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1. Intr oduction

Whenwemake inferencesaboutthebeliefs,abilities,motives,andfutureactionsof otherpersons,we
havetomanageagooddealof uncertainty. Within socialpsychology,alargecommunityof researchers
hasinvestigatedtheway peoplehandlethesechallengesin everydaylife andthenatureof theerrors
thatthey make(see,e.g.,Nisbett& Ross,1980;Fiske& Taylor,1991).

In thefield of psychologicalassessment,for decadestechniqueshavebeenexploredandappliedfor
makingsuchinferencesundercontrolledconditions(see,e.g.,Wainer,1990).Evenwhenit is possible
to processnumerousobservationsof a person,carefullychosenandinterpretedwith referenceto an
extensive empiricaldatabase,thetaskof dealingwith theuncertaintyassociatedwith theevidenceis
challenging.

For interactivesoftwaresystemsthatattempttomodelauserorastudent,thegapbetweenthenature
of theavailableevidenceandtheconclusionsthatareto bedrawn is oftenmuchgreater. Suchsystems
in generalhave moremeagerand/ormorehaphazardlycollecteddataabouttheir usersthancanbe
obtainedby a personwho is engagedin face-to-faceinteractionor by a testerwho is in controlof the
situation.Moreover, thesystemscanlessoftenfall backonarichbackgroundof relevantexperience.

Until the late 1980's, researchersinterestedin user or studentmodeling had available only a
limited repertoireof techniquesfor uncertaintymanagement.They mostlyhadto rely eitheronpoorly
understoodadhoctechniquesor ongeneraltechniques—suchasvariousformsof default reasoning—
thatwerenot reallywell suitedfor thetreatmentof mostproblemsin thisarea.

Fortunately, thequestionof how to manageuncertaintyhasbeena rapidly expandingandincreas-
ingly mainstreamresearchtopicin artificial intelligenceduringthepastdecade.In particular, numerical
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techniquesarenow widely used,whereasnot so long agosuchtechniqueswerewidely dismissedas
impracticaland/orincompatiblewith thebasicnatureof artificial intelligence.1

The presentintroductoryoverview, like this specialissueasa whole,aimsto give researchersin
theareasof userandstudentmodelingapictureof theprospectsanddifficultiesassociatedwith these
numericalapproachesandto show themwherefurtherideasandinformationcanbefound.Sections2,
3, and4 considerin turn thethreemajoruncertaintymanagementparadigmsandtheuserandstudent
modelingsystemsthathaveemployedthem.Section2 examinestheparadigmthatfollows traditional
probabilitytheorymostclosely, theonein which Bayesiannetworks(BNs) arethecentraltechnique.
Sections3 and4 thenconsiderthe successively lesstraditionalapproachesbasedon the Dempster-
Shafertheoryof evidence(DST) andfuzzylogic (FL), respectively; theuseof theseparadigmsis often
motivatedby objectionsto the moretraditionalones.Section5 comparesthe threeparadigmswith
respectto aspectsof their usabilityin realisticcontextsof researchandapplication.

Although almosthalf of the systemscoveredby this overview fall into the category of student
modeling,for conveniencethe termusermodelingwill beemployedin a broadsensethatsubsumes
studentmodeling.Similarly, the symbol

�
will denotea userof a systemthat doesuseror student

modeling;� will denotethesystemin question.Sothatgenderbiascanbeavoided,masculinepronouns
will beusedfor referencesto theuserin thecontext of instructionalsystems,andfemininepronouns
will beusedin all othercases.

2. SystemsThat HaveUsedBayesianNetworks

The moststraightforward examplesof Bayesiannetworks are thosethat involve a physicalsystem
thatconsistsof severalcomponentssomeof which influenceotherscausally. For example,a burglar
alarm(see,e.g.,Pearl,1988,chap.2) canbesetoff by at leasttwo possiblecauses:a burglary or an
earthquake.Or to takealargelyphysicalexamplethatliesabit closerto usermodeling:Theprobability
thata high-jumperwill beableto cleara givenheightcanbeseenasdependingon two mainfactors:
(a)theheightof thebarand(b) thehigh-jumper'sability (expressed,e.g.,in termsof theheightshecan
jump successfully50%of the time). Even if thesetwo factorsareknown precisely, anobserver will
beuncertainabouttheoutcomeof a jump nearthe jumper's typical height,becauseof theoperation
of variousotherfactors,someof which cannotbe taken into accountsystematically. A specification
of therelevantcausalrelationshipsmakesit possible(a) to predictoutcomesthatdependonparticular
causesand(b) to interpretobservedoutcomesasevidenceconcerningthevariablesthatcausedthem.
For example,anunsuccessfuljump at anapparentlylow heightsuggestsa low level of high-jumping
ability.

Relationshipslike thesecanoftenberepresentednaturallywith aBN: adirected,acyclical graphin
whichthenodescorrespondto(possiblymultivalued)variablesandthelinkscorrespondtoprobabilistic
influencerelationships.2 As will beseenbelow, the relationshipsamongvariablesdo not have to be
causalin nature,thoughtheoperationof a BN tendsto beespeciallyeasyto understandwhenthis is
thecase.

1 Booksthat cover a variety of approachesincludethoseof Kruseet al. (1991),Neapolitan(1990),Pearl(1988),and
ShaferandPearl(1990).Theproceedingsof theannualconferencesonUncertaintyin Artificial Intelligence(e.g.,thevolumes
editedby LopezdeMantaras& Poole,1994,andby Besnard& Hanks,1995)presentabroadrangeof researchcontributions.
Worksof morelimited scopewill becitedin latersections.

2 The conceptsusedhereareintroducedin moredetail by Mislevy andGitomer(1995)in this issue.A longertutorial
expositionof BNs is providedby Charniak(1991)(seealsothearticleby Henrionet al., 1991,in thesamemagazineissue).
A moretechnicalintroductionis offeredby RussellandNorvig (1995,chap.15).Detailedtechnicalbackgroundis givenby
Pearl(1988)andby Neapolitan(1990).
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Figure1. Predictionandinterpretationof theuser's knowledgeof aUNIX conceptwith asmallBN.
Eacharrow pointsfrom a parentnodeto its child node.Thesecondhistogramfor eachnoderepresentsthesystem's
beliefaftertheobservationthat � knows theconcept“MORE”.

2.1. THE IPSOMETER: SMALL -SCALE NETWORKSFORKNOWLEDGE ASSESSMENT

Thefirst systemin thissectionwill serveasasimpleillustrationof someof thebasicconceptsof BNs
in a usermodelingcontext. Theexampleproblemconsideredherewill alsoserve asan introductory
exampleof theuseof DST (Section3.1)andFL (Section4.1).Theexampleis situatedin thedomain
of the systemKNOME (Chin, 1989;seeSection4.1): An intelligenthelp systemmustincrementally
updateits assessmentof auser

�
'sexpertisewith respectto theoperatingsystemUNIX onthebasisof

informationthatrevealswhether
�

is familiarwith threeUNIX concepts.

TheexampleBN in Figure1 representsanadaptationof theinferencemechanismof theIPSOMETER

(Jameson,1990,1992),whichwasinitially developedasastandardof comparisonfor everydayhuman
judgmentsof whatotherpersonsknow. Considerfor themomentonly thefirst (white)histogramshown
for eachof thethreenodesin thenetwork. Eachnoderepresentsthesystem'sbeliefaboutoneof three
variables. Thehistogramfor UNIX EXPERTISE OF � shows that four possiblelevelsof this variableare
distinguished.At any moment,thesystem's uncertainbelief about

�
's expertiseis representedby a

probabilitydistribution,whichis depictedby thehistogram.In thepresentexample,
�

is atfirstentirely
unknown to � , so � 'sbeliefreflectssimply thedistributionof expertiselevelswithin thepopulationof
usersthat � dealswith.

Similarly, threepossiblelevels for DIFFICULTY OF “MORE” aredefined.It canbe seenthat � is not
entirelycertainabouthow difficult theconcept“MORE” is. In spiteof all this uncertainty, � canderive
a belief abouthow likely

�
is to know “MORE” by allowing downward propagation to occur in the

network. The resultingbelief is shown in the nodeKNOWLEDGE BY � OF “MORE”, which is the child
of the two otherparent nodes.To derive this belief, the network requiresa conditionalprobability
table. This tablespecifies,for eachof the24 combinationsof possiblevaluesof thevariablesin the
parentnodesandthechild node,how likely thevalueof thechild variableis, giventhevaluesof the
parentvariables.Theseconditionalprobabilitiescould be derived from empiricaldata,estimatedby
a domainexpert,and/orbasedon a moregeneraltheoryaboutthe relationshipsamongvariablesof
thesetypes.In thepresentexample,thethird possibilityis realized:Theprobabilitiesarechosento be
consistentwith a commonlyusedmodelwithin psychologicaltesttheory, theone-parameterlogistic
modelof Item ResponseTheory(see,e.g.,Hambleton& Swaminathan,1985).This model treatsa
confrontationbetweena personanda knowledgeitemasanalogousto anattemptby ahigh-jumperto
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Figure2. Statesof theBN of Figure1 afterauser's (lackof) knowledgeof two furtherconceptshasbeenobserved.

Thehistogramswith aparticularshadeof grayrepresentthesystem's beliefsat aparticularpoint in time.

jump a particularheight,wherethe heightof the bar correspondsto the difficulty of the knowledge
item.

Thebelief for KNOWLEDGE BY � OF “MORE” shows that � expects
�

to know “MORE”, eventhough�
hasno prior experiencewith

�
, simply because“MORE” is apparentlysoeasy. This typeof inference

from causesto effectscanbecalledpredictiveinference(cf. Pearl,1988,p.6).

Diagnostic inference, on the other hand,moves from observed effects to possiblecauses.For
example,thesecond(gray)histogramfor eachnodeshows � 's beliefsafter � haslearnedthat

�
does

in factknow “MORE”. � now assignsa probabilityof 1.00to thevalueKNOWN for KNOWLEDGE BY � OF

“MORE”. � thenupdatesits beliefaboutUNIX EXPERTISE OF � via upwardpropagation, whichcanbeseen
asageneralizationof theapplicationof Bayes'rule.Thebasicideais thatthosecombinationsof values
of the parentvariablesthatareassociatedwith theobservedresultby a high conditionalprobability
becomeproportionallymorelikely, whereastheothercombinationsbecomelesslikely. In thiscase,�
now assignsslightly higherprobabilitiesto thehigherlevelsof UNIX EXPERTISE OF � ; but on thewhole
� is not very“impressed”by

�
's familiarity with thissimpleconcept.
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Similar processingoccurswhen � learnsabout
�

's knowledgeof further concepts,asillustrated
in Figure2, which extendsFigure1. For eachnew concept,a noderepresenting� 's belief aboutits
difficulty is addedto thenetwork. A nodefor thebelief about

�
's knowledgeof theconceptis also

addedand then updatedto reflect
�

's observed (lack of) knowledge.After
�

is seento know the
MUNDANE concept“RWHO”, � 's assessmentof herexpertiseagainbecomesmorepositive.Later, when
sheis seennot to know “FG”, anotherMUNDANE concept,thereis a changein theoppositedirection. �
beginsto convergeon theconclusionthat

�
's level of expertiseis neitherveryhighnorvery low.

Thereadermayhavenoticedthat � alsoupdatesitsbeliefsaboutthedifficulty of thevariousconcepts
on thebasisof

�
's knowledgeof them(compare,for example,the two histogramsfor DIFFICULTY OF

“FG”). � even continuesto updateits belief aboutDIFFICULTY OF “MORE” after its initial processingof
the fact that

�
knows theconcept“MORE”, because� 's revisedassessmentsof

�
's expertisecause�

to rethink its original interpretationof this evidence.This updatingof beliefsaboutvariablesother
thanthosedescribingthe currentuseris an automaticconsequenceof the standardBN propagation
techniques;its consequenceswill bediscussedin Section2.12.

2.2. CATEGORIESOF SYSTEMSTHAT HAVE USEDBAYESIAN NETWORKS

Figure3 and the later Figure5 togethergive an overview of systemsthat have usedBNs for user
modeling.3 Figures8 and 11 will give similar overviews of systemsthat have usedDST andFL,
respectively. Thesefigurescharacterizeeachsystemin termsof the typesof variableaboutwhich it
makesinferences.Thefivecategoriesof variablesdistinguishedareexplainedin AppendixA.

Thesystemswill bediscussedin theorderof their appearancein thefigures.The onesthathave
usedBNsfall into four categories:

1. Themainemphasisof thefirst four systemsin Figure3 is ontheassessmentof moreor lessgeneral
abilities.Thesesystemsmainly usethediagnosticinferencecapabilitiesof BNs,aswasillustrated
by the way in which the IPSOMETER(Section2.1) interpretedevidenceabout

�
's knowledgeof

concepts.
2. Thefifth andsixthsystemsin Figure3 assessnotgeneralabilitiesbut thepossessionof knowledge

of individual concepts.The distinctionbetweenpredictive anddiagnosticinferenceis lessclear
here,becausebothupwardanddownwardpropagationcanbeusedto infer that

�
knowsaconcept,

giventhefactthatsheknowscertainotherconcepts.
3. The first threesystemsin Figure5 aredesignedto recognizethe plansof an agent(who is not

actually a computeruser, in the context of thesesystems).The emphasisis again mainly on
diagnosticinference,althoughonepurposeof plan recognitionis to make possibletheprediction
of aperson's futureactions.

4. For the last threesystemsin Figure5, predictive inferenceis at leastas importantasdiagnosis.
Predictionsconcerninga user's cognitionand/orbehavior form a basisfor thesystem's decisions
andactions.

Note that the arrows in Figures3 and 5 have a different meaningthan thoseusedin graphical
representationsof BNs: In particular, an upward arrow in one of thesefiguresmay correspondto

3 Threeotherusesof BNshavebeendescribedonly briefly in thepublicationsthathaveappearedto date.They arelisted
herefor readerswhomightbeespeciallyinterestedin thedomainsinvolved:Sime(1993)usesaBN to expressrelationships
amongseveral typesof knowledgethata studentmayhave abouta physicalsystem.TheBNs of PITAGORA2.0 (Carbonaro
et al., 1995, section3.1; Roccetti& Salomoni,1995) make inferencesabouta student's knowledgeof problemsolving
proceduresfor Euclideangeometry. Draney etal. (1995)describeBNsthataredesignedfor usewithin aLISPprogramming
tutor. Their purposeis to assessstudents'masteryof itemsof proceduralknowledgeon the basisof their performanceon
programmingtasksfor which theseknowledgeitemsarerequired.



6 ANTHONY JAMESON

Observable
Observable states and
states and events
events

Observable
Observable states and
states and events
events

Short-term
Short-term cognitive
cognitive states and
states and events
events

Short-term
Short-term cognitive
cognitive states and
states and events
events

Long-term
Long-term cognitive
cognitive states
states

Long-term
Long-term cognitive
cognitive states
states

Positions
Positions on dimensions
on dimensions

Positions
Positions on dimensions
on dimensions

Personal
Personal characteristics
characteristics

Personal
Personal characteristics
characteristics

I
�
PSOMETER

IPSOMETER

I
�
PSOMETER

I
�
PSOMETER

Assessment of
Assessment of UNIX expertise
UNIX expertise

Assessment of
Assessment of UNIX expertise
UNIX expertise Section 2.1

Section 2.1 (Jameson, 1992)
(Jameson, 1992)

UNIX expertise
UNIX expertise

UNIX expertise
UNIX expertise

(Lack of)
(Lack of) knowledge of

knowledge of UNIX concepts
UNIX concepts

(Lack of)
(Lack of) knowledge of

knowledge of UNIX concepts
UNIX concepts

Actions revealing
Actions revealing (lack of) knowledge

(lack of) knowledge

Actions revealing
Actions revealing (lack of) knowledge

(lack of) knowledge

O
�

LAE
O
�

LAE

O
�

LAE
O
�

LAE

Knowledge tracing
Knowledge tracing for physics

for physics

Knowledge tracing
Knowledge tracing for physics

for physics Section 2.3
Section 2.3 (Martin & VanLehn, 1995)

(Martin & VanLehn, 1995)

Mastery of topics
Mastery of topics

Mastery of topics
Mastery of topics

Knowledge of
Knowledge of physics rules
physics rules

Knowledge of
Knowledge of physics rules
physics rules

Rule applications
Rule applications

Rule applications
Rule applications

Equations typed
Equations typed during problem solving

during problem solving

Equations typed
Equations typed during problem solving

during problem solving

P
	

OLA
POLA

P
	

OLA
P
	

OLA

Model tracing
Model tracing for physics

for physics

Model tracing
Model tracing for physics

for physics Section 2.4
Section 2.4 (Conati & VanLehn, 1996)

(Conati & VanLehn, 1996)

Knowledge of
Knowledge of physics rules
physics rules

Knowledge of
Knowledge of physics rules
physics rules

Pursuit of
Pursuit of solution strategies

solution strategies

Pursuit of
Pursuit of solution strategies

solution strategies

(Sequences of)
(Sequences of) rule applications
rule applications

(Sequences of)
(Sequences of) rule applications
rule applications

Equations typed
Equations typed during problem solving

during problem solving

Equations typed
Equations typed during problem solving

during problem solving

Observable
Observable states and
states and events
events

Observable
Observable states and
states and events
events

Short-term
Short-term cognitive
cognitive states and
states and events
events

Short-term
Short-term cognitive
cognitive states and
states and events
events

Long-term
Long-term cognitive
cognitive states
states

Long-term
Long-term cognitive
cognitive states
states

Positions
Positions on dimensions
on dimensions

Positions
Positions on dimensions
on dimensions

Personal
Personal characteristics
characteristics

Personal
Personal characteristics
characteristics

HYDRIVE
H



YDRIVE

H



YDRIVE
HYDRIVE

Assessment of
Assessment of troubleshooting skills

troubleshooting skills

Assessment of
Assessment of troubleshooting skills

troubleshooting skills Section 2.5
Section 2.5 (Mislevy & Gitomer, 1995)

(Mislevy & Gitomer, 1995)

General abilities
General abilities

General abilities
General abilities

Specific abilities
Specific abilities

Specific abilities
Specific abilities

Use of trouble−
Use of trouble− shooting strategies

shooting strategies

Use of trouble−
Use of trouble− shooting strategies

shooting strategies

Concrete trouble−
Concrete trouble− shooting actions
shooting actions

Concrete trouble−
Concrete trouble− shooting actions
shooting actions

EPI-UMOD
E
�

PI-UMOD

E
�

PI-UMOD
EPI-UMOD

Exploitation of inter-
Exploitation of inter- concept relationships

concept relationships

Exploitation of inter-
Exploitation of inter- concept relationships

concept relationships Section 2.6
Section 2.6 (de Rosis et al., 1992)

(de Rosis et al., 1992)

Knowledge of concepts
Knowledge of concepts

Knowledge of concepts
Knowledge of concepts

Knowledge of concepts
Knowledge of concepts

Knowledge of concepts
Knowledge of concepts

Expressions of
Expressions of concept knowledge

concept knowledge

Expressions of
Expressions of concept knowledge

concept knowledge

POKS
P
	

OKS

P
	

OKS
POKS

Use of automatically
Use of automatically determined interitem links

determined interitem links

Use of automatically
Use of automatically determined interitem links

determined interitem links Section 2.7
Section 2.7 (Desmarais et al., 1995)

(Desmarais et al., 1995)

Knowledge of facts
Knowledge of facts

Knowledge of facts
Knowledge of facts

Knowledge of facts
Knowledge of facts

Knowledge of facts
Knowledge of facts

Answers to questions,
Answers to questions, uses of facts

uses of facts

Answers to questions,
Answers to questions, uses of facts

uses of facts

Figure3. SystemsthathaveusedBNsfor knowledgeassessment.
The five levels of variablesareexplainedin AppendixA. “ ��
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arenotmadewith thesystem's numericaluncertaintymanagementtechniques.
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inferencesthataremadevia upwardpropagation,which in aBN actuallymovesbackwardalonglinks
thatpoint “downward”, from parentto child.

2.3. OLAE: ASSESSINGPHYSICSSKILL WITH FINE OR COARSEGRANULARITY

OLAE (Martin & VanLehn,1993,1995)is partof aphysicstutoringsystem.But OLAE is notdesigned
to supportinteractive tutoring. Its purposeis to yield a differentiatedand reliableassessmentof a
student's knowledgeof a subdomainof physics.The observationsthat its BNs useasinput concern
equationstypedin by

�
while

�
solvesa physicsproblem.The most importantinferencesconcern�

's (lack of) knowledgeof particularphysicsrules(e.g.,how to computethemassof anobjectgiven
its densityandvolume).Eachsuchrule correspondsto a two-valuedvariablerepresentedby a node
in a BN. ThesystemautomaticallyconstructstheBN thatcorrespondsto a particularproblemon the
basisof aproblemsolutiongraph; thisgraphessentiallyrepresentsthevariouswaysin which

�
might

try to solve theproblemby applyingrulesto the factsof theproblemandto the intermediateresults
generatedby rule applications.Theproblemsolutiongraphis itself automaticallyconstructedon the
basisof adescriptionof theproblemanda cognitivemodelof theproblem-solvingprocess.

The BN constructedfor a problemthereforereflects,amongother things, the likelihood that
�

would typein particularequationsif hepossessedparticularrules.Theobservedbehavior of
�

gives
riseto upwardpropagation,whichchanges� 'sbeliefsabout

�
'spossessionof individual rules.These

ruleprobabilitiescanbeinspectedby anassessorsuchasa teacher.

A uniquefeatureof OLAE is its provisionof asecondtypeof BN specificallyfor theassessor, who
consultsthesystemafter theprocessingsketchedabove hasbeencompleted.Theassessor's network
contains(a) the rule-possessionnodesfrom the original BN which representthe resultof that BN's
processingand(b)dimensionalnodesfor moreabstractvariablesthat represent

�
'smasteryof particular

topicssuchasKinematicsor Contentof Chapter5. (The ideais that the assessormay be interested
in a coarse-grainedcharacterizationof

�
's knowledgeaswell as in a fine-grainedcharacterization

in termsof individual rules.)Note that the dimensionalnodescould in principle alsobe integrated
into theoriginalBN. If thisweredone,thedimensionalnodeswouldbeupdatedautomaticallyduring
the interpretationof

�
's problem-solvingbehavior. In addition, they could in turn influenceother

aspectsof that interpretationprocess,dependingon exactly how they weredefined(cf. Section2.5
below). For example,if someaspectsof

�
'sbehavior suggestedagoodoverallmasteryof kinematics,

the probabilitiesassociatedwith all kinematicsruleswould increase.� would thenbe lessinclined
to explain otheraspectsof

�
's behavior in termsof

�
's lack of knowledgeof particularkinematics

rules.

2.4. POLA: FROM KNOWLEDGE TRACING TO MODEL TRACING

Recently, ConatiandVanLehn(1996)havepresentedthesystemPOLA, whichbuildsonthetechniques
of OLAE. RecallthatOLAE is invokedonly afterthestudenthascompletedwork onat leastonephysics
problem;thiskindof retrospectivediagnosisiscalledknowledgetracing.By contrast,POLA isdesigned
to performmodeltracing: It canbe invoked repeatedlyduring the student's problemsolving,every
timethestudenthasperformedanobservableaction.A primarytaskof POLA is to determinewhichof
thevariouspossiblesolutionpathsthestudentis pursuingandwhat ruleshehasappliedso far. One
problemthatariseshereis theneedto distinguishbetween:

ruleapplicationsthatthestudenthasalreadyperformed;and
ruleapplicationsthatbelongto thestudent'schosensolutionpathbut thatthestudenthasnot yet
performed.
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Figure4. Two possiblerelationshipsbetweengeneralandspecificabilities.

It wouldin principlebepossibleto takethisdistinctionintoaccountwith amorecomplex representation
of hypothesesaboutruleapplicationsthanthestraightforwardrepresentationusedin OLAE'sBNs.But
ConatiandVanLehnadoptan alternative strategy which allows the semanticsof the network nodes
to remainrelatively simple: POLA constructsits BNs incrementally, in generaladdingnodeseach
time thestudentperformsanobservableaction.At any moment,thenodesin a BN concernonly rule
applicationsfor which thereis evidencethat the studenthasalreadyperformedthem. In this way,
possiblefutureruleapplicationsdonothaveto betakeninto accountin theBNs.

POLA's approachillustratesthat thedesignerof a systemthatusesBNs sometimeshasthechoice
betweentwo waysof dealingwith anecessarydistinction:

Representthedistinctionexplicitly in thesemanticsof thenetwork nodesandin theconditional
probabilitytables;or
designaprocedurefor dynamicconstructionof theBN whichdealswith thedistinctionin amore
proceduralfashion.

As is usualwith decisionsaboutdeclarative vs. proceduralsolutions,thereare argumentsfor and
againsteachof theseoptions.But POLA's domaindoesappearto beonein which a partly procedural
approachdeservesseriousconsideration.

2.5. HYDRIVE: MODELING A HIERARCHY OF ABILITIES

HYDRIVE (Mislevy & Gitomer,1995,in this issue)modelsa student's competenceat troubleshooting
anaircrafthydraulicssystem.Onesalientcharacteristicof thesystemis itsuseof dimensionalvariables
at threedifferentlevelsof specificity, asdepictedin thethreeupperlevelsof thepartialnetwork shown
in Figure4A. Thesevariablesillustratetheproblemthatit is notalwaysclearwhatdirectionthelinks
in aBN shouldgoin, especiallywhentherelationshipsarenotcausalrelationshipsin anobvioussense.
Thetwo mainoptionsfor thiscaseareillustrated(with somesimplification)in Figure4. With thefirst
option(Figure4A), SYSTEM KNOWLEDGE is viewedasbeingin somesensea determinantof themore
specificabilitiesLANDING GEAR KNOWLEDGE andCANOPY KNOWLEDGE. With thesecondoption,SYSTEM

KNOWLEDGE is, roughlyspeaking,thesumof themorespecificabilities.
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HYDRIVE adoptsthe first of thesetwo options,whereasOLAE (Section2.3) basicallyadoptsthe
secondone.Which option is betterdependson exactly what the designerintendsthe dimensional
variablesto represent.Thequestioncanbebroughtinto sharperfocusif theconsequencesof eachof
thetwooptionsfor theBN'sprocessingareexamined.Consider, for example,thecasewhere

�
performs

asuccessfulactionthatleads� to modify upwardits beliefabout
�

'sLANDING GEAR KNOWLEDGE. What
shouldtheconsequencesfor � 'sbeliefsaboutSYSTEM KNOWLEDGE andCANOPY KNOWLEDGE be?

With thefirst solution(Figure4A), � will now ascribeto
�

greaterSYSTEM KNOWLEDGE (by upward
propagation)andthenin turnexpectstrongerCANOPY KNOWLEDGE (by downwardpropagation).

With thesecondsolution(Figure4B), � will likewiseascribeto
�

greaterSYSTEM KNOWLEDGE (this
timeby downwardpropagation).But � will now haveno reasonto bemoreconfidentthat

�
is strong

in CANOPY KNOWLEDGE, asthisis simplyanindependentfactorthatalsoinfluencesSYSTEM KNOWLEDGE.
In fact, if � hadpreviously received somedirect evidenceto the effect that

�
hada given level of

SYSTEM KNOWLEDGE, theincreasein � 's assessmentof
�

's LANDING GEAR KNOWLEDGE would lead � to
lower its assessmentof

�
's CANOPY KNOWLEDGE, by upwardpropagation.

Anotherquestionconcerningtherelatively specificdimensionalnodesusedin HYDRIVE is whether
they are optional, to be included in the BN only if the designerwishesto obtain an especially
differentiatedassessmentof theuser'sabilities.Onemightatfirst think thatnodessuchasLANDING GEAR

KNOWLEDGE couldbe omittedfor simplicity andthatnodessuchasACTION 1 couldbe linkeddirectly
to a globaldimensionalnodelike OVERALL PROFICIENCY. But this simplificationcould leadto serious
distortions:For example,thesuccessfulperformanceof thepairof actionsACTION 1 andACTION 2 would
leadto basicallythe sameinferencesabout

�
's OVERALL PROFICIENCY asthe successfulperformance

of the pair consistingof ACTION 1 and ACTION 4. But in reality, the former pair of actionsconstitutes
weakerevidenceof goodOVERALL PROFICIENCY: It is possiblethat

�
simplyhappenstoknow alot about

landinggears.(This point becomesclearerin thecasewhere
�

performs10 successfulactions,all of
which requireonly landinggearknowledge.)Thekey considerationis that theoutcomesof different
landing-gear-relatedactionsarenotconditionallyindependent, evengivenaparticularlevelof OVERALL

PROFICIENCY—althoughthey presumablyare,to asufficientdegree,givenaparticularlevel of LANDING

GEAR KNOWLEDGE. As explainedby Mislevy andGitomer(1995),thelinks in a BN have to bedefined
in suchaway thatall dependenciesamongvariablesarereflected.

2.6. EPI-UMOD: EXPLOITING DEPENDENCIESAMONG KNOWLEDGE ITEMS

Someapproachesto knowledgeassessmentgoonestepfurtherthanintroducingdimensionalvariables
thatarerelatively specific:They attemptto avoid dealingwith dimensionalvariablesaltogether.

The systemEPI-UMOD (de Rosiset al., 1992)modelsthe knowledgethat variouscategoriesof
medicalpersonnelpossessconcerningconceptsusedin theanalysisof epidemiologicaldata.TheBNs
constructedcontainnodimensionalnodeslikeMASTERY OF EPIDEMIOLOGICAL DATA ANALYSIS. Instead,for
eachof a numberof concreteusercategories(e.g.,“hospital doctor”), a separateBN is constructed
whichrepresentsonlyspecificprobabilisticlinksamongindividualknowledgeitems(e.g.,“How likely
is it that

�
knowstheconcept“RELATIVE RISK” if sheknows/doesnotknow theconcept“RISK FACTOR”?”).

Giveninputinformationaboutsomeconceptsthat
�

doesordoesnotknow, theBN usesbothdownward
andupwardpropagationto updateits predictionsabout

�
's knowledgeof otherconcepts.

A strongpoint of this approachis that it captureswell the following type of closerelationship
betweenconcepts:

�
canhardlyknow theconcept“RELATIVE RISK” unlesshe haslearnedtheconcept

“RISK FACTOR”. This relationshipwould be capturedonly partially by a belief on the part of � that
“RISK FACTOR” wassimplyeasierthan“RELATIVE RISK” onsomegeneraldifficulty dimension.Techniques
of knowledgeassessmentthatemphasizetheexploitationof relationshipsamongspecificknowledge
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itemshavebeenexploredextensively within thetheoryof knowledgespaces,4 whichpromisesto play
anincreasinglyimportantrole in usermodeling.

On the otherhand,therearemany probabilisticrelationshipsamongknowledgeitemswhich are
notdescribedequallywell in termsof prerequisiterelationships.For example,auserwhoknowshow
to file awayane-mailmessageis relatively likely to know how to forward a message,yet neitherof
thesetwo piecesof knowledgeis a prerequisitefor theotherone;they aresimply bothreflectionsof
e-mail handlingproficiency. It is questionablewhetherthe capabilityof handlingsuchrelationships
in a straightforward fashionin a BN shouldbe sacrificedin an effort to captureanothertype of
relationship.

Onthemorepracticalside,themethodof deRosisetal. requiresthata largenumberof conditional
probabilitiesbe specifiedfor the links betweenthe individual concepts.In fact the authorsfind it
necessaryto do this for eachof severalcategoriesof user, in orderto take into accountdifferencesin
thewaysin which they goaboutlearningtheconceptsin question.Thispracticalityproblemis oneof
themainissuesaddressedby Desmaraisetal. (1995)in this issue.

2.7. POKS: KNOWLEDGE ASSESSMENTWITHOUT KNOWLEDGE ENGINEERING

Desmaraisetal. (1995)show how anetwork of thesamegeneraltypeasthoseof deRosisetal. (1992)
canbeconstructedfully automaticallyon thebasisof a modestamountof empiricaldata.They then
reporton an investigationof the utility of sucha network for the assessmentof the knowledgeof
individualusers.

Theauthors'goalis to determinehow far onecangetin practicewith methodsthatmake minimal
demandsin termsof empiricaldataandcomputation.Accordingly, they usesimplermethodsthanthe
techniquesthathave beendevelopedfor BNs. Their work nonethelessdealswith basicallythesame
issuesthatwouldariseif BNswereusedfor thesamepurpose.It is likely to befollowedin thefuture
by applicationsof techniquesthatarecurrentlybeingdevelopedfor the learningof BNs (Desmarais
et al., 1995,section4; seealso,e.g.,Heckermanet al., 1994;Russell& Norvig, 1995,section19.6;
Russelletal.,1995).Thesetechniquesallow theconditionalprobabilitiesof aBN—andin somecases
its structure—tobeacquiredautomaticallyfrom empiricaldata.This possibilitymayultimatelyhave
importantconsequencesfor thepracticalusabilityof BNs for usermodeling.

Anotherimportantgeneralissueinvestigatedby theauthors(section6.3.2)is that of biasedsam-
pling of userbehavior. This problemcanbeexplainedwith referenceto the introductoryexamplein
Section2.1 (Figure2), in which the user

�
wasobserved to know the concepts“MORE” and “RWHO”

but not theconcept“FG”. Supposethat thesystem� acquiredinformationabout
�

in sucha way that
it only learnedaboutcaseswhere

�
did in fact know a concept(e.g.,becausethe only information

availableconsistedof
�

's active useof a concept).Thennegative observationslike the third onein
Figure2 wouldneverbeobtained,and � 'sbeliefabout

�
'sUNIX expertisewouldkeepbecomingmore

optimistic.(Theoppositeeffect couldarise,for example,if theinput dataconsistedonly of questions
by
�

to thehelpsystemwhich indicatedthat
�

did not know a givenconcept.)In otherwords,even
the mostvalid BN canyield grosslyincorrectconclusionsif measuresarenot taken to ensurethat
acquisitionof evidenceabouteachvariableis unbiased—thatis, thattheprobability that information
aboutthevalueof a variable � will beobtainedis independentof thevaluethat � actuallyhas.More
generally, designersof usermodelingsystemsmaytake a hint from thefact thatsocialpsychologists
(e.g.,Nisbett& Ross,1980,chap.4) haveidentifiedbiaseddatasamplingasamajorsourceof errorin
everydaysocialperception.

4 See,for example,Falmagneet al. (1990),Villano (1992),andKambouriet al. (1994),aswell as the discussionby
Desmaraisetal. (1995,section4) in this issue.
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Desmaraisetal. discusstwo waysof avoidingdatasamplingbias:
1. � obtainsthroughindirect inferencethe informationthat it cannotobtaindirectly becauseof

bias.
2. � in effectadministersa testto

�
, decidingitself whichvariablesto obtaininformationabout.

A furtherpossibility is for � simply to ignoreparticulartypesof information.For example,if biased
informationconsistingof questionsto thehelpsystemis obtainedalongwith other, unbiasedinforma-
tion, � canrefrainfrom usingthebiasedinformationto updateits BN.

2.8. USING THE ENVIRONMENT AS EVIDENCE FORPLAN RECOGNITION

Thenext threesystems(characterizedin thetophalf of Figure5) employ BNs in aquitedifferentway
thantheonesdiscussedsofar: for recognizinganagent'splans.

A goodstartingpointis thesystempresentedbyPynadathandWellman(1995).Theauthorsdescribe
how thesystemhandlesa relatively simpleexampleof a planrecognitionproblem:Supposeyou are
driving in themiddlelaneof a three-lanehighway andyou seethecardirectly behindyou move into
the right lane.You may wonderwhether, during the next few moments,the driver

�
of thecar will

(a) move pastyou and thenreturn to the middle lane,(b) staybehindyou in the right lane,or (c)
leavethehighwayvia anexit. To makethisprediction,youarelikely to try to interpretthecar's initial
motion in termsof

�
's goalsandplans—forexample,thegoalof attaininga highervelocity, which

may requirethe executionof the plan of passingthe car ahead.PynadathandWellman's methodis
intendedultimatelyto enablea computer-drivenvehicleto performthissortof planrecognition.5

Theauthors'BNsarebasedonageneralcausalmodelof theway in whichanagentconstructsand
executesplansin a givenenvironment.Thecausalplanningmodelcanbesummarizedin termsof the
following phases,wheretheeventsin eachphaseareseenascausingthosein thelaterphases:

1.
�

observesaspectsof thephysicalenvironment.
2.
�

comparestheseobservationswith her goals,determiningthe extent to which her goalsare
fulfilled.

3.
�

selectsageneralplanto addressanunfulfilled goal.
4.
�

refinestheplan,takinginto accountdetailsof thecurrentsituation.
5.
�

executesa sequenceof actions,perhapsincludingcommunicationactionswhich signalher
intentions.

6. Theseactionshaveobservableeffectson theenvironment.
TheBNs constructedwithin this framework havenodesthatcorrespondto eventswithin eachphase.6

In particular, thevariablesfor thetwo planningphaseshave aspossiblevaluesthevariousalternative
plansthat canbe adoptedwith a view to achieving a given subgoal.The links emanatingfrom the
nodesfor eachphasemostlypoint to nodesfor thenext phase.

Using the network for plan recognitionis quite straightforward: � first fixes the valuesof any
observedvariables—mainlyvariablesfor Phases1 and6. After upward anddownward propagation
have occurred,� can examinethe beliefs in the network concerningany other variablesthat � is
interestedin. The mostobvious variablesof interestconcern

�
's plans(Phases3 and4); but � can

alsosimplyderiveapredictionof
�

's futurebehavior by examiningnodesfor Phases5 and6. In other
words,� maywantto know what

�
is goingto donext withoutworryingmuchaboutwhatherreasons

5 Forbeset al. (1995)useBNs for a similar purpose,but their systemdoesnot at presentexplicitly representhypotheses
aboutindividualdrivers.

6 The nodesfor Phase1 representthe actualstateof the environment,not � 's observationsof the environment.It is
assumedin PynadathandWellman's (1995)examplethat � is ableto observe theenvironmentaccurately. Theauthorsnote
how thisassumptioncouldbeavoided.
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for doing it might be—anattitudethatmakessenseif a givenactioncanbeperformedaspartof the
executionof variousdifferentpossibleplans.This flexible useof thenetwork's inferencesis possible
becauseof theintegrationof diagnosticandpredictive inferencein BNs.

Perhapsthe most innovative aspectof this model is its inclusionof a numberof variablesthat
representaspectsof the physicalcontext (Phase1). For mostusermodelingsystemsthat useBNs,
the observabledataconcernonly the user's behavior. Thesesystemsdo not representwithin a BN
thedependenceof

�
's cognitionandbehavior on

�
's perceptionof thecurrentsituation.Thereason

is presumablythat the relevant aspectsof the currentsituationare in generalknown to the system.
For example,whena tutoringsystem� haspresenteda problemfor

�
to solve, � in generalknows

exactly what problemhasbeenpresentedandwhat other information
�

hasavailable. � must take
thesefactsinto accountwhenconstructinga BN to analyze

�
's behavior; but thesefactsdo not have

to berepresentedin nodesof theBN, sincethereis nouncertaintyaboutthem.
Thebroaderconceptualizationpresentedby PynadathandWellmanseemslikely to becomemore

importantas computersmove off of the desktopand out into the world. A usermodelingsystem
will thenoftenhave only uncertainhypothesesabouttheuser's situation.But evendesignersof more
conventionalsystemsmight considerincluding representationsof relevant contextual eventsin their
BNs.For example,aphysicstutoringsystemcouldbeuncertainasto whetherthestudenthasavailable
alist of relevantformulas,eitheronpaperorsomewhereonthescreen.Andeveninformationpresented
by thesystemitself maybepartly unknown to � . For example,if � presentsvideoclips, � maynot
havearepresentationof all of theeventsshown in thevideoclip thatmight influence

�
'sbehavior.

2.9. REUSINGPLAN GENERATION KNOWLEDGE FORPLAN RECOGNITION

Onequestionraisedby thesystemof PynadathandWellman(1995)is: Wheredoesthenetwork come
from? In principle, a designercould designby handa network like this for every plan recognition
problemthatthesystemmight face.But thisproceduremayrequireunfeasibleandunnecessaryeffort,
especiallyif thesystemalreadyhasaccessto a plan library which canbeusedfor thegeneration of
theplansin question.In this case,it shouldbepossibleto usethis library asa basisfor theautomatic
generationof BNs thatcanbeusedfor therecognitionof thesameplans.

This approachis introducedby Huberet al. (1994).Their exampledomaininvolves two agents
cooperatingto performa military reconnaissancetask.The authorspresenta generalprocedurefor
mappingplanningknowledgeontoBNs.Forexample,givenatop-levelgoalthatanagentmightpursue,
theprocedurecreatesa BN with nodescorrespondingto thefollowing typesof variables:

top-level goalsandsubgoals;
actionsthancanbeperformedto achievesubgoals;
observableeventsandstatesthatreflectthefactthata givenactionis beingperformed;and
aspectsof thecontext.

With this method,a usermodelingsystemcould generatea library of BNs beforeobtainingany
observationsof thecurrentuser

�
. Eachof theseBNswouldbespecializedin therecognitionof ways

in whichtheusermightpursueaparticularhigh-levelgoal.Thistop-downapproachis in somerespects
opposedto that of CharniakandGoldman(1993),which will be examinedin the next subsection,
in which planrecognitionBNs aregeneratedbottom-upon thebasisof informationaboutanagent's
actions.

An incidentalcontribution of Huberet al.'s article is an exampleof a solutionto a problemthat
frequentlyarisesin usermodeling:the problemof how bestto handlealternative hypotheseswhich
are(moreor less)mutuallyexclusiveandwhich have qualitatively differentconsequences.Consider,
for example,thesmallplan-recognitionBN depictedin Figure6A (ignoringfor themomentthedotted
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ACTION 1. ACTION 2. ACTION 3. ACTION 4. ACTION 5.

GOAL 1 GOAL 2

A

ACTION 1. ACTION 2. ACTION 3. ACTION 4. ACTION 5.

GOAL.

B

Figure6. Two waysof representinghypothesesaboutmutuallyexclusive goals.

arrow from GOAL 1 to GOAL 2): GOAL 1 canbeachievedthrougha combinationof theactionsACTION 1,
ACTION 2 andACTION 3. Therefore,theleft-handhalf of thenetwork canbeusedto recognizewhethera
user

�
is pursuingGOAL 1. A similar relationshipholdsfor GOAL 2. But whatif we know that

�
cannot

pursueboth of thesegoalsat the sametime?Thenany evidencethat
�

is pursuingGOAL 1 (e.g.,an
observationthat

�
hasperformedACTION 1) shouldcountasevidenceagainstthehypothesisthat

�
is

pursuingGOAL 2; yet thissortof inferenceis notprovidedfor by thesolidarrows in thenetwork.

A straightforward way of representingthe mutualexclusivity of a setof hypothesesin a BN is
to includethemall aspossiblevaluesof a singlevariable(cf., e.g.,the four possiblelevels of UNIX

EXPERTISE OF � in Figure 1). This generallyworks well as long as the several hypothesesall have
implicationsfor thesamesetof child variables.But in thepresentexample,the resultwould be the
networkshownin Figure6B,in whichthepossiblevaluesfor GOAL areGOAL 1, GOAL 2 andNEITHER GOAL 1

NOR GOAL 2. This solutionhasanobviousdisadvantage:Inspectionof thegraphdoesnot show which
goalisassociatedwith whichactions;thisinformationishiddeninsidetheconditionalprobabilitytable.
Theproblembecomesworseif therearemorealternativegoals,or if eachonehasamorecomplex set
of associatedactionsand/orsubgoals(cf., e.g.,theexamplegivenby Mislevy, 1994,pp.467–468).

The simpler solution usedby Huber et al. is to add an inhibitory link from GOAL 1 to GOAL 2

(representedby thedashedarrow in Figure6A). Theconditionalprobabilitytablefor this link implies
thatif GOAL 1 is beingpursued,GOAL 2 is notbeingpursued;by upwardpropagation,evidencein favor
of GOAL 2 will likewisecountagainstGOAL 1. Thesolutioncanbegeneralizedto caseswhereGOAL 1 and
GOAL 2 arenot strictly mutuallyexclusivebut ratherGOAL 2 is simply lesslikely givenGOAL 1 thanit is
without it. A somewhatunsatisfactoryaspectof thissolutionis thatthedirectionof theinhibitory link
is in generallargely arbitrary:You cansaythatpursuingGOAL 1 makesit impossibleto pursueGOAL 2,
but theoppositestatementis equallyjustifiable.Yetonly oneof thetwo links canbeincluded,because
aBN cannotincludecycles.
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2.10. WIMP3: PUSHING BAYESIAN NETWORKSTO THE LIMIT FORSTORY UNDERSTANDING

CharniakandGoldman(1993)and(morebriefly)CharniakandGoldman(1991)presentanimpassioned
argumentfor theuseof BNs for planrecognition;they argue,in particular, for thesuperiorityof their
approachto the DST-basedapproachof Carberry(1990;cf. Section3.2 below). The input to their
systemWIMP3 doesnot comefrom a computeruserbut ratherfrom passagesof text that tell brief
stories,suchas“Jackwentto theliquor store.He pointedagunat theowner”.

Theauthorsgive anunusuallyexplicit characterizationof thepropertiesof thenodesin their BNs
and of the procedureby which WIMP3 dynamicallyand incrementallyconstructssucha network
while processinga story. Of particularinterestis a marker-passingtechniquethat is usedto prevent
the explosive constructionof large networks which containmainly nodesassociatedwith very low
probabilities;similarproblemscaneasilyarisein othersystemsthatgenerateBNsdynamically.

For usermodelingresearchers,CharniakandGoldman'sBNshavea drawback,comparedto those
of PynadathandWellman(1995)andHuberet al. (1994):Thenodesdo not correspondto intuitively
naturalconceptslike goalsandactions.Instead,they correspondto fine-grainedpropositionslike LS2

IS A LIQUOR STORE andLS2 IS THE FILLER OF THE “STORE” SLOT IN THE LIQUOR-SHOPPING EVENT LSS3. It can
bedifficult to assignprobabilitiesto propositionslike thesein a naturalway. For example,oneof the
numbersin theconditionalprobabilitytableassociatedwith thesecondpropositionis 1/10 liquor-store0 ,
wherethe denominatorrefersto the total numberof liquor storesthat exist. This fine-grainedand
partlyunintuitivecharacterof theBNsis dueto thefactthatBNsareusedherefor morethanjustplan
recognition:They managetheentireprocessof storyunderstanding,beginningwith theinterpretation
of individualwordsin theinput text.

This work alsoillustrateshow the choiceof an appropriateconceptualizationcandependon the
specificcontext in whichasystemis used.Theassignmentof probabilitiesin WIMP3 presupposesthat
thefrequency of occurrenceof eventsandobjectsin thestoriescorrespondsto their frequency in some
(realor fictional)world.But someauthorsliketo violatereaders'expectationsintentionally. With such
stories,thefactthatagiveneventor planseemslikely asfarasfrequenciesareconcernedcanin itself
constituteareasonfor believing thatit will notoccurin thestory. Themoregeneralpointis this:For the
interpretationof intentionalcommunicativeacts,a probabilisticmodelmustencompassvariablesthat
characterizeaspectsof thecommunicationsituation,suchasthemotivationof thecommunicators.The
applicationof Bayesianmethods(thoughnot specificallyBNs) to variablesof this type is illustrated
by contributionsof RaskuttiandZukerman(1991)andKipperandJameson(1994).

2.11. OFF-LINE BAYESIAN ANALYSIS FORPLAN RECOGNITION

Another approachto plan recognitionthat makes useof BNs is that of van Beek (1996). Unlike
PynadathandWellman(1995),Huberet al. (1994),andCharniakandGoldman(1993),hedoesnot
show how BNscanbeusedon-lineto performplanrecognitioninferencesin specificcases.Instead,he
offersa theoreticalanalysis,in termsof Bayesianinference,of severalgeneral,nonprobabilisticplan
recognitionheuristicsthathave beenproposedby previousresearchers.(Theanalysisby vanBeekis
not representedin Figure5, becauseit doesnot concernaspecificsystem.)

For example,oneheuristicis applicableto casessuchasoneswheretheobservedactionsof auser�
canbeexplainedthrougheitherof two assumptions:

1.
�

is pursuingGOAL 1; or
2.
�

is pursuingthetwo independentgoalsGOAL 2 andGOAL 3.

Theheuristicspecifiesthattheformerexplanationis preferable,becauseit is moreparsimonious.
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The analysisby van Beekshows, however, that therearecasesin which the secondexplanation
is moreprobable—forexample,whenGOAL 1 is a goal thatpeoplevery rarelypursuewhereasGOAL 2

andGOAL 3 areboth frequentlypursued.A conclusionis that this heuristicshouldonly be appliedin
domainsin which thesecasesareunlikely to arise.

Thereadermaywonderwhy this typeof Bayesiananalysisshouldn't beperformedon-lineby the
systemitself, sothattherestrictionto particulardomainscanbeavoided.Theargumentof vanBeekis
thattherearesituationsin which this approachis impractical.For example,therequiredprobabilities
may be unavailable (cf. Section5.1). In suchsituations,a useful next-bestapproachis to apply a
setof carefullyevaluatednonprobabilisticheuristicsasa surrogatefor on-lineprobabilisticanalysis.
Analogousstrategiesareworth consideringin othersystemsin which the on-lineuseof BNs (or of
othernumericalapproachesto uncertaintymanagement)is for somereasonimpractical.

2.12. PRACMA: NEW USESFORBAYESIAN NETWORKSIN DIALOG

The systemsconsideredso far have madeinferenceseither aboutusers'knowledgeor abouttheir
executionof plans.The systemPRACMA (Jamesonet al., 1995;Scḧafer, 1994) illustratesthat BNs
arealsoapplicablewhen the user's evaluationprocessesareof centralinterest.(FL-basedsystems
that likewise reasonaboutthe user's evaluationsaredescribedin Sections4.2 and4.3.) The overall
system'sbasictaskis to presentinformationto auserwhowantsto makeanevaluativejudgmentabout
a givenobject(e.g.,a usedcar). It presupposes,asan approximation,that theuserwill evaluatethe
caraccordingto theprinciplesof Multi-AttributeUtility Theory(von Winterfeldt& Edwards,1986).
Thesystemhasuncertaintyaboutvirtually all of theparametersthatenterinto suchanevaluation.�
is alsouncertainabout

�
'sknowledgeabilityandabouttheprior beliefs(themselvesmostlyuncertain)

that
�

hasabouttheobjectunderdiscussion.All of thesetypesof uncertaintyaremanagedwithin a
dynamicallyconstructedBN.

Jamesonetal. (1995)discusshow this typeof BN canbeusedto handleseveralgeneraltasksfaced
by systemsthatprovideevaluation-orientedinformation,includingthefollowing:

1. predictinghow
�

will evaluatea givenobject;
2. predictinghow

�
will reactto informationaboutparticularaspectsof anobject;

3. interpreting
�

's behavior asevidenceconcerningherevaluationcriteriaandknowledge;
4. decidingwhatinformationto elicit explicitly from

�
.

The third taskrequiresdiagnosticinference.The first two tasksrequirepredictive inference,a type
whichhasplayeda minor role in thesystemsmentionedsofar but whichwill alsobeseenin thetwo
systemsdescribedin thefollowing subsections.

Thefourthtaskrequiresatypeof reasoningthathasgeneralimportancefor usermodelingsystems:
Thesystemreasonsaboutthevaluethatparticulartypesof informationabouttheuser(e.g.,abouther
personalcharacteristics)wouldbelikely to havefor thesystem;on thebasisof thisassessment,� can
decidewhetherit seemsworthwhileto takestepsto acquirethis information.Pearl(1988,section6.3)
givesanoverview of variousapproachesto theassessmentof thevalueof information.In theapproach
takenbyPRACMA, thevalueisafunctionof theexpectedextenttowhichtheuncertaintyin thesystem's
modelof theuserwould bereducedby theinformation.Otherapproachesrequirea quantificationof
theutility associatedwith possibleconsequencesof � 's actions.

Wheninterpretingevidencein theuser's behavior (the third tasklistedabove), PRACMA not only
updatesits beliefs about the currentuserbut also learnsaboutpropertiesof usersin general.For
example, the systemmust inevitably begin with someassumptionabout the averageimportance
assignedto theevaluationdimensionof “Safety” by used-carcustomersin general;becauseotherwise
� couldmake no predictionsabouthow anunknown customerwould evaluatea car's safetyfeatures.
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But � 's assumptionis representedasa long-termnodein its BN, sothatit canbeupdated(gradually)
on the basisof experiencewith users'reactions.This methodrepresentsa relatively simpleway of
handlingoneof themostfrequentlymentioneddifficulties in applyingBNs, namelythedifficulty of
specifyingin advanceall of thenecessaryprobabilities(cf. Section5.1).Themethod'sapplicabilityis
muchmorelimited thanthatof thegenerallearningtechniquesmentionedin Section2.7,but it may
beusefulwhena systemonly hasto update,duringactualuse,a smallnumberof key parametersthat
it needsfor its BNs.

Finally, PRACMA illustratesa further possibleapproachto the problemof how to generateBNs
dynamically(cf. Sections2.3, 2.4, 2.7, 2.9 and2.10):To predictwhat inferences

�
might make on

thebasisof a givenstatementby � , thesystemfirst usesa modal-logic-basedrepresentationsystem
(Hustadt& Nonnengart,1993)to generatepossibleinferencesthat

�
mightconceivablymake. � then

usestheprooftreesproducedby themodal-logic-basedsystemto constructBNswhichpredictwhether
thisparticular

�
actuallyhasenoughknowledgetomaketheseinferences(Jameson,1995).Thatis,BNs

areusedherein conjunctionwith a verydifferentnonprobabilisticformalismfor reasoningaboutthe
user'sbeliefs.Likesomeof theotherexamplesof dynamicBN construction,this integrationillustrates
thatusermodelingresearchersmaynot have to abandontheir currentfavorite inferencetechniquesif
they wantto makeuseof numericaltechniquesfor uncertaintymanagement.

2.13. PPP: ANTICIPATING DIFFICULTIES WITH MULTIMEDIA PRESENTATIONS

Thenext two systemsbothaddressthesamebasicproblem:How canasystemthatpresentstechnical
informationpredictwhatdifficultiestheusermighthave in interpretingit? Thetwo systemsapproach
theproblemin quitedifferentways.

PPP is an interactive successorto the knowledge-basedmultimedia presentationsystemWIP

(Wahlsteretal.,1993).TheusermodelingcomponentbeingdevelopedbyvanMulken(1996)usesBNs
to take into accountthepsychologicalfactorsthatdeterminewhether

�
will understanda technically

orientedmultimediapresentation.For example,graphicalsymbolssuchasarrows andradiatinglines
canhave several differentmeanings,someof which may be known to only a minority of users.A
numberof factorsinteractto determinewhethera user

�
will understanda particularuseof sucha

symbol.Theseinclude
�

's familiarity with graphicalpresentations,
�

's knowledgeabilityaboutthe
domain,thefrequency with whichthesymbolin questionis usedin theintendedmeaning,theextentto
which thecurrentcontext suggestssomeunintendedinterpretation,andtheamountof time that

�
has

availablefor thedecodingof thepresentation.Someindirectevidenceaboutthewaysin which these
factorsinteractis availablefrom experimentalpsychologicalresearch,but to constructcorresponding
BNs thedesignerhasto fill in a numberof gaps.

BecausePPPis aninteractivepresentationsystem,theuser'sbehavior servesasevidenceabouthow�
reactedto particularaspectsof a presentation.This evidenceis rathermeager, consistingmainly

of menu-selectedcommentsandquestions(e.g., “What doesthis mean?”)in caseswhere
�

is not
entirelysatisfiedwith apresentation.Throughupwardpropagation,thesystemcanlearn—graduallyat
first—abouttheuser'sgraphicalanddomainknowledge;andalso,in thelongrun,aboutthedifficulty
of thesymbolsthatthesystemuses.

2.14. VISTA-III: USING BUGGY NETWORKSTO ANTICIPATE USERS' INFERENCES

Horvitz andBarry (1995)addressa different type of difficulty that canarisewith computer-based
informationpresentation:Theamountof informationavailablefor presentationcanbeimmense,and
it mayconsistlargely of informationthat

�
doesnot needin orderto make a decision.Especiallyif
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�
is undertime pressure,� shouldtry to find somesmallsubsetof theavailableinformationthatwill

enable
�

tomakeanappropriatedecision.Horvitz andBarry'sapproachto thisproblemwasdeveloped
in thecontext of thesystemVISTA-III, which supportsanoperatorwho is monitoringthepropulsion
systemof theSpaceShuttle.

Oneof the many subtasksthat is frequentlyperformedby the systemis that of predicting,given
a particularsubsetof the availableinformation,what inferences

�
would make if that subsetof the

informationwere displayed.The authors'approachpresupposesthat the systempossessesa gold-
standard BN which is capableof makingexpert-level inferencesaboutthe stateof an engine.This
BN representslinks between(a)observablevariables(largely datafrom sensorsatvariouspartsof the
engine)and(b) statesof theenginethatarenotdirectlyobservable.

If thecurrentuserherselfhappenstobeanexpert,thesystemhasastraightforwardwayof predicting
how shewill interpreta givendisplay:It feedsthe informationcontainedin thedisplayinto theBN
andchecksto seewhat inferencesaremade.For lessknowledgeableusers,BNs designedwith the
helpof expert trainersareusedwhich typically lack someof themoresubtlenodesandlinks of the
gold-standardBN. ThesenonexpertBNsareanalogousto theincompleteor buggymodelsoftenused
in intelligenttutoringsystemsto modelstudentknowledge(cf., e.g.,Section3.4).

NotethatwhereasvanMulken(1996)usesBNs to manageuncertaintyabout
�

, Horvitz andBarry
usethemin effect assimulationmodelsof

�
's cognitive processes.This usepresupposesthathuman

inferencewith this typeof problemis basicallysimilar to causalinferencein BNs.Thequestionof the
human-likenessof Bayesianreasoningwill beraisedagainin Section5.5.

2.15. FURTHER TYPESOF UNCERTAINTY

Mislevy (1994) discussesa numberof subtletypesof uncertaintythat can arisein the context of
educationalassessmentanddemonstrateshow they canbehandledwith BNs.Althoughtheseparticular
methodshave apparentlynot yet beenintegratedinto interactive tutoring systems,they are good
candidatesfor suchintegrationin that they dealwith general,recurrentproblems.Thefollowing are
examplesof theissuesconsidered:

1. How cancontextual factors,suchasthe student's chancefamiliarity with the topic of a passage
beingstudied,bemodeledexplicitly sothatthey don't contributeexcessivenoiseto thediagnostic
process?
PynadathandWellman(1995;cf. Section2.8above)showedhow moreconcretecontextualfactors
canbemodeled.

2. How caninferencesbemadeaboutalearner'scognitionin caseswheretwoormoreentirelydifferent
approachestoaproblemareavailableandit isnotinitially knownwhichonethelearnerispursuing?
Oneapproachto thisquestionwasmentionedin Section2.9.

3. How canhigher-orderuncertaintyconcerningthemostappropriateinitial beliefsaboutanunknown
studentbemanaged?
The difficulty that BN designersoften encounterin specifyingprior probabilitiesconstitutesa
frequentlymentionedmotivation for employing DST instead(cf. Section3.1.1).Mislevy shows
how uncertaintyaboutprior probabilitiescanberepresentedandmanagedexplicitly within a BN.

2.16. CONCLUDING REMARKS ON BAYESIAN NETWORKS

The systemsreviewed in this sectionhave illustratedthat BNs canbe appliedto usermodelingin
many differentways.Variableson all of thelevelsshown in Figures3 and5 have beenincorporated;
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predictiveanddiagnosticinferencehavebeensmoothlyintegrated;andvariouswayshavebeenexplored
of constructingthenetworksdynamically.

Someof the drawbacksthat have beenattributed to the BN paradigmcan bestbe discussedin
the following sectionson DST andFL, sincetheseparadigmsaim to addresssomeof theseissues.
Questionsconcerningthepracticalusabilityof BNs will beconsideredin Section5.

3. SystemsThat HaveUsedthe Dempster-ShaferTheory of Evidence

A typical casewheretheapplicationof DST is oftenjudgedto beappropriateis thatof anunreliable
witness(see,e.g.,Shafer& Tversky, 1985).Suppose,for instance,that you aska UNIX consultant
abouttheexpertiseof aparticularuser

�
. Theconsultantsays“I think I know thepersonyoumean;if

she's theoneI have in mind, all I canrememberis thatshe's not a novice user”.This evidenceis of
someuse,but it is difficult to conceiveof thestatementasaneventthathada particularprobabilityof
beingcausedby

�
's expertise,asin themosttypical examplesof BNs.Also, whendealingwith this

evidence,it is somewhatunnaturalto updatedirectly your assessmentof thelikelihoodthat
�

is, say,
anintermediate-level user, aswasdonewith theBN depictedin Figure1, becausetheconsultantsaid
nothingaboutthatspecificlevel.

To continuetheexample,you might aska secondconsultantwho hedgedhis answerin thesame
way, expressingthejudgmentthat

�
was“an intermediateor expertuser”;andathird consultantmight

offer thecontradictoryrecollectionthat
�

was“a noviceor abeginner”.It is notobviouswhatto make
of thissetof statements,andDSTofferssomesubtlemethods.

An unreliablewitnessin the literal sensemay appearin a usermodelingcontext whenthe user
(or anotherperson,suchasa teacher)is askedto provide informationabouttheuser. This especially
naturalapplicationof DSThasapparentlynotyetbeenattempted,however. Instead,theevidenceused
by thefour systemsthatwill bereviewedin this sectionconsistsof observableuseractions.Theway
in which suchevidencecanbe handledlike the reportsof a witnesscanbe illustratedwith the first
example,which is basedon anadaptive testingsystemdescribedby PetrushinandSinitsa(1993)and
by Petrushinetal. (1995).7

3.1. SOPHISTICATED PROCESSINGOF SIMPLE OBSERVATIONS

Like the simpleBN shown in Figure1, Figure7's systemdistinguishesfour levels of expertise,
labeledherefor conveniencewith the integers1 (NOVICE), 2, 3, and4 (EXPERT). But evidencein the
student'sbehavior is not linkedonly to thesefour hypothesesabout

�
; it is linkedto all 10 subsetsof

contiguouslevels,eachof which is associatedwith a histogramin Figure7A. Within DST, evidence
couldalsobetreatedassupportinga noncontiguoussetof hypothesessuchas 2 1, 3 3 . But thenature
of theevidenceavailableto theexamplesystemensuresthat this will never benecessary. Therefore,
noncontiguoussubsetsarenot takeninto accountby thissystem.

As before,thethreedifficulty levelsSIMPLE, MUNDANE, andCOMPLEX aredistinguished.A pieceof
evidence(e.g.,thefactthat

�
knowstheSIMPLE concept“MORE”) is in effect treatedlikeastatementby

anunreliablewitness:Thewitnessis 70%surethat
�

's level belongsto theset 2 2, 3, 4 3 of levelson
whichknowledgeof aSIMPLE conceptis likely;but thereisa30%chancethatthewitnesshasthewrong

7 A moreformalintroductionof thecentralconceptsof DSTis givenin this issueby Bauer(1995,section5).A longerbut
still accessibleintroductionis providedby GordonandShortliffe (1984).Severalof thepaperscollectedby ShaferandPearl
(1990)provide furthertechnicalbackgroundand/orexamplesof applications.Pearl(1988,section9.1)offersa challenging
alternative perspective on DST. Yageret al. (1994)presenta collectionof articlesthatdescriberecentadvancesin research
onDST.
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Figure7. Processingwith DSTof evidenceconcerningauser's expertiselevel (cf. Section3.1).
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personin mind,in whichcaseweknow only that
�

's levelbelongsto 2 1,2,3,4 3 . Moreprecisely, each
instanceof knowledgeor lackof knowledgeis associatedwith anassignmentof beliefmass8 to oneor
moreof thehypothesissubsets,thetotalamountof beliefmassfor all subsetsbeing1.0.In thepresent
example,a massof .7 is assignedto thesetof expertiselevelswith which theevidenceis compatible,
while .3 is assignedto theset 2 1, 2, 3, 4 3 of all levels.Thedarkestbarsin thehistogramsin Figure7A
illustratethisassignmentof beliefmassto thetwo relevantsetsof hypothesesaftertheobservationthat�

knows “MORE”. Thefigurealsoillustratestwo furtherbasicDSTconcepts:
1. Thetotalbelief associatedwith ahypothesisset: (representedby thelight graybarfor : ) includes

notonly thebeliefmassspecificto : but alsothesumof themassesof all of thesubsetsof : .
This index representstheextentto which � shouldbelievethat

�
's level is oneof thelevelsin : .

2. Theplausibilityof a hypothesisset : (representedby thewhitebarassociatedwith : ) is thesum
of thebeliefmassesof all hypothesissetsthathaveat leastonehypothesisin commonwith : .
This index reflectsthe extent to which

�
's level might be within : accordingto the evidence

processedsofar.
In Figure7B, � hasjust determinedthat

�
knows the MUNDANE concept“RWHO”. This evidenceis

combinedwith thepreviousevidencethroughanapplicationof Dempster's rule of combination(see,
e.g.,Bauer,1995,section5). This rule playsa role analogousto thatof Bayes'rule within BNs.The
resultis intuitively plausible:It seemsquitelikely that

�
belongsto oneof thelevelsin theset 2 3, 4 3 ,

but thereis asyet no reasonto believespecificallythatshebelongsto Level3; andthesameis trueof
Level4 (cf. theabsenceof any beliefassociatedwith 2 3 3 orwith 2 4 3 , althoughbothhypothesissetsare
consideredfully plausible).Whenthethird pieceof evidencehaslikewisebeenintegrated(Figure7C),
thebeliefmovesfarthertowardthespecifichypothesissets.� now for thefirst timeassignsbeliefmass
to asingletonhypothesisset, 2 2 3 .

3.1.1. Comparisonwith BayesianNetworks

EventhissimpleexampleillustratessomecharacteristicdifferencesbetweenDST andtheBN approach.

1. Notethatthesystemdid notstartwith any apriori beliefabout
�

'sexpertiselevel: Figure7 reflects
solely theevidenceobtainedfrom observations.By contrast,in Figure1 thenodeUNIX EXPERTISE

OF � hadto beinitialized with someprior belief.Oftenthis is unproblematic;but for example,if a
tutoringsystemis beingdeployedfor thefirst timein anew schoolwith adifferenttypeof pupil than
before,theremaybeno way of obtaininga meaningfulprior distribution. In a BN, suchcasesare
oftenhandledthroughtheassignmentof equalprior probabilitiesto all hypotheses;butasadvocates
of DSTpointout,thismethoddoesnotadequatelydistinguishbetweenastateof ignoranceabouta
variableanda genuinebelief thatall of its valuesareequallyprobable.It alsomeansthatvaluable
observationalevidencemayendupbeingcombinedwith largely arbitraryprior assumptions.

2. Assigninga particularbelief massto a setof hypothesesis sometimesa naturalway of expressing
thefactthatapieceof evidencein nowaydiscriminatesamongthemembersof thatset.

3. Basinga decisionon the resultsof the analysisin this exampleis morecomplex thanit is when
a BN is involved; this featurecanbe viewed aseitheran advantageor a disadvantage.Suppose,
for example,that thesystemat somepoint hasto judgewhether

�
belongsto Level2. (Sincethe

original systemis anadaptive testingsystem,it hasto make this typeof decisionin orderto know
whenit canstoppresentingitemsto thestudent.)With a BN, eachhypothesisis associatedwith
a singleprobability. With DST, for eachhypothesisset therearethreedifferentmeasuresof the

8 This assignmentis oftencalleda basicprobability assignment, but this termwill not beusedhere,asit might leadto
confusionwith theprobabilitiesusedin BNs.
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extent to which it is compatiblewith the evidence(two of which—thebelief massandthe total
belief—arealwaysequalfor singletonhypothesissets).The designercanchooseamongvarious
possibledecisioncriteria,takinginto accountthecontext in whichthedecisionsareto bemade.For
example,thecriteriausedby Petrushinetal. (1995)for decidingwhether

�
belongs,say, to Level2

actuallydo not refer to themeasuresassociatedwith the singletonsubset2 2 3 but ratherto those
associatedwith thesubsets2 2, 3,4 3 and 2 3,4 3 . A moredetaileddiscussionof thedecision-making
problem,with aworkedexample,is providedby Bauer(1995,section8).

4. Theexamplesystemdoesnotprovideawayto makepredictionsabout
�

'sknowledgeor behavior;
it is designedto supportdiagnosticinference.Yet theBNs reviewedin Section2 have shown that
predictive inferenceis oftenusefulin ausermodelingsystem.

3.1.2. Sketch of anAlternativeTreatment

Thefourth point just mentionedis symptomaticof a moregeneraldifferencebetweenDST andBNs:
The basicDST theoryprovides a way of combiningpiecesof evidenceabouta singlevariable;it
doesnot dealwith the propagationof beliefsaboutone variableto beliefsaboutrelatedvariables.
A numberof researchershave, however, worked on extensionsof DST to the processingof belief
networks.9 Within theseextensions,thetypeof propagationusedin BNsactuallyemergesasaspecial
case.Thesemethodsdeserve theattentionof usermodelingresearcherswho find DST appealingbut
whodonotwantto dowithout theability to dealwith networkssuchasthoseof thesystemsdescribed
in Section2.

If this type of approachis appliedto the first part of our example,the systemmaintainsbeliefs
not only aboutthevariableUNIX EXPERTISE OF � but alsoaboutDIFFICULTY OF “MORE” andKNOWLEDGE

BY � OF “MORE”. In addition, � hasa belief aboutthe relationshipamongthesethreevariables,which
correspondsto theconditionalprobabilitytableunderlyingtheinferencesshown in Figure1.10 When
� obtainsinformationaboutoneof thevariables,its new belief aboutthatvariablein turn affectsthe
othertwo beliefs;thepropagationmethodmakesuseof Dempster's rule of combination,albeit in a
morecomplex way thanthe procedureillustratedabove. In short,basicallythe samepredictive and
diagnosticinferencescanbemadeasweremadein theBN of Figures1 and2.For instance,� cannow
predictwhether

�
knowsaconcept,evenif � is uncertainaboutthatconcept'sdifficulty.

Like theexamplesystem,thethreeotherDSTsystemsto bereviewedin therestof this sectiondo
not useDST belief network techniques.This fact is reflectedin the relatively small numberof solid
arrows in theoverview in Figure8.

3.2. JUDICIOUSLY SELECTING DEFAULT PLAN ASCRIPTIONS

Carberry(1990)introducedDST to usermodelingwith hermethodfor thedefault ascriptionof goals
in aplanrecognitionsystem.Theexampledomainis studentconsulting.Theproblemis to determine,
givena known goalof

�
, which higher-level goal

�
is likely to bepursuing.DST is usedto quantify

the extent to which a given goal suggestsa particularhigher-level goal.For example,TableI shows
thebelief massassignmentfor thepieceof evidencethat

�
wantsto earncredit in thecourseM370.

It expressesthe belief that this mathematicscoursepoints quite strongly to a goal of majoring in
Mathandmuchlessstronglyto thegoalset 2 Mathmajor, ComputerSciencemajor3 . Roughlysimilar

9 Shenoy (1994)andDempsterandKong(1988)offer largely theoreticalexpositions,while Zarley et al. (1988)describe
animplementationthatsupportstheinteractivegraphicalspecificationof DST-basedbeliefnetworks.

10 Like the beliefsaboutthe individual variables,this belief is representedby an assignmentof belief mass;but each
hypothesisnow correspondsto oneof the24 possiblecombinationsof valuesof theindividual variables.
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Figure8. SystemsthathaveusedDSTfor useror studentmodeling(cf. Figure3 andAppendixA).

links couldbequantifiedwithin aBayesianframework throughtheassignmentof differentconditional
probabilitiesof takingM370givendifferentmajors(high for Mathmajors,low for ComputerScience
majors,andvery low for all othermajors).The questionarises,then,underwhat circumstancesthe
DST belief massassignmentmight be morenaturalor realistic.A casecorrespondingto the typical
caseof anunreliablewitnessoccursif theadvisorcannotquiterememberwhatmajorsM370 is open
to: Sheis 85%sureit' s openonly to Math majors,but sheallows a 12%chancethatit' s opento both
Math andComputerSciencemajorsanda 3% chancethatany studentcantake thecourse.Carberry
doesnotaddresstheissueof thespecificappropriatenessof DSTon this level.

WhenseveralobservationsareavailablethatconstituteevidenceconcerningD 'sgoal,theevidence
is integratedwith Dempster's ruleof combination,asin Figure7.

Giventheevidencefor theascriptionof agivengoal,thesystemmustdecidewhethertheevidence
is strongenoughto warrantascribingthegoalto D . Thesystem'scriterionis that

1. thegoalmusthaveaplausibilityexceedingsomethreshold(here:.9); and
2. thisplausibilitymustexceedthatof thenext-most-plausiblegoalby somethreshold(here:.7).

After thesingleobservationreflectedin TableI, thesecriteriaarefulfilled by thegoalof majoringin
Math.

Thepurposeof thesecondcriterionis evidentlyto ensurethatagoalis notascribedsimplybecause
thereis noevidencethatspeaksagainstit. A morestraightforwardwayof formulatingthiscriterionin
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TableI. A Useof DSTto ProcessEvidenceAboutaUser'sGoals

Belief Total Plausi-
Setof PossibleGoals Mass Belief bilityE
MathmajorF .85 .85 1.00E
ComputerSciencemajorF .00 .00 .15E
Mathmajor, ComputerSciencemajorF .12 .97 1.00E
[All possiblegoals]F .03 1.00 1.00

Note. Adaptedfrom part of Figure2 of Carberry(1990).The assignmentof belief massconstitutesthe system's
interpretationof thefactthattheuserwantsto earncreditin thecourseM370.

termsof DSTconceptswouldbeto requirethatthebeliefassociatedwith thegoal,whichsummarizes
the strengthof the evidencefavoring that goal,mustexceedsomethreshold(cf. the secondcolumn
from theright in TableI). Theremaybedifferentargumentsfor differentcriteria;but in any case,as
wasseenin the previous subsection,DST doessupplya relatively differentiateddescriptionof the
availableevidence,whichmaymake it easierfor adesignerto chooseanappropriatecriterion.

Carberry'ssystemalsodepartsfrom thestraightforwarduseof DST in amoreradicalway:Oncea
goal G hasbeententatively ascribedto D , it is in turnusedasevidencefor thepurposeof ascribingstill
higher-level goals;but theuncertaintyunderlyingtheascriptionof G is not propagatedupward,asit
couldbewith thepropagationmethodssketchedin Section3.1.2.Instead,G is treatedasif it couldbe
ascribedwith certainty. Carberry's justificationfor thisproceduredoesnot concernthecomputational
cost that would be associatedwith propagation.Rather, it is basedon psychologicalevidencethat
people,whenperformingmultistageinferences,similarly refrain from propagatinguncertaintyfrom
onestageto thenext. Thereasonwhy thisconsiderationis relevantis thatthesystemcanpresumably
explainits reasoningto theusermoreeasilyif this reasoningresembleshumanreasoning.Thepriceto
bepaidfor thispossibleincreasein explainabilityis, of course,thatthesystem'sreasoningcanonly be
justifiedlocally in termsof DST; theconfidencewith whichthesystemcanascribeagoalon thebasis
of a sequenceof inferencesinvolving at leasttwo goalscannotbedeterminedthroughanapplication
of DST principles.This partial abandonmentof a formal framework with a view to enhancingthe
human-likenessof reasoningwill beseento a greaterextentin thesystemsthatusesomeform of FL
(Section4). Its consequenceswill beconsideredin Sections5.5and5.6.

3.3. PHI: COMBINING EVIDENCE FROM THE PAST AND THE PRESENT

Theplanrecognitionsystemof Bauer(1995,in this issue)is a partof theintelligenthelpsystemPHI.
It processesevidenceaboutplansthatane-mailusermay bepursuing.Bauerdistinguishesbetween
basicplansandabstract plans; eachof the abstractplansmay be realizedby oneof variousbasic
plans.This abstractionhierarchymeansthatthereexist naturalsubsetsof plans—thosewhich realize
thesameabstractplan—aboutwhichevidencecanbeobtained.Recallthatin Carberry's(1990)system
it wasnot obvioushow an observationcouldsuggestthat D hadoneof the two goals H Math major,
ComputerSciencemajorI ; it is abit easierto seehow anobservationmightsuggestthat D is pursuing
theabstractplanof storingmessageswithout suggestingwhetherD intendsto save themor to write
them.(Similarly, naturallyoccurringhierarchiesof diseaseshave constitutedoneof the motivations
for applyingDST to medicaldiagnosis—cf.Gordon& Shortliffe, 1984.)
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3.3.1. A DSTTreatmentof InformationfromPreviousSessions

BecauseBauer(1995)usesDSTconsistentlythroughouthisplanrecognitioncomponent,hefacesthe
challengeof applyingit to problemsfor which it is notobviouslyapplicable.An exampleis theuseof
D 's behavior in previoussessionsasevidenceaboutwhatplanssheis pursuingin thecurrentsession.
Ontheonehand,it makessenseto try tomakeuse,for example,of thefactthatin thesessionsobserved
sofar D wasmainlyoccupiedwith thedeletingof e-mailmessages.If thenumberof sessionshasbeen
large,theseobservationscanbeassumedto reflectstabledispositionsof D , soit is reasonablethatthey
shoulddeterminethesystem'sinitial beliefaboutD 'sbehavior in thenext session,asthey doin Bauer's
system.But if thenumberof sessionssofarhasbeensmall(e.g.,2), thesystemmustbeuncertainasto
how well D 's deletingtendency will extrapolateinto thefuture(e.g.,theextentto which it mayhave
beenduesofar to situationalfactorssuchashaving exceededthediskquota).

It is notobvioushow this typeof uncertaintycanbestbehandledwith thebasicDSTprinciplesfor
processingevidence.On theotherhand,thereis a fairly naturalsolutionin termsof a belief network
of relatedvariables(realizablewith BNsor with theextensionof DSTsketchedin Section3.1.2):The
systemcanmaintainbeliefsaboutvariousdimensionalvariablessuchas INTEREST IN WRITING E-MAIL

andTENDENCY TO DELETE E-MAIL MESSAGES. Thesystem's beliefsaboutthesevariablescanbeupdated
onthebasisof D 'sbehavior fromonesessionto thenext, andthey will becomemoreandmoredefinite.
They will thereforehavelittle impactontheinterpretationof D 'sbehavior in earliersessions,but their
influencewill increasewith eachsession.

Baueressentiallyapproximatesthebehavior of sucha network by introducingasthefirst session
of a new usera fictitious sessionin which the systemwasunableto make any inferenceat all asto
what plansthe userwasexecuting.The effect of this fictitious sessionis to ensurethat J will have
lessdefiniteexpectationsaboutwhat D will do duringtheearlyrealsessions.As moreandmorereal
sessionsareobserved,theimpactof thefictitioussessiondeclines.In thisway, thedesirableinference
behavior sketchedabove is approximated—but in a ratherarbitraryway, onewhich is not justifiable
in termsof theprinciplesof DST. For example,why not introducetwosuchfictitioussessionsinstead
of just one?Thatwould make thesystemevenmorecautiousaboutextrapolatingon thebasisof D 's
previousbehavior; but how cautiousshouldJ be?

To be sure,there is also no automaticanswerto this last questionif a belief network is used
assketchedabove. In that context, thequestionconcernsthe exact relationshipbetweenthe general
dimensionalvariablesandD 'schoiceof plansin aconcretesituation:J couldpresupposeeitherahigh
or a low degreeof predictabilityof D 's plans.But within the belief network conceptualization,the
questionat leastconcernsthedetailsof apartof themodelthatis constructedwithin thetheory.

3.3.2. AnAlternativeMachineLearningTreatment

In a recentextensionof his system,Bauer(1996)introducesa moredifferentiatedwayof interpreting
evidencefrom the user's behavior during previous sessions.The systemno longer just recordsthe
overall frequencieswith which particularplanswere identified. Instead,J also notesthe specific
situation in which a planwasbeingexecutedon eachoccasion.In this way, J canform hypotheses
abouthow thechosenplandependsonthesituation.For theformationof thesehypotheses,thesystem
employsmachinelearningtechniques.Forexample,it usesID3 (Quinlan,1983)toconstructadecision
treewhich relatesfeaturesof situationsto typical behaviorsof thecurrentuserin thosesituations.So
now thesystemno longerhasto usesimplerulessuchasK When D is readinga messagein a context consistentwith thehypothesisthatsheplansto store

it, assignabeliefmassof .8 to thishypothesis.



26 ANTHONY JAMESON

Instead,J hasa muchlargernumberof ruleslike the following one,which refer to attributesof the
situation:K When D is readinga messagefrom a colleagueandthe messageis at least50 lines long, LMLML

assigna beliefmassof .8 to thehypothesisthat D plansto storethemessage.

Onecomplicationwith theprevious,simplerapproachis inheritedby thisextension:Thereliability
of theevidencederivedfrom previoussessionshasto beassessed.For example,thenumber.8 might
be basedon the occurrenceof 4 positive casesamong5 observationsor on the occurrenceof 80
positive casesamong100 observations.Bauer's methodin effect treatsthe resultsof the machine
learningprocedurelike the testimony of an unreliablewitness,assuminga particularlikelihoodthat
its predictionsareinvalid. This likelihooddecreasesasthenumberof observationsthat themachine
learningprocedurehasmadeuseof increases;but it isunclearwhetherthereisatheoreticallyjustifiable
wayof determiningthisrelationship.In otherwords,theoriginal issueof how many fictitioussessions
shouldbeintroducednow reappearsin theform of thequestionof how thereliability of themachine
learningresultsshouldbequantified.

The useof machinelearningin this context doeshave advantages,however. It would be more
difficult to discover highly specific regularities in the user's behavior with the normal evidence-
evaluationmethodsof DST(orBNsorFL); machinelearningtechniquesarein generalbetterequipped
to dealefficiently with the large numberof potentialregularitiesthat have to be considered.So an
importantissueis: How canmachinelearningtechniquesbeintegratedwith uncertaintymanagement
techniquesin sucha way that the uncertaintyassociatedwith the resultsof the machinelearningis
taken into accountin a principledmanner?This issueis especiallyimportantin the context of user
modeling,becausein this context theamountof datathata machinelearningtechniquecanmake use
of is often small. To date,successfulapplicationsof machinelearningtechniquesto usermodeling
tasks(see,e.g.,Maes,1994;Orwant,1995;Sheth& Maes,1993)have typically involvedcontexts in
whichalargenumberof observationsof userbehavior havebeenavailable.Theintegrationof machine
learninganduncertaintymanagementtechniqueshasreceivedmoreattentionin connectionwith BNs
andFL (seeSections2.7,5.1,and5.3) thanin connectionwith DST.

3.4. COMBATTING THE MULTIPLICATION OF BUG SUBSETS

DST dealswith setsof hypotheses,which areof coursemorenumerousthanindividual hypotheses.
This propertycan lead to seriousproblemsof computationalcomplexity in casessuchas the one
addressedby TokudaandFukuda(1993):A studentD solving subtractionproblemsis assumedto
possessexactlyoneof a setof 36 known incorrectsubtractionrules,or bugs. Giventheanswersof D
to aseriesof problems,how can J determinewhichbug D possesses?

A straightforwardapplicationof DSTmethodsto thisproblemcanbesketched(with somesimpli-
fication)asfollows: When D givesanincorrectanswerN to a problemO , assigna certainamountof
beliefmassto thesubsetof bugsthatwouldyield exactly theanswerN to O ; whenthenext incorrect
answeris observed,applythesameruleandcombinetheresultsby applyingDempster's ruleof com-
bination;continueuntil the belief associatedwith somesingletonhypothesissetcontainingonebug
hasbecomesufficiently strong.11

A problemwith this approachis thatthereare236 P 1 nonemptysubsetsof thesetof 36 bugs.To
besure,only asmallproportionof thesesubsetswouldeverhaveany beliefmassassignedto themby

11 This sketchis simplifiedin that thesystemshouldalsointerpretQ 's correctandincorrectanswersasevidenceagainstQ 's possessionof bugswhichwould leadto differentanswers.
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theprocedurejust sketched;but even thesecould becomeimpracticalto processif morethana few
observationswereconsidered.

TokudaandFukudaadopta computationallysimplerprocedure,following anapproachappliedin
someprevious applicationsof DST (e.g.,by Gordon& Shortliffe, 1984).They divide the 36 bugs
into 3 basicclassessuchthat the bugswithin eachclassproduceincorrectanswerson a particular
typeof problem(e.g.,problemsthatrequireborrowing acrossmorethanonecolumn).When D gives
an incorrectanswerN to a problem O , belief massis assignedto the following bug subsets,among
others:

thebasicclassof bugsthatwould produceincorrectanswerson O (not necessarilythespecific
answerN ); and
eachof thesingletonhypothesissubsetswhosebugwouldproduceexactly theanswerN on O .

Theauthorscomparethreevariantsof thisprocedure,all of whichratemuchbetterthanthestraightfor-
warduseof DSTin termsof theircomputationalcomplexity. Moreover, whentheprocedureis applied
to artificial setsof answersgeneratedby buggymodels,it succeedsin identifyingtheunderlyingbugs.
On the otherhand,the belief massassignmentsthat the procedureprescribesarein generalnot the
sameastheonesthatwouldbedictatedby theunderlyinglogicof DST. For instance,whenanincorrect
answercouldhavebeencausedby any of severalbugs,thereis no reasonto assignbeliefmassto any
singletonsubsetcontainingjust oneof thesebugs.This departurefrom thebasiclogic of DST could
bemoreproblematicif theprocedurewereappliedunderlessidealizedcircumstances—forinstance,
wherethedatacamefrom realstudentswhoinconsistentlyappliedvaryingnumbersof buggyrules.

3.5. CONCLUDING REMARKS ON DEMPSTER-SHAFERTHEORY

Thesystemsexaminedin this sectionhave illustratedseveralpropertiesof a possibleusermodeling
applicationwhichsuggestthattheuseof DSTshouldbeconsidered.Thesepropertiesdonot,however,
constitutenecessaryor sufficient conditionsfor theselectionof DST, andin factnoneof thesystems
describedin thissectionexhibit all of them.

1. The total setof hypotheseshasa structurethat makesit possibleto restrictattentionto a limited
numberof hypothesissubsets.

2. For at least someof the variablesaboutwhich inferencesare to be made,it doesnot appear
meaningfulto specifyprior probabilities.

3. The relationshipsbetweenhypothesesandevidencecannotnaturallybe conceptualizedascausal
relationships.

4. Whenthesystemmakesdecisionsonthebasisof its inferences,its decisioncriteriacanmakegood
useof conceptssuchasthoseof thestrengthof belief in ahypothesissubsetandtheplausibilityof
ahypothesissubset.

5. Theemphasisis to beon theaccuraterepresentationof subtlerelationshipsbetweenevidenceand
hypothesesratherthanon theconstructionof large networksof variableswhich exhibit basically
straightforwardrelationships.

Furtherconsiderationswill bediscussedin Section5.

Thenumberof usermodelingsystemsthathaveusedDSTismuchsmallerthanthenumberthathave
usedBNs,anda roughlysimilar relationshipis foundin thetotal amountsof researchdevotedto the
developmentof thesetwoapproachestouncertaintymanagement.Therefore,usermodelingresearchers
whoadoptDST in thenearfuturewill haveto berelatively independentandenterprising.
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4. SystemsThat HaveUsedConceptsfr om FuzzyLogic

The term fuzzylogic is usedin varioussenses,somebroaderthanothers(cf., e.g.,Zadeh,1994).It
will beusedherein a broadsensethatencompassesany systemthatmakesuseof oneor moretypical
conceptssuchasthoseof a linguisticvariable, a fuzzyset, or a fuzzyif-thenrule.12

Thekey conceptof afuzzysetwasintroducedasawayof dealingwith theimprecision,orvagueness,
thatis typical of naturalconcepts.Althoughdegreesof setmembershiparesometimesconfusedwith
measuresof uncertainty, theseare in fact quite different things. On the other hand,a variety of
conceptsandtechniquesdevelopedwithin thetraditionof FL have beenusedfor themanagementof
uncertainty, for examplein expert systems;theseincludepossibilitytheory (see,e.g.,Zadeh,1981)
andtheadaptationof probabilitytheoryandDST to theuseof impreciselyspecifiedprobabilitiesand
degreesof belief (e.g.,by Lamata& Moral, 1994).

With regardto uncertaintymanagementin usermodeling,the appealof FL appearsto be based
mainlyon two quitedifferentconsiderations:
1. Peopleoftenreasonin termsof vagueconceptswhendealingwith situationsin whichthey experience

uncertainty. Consider, for instance,thestatement:“This studentis quiteadvanced, soheoughtto
beableto handlethis taskfairly well”. Thevagueconceptsreflectthespeaker's uncertaintyabout
how advancedthe studentis andwhat his chancesareof beingableto handlethe taskwith any
particulardegreeof success.Many systemsbasedon FL take advantageof FL's techniquesfor
representingandreasoningwith vagueconceptsto mimic this humanstyleof reasoning.If a user
modelingsystemadoptsthisapproach,its reasoningmaybeespeciallyeasyfor designersandusers
to understandand/orto modify.

2. When userssupply explicit information about themselves to a system,they may expressthis
informationvaguely(e.g.,“I don't know verymuchabouttheWorld-WideWeb”)—perhapsbecause
they themselvesdo not have preciseknowledge,or perhapsbecausethey arefor somereasonnot
motivatedor ableto expresstheir knowledgeprecisely. In any case,theuser's vaguenessleadsto
uncertaintyin thesystem,asthesystemcannotin generalinfer anexactvalue.Theconceptsand
techniquesof FL donotprovide theonly possibleanswersto thequestionof how suchuncertainty
shouldberepresentedandprocessed,but they canform usefulpartsof a solutionevenwhenother
uncertaintymanagementtechniquesareusedaswell.

4.1. KNOME: SUBSTITUTING FUZZY RULES FOR THE LAWS OF PROBABILITY

Thefirst examplewill concerntheproblemthatwasanalyzedin Sections2.1and3.1:thatof updating
anexpertiseestimateon thebasisof evidencethatparticularconceptsareknown or not known.These
previousanalysesshowedthatthisproblemlendsitselfquitewell to treatmentwith relatively traditional
approaches—andthereforedoesnot satisfya criterionthatis oftenappliedto motivatetheuseof FL.
But a basicallyfuzzy treatmentwasworkedout in themid-1980's by Chin (see,e.g.,Chin,1989)for
KNOME, theusermodelingcomponentof theUNIX CONSULTANT.

As is illustratedin Figure9A, KNOME representslikelihoodsandlikelihoodchangesin termsof a
linguistic variablewith 9 discretevalues.13 Four levelsof userexpertisearedistinguished,asin the
previous treatmentsof theexample,aswell asthreelevelsof difficulty for concepts.Thereis alsoa

12 Usefulcollectionsof papersin thisareaincludethosecompiledby Duboisetal. (1993)andby YagerandZadeh(1992).
Widely usedmonographsincludethoseby Kosko (1992)andby Cox(1994).TherelationshipbetweenFL andotherartificial
intelligencetechniquesis thesubjectof lively debatein aspecialissueof IEEEExpertthatincludesacontroversialpaperby
Elkan(1994)togetherwith anumberof critical replies.

13 Chin usesthesame9 labelsfor likelihoodsandlikelihoodchanges.For clarity, in thepresentdiscussionthesecondset
of labelsshown in Figure9A will beusedfor likelihoodchanges.
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Figure9. KNOME'srulesfor predictingandinterpretingauser's(lackof) knowledgeof UNIX concepts(cf.Section4.1).
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fourthcategory, ESOTERIC, whichdoesnotreallyrepresentadifficulty level, in thatknowledgeof these
conceptsis by definition hardto predicton the basisof the user's expertise.Figure9B summarizes
whatareactually16 fuzzy if-thenruleslike thefollowing one:K

IF D is a BEGINNER AND theconcept\ is SIMPLE,
THEN it is LIKELY that D knows \ .

Theserulesexpressthesametypeof assumptionastheconditionalprobabilitytableof theBN shown
in Figures1 and2. One argumentfor using the fuzzy versionsis that precise,reliableconditional
probabilitiesareunlikely to beavailableandthatit is bestto representexplicitly thesystem'simprecise
knowledgeof therelationshipamongthesethreevariables.

Thesystemis at mosttimesuncertainaboutD 's expertiselevel. Thetop of Figure10 shows how,
even before J makes any observations,eachlevel is associatedwith somevalue of the linguistic
likelihoodvariable.This representationof a belief is similar to the BN representationin termsof a
probabilitydistribution (cf. thehistogramfor thenodeUNIX EXPERTISE OF ] in Figure1).

4.1.1. PredictiveInference

PredictingwhetherD knows a given conceptis straightforward if J hasdefinitebeliefsaboutboth
D 's expertiseandthe concept's difficulty; in this case,only oneof the rules in the predictiontable
(Figure9B) is applicable.If, on theotherhand,KNOME still hasanindefinitebelief aboutD like the
oneshown at thetopof Figure10, J basesits predictiononthelevel with thehighestlikelihood(here:
BEGINNER). That is, it doesnot take into accountthe likelihoodsassociatedwith theotherlevels; this
wouldrequiresomewayof combiningthepredictionsmadefor thelevelsto which D mightbelong,as
is donewith downwardpropagationin BNs.Many systemsbasedonFL do in factapplyinterpolation
techniquesin suchcases(cf. Section4.1.3below). KNOME'smethodcouldbeextendedin thisway, but
this extensionwould requirethe introductionof explicit membership functionsfor thevariousfuzzy
conceptsinvolved,aswell asa morecomplex mechanismfor applyingthefuzzy rules.

4.1.2. DiagnosticInference

To interpretobservationsconcerningparticularconceptsthat D knowsor doesnotknow, KNOME in
effectusesthetwo furthertablesof fuzzy ruleslabeledC andD in Figure9. Thefirst entryin TableC
correspondsto thefollowing if-thenrule:K

IF theconcept\ is SIMPLE AND D knows \ ,
THEN it now seemsMORE LIKELY that D is anEXPERT.

Thetermmore likely refersto a likelihoodchangerelative to thecurrentlyassumedlikelihoodthat D
is anexpert.Thecurrentlikelihoodandthelikelihoodchangeareto becombinedadditively according
to thescaleshown in Figure9A. For example,if J currentlyconsidersit to beUNCERTAIN (0) whether
D is anexpert,thefact that this classificationhasjust becomeMORE LIKELY (+2) meansthat J should
now considerit LIKELY (+2) that D is anexpert.

In a BN, the likelihoodsshown in TablesC andD would not be representedseparately;instead,
theappropriateadjustmentsto J 'sbeliefwouldbecomputedessentiallywith anapplicationof Bayes'
rule togetherwith theconditionalprobabilitiescorrespondingto TableB. In this sense,TablesC and
D representfuzzy approximationsof Bayes' rule as it would be appliedin this particularsituation.
Thequestionarises,how well cansuchanapproximationwork?Figure10givesanexample.Thefirst
updatingoccursafter J hasobserved that D knows the concept“MORE”. As in Figure2, J becomes
slightlymoreoptimisticaboutD 'sexpertise.Similarly, afterD is observedto know asecondconceptas
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Figure10. Updatingof anassessmentof userexpertiseby KNOME (cf. Section4.1.2).

well,KNOME'sassessmentbecomesmorepositiveagain.Accordingto theupdatingrules,thelikelihood
of thelevel EXPERT now reachesthemaximumvalueof True. KNOME's procedurespecifiesthatwhen
thishappens,thehypothesisin questionmustbeacceptedandthelikelihoodFalse mustbeassignedto
theotherthreehypotheses.Accordingly, eventhetwo hypothesesINTERMEDIATE andBEGINNER, which
wouldotherwisebeassociatedwith thelikelihoodsVery likely andSomewhat likely, respectively, arefrom
now on regardedasFalse.

Now that one hypothesishasbeenaccepted,no subsequentobservationscan changeKNOME's
belief.Soeventheinformationthat D doesnotknow theMUNDANE concept“FG” cannolongerhaveany
effect,eventhoughthis informationwould have beensufficient in itself to falsify thehypothesisthat
D is anEXPERT.
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A systemthatemployedBNs or DST would nevercompletelyrejecta hypothesis—suchasINTER-

MEDIATE in this example—whichhadbeenquite consistentwith all of the availableevidence.Such
a systemwould thereforebe able to take into accountthe relatively surprisingresult of the third
observation.14

4.1.3. Sketch of anAlternativeTreatment

This exampleproblemcould be handledin anotherway that would make more useof typical FL
concepts.Note that Chin's rules do not take into accountthe fact that impreciseconceptssuchas
EXPERT andINTERMEDIATE mayoverlapconsiderably. For instance,anintermediateuseris anexpertto
a limited degree,so a statementthat appliesto an expert may alsoapply to an intermediateuserto
a limited degree.FL systemsoftenexploit suchrelationshipsamongconceptsto reducethenumber
of rulesthat they use,therebyachieving a type of datacompression(see,e.g.,Zadeh,1994).If this
approachis taken to anextreme,the12 predictionrulessummarizedin themiddle threecolumnsof
TableB in Figure9 canbereplacedby thefollowing two rules:K

IF theconcept\ is EASY AND D is anEXPERT

THEN D KNOWS \ .K
IF \ is NOT EASY AND D is NOT anEXPERT

THEN D doesNOT KNOW \ .

Similarly, exceptfor the treatmentof ESOTERIC concepts,eachof theTablesC andD in Figure9
couldbereplacedby apairof rules.Thefirst rule for TableC might read:K

IF \ is DIFFICULT AND D KNOWS \
THEN D is anEXPERT.

At first glance,eachof theserulesappearsto apply to only onespecificcase.But whentherules
aredefinedandinterpretedin termsof impreciseconcepts,togetherthey coveranumberof cases.The
questionof coursearises,how well canruleslike this approximatetherelationshipthat thedesigner
hasin mind?Theparticularresultsobtainedwill dependin partonhow theconceptsthatoccurin the
rules—includingtheoperatorsAND andNOT—aredefined(cf. Section4.2below). Theresultswill also
dependonwhichof thevariousproceduresfor processingfuzzyif-thenrulesis applied(see,e.g.,Cox,
1994,chap.6; Kruseetal.,1991,section10.3;Yager,1992).

Giventhecentralrole within KNOME of the rulesin Figure9, it maywell beworthwhile to usea
largernumberof rulessoasto approximatethe intendedrelationshipaswell aspossible.But vague
rulessuchastheonesjust mentionedcouldbeusefulin caseswherethereis little informationabout
thetruerelationshipandwhereeffort cannotbeexpendedto obtainmoreinformation.For example,a
systemfor recommendingmoviesmighttry to representandmakeuseof adatabaseof expertopinions
suchasthefollowing one:K If you like a fast-moving plot andyou don't mind a bit of violence,this movie mayberight for

you.

4.1.4. Commentson theTreatmentsof theExampleProblem

ThisintroductoryexampleillustratestwogeneralpointsaboutFL thatarerelevanttousermodeling:

14 Chin (1989,p.106)notesthattheinability of KNOME to adjustits belief abouta user's expertiseonceit hasaccepteda
particularhypothesiscouldbea drawback—especiallyif a singleuser's interactionwith thesystemwereto last longerthan
is usuallythecasewith KNOME, longenoughfor Q to learnenoughaboutUNIX to advanceto ahigherexpertiselevel.
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1. Fuzzyrulessuchasthosesummarizedin Figure9 arein somewayseasyfor bothusersandsystem
designersto understand.Thevagueconceptscorrespondto thewaypeoplenaturallytalk andthink
aboutthingslike likelihoods,usercategories,andconceptdifficulties. In fact, the naturalnessof
KNOME'sconceptsandrulesmaybeonereasonwhy its methodis oneof themostwidely citedand
reproducedproposalsin theusermodelingliterature.

2. Suchproceduresarerelatively easyto fine-tunein arbitrarywayson thebasisof experience.For
example,rulesfor dealingwith specialcasessuchasESOTERIC concepts(cf. theright-handcolumn
in the tablesin Figure9) canbeaddedif casesarenoticedwheretheotherrulesdo not appearto
work well. More basicaspectsof theprocedurecanalsobefine-tuned.For example,if therather
strangeresultshown in Figure10 werefound disturbing,a designercould reducethe frequency
of suchresultsby changingthe rulesfor updatingprobabilitiesin sucha way that the valueTrue
wasderivedonly undermoreextremeconditions.(Notethatdesignersof systemsbasedonBNsor
DSTcannoteasilyeliminateundesiredresultsby modifying thelawsof probabilityor therulesfor
thecombinationof evidence.)To besure,sucha changemight leadto undesirableresultsof other
types;it is simply not easyto approximatea principlesuchasBayes' rule or Dempster's rule of
combinationsatisfactorilywith a setof fuzzyrules.

Thefollowing subsectionswill examineseveralusermodelingsystems,morerecentthanKNOME,
thatuseat leastsomeconceptsfrom FL (Figure11).

4.2. THE SALES ASSISTANT: MAXIMAL USEOF MINIMAL USERINPUT

If systemdesignersandknowledgeengineersareoftenmorecomfortablewith fuzzyconceptsthanwith
precisenumbers,thesameis evenmoretrueof ordinarysystemusers.Thisconsiderationis takeninto
accountin theSALES ASSISTANT (Popp& Lödel,1995,in this issue).Partof thissystemis responsible
for predictinghow a userwill evaluateparticularproducts.Consider, for example,the problemof
asking D how importantthe attribute “Screensize” is in her evaluationof a personalcomputer. D
is unlikely to want to specifya numericalimportanceweight (e.g.,.17) for eachsuchattribute,but
shemight be willing to statethat the attribute is “quite important”.Fuzzylogic providesmeansfor
representingsuchvagueinput—in this case,meansfor viewing “quite important” asa fuzzy setof
numbers—andfor processingit in combinationwith otherimpreciseinputs.

TheSALES ASSISTANT alsoillustratesaslightly lessobviouswayof usingfuzzyconceptstoprocess
vagueuserinputwhenit predictshow D wouldevaluatevariouspossiblespecificscreensizes.Strictly
speaking,D shouldbe asked to specify somesort of value function (cf., e.g., von Winterfeldt &
Edwards,1986)—thatis, a mappingof possiblescreensizesonto their evaluations.Yet a useris not
likely to wantto specifysucha functionwith any precision,especiallygiventhata productalsohasa
numberof otherrelevantattributesfor which thesameproblemarises.At most,D is likely to specify,
for example,that thescreen“shouldbe19 inchesacross”—wherebyshepresumablydoesnot mean
simply thatany sizeunder19 inchesis out of thequestion.Oneway of conceptualizingthis problem
is to view D asdefininga fuzzyconceptSUITABLE SCREEN SIZE which is clearlyapplicableat19 inches
andlessapplicableat someothervalues.Fuzzylogic providesa repertoireof membershipfunctions
for capturingsuchconcepts(see,e.g.,Cox,1994,chap.3).

Theproblemof determiningtheoverall suitability of a product a for D canthenbeviewedasthe
problemof interpretinga fuzzy rule like thefollowing one:K

IF a hasa SUITABLE SCREEN SIZE

AND a hasa SUITABLE PROCESSOR SPEED

AND ...
THEN a is a SUITABLE COMPUTER.
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Figure11. Systemsthathaveusedsomeconceptsof FL for useror studentmodeling(cf. Figure3 andAppendixA).
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Thisis atypeof formulationthatbothsystemdesignersandusersarelikely tounderstandandtoaccept,
but itsexactinterpretationisnotobvious.Forexample,it mustbedeterminedwhattheconjunctionAND

meansin thiscontext—in particular, theextentto whichasingleunsuitableattributeshoulddisqualify
a product.Thereis no universallyvalid answer, but fuzzy logic providesa library of functionsfor the
interpretationof operatorslike thisone(see,e.g.,Cox,1994,chap.4).

In sum,theverbalformulationsthatpeopletendto preferto useto expressquantitativeinformation
in generalhavemeaningswhicharevagueandcontext-dependent(seeWallstenet al., 1993;Wallsten
& Budescu,1995).The repertoireof membershipfunctions,operators,andothertechniquesthatFL
provides doesnot yield easysolutionsto this problem,as the task of determiningthe appropriate
representationsremains—ataskwhich mayrequireconsiderableempiricaltestingand/orknowledge
engineering(cf. Sections5.1and5.3).

4.3. GEORGETTE: FUZZY RULES FORUSERSIMULATION

Kölln (1995)is developingthetext generationsystemGEORGETTE, which,like theSALES ASSISTANT,
usesfuzzy conceptsto representthe user's assumedevaluationcriteria. In the exampledomain,the
objectsto beevaluatedarehousesandapartmentsthatarebeingofferedfor sale.As thepurposeof this
systemis to generatereal-estateadvertisementsnoninteractively, the motivation for usingFL is not
to enablethesystemto handlevagueuserinputs.Rather, Kölln arguesthat fuzzy conceptsallow the
reader's evaluationprocessesto bemodeledin a realisticfashion.A realisticmodelis requiredhere:
The generatorconsultsthe modelnot only to predicthow D will evaluatean objectasa whole but
alsoto determinetherelevanceof particularattributesandtheevaluationof theobjectwith respectto
variousevaluationsubdimensionssuchas“Location”.

In bothGEORGETTEandtheSALES ASSISTANT, theFL-basedusermodelis not just aninstrument
for makingpredictionsabouttheuser;it canalsobeviewedasa (moreor lesssimplified)cognitive
simulationmodelof the user's evaluationprocesses(cf. the useof BNs by Horvitz & Barry, 1995,
describedin Section2.14).Whenthisis theintention,argumentsconcerningthegreaterhuman-likeness
of fuzzysystems(cf. Section5.5)acquirespecialweight.

Anothercharacteristicaspectof Kölln's systemis theway it representscomplex quantitative rela-
tionshipswith combinationsof rulesformulatedin termsof fuzzyconcepts.Comparedwith theSALES

ASSISTANT, GEORGETTEusesa muchlarger numberof fuzzy conceptsandrulesto characterizethe
evaluationcriteria that the systemascribesto membersof a particularusergroup.In this way, the
systemcanrepresenta vastnumberof possiblerelationshipsbetweena propertyof anobjectandits
evaluationby a user;someof thesewould behardto capturewithin a traditionalframework suchas
Multi-AttributeUtility Theory(cf. Section2.12andvonWinterfeldt& Edwards,1986).Thisprospect
canbeattractive if thesystem'sknowledgeengineerthinksthatit is bothnecessaryto capturea func-
tional relationshipin sucha differentiatedfashionandfeasibleto do soby queryingrelevantpersons
and/orfine-tuningtheruleson thebasisof experience.

4.4. SYPROS: STUDENT MODELING WITH A FUZZY EXPERT SYSTEM

Whereaseachof theFL systemsreviewedsofar exhibits sometypical fuzzy features,moreof these
featuresare combinedwithin the diagnosticcomponentof SYPROS (Herzog,1994).SYPROS is an
intelligent tutoringsystemfor parallelprogrammingin a speciallydesignedprogramminglanguage.
Thekey taskof theusermodelingcomponentis thefollowingone:GiventhatD haswrittenaparticular
commandwithin hisprogram,determinewhichof severalpossibleplanso 1 LMLMLporq thecommandwas
intendedto helprealize.
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The systemhasavailable10 typesof evidenceon which to basesucha decision,including the
following:

therelativedifficulty of thegoalsthatcorrespondto theplanso 1 LMLMLso q ;
theexpertiselevel of D ;
thenatureof theexplanationsthathavebeenofferedsofar by thetutoringsystem;and
theextentto whichaparticularplan out wouldhelpto achieveahigher-level goalthat D is known
to bepursuing.

It would bepossible,thoughby no meansstraightforward, to try to useBNs or DST to integrate
thesediversetypesof evidence.Instead,SYPROS usesa fuzzy expert systemwith rulesthat canbe
expressedroughlyasin thefollowing example:K

IF ovt hastheRIGHT HISTORY

AND thegoalassociatedwith o t hastheRIGHT DEGREE OF DIFFICULTY

OR out is NOT associatedwith theWRONG TYPICAL MISTAKES

THEN ovt is theCORRECT HYPOTHESIS.

As in theruleslistedin Sections4.1.3and4.2,eachof theconceptsandoperatorsprintedin upper-case
lettersis fuzzy. Theprocedurefor determiningthefuzzymembershipvaluefor agiven ovt andafuzzy
concept\ is asfollows:All w candidateplansarerank-orderedwith respectto theextentto whichthe
evidencerelevantto \ speaksfor them.Thehighest-rankingplanalwaysreceivesafuzzymembership
valueof 1.0; for theotherplans,the rankorder(essentiallyan integerbetween2 and w ) is mapped
ontothehalf-openinterval [0,1) with amonotonicfunctionthattakesvariousforms,dependingonthe
judgedimportanceof \ .

As with the evaluationsystemsdiscussedin the two previous subsections,the logical operators
AND, OR, andNOT aregivendefinitionstakenfrom therepertoireof fuzzy operators.For OR andNOT,
themostcommondefinitionsareused;for AND, it is not theminimumof themembershipvaluesthatis
usedbut ratherthearithmeticmean.Thejustificationis thatasinglelargelyunfulfilled condition(e.g.,
thefact thata planrankslow with respectto having theRIGHT HISTORY) shouldnot completelyblock
theapplicationof a rule.

In sum,a set of rules like this takes into accounta variety of typesof information that appear
relevant, and it combinesthem in ways which appearplausibleto the designerand/orknowledge
engineer. The rulesarenot basedon an explicit modelof the relationshipsamongthe variablesthat
they take into account,andmany of thedetailsof therulesarehardto justify theoretically. Thesefacts
have consequencesfor theway in which sucha systemis testedandadapted,aswill bediscussedin
Section5.3.

4.5. IFTRED: REPLACING FUZZY RULES WITH LINEAR EQUATIONS

For completeness,two approachesshouldbementionedto which theterm fuzzyhasbeenappliedbut
which in factexhibit relatively few characteristicsof fuzzysystems.

Hawkeset al. (1990)presentan approachin which a studentmodelis maintainedin a relational
databasewhichstoreshypothesesmainlyaboutpatternsin D 'sobservablebehavior andthepositionsof
D onavarietyof specificdimensions.Someof thevariablesarefuzzyin thesensethatthey characterize
astudentwith termslike VERY LOW insteadof with Booleanpredicatesor numbers.But thesetermsare
internallyrepresentedandprocessedasintegers,andnouseis reportedof fuzzymembershipfunctions
or relatedconcepts.
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The systemallows the designerto formulateequationsthat permit inferenceson thebasisof the
studentmodel,suchasthefollowing equation(p.423):

xzy L 3{ 1 | L 2{ 2 | L 1{ 3 | L 3{ 4 | L 1{ 5 L
Here,

x
representsD 'scurrentmotivationalstate,whichthesystemmightwanttopredict,for instance,

in orderto judgetheappropriatenessof presentingagiventypeof problem.{ 1 representsD 'sgeneral
trait motivationfor mathematics,and { 2 through{ 5 summarizeseveralaspectsof D 'sbehavior in the
currentsessionwhichseemlikely to reflect(or perhapsto influence)hiscurrentmotivationalstate.The
systemevaluatesanequationlike thissimplyby substitutingin theintegervaluesfor { 1 through{}q
androundingoff theresultto obtainanintegervaluefor

x
.

Theseequationsarelikethefuzzyrulesof Herzog(1994)in thateachequationexpressesthewayin
whichvariouspiecesof evidencesupportaconclusionaccordingto thejudgmentof thedomainexpert
who formulatedthem.They aremoreconstrained,however, in that they do not allow evidenceto be
combinedthroughtheuseof variouslogicaloperators,whichcouldin turnbegivenvariousdefinitions.
It is not clearhow successfullyequationsof this form canin factpredictstudentbehavior andupdate
astudentmodel.

4.6. SHERLOCK II: INVESTIGATING THE UTILITY OF ALTERNATIVE PROPAGATION TECHNIQUES

Katzetal. (1992)15 presenta studentmodelingcomponentfor a troubleshootingtutoringsystemthat
usesD 's actionsasevidenceconcerningD 's positionson variousskill dimensions.An exampleof a
rule thatlinks observablebehavior to a specificdimensionis thefollowing rule:K

IF D usesthehandheldmeterto measureDC voltagewhenthevoltageis in factAC,
THEN downgrademoderatelytheassessmentof ] 'S ABILITY TO USE THE HANDHELD METER.

Ruleslikethiscouldberepresentedandprocessedin avarietyof wayswith thetechniquesdescribed
elsewherein thisarticle.Katzetal. arguethatproblemsof knowledgeengineeringandcomputational
complexity mightmaketheuseof techniquessuchasBNsimpractical(cf. Sections5.1and5.4below).
They thereforeexploreanoveltechniquein ordertodeterminewhetherit representsausefulalternative:
Eachvariablesuchas] 'S ABILITY TO USE THE HANDHELD METER hasfivepossiblevalues,rangingfrom NO

KNOWLEDGE to FULLY DEVELOPED KNOWLEDGE. For eachvariable,J maintainsaprobabilitydistribution
like theonesusedin BNs. Theseprobabilitiesarenot updatedaccordingto any rulesof probability
theory, however. Forexample,theformulafor downgradingtheassessmentof avariableprescribesthat
someproportionof theprobabilityassignedto eachvalueof thevariablebe transferredto thevalue
onestepbelow. In thisrespect,themethodis similarto Chin's(1989)nonstandardmethodfor updating
probabilities.A consequenceof theuseof tailor-madeupdatingrulesis thattheupdatingprocessitself
canbefine-tunedsothatparticulareffectsareobtained.For example,theupdatingprocedureprovides
explicitly for slower upgradingwhen D is judgedto bea near-expert,becausethedesignersconsider
it to beespeciallyundesirablefor a studentto beclassifiedasanexperterroneously.

In additionto assessingspecificabilities,SHERLOCK II assessesmoreglobalones,relatingthemto
thespecificabilitiesvia linearequations,asin IFTRED. For example,theability to usetestequipment
(
x

) is relatedto the abilities to usethe handheldmeter( { 1), the digital multimeter( { 2), and the
oscilloscope( { 3) asfollows: x~y L 2{ 1 | L 2{ 2 | L 6{ 3 L

15 A slightly shorteraccountof this researchis givenby KatzandLesgold(1992).
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Applying anequationlike this oneis lessstraightforwardthanapplyingthecorrespondingequations
in IFTRED, becausethesystem'sbeliefsaboutthefour variablesarerepresentedby probabilitydistri-
butionsratherthanby specificnumbers.Hereagain,insteadof invoking theprinciplesof probability
theory, theauthorsintroduceasimplerscheme:Thelinearequationis applieddirectly to theprobabil-
ities associatedwith thevariouspossiblevaluesof thevariables.Assume,for example,thefollowing
probabilitydistributions:

{ 1 and { 2: (1 0 0 0 0); thatis, definitelyNO KNOWLEDGE;
{ 3 : (0 0 0 0 1); thatis, definitelyFULLY DEVELOPED KNOWLEDGE.

Then D oughtto be ratedaboutaverageoverall with respectto
x

, his ability to usetestequipment.
But theprocedureappliedyieldsa probabilitydistribution for this variableof (.4 0 0 0 .6). Thatis, D
mayhave NO KNOWLEDGE of testequipmentusage,or hemayhave FULLY DEVELOPED KNOWLEDGE; but
hedefinitelydoesnot have a knowledgelevel betweentheseextremes.Anomalieslike this illustrate
theperilsof developingnew methodsof handlingevidenceasalternativesto methodsthathavealready
benefitedfromextensivethoughtandscrutiny. Katzetal.acknowledgethattheirmethodis lessreliable
thanstandarduncertaintymanagementtechniques.In fact,they concludetheirarticlewith adiscussion
of reasonswhy BNsmightbebettersuitedfor a systemlike SHERLOCK II.

4.7. CONCLUDING REMARKS ON FUZZY LOGIC

Thesystemsreviewedillustratetwo generalusermodelingsituationsin whichtheuseof FL techniques
shouldbeconsidered:

1. Reasoningis involvedthatcanbedescribedandexplainednaturallyin termsof impreciseconcepts,
operators,andrules,asopposedto mathematicalprinciplesor rulesinvolving preciseconcepts.
This reasoningmaybethatof theuser, whoseinferencesor evaluationsarebeinganticipated;or it
maybethatof anexpertwhoseknowledgeconstitutesthebasisfor thesystem's reasoning.

2. Impreciseverbalinput from theuserhasto beprocessed.
Themembershipfunctionsof FL arein generalwell suitedto therepresentationof suchinput,even
if thesubsequentprocessingdoesnotuseFL techniques.

With regard to the first situation,note that even in caseswherethe system's inferencescan be
realizedstraightforwardly with a precisemodel, it will also be possibleto realizethem in a more
approximatewaywith FL techniques.But someof theexamplesconsideredabovein Sections4.1and
4.6haveraiseddoubtsasto whetherthis is anappropriatewayto useFL techniques.Theargumentsin
favor of doingsowouldmainlyconcernusabilityissuessuchasthoseexaminedin thenext section.

5. The Usability of Numerical Uncertainty Managementfor UserModeling

Someof themostfrequentlyadvancedargumentsagainsttheuseof numericaluncertaintymanagement
techniquesfor usermodelingdo not concernthe questionof whetherthey could, in principle,yield
accurateand/oruseful results.Rather, the argumentsaddressthe questionof the usability of these
techniques:whetherthetechniquescanbeusedsatisfactorily in theconditionsin which researchand
applicationtypically take place.More specifically, a designerwho is consideringsuchtechniquesfor
theusermodelingsystemJ maywonderaboutthefollowing questions:

1. Wherewill thenumbersneededby J comefrom?
2. How mucheffort will it requireto implementJ ?
3. To whatextentwill J haveto beimprovedthroughtrial anderror?
4. Will J 's inferencemethodsbeefficientenoughto permitacceptablyfastsystemresponses?
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5. To what extentwill the inferencesmadeby J be similar to thosemadeby peoplefacedwith
analogoustasks?

6. To whatextentwill it bepossibleto explain J 's inferencesto usersandotherpersonswhowant
to understandthem?

7. To whatextentwill it bepossibleto justify theconclusionsdrawn by J if they arecalledinto
question?

8. How effectively will it bepossibleto communicatethelessonslearnedin thedesignandtesting
of J to otherdesignersof usermodelingsystems?

Thesequestionswill bediscussedin turnin thefollowing subsections.It wouldbeconvenientif we
couldgive eachof thethreeuncertaintymanagementparadigmsa ratingwith respectto eachof these
questions—andmaybeevenaratingfor overallusabilityin usermodelingsystems.Unfortunately, the
answersto thesequestionsdependin parton theparticularway in whicha techniqueis employed.So
the aim of the following subsectionswill be moremodest:to mentionthe major factorsthat should
be taken into accountduring an attemptto answereachof thesequestionswith regardto a specific
system.

5.1. KNOWLEDGE ENGINEERINGREQUIREMENTS

Thequestionof wherethenumberscomefromappearsto bethemostdifficult oneof all. In mostof the
systemsdescribedin thisoverview, mostor all of therequirednumberswereapparentlyenteredby the
designerson thebasisof intuitive judgment.Even in caseswheresystematicallycollectedempirical
datawereused,thedesignersthemselveswarnagainstoptimisticassumptionsabouttheaccuracy of
the numbers(see,e.g.,de Rosiset al., 1992,pp.386–387;Desmaraiset al., 1995,section4). This
widespreadlack of a solid quantitative knowledgebaseis in keepingwith thefact that thesesystems
areresearchprototypes.But this researchdoesnot in mostcasesindicatehow accuratenumberscould
beobtainedin practice.

The developmentof FL wasmotivatedlargely by a desireto make the arbitraryspecificationof
precisenumbersunnecessary. In particular, it issometimesnotedthatit iseasiertoelicit fuzzyrulesthan
exactnumbersfrom domainexperts(see,e.g.,Section4.2andVadiee& Jamshidi,1994,p.37).Still,
FL-basedsystemsdorequirethespecificationof numberson otherlevels.As thesystemsreviewedin
Section4 illustrate,atsomepointeventhefuzziestinputshavetobetranslatedintosomesortof internal
numericalrepresentation:A vagueconcepthasto have a membershipfunction (if it is not just to be
mappedontoaninteger),andthevariouspiecesof input datafor a complex rulehave to becombined
accordingto someoperators.Theseinternalrepresentationscanin principlebe just asunrealisticas
arbitrarily chosenconditionalprobabilitiesor belief massassignments.So the problemremainsof
how to choosetheright ones.This problemis fully recognizedwithin FL, andexperimentationwith
a variety of alternative numericalrepresentationsis often viewed asa centralpart of the processof
developingan FL-basedsystem(cf., e.g., the application-dependenceof the fuzzy modelingin the
systemsdescribedby Popp& Lödel,1995).

Thedevelopmentof improvedtechniquesfor acquiringthenecessarynumbersis a widely pursued
researchgoal (see,e.g.,Druzdzelet al., 1995,for examplesof efforts in connectionwith BNs). One
generalapproachisto improvemethodsof elicitingthenecessaryjudgmentsfromexperts.Forexample,
Druzdzelandvander Gaag(1995)presenta generalmethodfor deriving exactprobabilitiesfrom a
varietyof typesof input providedby experts,includingpurelyqualitative probabilityassessments.A
complementarystrategy is to developappropriatemachinelearningtechniques(see,e.g.,Section2.7
with regardto BNsandKosko, 1992,with regardto FL-basedsystems).
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In the nearfuture, however, precisenumbersthat areoutputby a usermodelingsystemshould
notbetakentoo literally, unlessthesystem'saccuracy hassomehow beenconvincingly demonstrated.
In otherwords,for many systemspreciseandaccurateresultsdo not representthe chief benefitof
employing numericaluncertaintymanagementtechniques.Thereare several advantagesto the use
of well-understoodnumericaltechniqueswhich can be exploited even if the system's quantitative
knowledgebaseleavesmuchroomfor improvement(cf. Pearl,1988,pp.20–21):
1. Theattemptto specifyall of thenecessaryquantitiesforcesthesystemdeveloperto dealwith many

complicationsthat would otherwisenot even be noticed;anda systemthat embodiesat leastan
educatedguessaboutsucha complicationis likely to bepreferableto onethatdoesn't take it into
accountatall.

2. It isconvenienttoknow thatany unexpectedor incorrectbehavior of thesystemcannotbeduesimply
to poorly understoodaspectsof the basicinferencemechanism;rather, theremustbe something
wrongwith theassumptionsthatwereenteredinto themodel.

3. Althoughtheconclusionsdrawn by thesystemmaybeinaccurate,they will not beinconsistentor
bizarre.They will beconclusionsthatwouldbevalid in someplausibleworld,namelyonein which
all of theassumptionsmadein thesystemwereaccurate.

4. Eveninaccuratenumbersin thesystemcanserve asplace-holdersfor moreaccuratenumbersthat
can be acquiredin the future, in one or more of the ways mentionedabove. Somealternative
approachesto uncertaintymanagementdonotsupportthissortof incrementalimprovement.

5.2. PROGRAMMING EFFORT

Theeffort requiredtoprogramanimplementationis likewiseoftencitedasareasonfor avoidingtheuse
of themoresophisticatednumericaltechniquescoveredin thisoverview.Apartfromits lackof scientific
weight,this argumentis rapidlybecominganachronisticastheamountof relevantpublic-domainand
commercialsoftwareincreases.Forexample,Mislevy andGitomer(1995)useacommerciallyavailable
BN shell,andtheFuzzySystemsHandbookby Cox(1994)comeswith adiskful of numericalroutines
programmedin C++.16

5.3. EMPIRICAL MODEL ADJUSTMENT

Section5.1 notedthe difficulty of specifyinga valid model on the basisof empirical data,expert
assessments,or theoreticalconsiderations.An alternativeapproachis to tunetheparametersof a user
modelingsystemon thebasisof feedbackfrom systemperformance.This generalapproachhaslong
beenfamiliar in thefield of rule-basedexpertsystems.As wasnotedin Section5.1,thissortof tuning
is especiallycharacteristicof theFL paradigm.The FL systemsdescribedin Section4 in fact show
morepossibilitiesandexamplesthando thoseof theothertwo paradigms.

As a reviewerof oneof themanuscriptsfor thisspecialissuehasemphasized,revisingamodelon
thebasisof empiricalfeedbackshouldnotbeviewedasnecessarilyjustamatterof adjustingparameters
by trial anderroruntil theresultsaremoreor lesssatisfactory. Instead,it is desirable,wherepossible,
thattheinitial designof themodelshouldbebasedon explicit assumptionsabouttheexactmeanings
of thevariablesinvolvedandaboutthenatureof theirrelationships.Unexpectedbehavior of thesystem
maythensuggestrevisionsof theseassumptionsratherthanjustadjustmentof specificparameters.An
advantageof this approachis thatexperiencewith thesystemenhancesgeneralunderstandingof the
usermodelingproblembeinginvestigatedinsteadof merelyimproving theperformanceof a specific

16 At the time of this writing, onesourceof informationaboutsoftwarefor BNs andDST is theWorld-Wide Webpage
http://bayes.stat.washington.edu/almond/belief.htmlmaintainedby RussellAlmond.
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systemin aparticulardomain.Thisapproachappearsto comemorenaturallywith BNsthanwith DST
orespeciallyFL: BNstendmorestronglyto forcethedesignertomakeexplicit, falsifiableclaimsabout
relationshipsamongvariablesin the world, insteadof specifyingexplicitly how particulartypesof
evidenceareto beprocessed.By thesametoken,aBN designeris perhapstheonewho is mostlikely
to beforcedto theconclusionthathisor herentireconceptualizationof aproblemis inappropriate.

5.4. COMPUTATIONAL COMPLEXITY

One reasonthat is often given for not using BNs or DST for usermodelingis the computational
complexity of thesetechniques.This problemis mentionedlessfrequentlyin connectionwith FL. In
fact, proponentsof FL often point to the fastexecutiontimesof fuzzy systems,in particularfuzzy
controllers.Thisdoesnotmeanthatproblemsof computationalcomplexity neverarisewithin FL, but
it doessuggestthatthey needn't bea primaryconcernfor researcherswho areconsideringtheuseof
FL for usermodeling.

ForBNsandDST, however, it hasbeenproventhattheexactapplicationof theinferencetechniques
is in generalNP-hard—asaresometypesof approximateapplication(see,e.g.,Wellman& Liu, 1995,
andKreinovich et al., 1994,for recentdiscussions).Moreover, intractability is not only a theoretical
possibility. It oftenplaguesusersof theseformalismsin practice,thoughpublicationswithin theuser
modelingfield by researcherswho employ thesetechniqueshave seldommentionedproblemsof
this sort.17 But beforea researcherdecides,becauseof computationalcomplexity considerations,to
refrainfrom usingthesetechniquesfor agivenapplication� , heor sheshouldconsiderthefollowing
questions:

1. Are theproblemswithin � small?
Evencomputationallycomplex methodscanbeusedif theproblemsaresmallenough.And in user
modelingsystems,theremay be specificplaceswherea differentiatedandreliable treatmentof
uncertaintyis desirableeven if mostof the systemusesother inferencetechniques(cf., e.g.,the
systemof Carberry,1990,discussedin Section3.2).

2. Do theproblemsin � have a structurethathappensto befavorablewith regardto theuncertainty
managementtechniquebeingconsidered—orcanthey bereformulatedin suchawaythatthey have
suchastructure?
Evenlargeproblemscanbehandledwithoutdifficulty if they representspecialcasesfor which the
inferencetechniquescanwork efficiently. In BNs thataresinglyconnected(i.e., thathave at most
oneundirectedpathbetweenany two nodes),propagationtime is linearor betterin thesizeof the
network (see,e.g.,Delcheretal.,1995).It alsohelpsif atypicalnodehasasmallnumberof parents
andif a typical variablehasa smallnumberof possiblevalues(Wellman& Liu, 1995).With DST,
it is helpful if only a small numberof possiblesubsetsof eachsetof hypotheseshasto be taken
into account(cf. Sections3.1,3.3,and3.4).WhenDST is usedto realizea belief network (aswas
discussedin Section3.1.2),someof thesameconsiderationsapplyaswith BNs.

3. Are approximativetechniquesapplicablewithin � ?
A gooddealof researchis beingdevotedto waysof makingtheuseof BNsandDSTcomputation-
ally morefeasible.Much of this researchinvestigatesapproximative techniques.The useof such
techniquesmakesgoodsensein anarealikeusermodeling,wherethenumbersthatareenteredinto
thesystemwill themselvesoftenbeonly approximate.But evenapproximative techniquesmaybe
effective only underparticularconditions.For example,theuseof a restrictedsetof infinitesimal

17 On the otherhand,abouthalf of EugeneCharniak's invited talk at the FourteenthInternationalJoint Conferenceon
Artificial Intelligence,a talk which dealtwith theresearchprogramtouchedon in Section2.10,wasdevotedto a reporton
his researchgroup's efforts to find tolerablyfastwaysof evaluatingtheirespeciallyfine-grainedBNs.
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probabilitiesin a BN appearsto work well only whentheprior probabilityof theconditionto be
diagnosedis very small (Henrionet al., 1994).And a Monte Carlo techniquefor DST proposed
by Kreinovich et al. (1994)is inapplicableif Dempster's rule of combinationis used;thedesigner
mustbewilling to acceptanalternative rule for integratingpiecesof evidence.

If theanswersto all threeof thesequestionsarenegative, thenaturalresponsemight be to adopt
sometechnique� for managing(or ignoring)uncertaintythat posesfewer computationalproblems
but thathasa lesssoundtheoreticalfoundationthanBNs or DST. But beforetaking this course,the
researchershouldconsiderthefollowing (interrelated)questions:

1. Whatclassof problemscanbesolvedsatisfactorilywith � ?
It mayturnout thatmethod� worksadequatelyonly ona limited subsetof thepossibleproblems;
andthat for this subset,the useof BNs or DST would be feasibleaccordingto thecriteria listed
above.

2. How accuratearethesolutionsyieldedby � ?
It mayturnout thatthesesolutionshaveonly alimited degreeof accuracy; andthatthesamedegree
of accuracy canbeobtainedby feasibleapproximativeversionsof BNsor DST.

Whenthesetwo questionsareconsidered,it may turn out that BNs andDST aretheworst possible
techniques,until youconsiderthealternatives.

5.5. HUMAN-LIKENESS

Thehuman-likenessof the inferencesperformedwith anuncertaintymanagementtechniqueis espe-
cially importantif thetechniqueis beingusedto simulatetheuser's reasoningratherthanto manage
uncertaintyaboutit (cf. Sections2.14and4.3).

As wasnotedseveraltimesin Section4, FL canclaim at leasta certaindegreeof human-likeness
becauseof the way in which it captureshumanreasoningwith vagueconcepts.On the otherhand,
FL was not developedfor the purposeof cognitive simulation,and it cannotbe taken for granted
that an FL treatmentof a given problemcorrespondsto the way in which peoplewould dealwith
it. Chandrasekaran(1994)andFreksa(1994)offer balanceddiscussionsof the extent to which FL
can—andshould—faithfully mirror humanreasoning.

At theotherextreme,Bayesianinferencehasoftenbeenviewedasantitheticalto humanreasoning.
Onebasisfor this view hasbeenthe large collectionof empiricalresultswhich documenttheerrors
that experimentalsubjectsmake when confrontedwith tasksthat requireBayesianreasoning.But
the gap betweenhumanand Bayesianinferenceis not quite as wide as is commonlybelieved. In
particular, relatively recentstudieshave shown thatpeoplecanactuallyperformwell on basicallythe
sameexperimentaltasksundercertaincircumstances—forinstancewhenthe tasksarereformulated
in termsof frequenciesasopposedto subjectiveprobabilities(see,e.g.,therecentreview by Ayton&
Pascoe,1995).

In sum,a judgmentof thehuman-likenessof the inferencessupportedby a particularuncertainty
managementframework shouldtake into accountthenatureandcontext of the particularinferences
beingmade.

5.6. EXPLAINABILITY

With BNsandDST, theroleof numericalcalculationsismoreprominentthanit is in FL-basedsystems.
Thedesignerof a usermodelingsystemmay thereforebeconcernedabouttheneedto explain such
calculationsto users.But in fact,explainingBN- andDST-basedinferencesis notprimarily amatterof
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explainingspecificnumericalcalculations(cf. Shafer's remarkto Pearlthat “probability is not really
aboutnumbers;it is aboutthestructureof reasoning”—Pearl,1988,p.15).For instance,whenBNsare
beingexplained,theessentialgoalis for theusertograspthenatureof thecausal(orother)relationships
betweenthe variablesrepresentedin the network. The usershouldalsobe ableto recognizecertain
typical patternsof reasoning,suchas the patternof explaining away: the ideathat to the extent to
which aneffect hasbeenexplainedadequatelyby onecause,it no longerconstitutesevidencefor the
operationof anotherpossiblecause(cf. Pearl,1988,p.7).

A fair amountof researchhasbeendevotedto the developmentof techniquesfor explaining the
reasoningof systemsthatarebasedonBNsandDST(see,e.g.,Henrion& Druzdzel,1991,andXu &
Smets,1995,respectively). Comparableresearchon othernormatively orientedreasoningtechniques
(see,e.g.,Klein & Shortliffe, 1994)is alsorelevanton a moregenerallevel. Theresultssuggestthat,
with ingenuityandcarefulattentionto users'reasoningprocesses,researchersanddesignerscanfind
waysto bridgethegapbetweenformally rigorousmethodsandusers'naturalwaysof thinking.

5.7. JUSTIFIABILITY

Becauseof the desirability of making usermodelingprocedureshuman-like and explainable,it is
easyto forget that justifiability is alsoa desirable—andsomewhat different—property. An extreme
caseis one in which a usermodelprovidesthe basisfor decisionsaboutusersthat have important
consequencesfor them(e.g.,arecommendationof anexpensiveproductassuitablefor purchaseby the
user, or a judgmentthata studentis unfit to participatein a givencourse).If sucha decisionis called
into questionandhasto bejustified,it maybeusefulto beableto arguethat thesystememploys the
mostreliabletechniquescurrentlyavailable,evenif thesetechniquesarelessintuitively naturalthan
thealternatives(cf. Martin & VanLehn,1995,p.144).

5.8. COMMUNICABILITY OF RESEARCHADVANCES

Whenthesolutionto a problemin usermodelingis formulatedin termsof a well-known uncertainty
managementparadigm,it is relatively easyfor otherresearchersto understandandevaluatewhathas
beenaccomplishedandto adoptthesolutionin theirown work. Whenasolutionis formulatedwithin
somesystem-specificframework, otherresearchersoftenhave to investconsiderableeffort simply to
discover thatthesolutionis essentiallyequivalent(or perhapsinferior) to onethathasbeenproposed
before.

6. Conclusion

Thisoverview supportsanintegrativeview of theroleof numericaluncertaintymanagementtechniques
in userandstudentmodeling.Wehaveseenthatthesetechniquescanbeusedto addressabroadvariety
of problemsin this area,often in conjunctionwith morefamiliar qualitative techniques.Researchers
anddesignersthereforedo not have to committhemselvesto theuseof a techniquefrom a particular
uncertaintymanagementparadigmastheprimaryinferencetechniquefor theirsystem.And thereis no
compellingreasonwhy differentuncertaintymanagementparadigmscannotbeappliedwithin asingle
system.

Researcherswho begin applyingthesetechniquesarelikely to encounterproblemsthat they have
notpreviouslyhadto dealwith. But many of theseproblemsdonotconcerntechnicaldrawbacksof the
techniquesin questionbut ratherdifficulties inherentin theenterpriseof userandstudentmodeling.
Theseproblemswill at somepoint have to bedealtwith head-on.Researcherswho chooseto do so



44 ANTHONY JAMESON

will find that the paradigmscoveredhereoffer a large, varied,andrapidly expandingcollectionof
conceptualandimplementationaltools.
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Appendix

A. A Framework for the Comparisonof Systems

In Figures3,5,8,and11,eachsystemis characterizedin termsof aclassificationof variablesinto severallevels.
The levels will be explainedherewith referenceto the examplesituationanalyzedin Sections2.1, 3.1, and
4.1.

Personalcharacteristics.Thesevariablescorrespondtotheory-independent,objectivelyverifiablefactsabout�
, suchasherareaof specializationandheramountof experiencewith a givensystem.If theexamplesystems

hadthistypeof informationaboutaUNIX user, they couldtreatit asevidenceconcerning
�

'sUNIX expertise.

Positionson dimensions.Eachvariableon this level refersto thepositionof
�

on somegeneralor specific
dimensionsuchasexpertisein UNIX. Dimensionsmayalsoconcernpreferencesratherthanknowledge—such
as
�

's tendency to make backupcopiesof files. A variableof this typecorrespondsto a theoreticalconstruct:
Whetherthe variableis meaningfuldependson whetherit playsa usefulrole in inferencesaboutvariableson
otherlevels.

Long-term cognitive states.Thesestatesinclude the user's possessionof knowledge,beliefs,and goals
whoserelevanceextendsbeyondtheperformanceof a particulartask.Examplesarevariablesthatrepresentthe
propositionsthat(a)

�
believesthatfilesnamedREADME areusuallyworthreading;and(b)

�
knowsthemeaning

of thecommandmore (whichdisplaysthecontentsof a file on thescreen).Themaindifferencefrom variables
on thepreviouslevel, positionsondimensions,is thatthecontentof long-termcognitivestatesis morespecific.
Thedistinctionis notsharp,however. If, for example,knowing themeaningof more is consideredto beamatter
of degree,thenthedegreeof understandingof this commandcanbetreatedasa very specificknowledgeability
dimensionwhich is analogousto thedimensionof expertisein UNIX.

Short-term cognitivestatesand events.Theseareeventsandtemporarystatesthatarisein connectionwith
theparticulartaskbeingperformedby

�
. For example,variablesmight refer to thecurrentstatusfor

�
of the

goal“Readthecontentsof README”; or to
�

's belief thatREADME containscurrentlyrelevantinformation.

Observablestatesand events.Thesearestatesandeventsthatapersonor systemcouldin principleobserve
with a negligible chanceof error. The most importanteventsareuseractions—forexample

�
's typing of the

commandmore README. But this level alsoencompassesvariablescorrespondingto observablecausesand
consequencesof userbehavior, for examplewhetherthenameof thefile README is currentlybeingdisplayed
onthescreen(cf. Section2.8).

References

Ayton, P., & Pascoe,E. (1995). Bias in humanjudgementunderuncertainty? TheKnowledge Engineering
Review, 10(1), 21–41.

Bauer, M. (1995). A Dempster-Shaferapproachto modelingagentpreferencesfor plan recognition. User
ModelingandUser-AdaptedInteraction.



NUMERICAL UNCERTAINTY MANAGEMENTIN USERAND STUDENTMODELING 45

Bauer, M. (1996). Acquisitionof userpreferencesfor planrecognition. In S. Carberry& I. Zukerman(Eds.),
Proceedingsof the Fifth International Conferenceon User Modeling (pp. 105–112).Boston,MA: User
Modeling,Inc.

Besnard,P., & Hanks,S. (Eds.)(1995). Proceedingsof the EleventhConferenceon Uncertaintyin Artificial
Intelligence. SanFrancisco:MorganKaufmann.

Carberry, S. (1990). Incorporatingdefault inferencesinto planrecognition.Proceedingsof theEighthNational
ConferenceonArtificial Intelligence, Boston,MA, 471–478.

Carbonaro,A., Maniezzo,V., Roccetti,M., & Salomoni,P. (1995). Modelling thestudentin Pitagora2.0. User
ModelingandUser-AdaptedInteraction,4, 233–251.

Chandrasekaran,B. (1994). Broaderissuesat stake:A responseto Elkan. IEEEExpert,9 (4), 10–13.
Charniak,E. (1991). Bayesiannetworkswithout tears.AI Magazine, 12(4), 50–63.
Charniak,E., & Goldman,R. (1991). A probabilisticmodelof plan recognition. Proceedingsof the Ninth

NationalConferenceonArtificial Intelligence, Anaheim,CA, 160–165.
Charniak,E.,& Goldman,R.P. (1993).A Bayesianmodelof planrecognition.Artificial Intelligence, 64,53–79.
Chin,D. N. (1989). KNOME: Modelingwhattheuserknows in UC. In A. Kobsa& W. Wahlster(Eds.),User

modelsin dialog systems(pp.74–107).Berlin: Springer.
Conati,C.,& VanLehn,K. (1996).POLA: A studentmodelingframework for ProbabilisticOn-LineAssessment

of problemsolvingperformance.In S.Carberry& I. Zukerman(Eds.),Proceedingsof theFifth International
ConferenceonUserModeling (pp.75–82).Boston,MA: UserModeling,Inc.

Cox, E. (1994). Thefuzzysystemshandbook:A practitioner's guideto building, using, andmaintainingfuzzy
systems. Boston:AP Professional.

deRosis,F., Pizzutilo,S.,Russo,A., Berry, D. C., & Molina, F. J.N. (1992). Modelingtheuserknowledgeby
beliefnetworks. UserModelingandUser-AdaptedInteraction,2, 367–388.

Delcher, A. L., Grove,A., Kasif, S.,& Pearl,J. (1995). Logarithmic-timeupdatesandqueriesin probabilistic
networks. In P. Besnard& S. Hanks(Eds.),Proceedingsof the EleventhConferenceon Uncertainty in
Artificial Intelligence(pp.116–124).SanFrancisco:MorganKaufmann.

Dempster, A. P., & Kong,A. (1988). Uncertainevidenceandartificial analysis.Journalof StatisticalPlanning
andInference, 20,355–368.Reprintedin collectionby ShaferandPearl(1990).

Desmarais,M. C., Maluf, A., & Liu, J. (1995). User-expertisemodelingwith empiricallyderivedprobabilistic
implicationnetworks. UserModelingandUser-AdaptedInteraction.

Draney, K. L., Pirolli, P., & Wilson,M. (1995). A measurementmodelfor a complex cognitive skill. In P. D.
Nichols,S.F. Chipman,& R. L. Brennan(Eds.),Cognitivelydiagnosticassessment(pp.103–125).Hillsdale,
NJ:Erlbaum.

Druzdzel,M., vanderGaag,L., Henrion,M., & Jensen,F. (1995).Buildingprobabilisticnetworks:Wheredothe
numberscomefrom? Workingnotesof aworkshopheldin conjunctionwith theFourteenthInternationalJoint
ConferenceonArtificial Intelligence,availablefromhttp://www2.lis.pitt.edu/˜uai/ijcai95.
html.

Druzdzel,M. J., & van der Gaag,L. C. (1995). Elicitation of probabilitiesfor belief networks: Combining
qualitative and quantitative information. In P. Besnard& S. Hanks (Eds.),Proceedingsof the Eleventh
ConferenceonUncertaintyin Artificial Intelligence(pp.141–148).SanFrancisco:MorganKaufmann.

Dubois,D., Prade,H., & Yager, R. R. (Eds.)(1993). Readingsin fuzzysetsfor intelligentsystems. SanMateo,
CA: MorganKaufmann.

Elkan,C. (1994). Theparadoxicalsuccessof fuzzy logic. IEEEExpert,9 (4), 3–8.
Falmagne,J.-C.,Koppen,M., Villano, M., Doignon,J.-P., & Johannesen,L. (1990). Introductionto knowledge

spaces:How to build, test,andsearchthem. Psychological Review, 97,201–224.
Fiske,S.T., & Taylor, S.E. (1991). Socialcognition (2nded.). New York: McGraw-Hill.
Forbes,J.,Huang,T.,Kanazawa,K., & Russell,S.(1995).TheBATmobile:TowardsaBayesianAutomatedTaxi.

In C. S.Mellish (Ed.),Proceedingsof theFourteenthInternationalJoint ConferenceonArtificial Intelligence
(pp.1878–1885).SanMateo,CA: MorganKaufmann.

Freksa,C. (1994). Fuzzylogic: An interfacebetweenlogic andhumanreasoning.IEEEExpert,9 (4), 20–21.
Gordon,J.,& Shortliffe, E. H. (1984). TheDempster-Shafertheoryof evidence. In B. G. Buchanan& E. H.

Shortliffe (Eds.),Rule-basedexpertsystems:TheMYCINexperimentsof theStanford HeuristicProgramming
Project. Reading:MA: Addison-Wesley.

Hambleton,R. K., & Swaminathan,H. (1985). Item responsetheory: Principlesand applications. Boston:
Kluwer-Nijhoff.

Hawkes,L. W., Derry, S. J.,& Rundensteiner, E. A. (1990). Individualizedtutoringusingan intelligent fuzzy



46 ANTHONY JAMESON

temporalrelationaldatabase.InternationalJournalof Man-MachineStudies,33,409–429.
Heckerman,D., Geiger, D., & Chickering,D. M. (1994). LearningBayesiannetworks: The combinationof

knowledgeand statisticaldata. In R. Lopez de Mantaras& D. Poole (Eds.),Proceedingsof the Tenth
ConferenceonUncertaintyin Artificial Intelligence(pp.293–301).SanFrancisco:MorganKaufmann.

Henrion,M., Breese,J.S.,& Horvitz, E. J. (1991). Decisionanalysisandexpertsystems.AI Magazine, 12(4),
64–91.

Henrion,M., & Druzdzel,M. J. (1991). Qualitative propagationandscenario-basedschemesfor explaining
probabilisticreasoning.In P. P. Bonissone,M. Henrion,L. N. Kanal,& J.F. Lemmer(Eds.),Proceedingsof
theSixthConferenceonUncertaintyin Artificial Intelligence(pp.17–32).Amsterdam:Elsevier.

Henrion,M., Provan,G., Favero,B. D., & Sanders,G. (1994). An experimentalcomparisonof numericaland
qualitative probabilisticreasoning. In R. Lopezde Mantaras& D. Poole(Eds.),Proceedingsof the Tenth
ConferenceonUncertaintyin Artificial Intelligence(pp.319–326).SanFrancisco:MorganKaufmann.

Herzog,C. (1994). Fuzzy-Technikenfür dasVerstehenvon Studentenl̈osungenin intelligentenLehrsystemen
[Fuzzytechniquesfor understandingstudentsolutionsin intelligent tutoringsystems].In R. Gunzenḧauser,
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