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Differential transformmethod is adopted, for the first time, for solving linear singularly perturbed
two-point boundary value problems. Four numerical examples are given to demonstrate the
effectiveness of the present method. Results show that the numerical scheme is very effective and
convenient for solving a large number of linear singularly perturbed two-point boundary value
problems with high accuracy.

1. Introduction

Singularly perturbed second-order two-point boundary value problems, which received
a significant amount of attention in past and recent years, arise very frequently in fluid
mechanics, quantum mechanics, optimal control, chemical-reactor theory, aerodynamics,
reaction-diffusion process, geophysics, and so forth. In these problems a small parameter
multiplies to a highest derivative. A well-known fact is that the solution of such problems
display sharp boundary or interior layers when the singular perturbation parameter ε is very
small. Numerically, the presence of the perturbation parameter leads to difficulties when
classical numerical techniques are used to solve such problems, and convergence will not
be uniform. The solution varies rapidly in some parts and varies slowly in some other parts.
There are thin transition boundary or interior layers where the solutions can change rapidly,
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while away from the layers the solution behaves regularly and varies slowly. There are a wide
variety of techniques for solving singular perturbation problems (see [1–7]). Furthermore
different numerical methods have been proposed by various authors for singularly perturbed
two-point boundary value problems, such as non-uniform mesh tension spline methods [8],
non-uniform mesh compression spline numerical method [9], and the least squares methods
based on the Bézier control points [10].

The aim of our study is to introduce the differential transform method [11] as an alter-
native to existing methods in solving singularly perturbed two-point boundary value prob-
lems and the method is implemented to four numerical examples. The present method is the
first time applied by the authors to singularly perturbed two-point boundary value problems.

The rest of the paper is organized as follows. In Section 2, we give a brief description
of the method. In Section 3, we have solved four numerical examples to demonstrate the
applicability of the present method. The discussion on our results is given in Section 4.

2. Fundamental of Differential Transform Method

In this section, the concept of the differential transformation method (DTM) is briefly
introduced. The concept of differential transform was first introduced by Pukhov [11], who
solved linear and nonlinear initial value problems in electric circuit analysis. This method
constructs, for differential equations, an analytical solution in the form of a polynomial.
It is a seminumerical and semianalytic technique that formulizes the Taylor series in a
totally different manner. The Taylor series method is computationally taken long time for
large orders. With this technique, the given differential equation and its related boundary
conditions are transformed into a recurrence equation that finally leads to the solution of a
system of algebraic equations as coefficients of a power series solution. This method is useful
to obtain exact and approximate solutions of linear and nonlinear differential equations. No
need to linearization or discretization, large computational work and round-off errors are
avoided. It has been used to solve effectively, easily, and accurately a large class of linear and
nonlinear problems with approximations. The method is well addressed in [12–19]. The basic
principles of the differential transformation method can be described as follows.

The differential transform of the kth derivative of a function f(x) is defined as follows.

F(k) =
1

k!

[

dkf(x)

dxk

]

x=x0

, (2.1)

and the differential inverse transform of F(k) is defined as follows:

f(x) =
∞
∑

k=0

F(k)(x − x0)
k. (2.2)

In real applications, function f(x) is expressed by a finite series and (2.2) can be written as

f(x) =
N
∑

k=0

F(k)(x − x0)
k. (2.3)

The following theorems that can be deduced from (2.1) and (2.2) are given [20].
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Theorem 2.1. If f(x) = g(x) ± h(x), then F(k) = G(k) ±H(k).

Theorem 2.2. If f(x) = ag(x), then F(k) = aG(k), where a is constant.

Theorem 2.3. If f(x) = (dmg(x)/dxm), then F(k) = ((m + k)!/k!)G(k +m).

Theorem 2.4. If f(x) = g(x)h(x), then F(k) =
∑k

k1=0
G(k1)H(k − k1).

Theorem 2.5. If f(x) = xn, then

F(k) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

n

k

)

x0
n−k, k < n

1, k = n

0, k > n.

(2.4)

Here n ∈ N,N is the set of natural numbers, andW(k) is the differential transform function ofw(x).
In the case of x0 = 0, one has the following result:

W(k) = δ(k − n) =

{

1, k = n

0, k /=n.
(2.5)

Theorem 2.6. If f(x) = g1(x)g2(x) · · · gn−1(x)gn(x), then

F(k) =
k
∑

kn−1=0

kn−1
∑

kn−2=0

· · ·
k3
∑

k2=0

k2
∑

k1=0

G1(k1)G2(k2 − k1) · · ·Gn−1(kn−1 − kn−2)Gn(k − kn−1). (2.6)

3. The Applications of Differential Transformation Method and
Numerical Results

In order to evaluate the accuracy of DTM for solving singularly perturbed two-point
boundary value problems, we will consider the following examples. These examples have
been chosen because they have been widely discussed in the literature and also approximate
solutions are available for a concrete comparison.

Example 3.1. We first consider the following problem [21]:

εy′′ + y = 0; x ∈ [0, 1], (3.1)

with the boundary conditions

y(0) = 0, y(1) = 1. (3.2)
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The exact solution for this problem is

y(x) =
sin

(

x/
√
ε
)

sin
(

1/
√
ε
) . (3.3)

Taking the differential transform of both sides of (3.1), the following recurrence relation is
obtained:

Y (k + 2) = −
Y (k)

ε (k + 1)(k + 2)
. (3.4)

The boundary conditions given in (3.2) can be transformed at x0 = 0 as follows:

Y (0) = 0,
N
∑

k=0

Y (k) = 1. (3.5)

Using (3.4) and (3.5) and by taking N = 5, the following series solution is obtained:

y(x) = ax −
a

6ε
x3 +

a

120ε2
x5 +O

(

x7
)

, (3.6)

where, according to (2.1), a = y′(0). The constant a is evaluated from the second boundary
condition given in (3.2) at x = 1 as follows:

a =
120ε2

1 − 20ε + 120ε2
. (3.7)

Then, by using the inverse transform rule in (2.2), we get the following series solution:

y(x) =
120ε2

1 − 20ε + 120ε2
x −

20ε

1 − 20ε + 120ε2
x3 +

1

1 − 20ε + 120ε2
x5 +O

(

x7
)

. (3.8)

The evolution results for the exact solution (3.3) and the approximate solution (3.8) obtained
by using the differential transform method, for ε = 2−9, are shown in Figure 1.

Example 3.2. Secondly, we consider the following problem:

εy′′ + y = −x; x ∈ [0, 1], (3.9)

with the boundary conditions

y(0) = 0, y(1) = 0. (3.10)
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Figure 1: The approximate solution (dotted curve) versus the analytic solution (solid curve) for ε = 2−9.

The exact solution for this boundary value problem is

y(x) = −x +
sin

(

x/
√
ε
)

sin
(

1/
√
ε
) . (3.11)

Taking the differential transform of (3.9), we have

Y (k + 2) =
−δ(k − 1) − Y (k)

ε (k + 1)(k + 2)
. (3.12)

Choosing x0 = 0, the boundary conditions given in (3.10) can be transformed to give

Y (0) = 0,
N
∑

k=0

Y (k) = 0. (3.13)

By using (3.12) and (3.13), and, by taking N = 5, we get the following series solution:

y(x) = ax +

(

−
1

6ε
−

a

6ε

)

x3 +

(

1

120ε2
+

a

120ε2

)

x5 +

(

−
1

5040ε3
−

a

5040ε3

)

x7

+

(

1

362880ε4
+

a

362880ε4

)

x9 +

(

−
1

39916800ε5
−

a

39916800ε5

)

x11

+

(

1

6227020800ε6
+

a

6227020800ε6

)

x13

+

(

−
1

1307674368000ε7
−

a

1307674368000ε7

)

x15 +O
(

x7
)

,

(3.14)

where, according to (2.1), a = y′(0).
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Figure 2: The approximate solution (dotted curve) versus the analytic solution (solid curve) for ε = 10−3.

The constant a is evaluated from the second boundary condition given in (3.10) at
x = 1 as follows:

a =
(

1 − 210ε + 32760ε2 − 3603600ε3 + 259459200ε4 − 10897286400ε5 + 217945728000ε6
)

/
(

−1 + 210ε − 32760ε2 + 3603600ε − 259459200ε4 + 10897286400ε5

−217945728000ε6 + 1307674368000ε7
)

.

(3.15)

Then, by using the inverse transform rule in (2.2), one can obtain the approximate
solution. We do not give it because of long terms in the approximate solution.

In Figure 2, we plot the exact solution (3.11) and the approximate solution for ε = 10−3.

Example 3.3. Thirdly, we consider the following problem [22]

εy′′ + y′ = 0; x ∈ [0, 1] (3.16)

subject to the boundary conditions

y(0) = 1, y(1) = e−1/ε. (3.17)

The exact solution for this problem is

y(x) = e−x/ε. (3.18)

Applying the operations of the differential transform to (3.16), we obtain the following
recurrence relation:

Y (k + 2) = −
(k + 1)Y (k + 1)

ε (k + 1)(k + 2)
. (3.19)
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By using the basic definitions of the differential transform and (3.17), the following trans-
formed boundary conditions at x0 = 0 can be obtained:

Y (0) = 1,
N
∑

k=0

Y (k) = e−1/ε. (3.20)

By utilizing the recurrence relation in (3.19) and the transformed boundary conditions in
(3.20), the following series solution up to 15-term is obtained:

y(x) = 1 + ax −
a

2ε
x2 +

a

6ε2
x3 −

a

24ε3
x4 +

a

120ε4
x5 −

a

5040ε5
x6 +

a

5040ε6
x7

−
a

40320ε7
x8 +

a

362880ε8
x9 −

a

3628800ε9
x10 +

a

39916800ε10
x11

−
a

479001600ε11
x12 +

a

6227020800ε12
x13 −

a

87178291200ε13
x14

+
a

1307674368000ε14
x15 − O

(

x16
)

,

(3.21)

where a = y′(0).
By taking N = 15, the following equation can be obtained from (3.20):

1 + a +
a

1307674368000ε14
−

a

87178291200ε13
+

a

6227020800ε12
−

a

479001600ε11

+
a

39916800ε10
−

a

3628800ε9
+

a

362880ε8
−

a

40320ε7
+

a

5040ε6
−

a

720ε5
+

a

120ε4

−
a

24ε3
+

a

6ε2
−

a

2ε
= e−1/ε.

(3.22)

From (3.22), a is evaluated as

a = −
(

130767436800e−1/ε
(

−1 + e1/ε
)

ε14
)

/
(

1 − 15ε + 210ε2 − 2730ε3 + 32760ε4

− 360360ε5 + 3603600ε6 − 32432400ε7

+ 259459200ε8 − 1816214400ε9

+ 10897286400ε10 − 54486432000ε11

+ 217945728000ε12 − 653837184000ε13

+1307674368000ε14
)

.

(3.23)

By using this value of the missing boundary condition, the approximate solution can be
obtained easily.

Comparison of the approximate solution with the exact solution (3.18) for ε = 2−5 is
sketched in Figure 3.
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Figure 3: The approximate solution (dotted curve) versus the analytic solution (solid curve) for ε = 2−5.

Example 3.4. Finally, we consider the following problem [23, 24]

−εy′′ + y′ = ex; x ∈ [0, 1] (3.24)

subject to the boundary conditions

y(0) = 0, y(1) = 0. (3.25)

Its exact solution is given by

y(x) =
1

1 − ε

[

ex −
1 − e1−(1/ε) + (e − 1)ex−(1/ε)

1 − e−1/ε

]

. (3.26)

By applying the fundamental mathematical operations performed by differential transform,
the differential transform of (3.24) is obtained as

Y (k + 2) =
−1/k! + (k + 1)Y (k + 1)

ε(k + 1)(k + 2)
. (3.27)

The boundary conditions in (3.25) can be transformed at x0 = 0 as

Y (0) = 0,
N
∑

k=0

Y (k) = 0. (3.28)

By using the inverse transformation rule in (2.2), the approximate solution is evaluated up to
N = 20. The first few terms of the series solution are given by

y(x) = ax +

(

−
1

6ε2
+

a

6ε2
−

1

6ε

)

x3 +

(

−
1

24ε3
+

a

24ε3
−

1

24ε2
−

1

24ε

)

x4 + · · · , (3.29)
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Figure 4: The approximate solution (dotted curve) versus the analytic solution (solid curve) for ε = 1/1000.

where a = y′(0).The solution obtained from (2.3) has yet to satisfy the second boundary
condition in (3.25), which has not been manipulated in obtaining this approximate solution.
Applying this boundary condition and then solving the resulting equation for a will
determine the unknown constant a and eventually the numerical solution.

Graphical result for ε = 1/1000 with comparison to the exact solution (3.26) is shown
in Figure 4.

4. Conclusion

In this study, the differential transformation method (DTM) has been employed, for the
first time, successfully for solving linear singularly perturbed two-point boundary value
problems. Four examples with boundary layers have been treated. This new method
accelerated the convergence to the solutions. As it can be seen, this method leads to
tremendously accurate results. It provides the solutions in terms of convergent series with
easily computable components in a direct way without using linearization, discretization, or
restrictive assumptions. The Mathematica software system has been used for all the symbolic
and numerical computations in this paper.

References

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Interna-
tional Series in Pure and Applied Mathematics, McGraw-Hill, New York, NY, USA, 1978.

[2] J. Kevorkian and J. D. Cole, PerturbationMethods in Applied Mathematics, vol. 34 ofApplied Mathematical
Sciences, Springer, New York, NY, USA, 1981.

[3] R. E. O’Malley Jr., Introduction to Singular Perturbations, Applied Mathematics and Mechanics, Vol. 14,
Academic Press, New York, NY, USA, 1974.

[4] C. Liu, “The Lie-group shooting method for solving nonlinear singularly perturbed boundary value
problems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1506–1521,
2012.

[5] Y.Wang, L. Su, X. Cao, and X. Li, “Using reproducing kernel for solving a class of singularly perturbed
problems,” Computers & Mathematics with Applications, vol. 61, no. 2, pp. 421–430, 2011.

[6] M. K. Kadalbajoo and P. Arora, “B-splines with artificial viscosity for solving singularly perturbed
boundary value problems,”Mathematical and Computer Modelling, vol. 52, no. 5-6, pp. 654–666, 2010.



10 Discrete Dynamics in Nature and Society

[7] M.K. Kadalbajoo andD. Kumar, “Initial value technique for singularly perturbed two point boundary
value problems using an exponentially fitted finite difference scheme,” Computers & Mathematics with
Applications, vol. 57, no. 7, pp. 1147–1156, 2009.

[8] R. K. Mohanty and U. Arora, “A family of non-uniform mesh tension spline methods for singularly
perturbed two-point singular boundary value problems with significant first derivatives,” Applied
Mathematics and Computation, vol. 172, no. 1, pp. 531–544, 2006.

[9] R. K. Mohanty and N. Jha, “A class of variable mesh spline in compression methods for singularly
perturbed two point singular boundary value problems,” Applied Mathematics and Computation, vol.
168, no. 1, pp. 704–716, 2005.

[10] M. Evrenosoglu and S. Somali, “Least squares methods for solving singularly perturbed two-point
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