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We consider the wave equation in a boundary integral formulation. The discretization in time is done
by using convolution quadrature techniques and a Galerkin boundary element method for the spatial
discretization. In a previous paper, we have introduced a sparse approximation of the system matrix by
cut-off, in order to reduce the storage costs. In this paper, we extend this approach by introducing a panel
clustering method to further reduce these costs.
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1. Introduction

When discretizing the wave equation, one has the choice of treating this partial differential equation
directly or to transform it into a boundary integral equation. In this paper, we consider the formula-
tion as a boundary integral equation with a retarded potential which goes back to the early 1960s (see
Friedman & Shaw1962. One advantage of this approach is seen when considering an exterior problem,
i.e. when the spatial domain is unbounded. The treatment of problems on unbounded domains using the
original formulation usually requires a restriction to an artificial finite domain, together with some addi-
tional non-reflecting boundary conditions. In contrast, the boundary integral equation is formulated on
the (lower dimensional) bounded surface of the domain. No artificial boundary conditions are necessary.
An additional advantage is the reduction of the dimension of the problem by one: if we consider a 3D
problem and denote by a typical mesh size in the spatial discretization, the boundary integral equa-
tion leads to ®h~2) unknowns instead of @~3), and, correspondingly, much smaller linear systems
have to be solved. A drawback of the boundary integral formulation is the fact that the corresponding
matrices are densely populated. This leads to a (at least) quadratic complexity. For potential problems
of elliptic type, fast methods (panel clustering, wavelets, multipetématrices) have been developed
which reduce such costs to almost linear (linear up to a logarithmic factor) complexity. In this paper,
we develop a panel clustering method for retarded boundary integral operators.

A way to discretize the wave equation in time is the convolution quadrature methbutl), 1988a
1994). In Hackbusckhet al. (2005 2007, we have introduced two advanced versions of the method in
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order to reduce its complexity. IHackbuschet al. (2005, a sparse approximation technique has been
developed, where a simple cut off criterion allows to replace the original system matrices by sparse
approximations. By using a panel clustering technique, the storage consumptions can be further re-
duced. In order to analyse the panel clustering approximation, estimates for the derivatives of the kernel
functions in the boundary integral equation formulation are required. These estimates are developed in
the present paper.

The paper is organized as follows: In Secti@hand 3, we formulate the boundary integral equa-
tion and its discretization by using convolution quadrature in time and a Galerkin boundary element
method in space. In Sectidnwe recall the sparse approximation of the Galerkin matrices introduced in
Hackbuscthet al. (2005. In Section5, we consider a panel clustering approximation to further reduce
the storage and computational cost. To obtain error estimates, an analysis of the kernel functions and
their derivatives is required. The necessary bounds are derived in Séction

There exist alternative numerical discretization methods which include collocation methods with
some stabilization techniques (&irgissonet al,, 1999 Bluck & Walker, 1996 Davies 1994 1997,

Davies & Duncan2004 Miller, 1987 Rynne & Smith 1990 and Laplace—Fourier methods coupled
with Galerkin boundary elements in spa8amberger & Ha-Duondgl986 Costabel1994 Ding et al,,
1989 Ha-Duong 2003. Numerical experiments can be found, e.gHerDuonget al. (2003.

In Erginet al.(2000, a fast version of the ‘marching-on-in-time’ method is presented, which is based
on a suitable plane wave expansion of the arising potential which reduces the storage and computational
costs.

Our method is similar and shares some properties (the need to solve a series of elliptic problems) of
certain methods for parabolic equations; blehage & Sayaf2005 andSheeret al. (2003. A related,
interesting variation of the convolution quadrature for convolution kernels whose Laplace transform is
sectorial can be found iGchadleet al. (2006.

Another method which is also based on the convolution quadrature is preseBanjan & Sauter
(2007, where the major part of the solution process is carried out in the discrete Laplace image.

2. Boundary integral formulation
In this paper, we consider the numerical solution of the 3D wave equation. For thi, ¢tefR® be a
Lipschitz domain with boundary’. We consider the homogeneous wave equation
82u(x,t) — Au(x,t) =0 for(x,t) € Q x (0, T),
with zero initial condition
u(x,0) =au(x,00 =0 forx e Q
and Dirichlet boundary conditions
uix,t) =g(x,t) onr" x (0, T).

To formulate the problem as a boundary integral equatigr, t) can be written as a ‘single-layer
potential’;

LS — 7 — X =yl
— dsy d
uex. /o/r arlx =y POTdy e

J(t) being the Dirac delta distribution. Taking the limit — I”, we obtain the following boundary
integral equation for the unknown density

t
/O /Fk(||X =yl t =)@y, r)dsydr = g(x,t) V(X,t) e I' x (0, T) (2.1)
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with the kernel function
ot —d)

kd, 1) = 4z d

3. Convolution quadrature method

A time discretization ofZ.1) can be obtained by introducing a step siteand a maximal number of
time stepdN and replacing the time convolution i8.Q) at time stefi, = n 4t by a discrete convolution:

n
S [ ol Ux=yIp(y.tdsy = gix t) Ve T, L<n<N, (3.)
j=0

with convolution weightso/t (d).

We use the convolution quadrature methadkich, 1988a 1994 to obtain the suitable weights
w{t(d). This method is based on a linear multistep method and inherits its stability properties. For the
derivation of the convolution quadrature method, we reféfackbusctet al. (2005 2007 andLubich
(1999. Here, we only give the definition of the quadrature weights.

DEFINITION 3.1 Let
k . k ‘
> ajutiTR = At D gy f Mt (3.2)
j=0 j=0

be a linear multistep method for an ordinary differential equatigt) = f (u(t)), whereu" ~ u(ty).
Define

Z?:O“JC"_]
Zlfzoﬁj(k_j

as the quotient of its generating polynomials.

7 ()=

DEFINITION 3.2 Given a linear multistep method.p), the ‘convolution weights»2t(d) of the con-
volution quadrature method are the expansion coefficients in the formal power series

n 7Y < At n
k(d, A—t)—nzzown (d)¢",

wherek(d, s) := £ is the Laplace transform of the kernel functio@d, t) = 24=% in (2.1),

The convolution weights can be derived by the Taylor expansion:

gy = Long (g, 2©
wh (d) = n!aé k(d, T )'(_0.

Throughout this paper, we consider the second-order accuyatable BDF2 scheme, with

1
7O =574 +3).
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In that case, using the formula for multiple differentiation of composite functions (se&radshteyn &
Ryzhik, 1965, we obtain the explicit representation

1 1 (d\"? _u 2d
At - — 5 =
@ =i 2za (ZAt) e H”( At)’

whereH, are the Hermite polynomials.

The convergence rate and stability properties of the convolution quadrature method are inherited by
the linear multistep method, i.e. B(2) is A-stable and second-order accurate, then s8.13.(Stability
and convergence results for the semi-discrete problem can be fouddcikbuschet al. (2005 and
Lubich (1994.

For the space discretization, we employ a Galerkin boundary element method. For this, we consider a
boundary element space, e.g. of piecewise constant or piecewise linear functions, andtm(lxa}#}’:él.
For the Galerkin boundary element method, we repa@e tj) in (3.1) by

M
Phn) =D ¢;ibi(y)
i=1
and impose the integral equation in a weak form:

ZZ¢,. / / At (X = y)bi (y)bi(x)dls, dsy = / 9%, )b (X)dse

j=0i=1
foralll<k < Mandn=1,..., N. This can be written as a linear system
n
> An_jgj=0n. n=1....N, (3.3)
with
A 1= [ [ i yb s, ds
and

Gk = /F g, NADb(X)dsy.

The compact formulation as a block triangular system is given by

> -
ANg N=TN: (3.4)
where the block matri>XN e RNM 5 RNM and the vectorg ny € RNM are defined by
Ap O .- 0
A1 Ao %
A Aq . (o]]
XN = 2 ! and GN =1 1. (3.5)
. A2 . .. .
ON
. . . 0
AN - Ar A1 Ao
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The matricesAj have dimensiorM x M and are fully populated. The following simple procedure is
the algorithmic formulation of3.4):

procedure solve;

begin
fori := 0to N do begin
S.=0i;
for j:=0toi —1do
si=s—Ai_j@; (3.6)
solve
Aog; =s; (3.7)
end; end;

The solution of the systeigg; = sshould be realized by means of an iterative solver.

4. Sparse approximation by cut-off

The matrices in3.3) are densely populated. This is due to the fact that, although the basis functions have
local support, they are coupled by the non-local convolution coefficie,nﬁtSd). In Hackbusctlet al.

(2009, we have introduced a sparse approximation of the matAget® reduce the storage require-
ments. To find such an approximation, we investigate the convolution coefficighd). Although

they are non-local functions, they can be replaced by more localized functions. It Ejh,o(d) and
w%oo(d) are shown. The functions?t(d) have their maximum at abodt= n 4t and outside an interval

of width O(4t./n), they are small enough to be replaced by (Hactkbusclet al. (2005, the following
results are shown.

LEMMA 4.1 Let

i [0, 3 4t|logel], n=0,
12t = _ (4.1)
[th — 34t /n|loge|, th + 34t/n|loge|] N diam(2), n > 0.

x107° o 19T0-5

Wyqp(d)

Waqp(d)

|
-5 . . . . -3

0 50 100 150 200 250 300 0 50 100 150 200 250 300
d d

FiG. 1. Convolution weightsg't (d), n = 100,n = 200, 4t = 1.
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Then, there holds

&
o @) < = vdg Ik (4.2)

Replacingst(d) by zero, outside the intervda,li‘; leads to the following sparse approximation.
DEFINITION 4.2 For a given error toleranee let
Pen = {0, 1) |3 (X, y) € supgbi) N suppby): [x — yl| € 1,5},
The sparse approximatidky is obtained by setting
- Anij, if(,]J)e Pen,
(Andi.j = ﬁ) " otr(lerjv?/ise.
The solutions of the algebraic system

n
> Anjgi=dn. n=1....N, (4.3)
j=0

are the coefficient vectors of the approximate Galerkin solutions
M
Phn =D énibi.
i=1

The following theorem follows directly frorilackbusctet al. (2005 Theorem 4.7) by usin E(f’;;m <
C 4t therein.

THEOREM4.3 Assume that the exact solutigi-, t) is in H™1(1") for anyt < [0, T]. There exists a
constantC > 0 such that for all 0< ¢ < Ch4t3, the approximate Galerkin solutiog,, ,, exist and
satisfy the error estimate

187 n — A G Ollu-12(r) < Co(T)(eh ™ 4t™8 4 At? + H™H3/2), (4.4)
REMARK 4.4 The choice
A2 ~ ™32 and ¢ ~ (4t)’h ~ h/2+25/4 (4.5)
balances the three error terms &h4).

The storage cost for the matri, is given by

3
O(M max[l, tZ AtM Iong) (4.6)
and some cases are summarized in Tdblassuming thatit?> ~ h™+3. The total storage amount
follows by summing4.6) forn =0, 1, ..., N. By using(N 4t)? ~ 1 andM > O(N), we obtain
the total storage amount for adl,, 0 < n < N: O(NY2MZ?logM).

This is a significant reduction of the storage cost by a factor @{¥%) compared to the original
Galerkin method where the storage cost (NO/2).
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TABLE 1 Storage requirements fdky,

m=20 m=1
n = O(log M) CM*+i log5/2 M CM
n = O(N) ctt?M+ 2 logM CtZ/’M* 1 log M

REMARK 4.5 InHaireret al. (1985 andLubich (1988ab, 1994, FFT techniques have been introduced
to solve the systemB3(4). While the storage costs stay unchanggd®™?), the computational com-
plexity is reduced from ON2M?2) to O(N log? N M2). Our cut off strategy reduces the storage cost
to O(NY/2M?), while the computational complexity is reduced less significantly. However, the use of
panel clustering (cf. Sectiob) will further reduce the computational complexity of our approach, see
Remarks.10

The subroutine ‘procedure solve’ (cf. SectiBncan easily be modified to take into account the
sparse approximation by replacing st&g[ by

forall I<k<M: sci=s— D> (Ai-kedje (4.7)
(K0P i—j

while the iterative solution o0f3.7) should take into account the sparsityﬁqf as well.

5. Panel clustering

The panel clustering method was developedeckbusch & Nowal(1989 for the data-sparse ap-
proximation of boundary integral operators which are related to elliptic boundary-value problems.
Since then, the field of sparse approximation of non-local operators has grown rapidly and nowadays
advanced versions of the panel clustering method are available and a large variety of alternative meth-
ods such as wavelet discretizations, multipole expansiéfisnatrices etc. exists. However, these fast
methods (with the exception o#’-matrices) are developed mostly for problems of elliptic type, while

the data-sparse approximation of retarded potentials is to our knowledge still in its infancies. In this
section, we develop the panel clustering method for retarded potentials.

5.1 The algorithm

If we employ the cut off strategy as in Sectidha matrix—vector multiplicationf\nqﬁ with a vector
¢ = (¢i)iM=1 e RM can be written in the form

vi<k<M: Gui= > d [ [ o ax-yDbuybaodrydn. 6.
Gk O)ePyn  CTIT
For the application of the panel clustering algorithm, the 8&f, is split into admissible blocks
which we are going to explain next. The panel clustering method will be applied as soon as
n>nk:=C max{log2 M, M™=2 jog? M} (5.2)

for some constanE. Forn < nPC, it will turn out that, for the simple cut off strategy, the complexity
has the same asymptotic behaviour. (Note that for the first time steps, the simple cut off strategy reduces
the complexity much more significantly than for the later time steps, see Igble
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LetNy :={1,2,..., M}.

DEFINITION 5.1 A ‘cluster’'cis a subset oNy. If cis a cluster, the corresponding subdomainas
I'c := Ujersuppbi). The ‘cluster box’'Qc c R3 is the minimal axis-parallel cuboid which contaifg
and the ‘cluster sizel_¢ is the maximal side length dc.

DEFINITION 5.2 Lete > 0 andn > nP¢ Lety > 0 be some control parameter. A pair of clusters
(c,s) € Nm x Ny is ‘admissible’ at time stefy, if

AtnP

L < .
maxXLc, Ls} < ;7||098| (5.3)

The powerbin (5.3) is a fixed number. Some comments are given in RerBak

REMARK 5.3 In Sections$.2 and 6, we will prove that the choick = 1/4 preserves the optimal
convergence order of the unperturbed discretization (without panel clustering and cut-off). However, a
larger value ob would improve the complexity estimates because, then, more blocks are admissible for
panel clustering. Numerical experiments indicate that a slightly increasedlvau®.3 preserves the
optimal convergence rates as well. In this light, we assume for some technical estimakess {{taB)
satisfies

025<b< 03, (5.4)

The panel clustering method starts by constructing ﬂ;’é& which consists of admissible, pairwise
disjoint pairs of clusters such that

Cc.s)NPen#9

and

Z.ac UJ @

(c,s)eg’fﬁ1

We skip here the explicit formulation of the divide-and-conquer algorithm for the efficient construction
of f/"f,% by introducing a tree structure for the clusters but refer, e.§atater & Schwalf2004) for the
details.

Expression§.1) becomes

Ati= S 3 4 / | o= yibrybeodry dri (5.5)

(c,9)e 2P ti(k,0e(c,s)

The kernel functionn?t is now approximated oy x s by a separable expansion as follows: since
odt(Ix =yl is defmed omc x Qs, we may define an approximation Bebysev interpolation:

Fx—yh=atlix—yh = D> ZM00LY (o UIx =y D), (5.6)
u,ve(Ng)®

Whereﬁf(") andf(“) respectively, are the tensorized versions ofdtieorder Lagrange polynomials
(properly scaled and translated @; and Qs, respectively) corresponding to the tensorizeebysev
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nodesx* andy" for Q. and Qs, respectively. Replacing the kernel functiang' under the integral in
(5.5 allows to perform the integration with respectd¢@ndy separately. This leads to

S /F /F (1% — yIbe (y)b(x)dr dr

t:(k,0)e(c,s)
~ LK) itV KA
-~ Z Z Véﬂ )S(c,S)Vév ‘¢r.
€:(k,0)e(c,s) u,veNg)?
where

vk = i L 0bk()dlk  and Sy = on (X =y ). (5.7)

Hence, the panel clustering approximation & is given by replacing ste3(6) by
si=s— > > > Vgl ve0g,. (5.8)
(c,9)e 2P, t:(K.0e(C.S) 1,ve(MNg)?

Remember that for the first time steps, the matridgsare approximated using the simple cut off
strategy.

REMARK 5.4 To guarantee the existence of admissible clusters, we need at least the smallest cluster
pairs consisting of the support of the basis functibn® be admissible.
Form = 0, we require (according t@l(5))

AtnP O( h3/4nP

n

= ——— ) > 0(h) = L
[loge| nllogh|) (h) {i}

which is always satisfied.
Form = 1, we get (withb = 1/4)

Atn® h5/4nP h
=0 =0 hnmt/4).
"Toge| ("Iloghl ("Iloghl( K )

n > CMY?log* M = O(h~}|logh|*

Hence, the condition

ensuresquf'ot—é‘s| > Ch. Note that this is guaranteed byy.J).

Although the admissibility criterion5(3) differs from the standard criterion for elliptic boundary-
value problems, the algorithmic formulation of the panel clustering is as in the elliptic case and, hence,
is described in numerous papers; see,®agiter & Schwalf2004 and we do not recall the details here.

5.2 Error analysis

We proceed with the error analysis of the resulting perturbed Galerkin discretization which leads to an
priori choice of the interpolation ordersuch that the convergence rate of the unperturbed discretization
is preserved.
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Standard estimates for tensorizéebysev interpolation yield

>

. L9211 + log® q) 1
sup_ o (1zl) = dt (1z)] < €=y 00 sup_ [of* e (l1z])
2€Qc—0Qs 2 @+ D! iefl2.3) 2eQ.—Qs

whereC > 0 is some constant independent of all parametedenotes the maximal side length of the
boxesQ¢ andQs and Q. — Qs is the difference domaifx — y : (X, ¥) € Q¢ x Qs}.

THEOREMS.5 For(c, s) € @f% assume that the partial derivatives«gf' (| x — y||) satisfy

ci\“
q_ At -1
12&><S|aza oyt (1zID| < atlizll (m) Vze Qc— Qs. (5.3)
Then,

. C1 ComaxLe, Lg}A )91t
At _ _ 4t _ < ) 5.3
o™ (IIX = Y1) — wn” (X = yIDI distOc. Og) ( ~tnp ) (5.30)

The validity of assumption(3a) withb as in Definition5.2and

A =2+ 3|loge| (5.9

will be derived in Theoren.6.

REMARK 5.6 Note that the panel clustering is applied on blogks) c <. n which satisfy 6.3) and,
hence there exists dMo, Yo) € I x Is such that

%0 — Yol — tn] < A4t/n with 1 := 3|loge].
As a consequence, we have for aryy) € ¢ x I (recallb < 1/2),

X =yl = tal < 11X — Yl = X0 — Yolll + 24ty/n < L+ Ls + 24ty/n
<@ Y2 L )aty/n < Adtyn

with 2 asin 6.9).

THEOREMbL.7 LetO< ¢ < % andn > 16| log? ¢|. Let the assumptions of Theoresb be satisfied and

the interpolation order be chosen according|te: |loge|/log 2. Let(c, s) € 9’?} be admissible for
some 0< 7 < 7o and sufficiently smallkg = O(1). Then,

v &
lodt (Ix = yID) — o' (Ix — yIDI < cm V(X,y) e lex Iy (5.10)

for someC independent of and At.

Proof. Assume thatc, s) € 22P5. As derived above,

Atn

% V(X,y)ercxfs.

X =yl = tn] <
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Thus, if 1 < /n, we have
1\ L
h<|1l1-— X =Y.
n ( Jﬁ) I yll

dist(Qc, Qs) > IIX — Yl — v3(Le + Ls) > [[X — y|| — 2/3ton°L

2«/§ nb—l
> [x =y (1— L) .

A
=%

We also have

Under the assumptions

n > 16| loge|? (5.11)
and
- |logel
’7 4 b

we havel < /n and obtain
. V3 _1
dist(Qc, Qs) > IIX — Yl (1 — — lloge[72 ).

Assuming that < 3, we obtain
1 2
- < .
dist(Qc, Qs) X =yl
Conditions 6.3) and 6.11) and the definition ofl imply
C2 maX{ Lc, Ls}/’{
AtnP
Hence, from Theorerf.5, we obtain the estimate

(5.12)

< Can.

v At _ At _ C1 g+1
lon ™ (IX = yII) — o~ (X — yIDI < dist( Oy, QS)(C3’7) :

Inserting 6.12) leads to

. 2C,
30" (1% = YD) = & (1 = YIDI < == i (Cam ™.
Finally, the condition;g < (2C3)~! implies that the interpolation order
q> |loge|
log 2

leads to an approximation which satisfies
2C1e

121X = yI) — ot (IX = Y| < ———.
n vl n vl X =yl
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In Hackbuschet al. (2005, an analysis of the Galerkin method has been derived which takes into
account additional perturbations. Since itis only based on abstract approximations which satisfy an error
estimate of typeq.10, we directly obtain a similar convergence theorem also for the panel clustering
method. In the following, we denote lzyyj,t,k the solution at time, of the Galerkin discretization with
cut off strategy and panel clustering.

THEOREMS5.8 Letthe assumption of Theorénv be satisfied. We assume that the exact solutint)
is in H™L(7") for anyt e [0, T]. Then, there exists & > 0 such that for all cut off parametessin
(4.1), such that 0< ¢ < Ch4t® and interpolation orderg > |loge|/log 2, the solution%j,tjh with
cut-off and panel clustering satisfies the error estimate

6% n — PG t)llg-v2(ry < Cg(T)(eh ™ At™° 4+ At2 + h™H3/2),

COROLLARY 5.9 Let the assumptions of Theore®B be satisfied. Letdt ~ h™3/2 and choose
& ~ h’M/2+254 Then, the solutiowp 4 n exists and converges with the optimal rate

1% — B C. ) lu-v2() < Cg(THN™H2 ~ Cy(T) 4t2,

5.3 Complexity estimates

In this subsection, we investigate the complexity of our sparse approximation of the wave discretization.
We always employ the theoretical valugdifor the exponen in (5.3) (cf. Remarks.3).

5.3.1 Sparse approximation of the system ma#tix To simplify the complexity analysis, we assume
that only the simple cut off strategy and not the panel clustering method is applied for the first time steps:

0<n<nP (5.13)

By using @.5) and @.6), the number of non-zero entries of Alf, in the case§.13 is estimated from
above by QN Mé log® M) and QN ML+3 log*! M) for m = 0 andm = 1, respectively.

5.3.2 Panel clustering. The tree structure for the panel clustering algorithm has to be generated only
once and, hence, the computational and storage complexity is negligible compared to the other steps of
the algorithm. The entries of the matricégcf. (5.7)) are computed recursively by using the tree struc-

ture. The details can be found liackbusclet al. (2007 andSauter & Schwal§2004). In Hackbusch

et al. (2007, it is shown that the computational and storage complexity is negligible compared to the
generation of the influence matricBg s) (cf. (5.7)).

5.3.3 Computation of the influence matriceskirst, we compute the cardinality o?ﬁ%. Note that
the maximal diameter of a clustesatisfying condition§.3) is bounded by

AtnP

Togal (5.14)

c <7

An assumption on the cluster tree and the geometric shape of the surface is that

(%, y) € I x T'| [x = yll € 1/%)] = O/ 4tty * logel),



174 W. KRESS AND S. SAUTER

TABLE 2 Storage requirements for the panel clustering approximation and sparsexiption

Full-matrix

representation Cut off strategy Panel clustering + Cut off giyate
m=0 O(NM?) O(N M1 log M) O(N M5 [log M| 1)
m=1 O(N M?) O(N M1 log M) O(N M 15 jlog M1

where|w| denotes the area measure of same- I" x " (cf. Hackbuschet al, 2007, and not only
inequality 6.14) but also the reverse inequality holds for some other congtahfence, for sufficiently
small 4t, the number of pairs of clusters satisfyirg3) is bounded by

VAt ? loge|

b \4
(7 Tiogar)

(5.15)

The storage requirements per mat8y s) are given byg® ~ |log® ¢| and this leads to a storage com-
plexity of
3/2—4b 11
n lo
o(%). (5.16)
04 At2
Using the relations as in CorollaB9
Atz ~ hm+3/2 &~ h7m/2+25/4 M = O(h—Z)

we see thatH.16) is equivalent to (we use herbd 4 1)

O(nl/2| |Og M |llM m/2+3/4).

To compute the total storage cost, we sum ovenal{nP¢, ..., N} and obtain
N 1 3 3 3 5 15
m m m
> n2lloge'tM2Fi < CiNZ|logM[*M2 i < CoNMs T8 log MM
n=npP¢

NMZ[logM['t, m=0,
NMY“+1e[logM|1L, m=1.
The total storage requirements are summarized in Table
The table shows that the panel clustering method combined with the cut off strategy reduces the
complexity of the space—time discretization of retarded integral equations significantly. For piecewise

constant boundary elements, we get a storage complexity which behaves even better than linearly, i.e.
O(NM).

REMARK 5.10
a. The panel clustering method is based on a twofold hierarchical strdcTure:clusters are or-
ganized in a cluster tree and the expansion system on each cluster are polynomials. Hence, by

1in the context of#’-matrices, this twofold hierarchy is called’2-format.
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elementary properties of polynomials, the expansion system on a cluster can be build from the
expansion systems of the sons of the cluster. By employing this double hierarchy, the computa-
tional cost for a matrix—vector multiplication is proportional to the storage cost of the matrix (in
the sparse panel clustering format).

b. Note that in the panel clustering regime & nPC), the integration of the highly oscillatory
kernel functions is no longer necessary &8B). Efficient quadrature methods for the integrals
for n < nPCis a topic of further research and we skip this aspect from the investigation of the
computational costs here.

6. Estimate of the derivatives of the convolution coefficients

In Sectionb, to obtain suitable error estimates, bounds for the derivativeg ofi|x — y||) were required.
In this section, we derive such bounds and estimatdsiomheorenb.5.

In Remarks.6, we have seen that the panel clustering algorithm is applied on pairs of cl(sters
such that for al(x, y) € It x Is, we have

[d=n| < 1/n withd =[x —y|/4t and 1 asin 6.9). (6.1)

Hence, we will investigate the functien, (d) only for values ofd which satisfy 6.1).
The estimates are obtained in several steps. In the first step, we consider the auxiliary functions

1 (d\?
on(d) ;= 4rd Atwdt(d 4t) = o (5) e % Hn(v2d), (6.2)
which are independent oft. We will determine bounds for the derivatives@f(d) with respect tad
in Theoremg.5.

Using the Leibniz rule, the derivatives of the original convolution coefficientsd) with respect

tod are given by
1 q X1/ d\9_,/d
9,4t (d) = (= (ON el
Gaen (@) = 273 7 I=Oll( At) “n (At)’

wherecb,q)(-) denotes théth derivative. In the final step, estimates ﬁﬁ‘irw,ﬁ“(ux — y|)) are obtained in
Theorem6.6.

To find estimates foﬁ)ﬂ)(d), we first consider the functions and their first derivatives. For this, we
use an approximation for the Hermite polynomials givenQiyer (1963. The proof of the following
lemma is given in the extended version of this paper ess & Sauter2006 Appendix).

Note that in this papelC denotes a generic constant independem,offt andh with, possibly,
different values for each inequality.

LEMMA 6.1 The following estimates are valid far> 0 andn > 1:

x2 n 2 % 1
e ZHh(X)| < Cnlez (—) n-s3 (6.3)

and

_x2 0 (2\2 _1 2 1 _1 5 _2
ox € ZH(X) )| <Cnlez o n 6max{|x —(2n+1)|4n" 12, x12n 24,1}. (6.4)

With Lemmaé.1, we obtain the following estimate fas, (d) anday, (d).
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LEMMA 6.2 Foran(d) as defined ing.2), the following bound holds fon > 1:

d\z o«
|éon(d)] < Cn~3 (ﬁ) e T <cn 3. (6.5)
Forn > 2 and|d — n| < A/,
- _s5 (d 21 d=n 5
jén(@)] < Can~d (- ez <Cins (6.6)

with 1 asin 6.9).

Proof. Due to 6.3), we have

1 3 5 4en
(@) = = (g) &% e Hn(v2d)| < Cns (%) e

The last inequality in®.5) follows from a straightforward analysis which shows that the maximum of

n —
(%) 2 %" is taken an = d and hence

2 4
(9) e <1 (6.7)

For the first derivative, we have

i (d) = r]—ll((g)2 e 204(e9 Hn(v/2d)) + o ((g)z e—‘z’)e—dHn(@))

1(d\% a [ ¢ 1 1/d\7t/d .
ZH(E) € 20y (e 2 Hn(X)) X:m(Zd) Z_E(ﬁ) (ﬁ—l) a)n(d)

With (6.4) and|d — n| < A4/n, we obtain
1 1
d— =
(n + 2)

n_1
272 “n
|on(d)] < C (%) e F"n-5 max[

5 d %_1 d—n
+Cin"s (ﬁ) e 2z

Finally, with (4.5),

1 1 1 1
d\?z [d—nl\2 A \2 1+logn)z
— <1 < 1+ — <({1+C——— <C
(5) = (+557) < (7)< (e e 2

and by using®.7), we arrive at §.6). O
To obtain estimates for the higher derivativegugfd), we use the following two lemmas.
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LEMMA 6.3 Forn e Ny, the following relation holds:
iy 3. . 1.
wpd) = —Ewn(d) + 20n-1(d) — éwn—Z(d): (6.8)

where formallyo_1 := @_» := 0.

Proof. We recall

c ) _e_y‘;‘ _ At n
n=0
Using the definition ofon (d), we obtain
o
e 7O =" Gnd)". (6.9)
n=0

Differentiating both sides of§(9) with respect tal, we obtain

=7 (€7 O = =" @n(d)y ()" =D an)i".

n=0 n=0

The statement of the lemma now follows by equating the poweys of d
The following lemma can be obtained from the recursion formula for the Hermite polynomials
defined byHp(x) = 1, H1(x) = 2x and forn > 1,

Hnt1(X) = 2xXHn(X) — 2nHp_1(X).

LEMMA 6.4 Forn e N1, the recursion
- d . -
@n(d) = — (2dn-1(d) — dn-2(d)) (6.10)

holds.
Now, we can prove a bound for the derivativesiaid).

THEOREM6.5 Let] >q,n > 1, and|/d — n| < 2/nwith A asin 6.9). Then,

- (@ d\2 ™ _ea

6@ )] < gl (CA)In~a (ﬁ) 7" < qUCH)In3, (6.11)
with
a1 + 9;—1, g odd

(6.12)
a+ 3, qeven

_1 a—5 and =
8=3 &a=g aq =

and a generic consta@t
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Proof. The proof is done by induction. Fogr= 0 andg = 1, the statement follows from Lemn@a2
Next, we show the statement fgr= 2. For simplicity, we omit the argumedtin &n (d) anday, (d).
When differentiating §.8), we obtain (recalfo_1 = @—_> = 0)

. 3 . . 1. -

Using 6.8) and 6.10), we obtain (recalh > 1)

p = —E@n + 20n-1 — ECZJn—Z
3. + n—1_ n 1. n 3. 1.
= —= —wn— —Wn— —Wn—1 — =Wn—
an 2n n—1 n n—1 ZCUn 1 2 n—2
_d( 4 L5 LA WS S 1.
=n n—1 260n—2 260n—3 znwn—l 200n—1 250n—2
_dfe 8. 1. N 1. 3. 1
=N Wn_1 an—l 260n—2 2n60n—1 an—l 2wn—2

_d 3(d N, o id N1
“n?-1735\0 “n=175\n “n=27T 5 @n-1-

Thus,
- - d - 3. 1. 1.
Wy — Wp_1 = ﬁ — Wn_q — Ewn_l + Ewn_z + %wn_l
d . 5. 1. 1.
= (ﬁ - ) (—3wn—1 + Ea)n—z - Ewn—3> + %wn—l- (6.14)
By using|d — 1| < Jn~7 and LemméB.2, we obtain
“ - N - -
| — ép_q] < CANT2(|@n-1] + |@n—2| + |@n-3])
min{n—1,3} n—k
<omiie (Y (” - k) -4 (9 n ) ?
n nn-—k
k=1
Note that, for any: > 0,
—k
n—k\™* n\z
max_ sup ( ) =2 and max sup ( ) =¢%/? (6.15)
k=123 n>k+1 n k=123n>k+1 \N —K
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and, hence,

n-3
. . _1_1 _dn (d) 2
| — @p_q] < CANT273€ 2 (ﬁ) .

Using 6.13, (6.15 and Lemmab.2, we obtain

n_2
n 2
@] < Can~®2 g 2" (%) (6.16)
with
a0 =ao+
2 = ag >

For the induction steg — q + 1, we assume tha6(11) holds forg. To show that§.11) also holds for
g + 1, we first differentiateq.8) q times to obtain

cbﬁf”l) (w(q) ~(q) L) R (wgq)l_wgq)z) (6.17)
Furthermore, by differentiating(14), we get

~@ _9a-1 502 5-0-2 _1l-@-2), 1@
—a)n_lz—(3 +2n2 _Ewn + 5=

~(q)
@n n on“n-1

d 5 1
+ (ﬁ —1)( 30017+ Siny — S 31)). (6.18)

Taking into accountq.1) and the induction assumption, we get

~(q-2 -2 2
o — ;q_)l|<c1[ 216921+ 16921+ 1692

1 ~ 1 ~ 1
+an B (a1 10550 + 165D )

min{n—1,3} nk_g+2
<ol e e® Y - (L)
k=1 N
. § min{n—1,3} d n%_q_,_l
anTz(g—ICHIte T — k)1 ——
+ 072 = DICHT e 2 kgl (n=k) (n_k)

€13 L (d) T
da@rnicnte® ()T {reetenand),
Combining the above equation wit6.(7) yields

5—(Q+1)
BT < @+ DHCHTH e T (9) e
n
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with
a1+ 9%, qodd

. 1
ag = min {aq_2+ =,8g-3+ 1] =
2 a+ 3, geven

O
We have computed the maximum of the derivatives in numerical experiments to verify the sharpness
of estimate §.11). The results are shown in Tal8eWe compare the derivatives &foo(d) and@epo(d)
-(@)
with respect tad and givedy = —log (%)/ log(2/3). It can be seen thai; ~ 0.33+ 0.3q,
@00\t lloo
i.e.b ~ 0.3 which compares well with the theoretical redulf 0.25.
From the bounds on the derivatives@{(d), we now obtain estimates fdlﬁx. ot (Ix =yl

THEOREM6.6 For§ > g and| PGl —n[ < AN with 2 asin 6.9), we have
(Cﬂ. a ! P ||X ” % m
eyl < g ypac (F77) e

Ci

( )it At~9n"%
||X -yl

whereC > 0 is a generic constant independent of the discretization parameters.

>

For the proof of Theoreri.6, we need the following lemma.
LEMMA 6.7 Letd =d(x,y) = ,/Zis:l(xi — v¥i)2. For a functionf (d), we have fog > 1

% f(d)| < Cla! max —|f(”’(d)|
<qV

dq”

Proof. By induction, one can easily prove that

q
o4 F(d) =D "0gqx, (),

v=1
with g1,1(x, y) = %32 and forg > 2 and 1< v < q,
0,90 ¥) = 3 Gq-106 Y) + G116, Y)
with go,q = dq,q—1 = 0. In addition, we show by induction that
min{L%J,q—v} 'y
- g Ki—Y)TT o 6.19
Ovq(X, y) = Z aﬂ,vw, SVKQ (6.19)
n=0
TABLE 3 83 for0< g <6
q 0 1 2 3 4 5 6

0.33 0.63 0.92 1.24 1.50 1.82 2.13
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for some coefficient&ﬂ v. Forg = 1, the statement follows from the definition gf 1(x, y) with
=1
Assume that®.19 holds for somejy. Then,

0.0+ Y) = 0% G (X, V) + Grotq (% Y2
min{ |4 |,q-v
= {%J: }( _oupas, KW
= . 9= 2)0 v q2q-v—2x
=
min{L%J’q_v} (Xi _ yi)q+1_2ﬂ
- 2q—v —2u)ad SN
. a H)% v q20+2-v—2
#:
min{L%J,q—v} (X — yi)q—Z,u+l
+ 0l e
. w,v—1 d2a—v+2-2u
i

g+1 (X — yi)(a+b-2u
%uv T 2@+ —v—2u

with
=@-2u—-Da,_y, —@9—v—2pal , +aj, (6.20)
where we set all coefﬁcientgci,v not occurring in 6.19 to 0. Thus,

We show by induction tha|ra2,v| < cf@ for some constant;. First, forg = 1, we have

1 _
a01_1

Let |aﬂ v < cq (q l) for someq. We use §.20 andv < q + 1 to obtain

— 1! !
|aq+1| 3qcl(q 1! +C(1]v(q - ) gc?“%,

when choosing; large enough. Combining the above equation Wi 9 results in

qq

|gv q(X y)| X I dq_”'

Usingq < 29, we obtain

g Q)
o8 T (@] < g max 1gnq (¢ VI T @

< (2c1>°'q' max —| £ ()]
<q v! dq v
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Proof of Theoren6.6. For simpler notation, we writd = ||x — y||. We have

1 _ /d
4zd ™\ Jt

ot (d) =
and
1 1 &g/ d) d
a4t cqy — il bl AON Pl 21
daen @ =773 Atqg;n( At) “n (At) 6-21)

Forqg = 0, the statement of the theorem follows easily by combing) fvith (6.21). Forq > 1, from
Theorem6.5and Lemmab.7, we conclude that (recati/2 > q)

1 -
o on" (@] < Clat max ooy (d)d

ciq! 1 < 1/d\™
< 4" max Z— — d—atv
Az d 1<v<q AtV = 1\ 4t

B d
(%))

caq! v d \27 &
4" max > (€h'd=In=a 4t~ (—) e

<
4z d 1<v<a =5 nAt
cdq! d \29 _ - ’

- At — ez max > (Ci)n-a-at
4z d (nAt) 1<u<qz( )

1=0
From 6.12), itis easy to see

ag—a—q+1<0
and, hence,

5-a d_, q+1 _
i : e‘%n_aq —(Ci) 1,
nat Ci-1

CYq!
ot < &g a (

where as befor€ denotes a generic constant. The last term is bounded®$)2 providedC/ > 2.0

TABLE 4 Storage requirements for sparse approximation=m and4t = 0.1

M Asul Asparse Relativeerror

8192 512 MB 4.4 MB 7l x 1073
16.2 MB 73x 1074
34 MB 82 x 10°°
63.1 MB 50 x 1076
91.5 MB 62 x 10~/

124 MB 77 x 1078
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TABLE 5 Storage requirements for panel clustering approximatioe: 45

and 4t =0.2
M Al q Apc Relativeerror
32768 8192 MB 3 22.6 MB Px 103

4 139 MB 80 x 104

TABLE 6 Storage requirements for panel clustering approximatioa: 80

and 4t =0.1
M Atull q Apc Relativeerror
32768 8192 MB 3 22.6 MB B x 1072

4 139 MB 17 x 1072

7. Outlook

In this paper, we have analysed a panel clustering approximation for the wave equation. We have derived
upper bounds for both storage requirements and computational complexity. From the theoretical point of
view, the cut off and panel clustering approximation results in a significant reduction of the complexity.
However, in a next step, it is important to perform numerical experiments to see at what problem size
the asymptotic gain of our method becomes dominant.

In Tables4—6, we show the results of some preliminary numerical tests to illustrate the storage gain.

In Table4, we have considered = 0 and the sparse approximation technique only. In Tablasd6,
we have considered the panel clustering approach for two diffarantl At.

Additional tests have shown that a recompression technique based on a singular value decomposition
of the blocks and possibly joining of several blocka#sedyck2004) leads to much reduced storage
requirements especially for increasing

We have not yet addressed the need of special quadrature techniques. One benefit of the panel clus-
tering technique is the fact that no integration of the kernel functions is necessary. The only integrals
required involve Lagrange polynomials and the basis functions of the boundary element space. For the
cut off approximation, we still need to integrate the kernel functiogls For the efficient computation
of these integrals, the choice of the quadrature method is important.
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