(x) =
d

dx

[
tanh(x/2)√

2

(
−1 −1
−1 1

)
w(x)

]
+ λw(x)(27)

is a system whose associated Evans function can be computed analytically [2]. It is

D(λ) = 4C2 det


−κ 1−

√
2 κ 1−

√
2

1−
√

2 1 (
√

2− 1)κ 1
λ (

√
2− 1)κ λ (1−

√
2)κ

(
√

2− 1)λ −κ (
√

2− 1)λ κ

 ,

where κ =
√
λ+ 1/4 and C = 1/(1+2κ). A comparison of this analytic solution to

the numerical solution using a fourth order adaptive Runge-Kutta scheme appears
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Table 4.1. Comparison of estimated errors (26) and actual errors
in computing the Evans function for a contrived system.

Estimated Actual
Relative Relative

λ Error Error

2.25 − 9i 0.0022571 2.54(10)−6

2.25 − 0.152189i 0.0006853 1.43(10)−6

0 + 0.225i 0.0016125 6.07(10)−6

−0.224943 + 0.0050524i 3.67766 6.75(10)−5

in Table 4.1. Note that estimated errors dwarf actual errors, but that estimated
errors are still generally well below 1.

4.2. The cubic model. The cubic model

ut + (|u|2u)x = uxx, u ∈ R2,(28)

is an idealization of a system of equations relevant to magnetohydrodynamics [9].
It was shown by Liu and Freistuhler [9, 16, 15] that some of the viscous shock
waves for the cubic model are stable. However, the method of proof only allows for
showing that nearly linear profiles are stable.

Table 4.2. D̃(−0.9/256) for the cubic model using a fourth order
adaptive Runge-Kutta method.

Estimated “Actual”
Relative Relative

τ D̃(−0.9/256) Error Error

10−5 3.63842(10)−5 49.7879 0.004209
10−6 3.64980(10)−5 5.66251 0.001095
10−7 3.65323(10)−5 0.640160 0.000156
10−8 3.65374(10)−5 0.0721777 0.000016

...
...

0 3.65380(10)−5

Table 4.3. D̃(1.12891 − 4.51562i) for the cubic model using a
fourth order adaptive Runge-Kutta method.

Estimated “Actual”
Relative Relative

τ D̃(1.12891 − 4.51562i) Error Error

10−4 −0.0202970 − 1.74920i 89.4701 0.0004157
10−5 −0.0201544 − 1.74984i 0.0453998 0.0000410
10−6 −0.0201400 − 1.74990i 0.0008032 0.0000058
10−7 −0.0201385 − 1.74991i 0.0000831 0.0000001

...
...

0 −0.0201383 − 1.74991i
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Figure 4. The family of viscous shock waves for the cubic model
with s = 7/8 and u− = (1, 0) fills a nearly circular region of the
u1-u2 plane.
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Figure 5. Γ in panels a) and b), and D[Γ] in panels c) and d) for
cubic model viscous shock 1.
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Figure 6. u vs. ξ in panels a), c) and e), and corresponding nor-
malized Evans function (winding) plots in panels b), d) and f) for
cubic model viscous shocks 1, 2 and 3.

Unlike the contrived system, there is no analytic solution of ODE (6) for the cubic
model. We have to rely entirely on numerical estimates to gauge the accuracy of the
Evans function method. In Tables 4.2 and 4.3, third order polynomial extrapolation
was used to compute the values for τ = 0. Other values of λ along Γ yield similar
results. The underlying viscous shock wave is shock 2 of Figure 4.

The extrapolated values are used as exact values in computing “actual” relative
errors. Notice that the estimated errors, computed using equation (26), are for
the most part 1000 or more times the actual errors. So even these relatively sharp
estimates are conservative. Also notice that τ = 10−5 is sufficient for calculating
D(1.12891−4.51562i) with approximate estimated accuracy 0.05 where τ = 10−8 is
needed for calculating D(−0.9/256) to roughly the same estimated accuracy. Here
is numerical evidence of the loss of significance alluded to in subsection 3.4.
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Figure 7. Viscous shock solutions of equation (30) with corre-
sponding winding plots.

4.3. Gas dynamics. As for stability results, Figure 5, panels a) and c), show Γ
and D[Γ], respectively, for viscous shock 1 of Figure 4, but the winding number
is not obvious. Panel c) shows the general shape of D[Γ], but is unclear as to the
winding since it looks as if the image passes through the origin. A closeup of the
origin, panel d), shows that the image winds around the origin. But even this is
unsatisfying, so D[Γ] is normalized by the mapping

D 7−→ (argD − argD0)
D

|D|(29)

in Figure 6 panel b). Here it is clear that D[Γ] winds twice around the origin
for shock 1. Since the dimension of the stationary manifold for the cubic model
is 2 (see Figure 4), this viscous shock wave is stable. Also, D[Γ] (normalized by
mapping (29)) winds twice and thrice around the origin for viscous shocks 2 and
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3, respectively, (see Figure 6 panels d) and f)). So shock 2 is stable, but a little
more investigation is needed for shock 3. A root search locates the eigenvalue on
the negative real axis between −0.0015 and −0.0012, so shock 3 is also stable.
Viscous shock 1 is nearly linear, so in this case we have simply verified numerically
the analytic result of Freistuhler and Liu [9]. However, viscous shock 3 is strongly
nonlinear, and so this stability result is new.

The equations of isentropic gas dynamics, or p-system, with artificial viscosity
B = I are

vt − ux = vxx,

ut + P (v)x = uxx.
(30)

Three viscous shocks and their corresponding winding plots for P (v) = v−2 are
shown in Figure 7. All three shocks are stable since the dimension of M in this
case is 1, which equals the number of times D[Γ] revolves around the origin.

5. Discussion

The stability of contrived, strongly nonlinear (cubic model) and strong (gas
dynamics) viscous shocks has been shown numerically. Beyond analyzing many
more examples, the most immediate extension to this new capability is code that can
handle nonidentity viscosity. In addition, efforts are being made to add the method
to the Riemann Problem Package (RPP) [11] as an extension of its capability. This
will allow the systematic exploration of viscous shock wave stability for families
of conservation laws through an interactive graphical interface. In fact, the gas
dynamics results of this paper have come from this effort while the others have
come from [2].

Several improvements might be considered for the current algorithm in terms
of speed or accuracy. For example, calculation of D′ and D′′ can be done di-
rectly giving more accurate values in equation (21), a higher order Runge-Kutta
method could be used in the numerical integration for greater speed, or integrated
equations [2] could be substituted to alleviate the problem of zeroes at the origin.
But accuracy is already very good and would not likely improve significantly with
implementation of these ideas. Furthermore, in practice it is computer science tech-
niques, such as how to store data and the use of deflation, that prove more helpful
in speeding up the calculation.

Finally, an interesting question is whether the present algorithm can be refined
to the point of a numerical proof. While there are indications that this is a feasible
project, using the ideas of [17] and [2] for example, it is still an open question.
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