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Abstract

In this work, a characterization of the hyperbolicity region for the two layer
shallow-water system is proposed and checked. Next, some path-conservative
finite volume schemes (see [11]) that can be used even if the system is not
hyperbolic are presented, but they are not in general L2 linearly stable in
that case. Then, we introduce a simple but efficient strategy to enforce the
hyperbolicity of the two-layer shallow-water system consisting in adding to
the system an extra amount of friction at every cell in which complex eigen-
values are detected at a given time step. The implementation is performed
by a predictor/corrector strategy: first a numerical scheme is applied to the
unmodified two-layer system, regardless of the hyperbolic character of the sys-
tem. Next, we check if the predicted cell averages are in the hyperbolic region
or not. If not, the mass-fluxes are corrected by adding a quadratic friction
law between layers whose coefficient is computed so that the corrected cell
average is as near as possible of the boundary of the hyperbolicity region.
Finally, some numerical test have been performed to assess the efficiency of
the proposed strategy.
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1 Introduction

Let us consider the system of partial differential equations governing the one-dimensional
flow of two superposed immiscible layers of shallow water fluids studied in [6]:
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(1.1)

In these equations, index 1 makes reference to the upper layer and index 2 to
the lower one. The fluid is assumed to occupy a straight channel with constant
rectangular cross-section and constant width. The coordinate x refers to the axis of
the channel, t is time, and g is the acceleration due to gravity. H(x) represents the
depth function measured from a fixed level of reference (see Figure 1). Each layer
is assumed to have a constant density, ρi, i = 1, 2 (ρ1 < ρ2). The unknowns qi(x, t)
and hi(x, t) represent respectively the mass-flow and the thickness of the i-th layer
at the section of coordinate x at time t. Finally, Sf

1 and Sf
2 represent the friction

forces: Sf
1 = Sw

1 + Si
1, Sf

2 = Sb
2 + Si

2, where Sw
1 parameterizes the wind friction,

Sb
2 the bottom friction, and Si

1, Si
2 the friction between the two layers. Different

formula have been proposed to parameterize these friction forces. Here, the friction
between layers is assumed to be given by a quadratic law of the form:

Si
1 = −c|u1 − u2|(u1 − u2); Si

2 = rc|u1 − u2|(u1 − u2), (1.2)

where r = ρ1/ρ2 and the coefficient c may depend on the unknowns, as it is the case
in the Manning law:

c = c0
h1h2

h2 + rh1
.

being
System (1.1) can be written in the following form:

wt + F (w)x + B(w) · wx = S(w)Hx + Sf , (1.3)
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Figure 1: Two-layer sketch: unknowns h1, h2 and bathimetry function H .
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, S(w) =




0
gh1

0
gh2


 ,

Sf =




0

Sf
1

0
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2


 , B(w) =




0 0 0 0
0 0 gh1 0
0 0 0 0

grh2 0 0 0


 .

The vector w takes values in the set:

Ω = {[h1, q1, h2, q2]T ∈ R
4, h1 > 0, h2 > 0}.

The thickness of the layer may vanish in practical applications when one or the
two layers disappear in part of the domain. Nevertheless, the numerical difficulties
related to the corresponding wet-dry fronts will not be discussed here (see [4]).

It is well known that this system may lose the hyperbolic character. For r ∼= 1
this situation occurs approximately when the following inequality is satisfied:

(u1 − u2)
2

g′(h1 + h2)
> 1. (1.4)

This hyperbolicity loss is related to the appearance of shear instabilities that may
lead, in real flows, to intense mixing of the two layers. While, in practice, this
mixture partially dissipates the energy, in numerical experiments these interface
disturbances may grow and overwhelm the solution.

Obviously, a simple model based on two layer of immiscible fluids is not able
to simulate the mixing processes due to the development of shear instabilities: a
continuously stratified model would be required. The goal of this article is to propose
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a strategy allowing us to use the two layer model to simulate flows that are essentially
hyperbolic, unless for some sporadic episodes in which complex eigenvalues appear.
Moreover these episodes are assumed to be very localized in space. The idea is to
modify locally the model when complex eigenvalues appear in order to get rid of
the related instabilities and go beyond of them by reaching again the hyperbolic
character.

In previous works, it has been seen that adding some extra friction terms reduces
the shear stress enforcing thus the hyperbolic character of the system (see [9], [10]).
The difficulty is that, in order to avoid an excess of diffusion, this extra terms should
only act locally both in time and space when the appearance of complex eigenvalues
is detected. A second difficulty comes from the fact that adding extra local diffusion
terms can produce nonphysical oscillatory patterns in the flow. In [10] a different
strategy to overcome with this difficulty was studied that consists in neglecting the
imaginary part of the complex eigenvalues.

The strategy pursued in this article consists in adding to the system an extra
amount of friction to the model at every cell in which complex eigenvalues are
detected at a given time level so that the updated cell average is again in the
hyperbolic region. This will be done by using a predictor/corrector strategy. First,
a numerical scheme is applied to the unmodified model regardless of the hyperbolic
character of the system. Therefore, the numerical schemes to be used in this first
stage have to be able to advance in time even in the presence of complex eigenvalues.
Next, we check wether the predicted cell averages are in the hyperbolicity region or
not. If not, the mass-fluxes are corrected by adding a quadratic friction law between
the layers. This fictitious friction force, which is intended to simulate the loss of
momentum due to the mixing processes in real flows, is semi-implicitly discretized.
The key point is the calculation of the coefficient appearing in the friction law: it is
calculated so that the corrected cell average is as near as possible of the boundary
of the hyperbolicity region, in a sense to be determined.

Once this technique has been implemented for first order schemes and 1d models,
its extension to 2d models and/or high order schemes (either by means of reconstruc-
tion of states or ADER techniques) is straightforward by applying the techniques
describes in [11], [2], [3], [1]....

The organization is as follows: in next Section, we analyze the hyperbolicity
regions of the system. Next, we present a family of numerical schemes based on a
Roe linearization of the system which are able to advance in time even if the system
is not hyperbolic. Even if these schemes are not L2 stables when complex eigenvalues
are present, as it will be seen, they will be useful to perform the prediction stage. In
Section 4 the strategy to calculate the friction coefficient and to correct the predicted
mass-fluxes when necessary. Finally, some numerical experiments will be shown to
validate the efficiency of the strategy.
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2 Hyperbolicity region of the two-layer shallow

water system

As the source term due to bed variations does not affect to the hyperbolic character
of the system and the friction source terms enforces this character (as they tend to
reduce the shear between the layers), we consider for simplicity the homogeneous
system:

wt + F (w)x + B(w) · wx = 0, (2.1)

in which the depth H is supposed to be constant and the friction forces are neglected.
The system can be rewritten as follows:

wt + A(w) · wx = 0. (2.2)

where
A(w) = J(w) + B(w),

being J(w) the Jacobian matrix of F (w)

J(w) =
∂F

∂w
(w).

The characteristic equation of the A(w) is:
(
λ2 − 2u1λ + u2

1 − gh1

)(
λ2 − 2u2λ + u2

2 − gh2

)
= rg2h1h2, (2.3)

where ui = qi/hi represents the averaged velocity of the i-th layer, i = 1, 2.
It is easy to check that the condition under which one of the eigenvalues vanishes

is:

G2 = F 2
1 + F 2

2 − (1 − r)F 2
1 F 2

2 = 1, (2.4)

where G is the so-called composite Froude number, and Fi for i = 1, 2 are the internal

Froude numbers (F 2
i =

u2

i

g′hi

, where g′ is the reduced gravity, g′ = (1−r)g). When this
condition is achieved at a section of coordinate x, the flow is said to be critical at
this point and the section x is called a control. When G2 < 1, the flow is subcritical.
Finally, when G2 > 1, the flow is supercritical.

Observe that, when r = 0, the eigenvalues are those corresponding to each layer
separately. Therefore, when r ∼= 0, the coupling terms do not affect the nature of
the system in an essential manner.

In the case r ∼= 1 (which is the situation arising in many geophysical flows) a
first-order approximation of the eigenvalues was given in [13]:

λ±

ext
∼=

u1h1 + u2h2

h1 + h2
±

(
g(h1 + h2)

) 1

2 , (2.5)

λ±

int
∼=

u1h2 + u2h1

h1 + h2
±

(
g′

h1h2

(h1 + h2)

[
1 −

(u1 − u2)
2

g′(h1 + h2)

]) 1

2

. (2.6)
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Notice that the approximation of λ±

int become complex when (1.4) is satisfied.
Let us consider the non-dimensional variables

ĥi =
hi

H̄
, ûi =

ui

Ū
,

where H̄ is the depth and U =
√

g′H̄. In these variables the characteristic equation
reduces to:

(
λ̂2 − 2û1λ̂ + û2

1 −
1

1 − r
ĥ1

)(
λ̂2 − 2û2λ̂ + û2

2 −
1

1 − r
h2

)
=

r

(1 − r)2
ĥ1ĥ2, (2.7)

and the inequality (1.4) reads as follows:

(û1 − û2)
2

(ĥ1 + ĥ2)
> 1.

Therefore, the hyperbolicity of the system is related to the ratio between the square
of the adimensional shear and the adimensional total thickness. Figure 2 shows the
hyperbolicity region in the plane of coordinates (|û1−û2|, ĥ1+ĥ2) for different values
of the parameter r. To obtain these plots, we have considered a number of random
states ŵ = [ĥ1, û1, ĥ2, û2] and the roots of the corresponding polynomial (2.7) have
been numerically computed. If all the roots are real, a blue dot is drawn in the
plane of coordinates (|û1 − û2|, ĥ1 + ĥ2), otherwise a red dot is drawn. The curve

ĥ1 + ĥ2 = (û1 − û2)
2, (2.8)

is also drawn in green. Note that in all the cases two hyperbolicity regions appear: a
first one containing the vertical axis which is almost invariant for the different values
of r. Moreover, it can be observed that the curve (2.8) is an excellent approximation
of the boundary of this region when r ∼= 1 (see Figures 2(b)-2(d)), and even for
smaller values (see Figuree 2(a)).

The second hyperbolic region grows for smaller values of r and it corresponds, at
least for r ∼= 1, to states for which (û1− û2) is big compared to ĥ1 + ĥ2. Nevertheless,
real stratified geophysical flows with r ∼= 1 are located in the first region. Therefore,
we can conclude that (1.4) is in practice a simple and efficient criterium to determine
the hyperbolic character of the two-layer shallow-water system when the densities
of the layer are close enough.

3 Numerical schemes

Solutions of (2.2) may develop discontinuities and, due to the non-divergence form
of the equations, the notion of weak solution in the sense of distributions cannot
be used. The theory introduced by Dal Maso, LeFloch, and Murat [8] is followed
here to define weak solutions of (2.2) or equivalently of (1.3). This theory allows
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(a) Hyperbolicity region for r = 0.5 (b) Hyperbolicity region for r = 0.9

(c) Hyperbolicity region for r = 0.98 (d) Hyperbolicity region for r = 0.99

Figure 2: Hyperbolicity regions of the two-layer shallow-water system in the plane
(|û1 − û2|, ĥ1 + ĥ2): in blue the hyperbolic region, in red the non-hyperbolic regions
and the green line is given by (2.8)
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one to define the nonconservative product A(w) ·wx as a bounded measure provided
a family of Lipschitz continuous paths Φ : [0, 1] × Ω × Ω → Ω is prescribed, which
must satisfy certain natural regularity conditions, in particular

Φ(0; wL, wR) = wL, Φ(1; wL, wR) = wR, (3.1)

and
Φ(s; w, w) = w. (3.2)

Here, the family of straight segments is considered:

Φ(s; wL, wR) = wL + s(wR − wL).

We consider here some path-conservative numerical schemes in the sense defined
in [11], that is, numerical schemes of the general form:

wn+1
i = wn

i −
∆t

∆x

(
D+

i−1/2 + D−

i+1/2

)
, (3.3)

where ∆x and ∆t are, for simplicity, assumed to be constant; wn
i is the approxima-

tion provided by the numerical scheme of the cell average of the exact solution at
the i-th cell, Ii = [xi−1/2, xi+1/2] at the n-th time level tn = n∆t, and

D±

i+1/2 = D±
(
wn

i , wn
i+1

)
,

where D− and D+ are two Lipschitz continuous functions from Ω×Ω to Ω satisfying:

D±(w, w) = 0, ∀w ∈ Ω, (3.4)

and for every wL, wR ∈ Ω,

D−(wL, wR) + D+(wL, wR) =

∫ 1

0

A
(
Φ(s; wL, wR)

)∂Φ

∂s
(s; wL, wR) ds.

These conditions provide a generalization of the concept of conservative scheme in-
troduced by Lax for systems of conservation laws. In particular, if the system (2.2)
admits a conservative subsystem, a path-conservative numerical scheme is conserva-
tive in the sense of Lax for that subsystem. The influence of the family of paths in
the numerical approximation of shocks and the difficulties related to the convergence
to the weak solutions of the system have been discussed in [5].

The family of generalized Roe schemes introduced in [14] constitutes a particu-
lar case of path-conservative numerical methods. These schemes are based on the
general concept of Roe linearization for (2.2) introduced in [14]: given a family of
paths Φ, a function AΦ : Ω×Ω 7→ M4×4(R) is called a Roe linearization if it verifies
the following properties:

• for any wL, wR ∈ Ω, AΦ(wL, wR) has 4 distinct real eigenvalues,
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• for every w ∈ Ω,
AΦ(w, w) = A(w); (3.5)

• for any wL, wR ∈ Ω,

AΦ(wL, wR) · (wR − wL) =

∫ 1

0

A(Φ(s; wL, wR))
∂Φ

∂s
(s; wL, wR) ds. (3.6)

The Roe linearization considered here is the following (see [12]): given two states

wL =




hL
1

qL
1

hL
2

qL
2


 , wR =




hR
1

qR
1

hR
2

qR
2




the matrix AΦ(wL, wR) is defined by:




0 1 0 0
−(û1)2 + (ĉ1)

2 2û1 (ĉ1)2 0
0 0 0 1

r(ĉ2)
2 0 −(û2)

2 + (ĉ2)2 2û2


 (3.7)

where

ûk =

√
hL

k uL
k +

√
hR

k uR
k√

hL
k +

√
hR

k

, ĉk =

√
g
hL

k + hR
k

2
, k = 1, 2,

with

uL
k =

qL
k

hL
k

, uR
k =

qR
k

hR
k

, k = 1, 2.

Once the Roe linearization has been chosen, the numerical scheme is given by
(3.3) with:

D±

i+1/2 = A±

Φ(wn
i , wn

i+1) · (wn
i+1 − wn

i ), (3.8)

where

A±

Φ(wL, wR) =
1

2
(AΦ(wL, wR) ± |AΦ(wL, wR)|) . (3.9)

The absolute value of the intermediate matrix is given by:

|AΦ(wL, wR)| = KΦ(wL, wR) · |LΦ(wL, wR)| · (KΦ(wL, wR))−1 , (3.10)

with

|LΦ(wL, wR)| =




|λ1
Φ(wL, wR)| 0

. . .

0 |λ4
Φ(wL, wR)|


 ,

being λ1
Φ(wL, wR), · · · , λ4

Φ(wL, wR) the eigenvalues of AΦ(wL, wR) and KΦ(wL, wR)
a 4 × 4 matrix whose columns are associated eigenvectors.
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When AΦ(wL, wR) has complex eigenvalues, this matrix is no more a Roe lin-
earization in the sense of the definition above, as the first requirement is not satisfied.
Nevertheless, the numerical scheme (3.3),(3.8),(3.9) can still be applied by redefining
the meaning of the absolute value of the intermediate matrix. To do this, we use
the real Jordan decomposition of AΦ(wL, wR), that is,

AΦ(wL, wR) = KJ
Φ(wL, wR) · LJ

Φ(wL, wR) ·
(
KJ

Φ(wL, wR)
)−1

,

where LJ
Φ(wL, wR) is a block diagonal matrix whose diagonal blocks are either the

real eigenvalues or 2 × 2 blocks of the form:

[
α β
−β α

]
(3.11)

associated to every pair of conjugate complex eigenvalues α± iβ. KJ
Φ(wL, wR) is the

real matrix corresponding to the change of basis. Now, |AΦ(wL, wR)| can be formally
defined by replacing in (3.10) KΦ(wL, wR) by KJ

Φ(wL, wR) and |LΦ(wL, wR)| by the
diagonal matrix obtained from the Jordan matrix by taking the absolute values of
the real eigenvalues and by replacing the diagonal blocks (3.11) corresponding to a
pair of conjugate complex eigenvalues by the diagonal block:

[ √
α2 + β2 0

0
√

α2 + β2

]
.

The technique introduce here to enforce the hyperbolic character can be also
applied to the more family of path-conservative numerical methods introduced in
[7] corresponding to the choice:

D±

i+1/2 = Â±

Φ(wn
i , wn

i+1) · (wn
i+1 − wn

i ), (3.12)

where
AΦ(WL, WR) = Â+

Φ(wL, wR) + Â−

Φ(wL, wR) (3.13)

is any decomposition of the Roe linearization of the form:

Â±

Φ(wL, wR) =
1

2
(AΦ(wL, wR) ± QΦ(wL, wR)) , (3.14)

where QΦ(wL, wR) can be interpreted as the numerical viscosity matrix. Differ-
ent numerical schemes can be obtained by considering different viscosity matrices
QΦ(wL, wR):

• Roe scheme corresponds to the choice

QΦ(wL, wR) = |AΦ(wL, wR)|. (3.15)
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• Lax-Friedrichs scheme corresponds to the choice

QΦ(wL, wR) =
∆x

∆t
Id, (3.16)

being Id the identity matrix.

• An extension of Lax-Wendroff scheme to non-conservative systems corresponds
the choice

QΦ(wL, wR) =
∆t

∆x
A2

Φ(wL, wR). (3.17)

• FORCE and GFORCE schemes correspond to the choice

QΦ(wL, wR) = (1 − ω)
∆x

∆t
Id + ω

∆t

∆x
A2

Φ(wL, wR), (3.18)

with ω = 0.5 and ω = 1
1+CFL

respectively.

These generalized Lax-Friedirchs, FORCE, or GFORCE schemes are more diffu-
sive than Roe scheme but they are less costly, as the calculation of the eigenstruc-
ture of the intermediate matrices is not required for their implementation. This
is specially advantageous when they are extended to high order by means of a re-
construction operator, as the results provided by these schemes are very similar to
those obtained with the high order extension of Roe, being the computational cost
significantly lower: see [7] for detailss.

Notice that Lax-Friedrichs scheme can be applied without any modification when
AΦ(wL, wR) has complex eigenvalues. In the case of Lax-Wendroff, FORCE, or
GFORCE scheme, when complex eigenvalues appear we replace A2

Φ(wL, wR) by:

KJ
Φ(wL, wR) ·

(
LJ

Φ(wL, wR)
)2

·
(
KJ

Φ(wL, wR)
)−1

.

When these modifications are done, all of these numerical schemes can be still
applied when complex eigenvalues are present. Nevertheless, they are not in general
L2 linearly stable. In effect, let us consider a linear system

wt + A · wx = 0, (3.19)

where A has complex eigenvalues. By simplicity, let us suppose that A ∈ M4×4(R)
having two real eigenvalues and two complex ones: λ1, λ2 ∈ R and

λ3 = α + iβ, λ4 = α − iβ, α, β ∈ R

Let us consider A = K · LJ · K−1, being

LJ =




λ1 0 0 0
0 λ2 0 0
0 0 α β
0 0 −β α


 .

11



Observe that the numerical scheme (3.3)-(3.12)-(3.14) can be written as

wn+1
i =

∆t

2∆x
(A + Q) wn

i−1 +

(
1 −

∆t

∆x
Q

)
wn

i −
∆t

2∆x
(A − Q) wn

i+1.

The corresponding amplification matrix is given by,

Ga(ξ) =
∆t

2∆x
(A + Q) e−iξ∆x +

(
1 −

∆t

∆x
Q

)
−

∆t

2∆x
(A − Q) eiξ∆x.

Let us consider a viscosity matrix of the form:

Q = K · LQ · K−1, (3.20)

where

LQ =




d1 0 0 0
0 d2 0 0
0 0 χ δ
0 0 −δ χ


 , d1, d2, χ, δ ∈ R. (3.21)

The following result can be obtained:

Theorem 1. Let us consider Q given by (3.20)-(3.21). If
(

∆t

∆x
λj

)2

≤
∆t

∆x
dj ≤ 1 j = 1, 2, (3.22)

and
∆t

∆x
(α2 + β2) ≤ χ,

∆t

∆x
(χ2 + δ2) ≤ χ, (3.23)

then the following inequality holds,

ρ(Ga(ξ))2 ≤ 1 + εo, with εo = 2
∆t

∆x
max

(
2 |δ|,

β2

√
β2 − δ2

)
.

�

From the point of view of the L2 stability the optimal choice of δ is δ = 0. In
this case the inequalities (3.23) reduce to

(
∆t

∆x

)2

(α2 + β2) ≤
∆t

∆x
χ ≤ 1. (3.24)

But even if δ = 0 and χ satisfies (3.24), the L2 stability is not obtained, as we have:

ρ(Ga(ξ))2 ≤ 1 + 2
∆t

∆x
|β|. (3.25)

We list hereafter the choices of d1, d2, and χ corresponding to the numerical
schemes described above for the nonlinear system. In any case the inequalities (3.22)
and (3.24) are satisfied provided that the following CFL condition is prescribed:

∆t

∆x
max

(
|λ1|, |λ2|,

√
α2 + β2

)
≤ 1.
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• Roe scheme (3.15):

dj = |λj|, j = 1, 2, χ =
√

α2 + β2.

• Lax-Friedrich scheme (3.16):

d1 = d2 = χ =
∆x

∆t
.

• Lax-Wendroff scheme (3.17):

dj =
∆t

∆x
λ2

j , j = 1, 2, χ =
∆t

∆x
(α2 + β2).

• FORCE or (GFORCE) schemes (3.18):

dj = (1 − ω)
∆x

∆t
+ ω

∆t

∆x
λ2

j , j = 1, 2, χ = (1 − ω)
∆x

∆t
+ ω

∆t

∆x
(α2 + β2).

In general, the bound ρ(Ga(ξ))2 ≤ 1+2 ∆t
∆x

|β| cannot be expected to be improved.
To see this, let us consider the simpler system with complex eigenvalues,

wt + A · wx = 0,

with A ∈ M2×2(R) is given by:

A =

(
α β
−β α

)
, α, β ∈ R.

If A is decomposed as A = K · L · K−1 with  L = diag(λ1, λ2), λ1,2 = α ± i β and

K =

(
1 1
i −i

)
,

and the change of variables w̃ = K−1 w is used, the system reduces to:

∂w̃k

∂t
+ λk

∂w̃k

∂x
= 0, k = 1, 2, (3.26)

whose solution is:

w̃1 = C1e
iσ(x−λ1 t) = C1e

σβteiσ(x−αt), k = 1, 2, (3.27)

where C1 is an arbitrary complex number. The solution for w̃2 is similar. Notice
that the solution (3.27) increase exponentially in time depending on β, so that is
expectable to find a similar behavior in the numerical solutions. Therefore, in order
to obtain the L2 stability it is necessary to modify the system to get rid of this
exponential growing.

Remark 1. While these schemes are unstable for linear systems, in the nonlinear
case they may remain stable in the presence of complex eigenvalues, as it will be
seen in Section 5. Nevertheless, strong unphysical oscillations may appear in the
numerical solutions when the modulus of the complex eigenvalues are big enough.
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4 Numerical treatment of the loss of hyperbolic-

ity

In the previous Section we have presented some Roe-based numerical schemes that
can be used even if the intermediate matrices have complex eigenvalues. In this
section we describe a strategy to recover the hyperbolic character of the two-layer
shallow-water system by a predictor/corrector strategy. Let us suppose that the
approximations at time tn, wn

i = [hn
1,i, q

n
1,i, h

n
2,i, q

n
2,i]

T , are known and let ∆t the time

step. In order to compute wn+1
i we proceed as follows:

1. Predictor step: one of the numerical schemes introduced in the previous
Section is applied to system (2.2) to obtain a first set of approximations at
time tn+1, w∗

i = [hn+1
1,i , q∗1,i, h

n+1
2,i , q∗2,i]

T .

2. Corrector step: at every cell the hyperbolic character of the system is
checked by verifying if the inequality (1.4) is satisfied for the state w∗

i . To
do this, we compute:

C∗

i =
(u∗

1,i − u∗

2,i)
2

g′(hn+1
1,i + hn+1

2,i )
− 1, (4.1)

being u∗

k,i = q∗k,i/h
n+1
k,i . Then the approximation at the i-th cell at time tn+1 is

calculated as follows:

• if C∗

i < 0, then wn+1
i = w∗

i ,

• otherwise wn+1
i = [hn+1

1,i , qn+1
1,i , hn+1

2,i , qn+1
2,i ], where

qn+1
1,i = hn+1

1,i · un+1
i,1 , qn+1

2,i = hn+1
2,i · un+1

2,i , (4.2)

and un+1
j,i , j = 1, 2 are obtained by solving the system:





un+1
1,i = u∗

1,i − ∆t
c

hn+1
1

|un
1,i − un

2,i|
(
un+1

1,i − un+1
2,i

)

un+1
2,i = u∗

2,i + r∆t
c

hn+1
2

|un
1,i − un

2,i|
(
un+1

1,i − un+1
2,i

)
,

(un+1
1,i − un+1

2,i )2

g′(hn+1
1,i + hn+1

2,i )
= 1,

(4.3)

for the unknowns c, un+1
j,i , j = 1, 2.

Notice that the two first equations in this system correspond to adding a
quadratic friction force between the layers in a split semi-implicit manner,
and the third equation is used to calibrate the constant in the quadratic
law so that the new cell averages are in the boundary of the hyperbolicity
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region, i.e. in the curve in which the system has a double and two simple
real eigenvalues.

Some straightforward calculations allow us to obtain the value of c:

c =
hn+1

1,i hn+1
2,i

∆t(hn+1
2,i + rhn+1

1,i )|un
1,i − un

2,i|


 |u∗

1,i − u∗

2,i|√
g′(hn+1

1,i − hn+1
2,i )

− 1


 , (4.4)

and then the values of un+1
j,i , j = 1, 2 are easily obtained.

Remark 2. As the inequality (1.4) is only an approximated criterium
of hiperbolicity, in the practical implementation the corrector step is per-
formed if C∗

i < ε, where ε is a small parameter (usually ε = O(10−5)).

5 Numerical tests

5.1 Test 1

This test is designed to assess the strategy defined in Section 4 to enforce the hy-
perbolicity of the two-layer shallow-water system. To do this, we apply the predic-
tor/corrector strategy to the system with an initial condition which is far beyond the
hiperbolicity region. We consider a flat channel whose axis is given by the interval
[−5, 5].

The initial condition is

h1(x, 0) =

{
0.4 if x > −0.5 and x < 0.5
0.5 otherwise,

h2(x, 0) = 1.0 − h1(x, 0),

u1(x, 0) = 0.2, u2(x, 0) = −0.3.

Free boundary conditions are imposed. The CFL parameter is set to 0.9 and ∆x =
0.01 and r = 0.99. Note that

(u1 − u2)
2

g′(h1 + h2)
= 0.52/0.0981

at every point at time t = 0.
Figure 3 shows the free surface and the interface evolution from t = 0 s to t = 1 s

obtained with Roe scheme without (left) or with (right) the corrector step described
in Section 4. As expected, the initial perturbation grows in time when Roe scheme
is applied, while this is not the case when the corrector step is performed. Similar
results can be observed for the velocities (see Figure 4). Figure 5 shows the evolution
of (u1 − u2)

2/(g′(h1 + h2)) from t = 0 s to t = 1 s. As expected, when the friction
terms are considered, the inequality (u1 − u2)

2/(g′(h1 + h2)) ≤ 1 is always satisfied.
In this case, the strong oscillations obtained with the Roe scheme without the

corrector step remain bounded. Nevertheless these oscillations are unphysical: in
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real flows, shear instabilities induce either mixture or the development of complex
patterns at the interface but not internal waves of such an amplitude. Instead, when
the corrector step is applied these phenomena are neglected.

5.2 Test 2

In this test the axis of the channel is the interval [0, 10]. The bottom topography is
given by the function

H(x) = 1.0 − 0.5e−(x−5.0)2 .

The initial condition is q1(x, 0) = q2(x, 0) = 0,

h1(x, 0) =

{
0.5 if x < 5,
0.0 otherwise,

and
h2(x, 0) = H(x) − h1(x, 0).

The initial condition represents an internal dam witch is suddenly removed. The
layers are then allowed to evolve until a stationary state is reached. As boundary
conditions, the relation q1(·, t) = −q2(·, t) is imposed at both ends, and the free
surface is fixed to z = 0 at x = 10, that is h1(10, t) + h2(10, t) − H(x) = 0. In the
simulations shown in Figures 6-8, CFL = 0.9, r = 0.99 and ∆x = 1/35. In the
reached stationary solution, the upper layer fluid flows from left to right and the
second one from left to right. The flow is subcritical if x ≥ 5 and critical at x = 5.
At the left of x = 5, the flow is first supercritical and then the subcritical regime
is recovered by a stationary internal hydraulic jump (see Figure 6). Concerning
the hyperbolicity region, the flow is always in the hyperbolic region, except in a
small area located in the supercritical region. In this particular case, Roe scheme
without the correction stage is able to reach the stationary state although complex
eigenvalues appear. Figure 7 shows the values of (u1 − u2)

2/(g′(h1 + h2)) in the
x − t space when the Roe scheme without (left) or with (right) the corrector step
described in Section 4 is used. As expected, when the friction terms are considered,
the inequality (u1 − u2)

2/(g′(h1 + h2)) ≤ 1 is always satisfied, while this is not the
case when the corrector step is not performed, being 1.2866 the maximal value of
(u1 − u2)

2/(g′(h1 + h2)). Notice that the regions of hyperbolic regimes are almost
identical.

We have also considered the system with a small friction force given by a quadratic
law (1.2) with c0 = 0.001. Figure 8 shows the values of (u1−u2)2/(g′(h1 +h2)) when
the Roe scheme in combination with the friction law (1.2) with c0 = 0.001 is used.
Note that the flow is not always hyperbolic, but the values (u1 − u2)

2/(g′(h1 + h2))
are smaller, being its maximal value 1.2689. As in the previous case, the regions of
hyperbolic regime are practically the same in all the cases.
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Figure 3: Test 1: Free surface and interface evolution. Roe scheme (left column).
Roe scheme with friction to enforce the hyperbolicity region (right column)
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Figure 4: Test 1: u1 and u2 evolution. Roe scheme (left column). Roe scheme with
friction to enforce the hyperbolicity region (right column)
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Figure 5: Test 1: (u1 − u2)/(g′(h1 + h2)) evolution. Roe scheme (left column). Roe
scheme with correction step to enforce the hyperbolicity region (right column)
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with correction step (line with circles).
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2/(g′(h1 + h2)) evolution. Roe scheme with internal

friction (1.2) with c0 = 0.001.

Figure 6 shows the comparison of the three computed interfaces at the steady
state. Note that the only differences are the position and amplitude of the internal
bore.

5.3 Test 3

This test is designed to assess the strategy defined in Section 4 to enforce the hy-
perbolicity region of the two-layer shallow-water system in the case of a barotropic
tidal forcing. Let us consider the same channel of Test 2 and, as initial condition,
the stationary state computed in Test 2 is imposed. The total water height

(h1 + h2)(10, t) = h0
1 + h0

2 + 0.005 cos
(
t/50 +

π

4

)
,

is imposed at x = 10, being h0
i , i = 1, 2 the water depth of both layers at the

stationary state. Free boundary condition is imposed at x = 0. Again, CFL=0.9,
r = 0.99, and ∆x = 1/35. The numerical test is run from t = 0 to t = 10000 s. As a
consequence of the tidal forcing, the internal bore moves from left to right according
to the tidal currents.

Figure 9 shows the position of the computed interface at two different times of
the tidal period. Notice that the main differences of the Roe scheme with or without
corrector step is the location and amplitude of the internal bore. If, again, a small
friction force give by (1.2) with c0 = 0.003 is added to the system and Roe scheme
is applied, the differences are bigger: the internal bore location and amplitudes are
different but also significant differences can be observed at the subcritical regions
(see Figure 9).

Figure 10 shows the values (u1 − u2)
2/(g′(h1 + h2)) in the x− t space for several

tidal periods when the Roe scheme without (left) or with (right) corrector step
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Figure 9: Test 3: Computed interface at t = 2000 s. (left) and t = 2180 s. (right):
Roe scheme (line with stars), Roe scheme with internal friction (1.2) (line with
squares), and Roe scheme with correction step (line with circles).
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2/(g′(h1 + h2)) evolution. Roe scheme (left column).
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described in Section 4 is used. As in the previous tests, when the corrector step is
considered, the inequality (u1 − u2)

2/(g′(h1 + h2)) ≤ 1 is always satisfied, while is
not the case when the Roe scheme is used without the corrector step. Note that in
both Figures the regions of hyperbolic regime are almost identical.

Again, the simulation can be performed with Roe scheme without the corrector
step. Nevertheless, some oscillations appear: a zoom of the region near the internal
bore in Figure 9 can be seen in Figure 11(a). These oscillations increase as r is closer
to one: see Figure 11(b) corresponding to the same test problem with r = 0.999
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Figure 11: Test 3:Computed interface at t = 2000 s. with r = 0.99 (left) and
t = 1590 s. (right) with r = 0.999: Roe scheme (line with stars) and Roe scheme
with correction step (line with circles).

6 Conclusions

In this work, a characterization of the hyperbolicity region for the two layer shallow-
water system is proposed and checked by using the first order approximation of the
eigenvalues of the system given in [13] when r ∼= 1.

Some path-conservative finite volume schemes in the sense defined in [11] have
also been presented, that can be used even if the system is not hyperbolic, but they
are not in general L2 stable.

The main contribution of this work is a simple but efficient strategy to en-
force the hyperbolicity of the two-layer shallow-water system consisting in adding
to the system an extra amount of friction at every cell in which complex eigen-
values are detected at a given time step. The implementation is performed by a
predictor/corrector strategy: first a numerical scheme is applied to the unmodified
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two-layer system, regardless of the hyperbolic character of the system. Next, we
check if the predicted cell averages are in the hyperbolic region or not. If not, the
mass-fluxes are corrected by adding a quadratic friction law between layers whose
coefficient is computed so that the corrected cell average is as near as possible of
the boundary of the hyperbolicity region.

Finally, some numerical test have been performed to asses the efficiency of the
proposed strategy.

The extension to 2d models and/or high order schemes (either by means of
reconstruction of states or ADER techniques) is straightforward by applying the
techniques describes in [11], [2], [3], [1]....
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