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Abstract. The parallel numerical solution of the Navier-Stokes equa- 
tions with the sparse grid combination method was studied. This algo- 
rithmic concept is based on the independent solution of many problems 
with reduced size and their linear combination. The algorithm for 3- 
dimensional problems is described. Its parallel implementation on an 
IBM SP2 and a cluster of 16 HP workstations is discussed. 

1 Introduction 

In the area of computat ional  fluid dynamics (CFD), the s tudy of turbulent,  3- 
dimensional flow of incompressible fluids is one of the most  challenging tasks. To 
unders tand bet ter  the arising phenomena and their interaction with walls and 
boundaries,  driven turbulence 1 in a (periodically closed) pipe or canal is studied 
frequently as a test  problem. Its  direct numerical simulation involves the solution 
of the 3-dimensional Navier-Stokes (NS) equations on extremely fine grids for a 
long period of observation t ime to gain a sufficient amount  of flow field samples 
for a statistical evaluation. Thus, any direct numerical simulation (DNS) is very 
t ime-consuming and needs, at  least for higher Reynolds numbers,  an extreme 
amount  of main memory  and disk storage which is beyond existing computers.  
Therefore, the simulation was limited to relatively small Reynolds numbers. In 
the following, we consider the parallel simulation of a turbulent  flow in a pipe 
for a Reynolds number of 6950. 

2 T h e  n u m e r i c a l  m e t h o d  a n d  i t s  p a r a l l e l i z a t i o n  

On the discretization of the NS equations a second order FV method on a 
staggered grid is used. The t ime discretization is explicit (Euler/Leapfrog) and 
Chorin 's  projection method is used. To cope with the pipe geometry, we use 
cylindrical coordinates. 

Instead of the t rea tment  of the NS equations on a conventional full grid, 
we apply a new technique, the combination method, which works on a so-called 

1 in contrary to decaying turbulence, where no walls are present. 
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sparse grid only. It involves different regular grids [2i,y,k with different mesh 
width hi = 2 - i ,h j  = 2-J,hk : 2 -k in r-, ~- and z-direction and the linear 
combination of the corresponding solution according to the formula 

= 2 + E (1) 
i+ jTk:n+ 2 iTj+k:n+ l iTjTk:n 

gives a numerical solution on the sparse grid ~2~,n,n, see Fig. 1. 
On each of the grids involved, the Navier-Stokes equations are t reated ex- 

plicitly for T successive time steps independently of each other�9 Then, a sparse 
grid solution is assembled by the linear combination process (1) and, from that ,  
the starting iterates for the next cycle of T time steps on the different grids 
are gained by projection, and so on. For the t reatment  of the iterates on these 
different grids, any existing NS-Solver can be applied directly (see Fig. 2). 
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Fig. 2. Integration of the combination method into a NS solver�9 

Thus, our method involves substantially less grid points (i.e. O ( N .  (log N)  2) 
with N = 2n+ l )  instead of O(N 3) for the full grid discretization but  the accuracy 
of the obtained solutions is nearly the same (see [1, 2]) as for the conventional 
approach and is, for turbulent flow applications, within the range of the error 
of physical measurements anyway. To cope with the possibly extreme distorsion 
on some of the grids involved, we modified (1) in a way that  certain grids are 
omitted and the combination of the solution iterates of only m grids takes place, 
see also [1, 3]. On results of the statistical evaluation for the combination method 
and the DNS, see [1, 3]. 

Furthermore, this method is perfectly suited for parallelization on a relatively 
coarse grain level (see [1, 3]) and allowing for a simple load balancing strategy. 
Thus, in each time step, the overall complexity of the parallelized combina- 
tion method is reduced to O(N) in comparison to O(N 3) for the conventional 
approach in the sequential setting�9 To achieve this, O((log N) 2) processors are 
necessary.~ 3 

2 Note that, in the paraUelized version of the combination method, the sparse grid is 
never assembled explicitly, but its relevant data axe stored in a distributed way on 
the different grids which are associated to different processors�9 

3 Of course, it is possible to further parallelize the work for each subproblem arising 
in the combination method e.g. by conventional domain decomposition techniques. 
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3 R u n  t i m e  re su l t s  

For different numbers of grids m, Table 1 shows the fraction of the amount of 
memory necessary to store the data  belonging to one, i.e. the largest grid versus 
the amount of memory necessary to store the data belonging to the full grid. In 
brackets we note the reduction rate in percent. 

Table 1. Requirements for distributed storing. 

Number m of grids involved Storage requirements 
in the combination method in comparison with the full grid 

1 1 (100.0%) 
4 1/4 (25.0%) 
I0 1/16 (6.25%) 
19 1/64 (1.56%) 
31 1/256 (0.39%) 

We implemented the parallel version of our combination method on an IBM 
SP2 and a cluster of 16 HP 9000/720 workstations. On the IBM machine we use 
PVM 3.3.7 and PVMe 3.2. On the workstations we use PVM 3.2.7. 

The number of grids involved in the combination process were m -- 4, 10, 19, 31 
on the workstations and m = 19, 31 on the IBM machine. 

The total speedup of an algorithm on parallel machines can be decomposed 
into the parallel speedup and the numerical speedup. The parallel speedup is 
defined by 

execution time of the combination method on 1 node 

Sp~r (P) := execution time of the combination method on P nodes" (2) 

Here, P defines the number of nodes (that means processors or workstations). 
The numerical speedup is defined as 

execution time of the full grid version on 1 node 

S,~m := execution time of the combination method on 1 node" (3) 

Pa ra l l e l  s p e e d u p :  First, we like to concentrate ourself on the parallel speedup 
of our implementation. Using PVMe it is not possible to run more than one 
process on one node. Hence, for m -- 19 grids we have to use 19 nodes and for 
m = 31 grids we have to use 31 nodes. Dealing with PVM it is possible to run 
more than one process on one node. On the different architectures, we obtained 
the parallel speedup with PVM shown in Fig. 3 and 4. The overall speedup 
increases very slowly on increasing the number of nodes. 4 

4 The non optimized version of our code is one reason for the poor speedup. Another 
reason is the storage requirement (see Table 1) and so the computing time arising in 
the combination process. 
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Fig .  3. Parallel speedup on P proces- 
sors using PVM 3.3.7 on the SP2. 
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Fig.  4. Parallel speedup on P worksta- 
tions using PVM 3.2.7. 

N u m e r i c a l  s p e e d u p :  Now, we turn to the numerical speedup of our com- 
bination method. Here, we compare the run times of the combination method 
on a sparse grid with the run times of the same NS solver on the associated full 
grid. It can be seen from Table 2 that our new method has a better numerical 
efficiency than the standard approach on the full grid. 

Table  2. Numerical speedup. 

architecture rn = 4 m = 10 m = 19 m = 31 
T = 5 0  T = 2 5  T = 1 0  T = 5  

max. value 1.1 2.1 4.7 11.9 
HP workstations 0.8 2.1 3.3 7.3 
IBM SP2 3.8 6.5 
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