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Flexibility of dam structure affects the hydrodynamic pressure acting on the dam. Several approaches have been proposed to
consider this effect. Most of these approaches are involved with an iterative scheme. Of course solving the total numerical model
including the dam and the reservoir is the most accurate method, but it has certain deficiencies. Using the frontal solution method
of total model, dam structure, and fluid domain and keeping the interface degrees of freedom in the front is proposed in the
current study. Having the solution of the interface degrees of freedom, the structure and fluid may be analyzed separately. )e
main advantage of the method lies in the fact that the accuracy of the results is the same as analysis of the total model, no iteration
is necessary, combination of Lagrangian and Eulerian formulations for solid and fluidmay be used, and the unknown variables are
of the same order. Performing the analysis in time domain extends the method to nonlinear analysis if required.

1. Introduction

Although the dams are very stiff structures and experience
small amount of deformations during earthquakes, these
deformations are the source of drastic change in hydrody-
namic pressure. Several approaches have been proposed to
solve the coupled equations. One approach to include this
interaction, uses iterative schemes, where first the dam ge-
ometry is assumed to be constant when the reservoir is solved.
)en obtained pressure will be applied on the dam, and new
configuration of dam is calculated. )e iteration will be
continued until the convergence is achieved. Fellippa and Park
[1] described staggered solution for coupled problems in
detail. Staggered approach reduced coupled problem to
subsystems [2]. )erefore, only symmetric equations for each
subsystem is calculated [3–5]. However, the stability of the
method is conditional andmust be cared about convergence of
the solution of the subsystems at each time step.)is approach
needs iteration in each time step even in linear problems, so
this approach is involved with number of solutions. )e
methodology may consider the effect of interaction but it
cannot be exact solution for interaction problems.

In the other approach, a complete model of the dam
and reservoir is formed. Moreover, the two formulation
methods of Eulerian (suitable for reservoir formulation) and

Lagrangian (suitable for structure formulation) have to be
combined or one of them has to be selected. Wilson and
Khalvati [6], Akkose, Bayraktar, and Dumanoglu [7], and
Akkose and Simsek [8] used the Lagrangian approach, and
displacement was taken as a variable of the solid and fluid
domain. In Eulerian approach, displacement was taken as
a variable of the solid domain and pressure or velocity was
taken as a variable of the fluid domain [3, 4, 9].

Both of the abovementioned solution methods may be
performed in frequency or time domain. A lot of work has
been done by Chopra and coadjutor on dam-reservoir-
foundation interaction in frequency domain covering sev-
eral aspects of the problem [10–13]. Frequency domain
approach is computationally very efficient. However, con-
cepts of the frequency domain formulation are more difficult
than those of time domain formulation. )e main disad-
vantage of the frequency domain is that it cannot be used in
nonlinear problems.

Simulation method in time domain needs massive storage
space because of solving all of equations including structure and
fluid as well as far field variables for each time step. Further-
more, ill conditioning is dramaticaly conflictive and occurs
during solving the equations of very different order variables.

Many analytical research studies have been carried out
about dam-reservoir system. Tsai, Lee, and Ketter [14] first
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presented a semianalytical method to express the far field
radiation condition in reservoir. Lee and Tsai [15] also
developed a closed form solution for fluid domain. Miquel
and Bouaanani [16] first presented a simplified evaluation
for seismic response of the dam-reservoir systems, and then
they used this simplified approach to determine the modal
dynamic response of flexible beam-fluid systems [17]. )ese
analytical solutions are really efficient in time but they have
geometrical and boundary condition limitation and also they
cannot be used in nonlinear problems.

)e proposed solution method in this study is a branch
of complete model solution with the exception that only the
selected degrees of freedom on the interface of dam and
reservoir will be solved in time domain. )e principal aim of
this study is to employ frontal solution for solving the dam-
reservoir system. )e frontal method for solving the
equations was presented by Irons [18] for the first time. By
using frontal solution, all equations are assembled but only
a selection of the degrees of freedoms is solved. In the other
words, by considering the interface pressure degrees of
freedom and keeping them as the front, total model in-
cluding the displacement of the structure and the pressure of
the fluid is assembled by the frontal method. )en only the
interface degrees of freedom in front, which is pressure
acting on the interface, is solved. After finding the values of
the pressure which act on the interface of the dam, the
structure can be analyzed due to seismic force and dynamic
pressure, and the fluid can be analyzed due to determined
boundary conditions, separately.

)e achievements can be explained as follows:

(1) In the first step of the scheme, only the value of the
pressure which acts on the interface is solved without
losing any accuracy comparing with other solution
methods which solve the entire system

(2) In the second step of the scheme, Lagrangian or
Eulerian approach can be used, which was better, for
the solid domain and the fluid domain

(3) )is scheme is capable to model the nonlinear
problems if time domain formulation is adopted

2. Governing Equation of the Coupled
Dam-Reservoir Problem

)e dam-reservoir system is classified as a coupled problem
where two fields each governed by a second-order differ-
ential equation, interact at their interface. )e equation of
motion for dam structure due to earthquake motion is given
as

[M] €u{ } +[C] _u{ } +[K] u{ } � FI{ }−[M] €ug{ } +[Q] p{ }, (1)

where [M], [C], and [K] are mass, damping, and stiffness
matrices of the dam structure, respectively; FI{ } is the static
load vector; €ug{ } is the ground acceleration; u{ }, _u{ }, and €u{ }
are vectors of displacement, velocity, and acceleration of
structure body, respectively; p{ } is the vector of hydrody-
namic pressure; and [Q] is coupling matrix defined as below

[Q] � ∫ Ns[ ] n{ } Nf[ ]Tds. (2)

In above integration on the interface of the two domain,
vector n{ } is normal vector on interface and defined to be
positive, going from the solid domain into the fluid domain.
[Ns] and [Nf ] are shape function of structure and fluid,
respectively.

[M] and [K] are defined as below

[M] �∑∫
Ωs
Ns[ ]Tρs Ns[ ]dΩ,

[K] �∑∫
Ωs
[B]T D′[ ][B]dΩ, (3)

whereΩs denotes the structure domain, ρs is mass density of
the structure, [B] is strain matrix, and [D’] is elastic con-
stants matrix.

In this study, Rayleigh damping is assumed, and so [C] is
taken as

[C] � αs[M] + βs[K], (4)

where αs and βs are constants that can be calculated from the
below relation

αs + βsω
2
i � 2ωiζ i, (5)

where ζ i is the damping ratio and ωi is ith natural frequency
of the structure.

)e equation of motion for reservoir domain due to
earthquake motion is given as [4]

[G] €p{ } +[D] _p{ } +[H] p{ } � −ρf[Q]T €u{ } + €ug{ }( ), (6)

where [G], [D], and [H] are quasimass, damping, and
stiffness matrices of the reservoir domain, respectively; ρf is
the density of the fluid; and _p{ } and €p{ } are vectors of first
and second derivation of the hydrodynamic pressure. [G],
[D], and [H] are defined as follows:

[G] �∑ 1

c2w
∫
Ωf
Nf[ ]T Nf[ ]dΩ +∑ 1

g
∫
sf

Nf[ ]T Nf[ ]ds,
[D] �∑ 1

cw
∫
st

Nf[ ]T Nf[ ]ds +∑ 1

βbcw
∫
sb

Nf[ ]T Nf[ ]ds,

[H] �∑∫
Ωf

z

zx
Nf[ ]T z

zx
Nf[ ] + z

zy
Nf[ ]T z

zy
Nf[ ]( )dΩ

+∑ π

2h
∫
st

Nf[ ]T Nf[ ]ds,
(7)

where βb is the acoustic impedance ratio of the reservoir
bottom material, cw is velocity of sound in the water, h is
depth of the reservoir, and Ωf denotes the fluid domain. sf ,
sb, and st are surface of the reservoir, bottom of the reservoir,
and truncation boundary, respectively.

Equations (1) and (6) can be written in matrix form as
follows:
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M 0

ρfQ
T G

[ ] €u

€p
{ } + C 0

0 D
[ ] _u

_p
{ } + K −Q

0 H
[ ] u

p
{ }

�
FI −M€ug

−ρfQT €ug
 .

(8)

Equation (8) can be rewritten for dynamic loads as
follows:

M 0

ρfQ
T G

[ ] €u

€p
{ } + C 0

0 D
[ ] _u

_p
{ } + K −Q

0 H
[ ] u

p
{ }

�
−M€ug

−ρfQT €ug
 .

(9)

By using step by step integration scheme of Newmark
[19], the displacement and hydrodynamic pressure and their
first derivative can be discretized as follows:

un+1{ } � un{ } + Δt _un{ } + Δt2
2

(1− 2β) €un{ } + 2β €un+1{ }[ ],
_un+1{ } � _un{ } + (1− α) €un{ } + α €un+1{ }[ ]Δt,

(10)

pn+1{ } � pn{ } + Δt _pn{ } + Δt2
2

(1− 2β) €pn{ } + 2β €pn+1{ }[ ],
_pn+1{ } � _pn{ } + (1− α) €pn{ } + α €pn+1{ }[ ]Δt,

(11)
where n indicates the number of the time steps and α and β
are integration parameters which determined stability and
accuracy of the Newmark method. In this study, α and β are
chosen as 0.5 and 0.25, respectively. Substitution of Equation
(10) and (11) in Equation (9) results

4

Δt2M +
2

Δt C + K −Q

4

Δt2ρfQ
T 4

Δt2 G +
2

Δt D +H




un+1

pn+1


 �

Fs

Fff


,

(12)
where

Fs{ } � −[M] €ug{ } +[M] 4

Δt2 un{ } + 4

Δt _un{ } + €un{ }( )
+[C]

2

Δt u
n{ } + _un{ }( ),

(12a)

Fff{ } � −ρf[Q]T €ug{ } + ρf[Q]
T 4

Δt2 un{ } + 4

Δt _un{ } + €un{ }( )
+[G]

4

Δt2 pn{ } + 4

Δt
_pn{ } + €pn{ }( )

+[D]
2

Δt p
n{ } + _pn{ }( ).

(12b)

Multiplying the reservoir motion equation by −βΔt2/ρf
renders the asymmetric coupled matrix of Equation (12) to
a symmetric one as follows:

4

Δt2M +
2

Δt C +K −Q

−QT − 1
ρf
G− Δt

2ρf
D−Δt

2

4ρf
H




un+1

pn+1




�

Fs

Ff


,

(13)
where

Ff{ } � Δt2
4
[Q]T €ug{ }−[Q]T un{ } + Δt _un{ } + Δt2

4
€un{ }( )

−[G] 1

ρf
pn{ } + Δt

ρf
_pn{ } + Δt2

4ρf
€pn{ }( )

−[D] Δt
2ρf

pn{ } + Δt2
4ρf

_pn{ }( ).
(13a)

3. Most Common Solutions for Coupled
Dam-Reservoir Problem

Different approaches have been proposed to solve the coupled
equations. Most popular approach is iterative schemes [4].
)is approach needs iteration in each time step even in linear
problems. A concept of iterative method at any time step can
be summarized as follows, where i indicates iteration step:

(1) An arbitrary pressure p{ } is substituted into Equa-
tion (1) to obtain ui{ }, _ui{ }, and €ui{ }. It is better to
select the calculated pressure from previous time step
as arbitrary pressure in order to achieve rapid
convergence.

(2) Calculated €ui{ } is substituted in Equation (6) to
obtain pi{ }, _pi{ }, and €pi{ }.

(3) Calculated pi{ } is substituted in Equation (1) to
obtain ui+1{ }, _ui+1{ }, and €ui+1{ }.

(4) Calculated €ui+1{ } is substituted in Equation (6) to
obtain pi+1{ }, _pi+1{ }, and €pi+1{ }.

(5) Check for convergence: if pi+1{ }− pi{ } and
ui+1{ }− ui{ } are not lower than a reasonable toler-
ance, cycle 3 and 4 are repeated until convergence is
achieved.

)is approach reduces coupled problem to subsystems.
)erefore, only symmetric equations for each subsystem is
calculated (Equations (1) and (6)). However, the stability of
the method is conditional and care must be taken about
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convergence of the solution of the subsystems at each time step.
)is approach considers the effect of interaction, but it cannot
be generalized as an exact solution for interaction problem.

)e direct numerical solution of dam and reservoir
together in time domain may be considered as the best
interaction solution for the following reasons:

(1) Except the theoretical solution, it is the most accurate
one

(2) It does not have the geometrical and boundary
condition limitations

(3) It is capable of considering the nonlinear phenomenon

Although it has its own deficiencies,

(1) the solution is extremely expensive,

(2) it has to use uniform formulation; Lagrangian or
Eulerian for both the dam and reservoir which La-
grangian and Eulerian formulation are suitable for
the dam structure and the reservoir, respectively,

(3) solving the equations of different order of variables
has its own concerns, although it is solvable.

4. Frontal Solution for Coupled
Dam-Reservoir Problem

In common methods of matrix solution, the element’s in-
formation is gathered in element records and is kept on

peripheral.)erefore, the elementmatrices, such as stiffness, are
computed again any time needed.)e advantage lies on the fact
that almost all memory is free for assemblage of global stiffness.

Frontal solution of large matrices is based on special as-
sembly. As soon as the coefficients of an equation are as-
sembled from the contributions of all relevant elements, the
corresponding variable can be eliminated [18]. )erefore in
frontal method, the complete matrices are neither generated
nor stored. Of course, the results of the two methods are the
same in linear analysis. Since there is no superposition in
frontal method, it can be extended to nonlinear analysis.

In frontal method, the equations which are being formed
at any given instant, their corresponding nodes, and degrees
of freedom are named the front.)e number of the variables
in the front is named front width. )e equations, nodes, and
degrees of freedom (DOFs) belonging to the front are named
active; those which have passed through the front and have
been eliminated are named inactive. Active nodes can be
deactivated after the last appearance. By eliminating vari-
ables as soon as their assembly have been completed, core
storage is made available for variables yet to be assembled.
)e advantage lies on the fact that required memory for the
solution will be reduced to the front.

Taking advantage of frontal technique to keep the
pressure DOFs on the interface of dam and reservoir in the
front can highly help the solution. )e procedure of the
assembly for structure and reservoir by frontal method is
illustrated in Figure 1.

Fluid element

Structure element

Node

Active node

(a) (b)

(d) (c)

Inactive node

Deactivated DOF at current stage

Figure 1: Frontal assembly procedure for two coupled domains. (a) )e schematic model including fluid elements, structure elements, and
nodes before beginning the assembly. (b))e first element of each media at the beginning of assembly. (c))e second element of eachmedia
for assembling. (d) Active nodes and deactivated nodes at the final step of assembly.
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)e solution basis for frontal method is Gaussian
elimination. )e interaction equations of dam and reservoir
contain solid DOFs ({u}) and liquid DOFs ({p}). Equation
(13) can be rewritten as follows:

[K] X{ } � F{ }, (14)

where X{ } �
u
p

{ }, F{ } � Fs
Ff

{ }, and [K] is effective dy-

namic matrix as defined in Equation (13).
{p} can be divided to reservoir pressure DOFs pr{ } and

the interface pressure DOFs pf{ }:
p{ } � pr

pf

 . (15)

Proposed solution procedure in this study is based on
the frontal method; however, the order of elimination is

somehow different. )e solution procedure is illustrated in
Figure 2. In assembly procedure, the elements are considered
each in turn according to prescribed order, which caused the
front width to be reduced. Whenever a new element is
introduced, coefficient of dynamic stiffness and dynamic
load of the element are summed either into existing equa-
tions, if the nodes are already active, or into new equations
which have to be included in the front if the nodes are being
active for the first time. If some reservoir pressure DOFs pr{ }
and solid DOFs {u}, not the interface pressure DOFs pf{ },
appear for the last time, the corresponding equations can be
eliminated. In other words, the pressure variables on in-
terface pf{ } are kept in front. Gaussian elimination is used
for elimination of the variable {xs} (sth equation in front). It
must be noted that variable {xs} is pr{ } or {u}, not pf{ }, at this
step. )e equation coefficients and right hand side term are
extracted corresponding to {xs} by using Gaussian elimi-
nation as follows:

Read input data of the structure and fluid domain

Set a maker of the last appearance of the each degree of the freedom
before elimination except interface pressure DOFs

Can the degree of freedom be eliminated?

Read the equation in reverse sequence and back
substitute and solve the pressure variable

Compute dynamic response of
the structure due to seismic
force and dynamic pressure

acting on the face of the dam
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Figure 2: Frontal solution procedure for dam-reservoir problem.
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K
∗
ij � Kij −

KisKsj

Kss

{ }, (16a)

F∗i � Fi −
KisFs

Kss

{ }, (16b)

where 1< i < front width and i< j< front width.
When assembly for all elements is finished, and all the

variables are eliminated except the interface pressure
variable. All the interface pressure DOFs remain in the
front as shown in Figure 1(d). Afterwards, the interface
pressure DOFs can be eliminated by using Gaussian
elimination and the coefficients of the interface pressure
equation stored away.

It was shown that in frontal solution, the pressure
variables on interface can be kept in front and can be solved
without continuing the solution for all equations. )en, the
achieved results can be used as the boundary condition for
solving the reservoir and as loading profile for solving the
dam. In this way, no iteration is needed, there is no loss of
accuracy, and each media can be solved by using its suitable

formulation. Obviously, all deficiencies are removed without
losing the accuracy.

5. Numerical Results

A special computer code was generated to determine the
dynamic response of structure-fluid systems by using frontal
method in basis of abovementioned algorithm in two di-
mensional cases. )e generated code uses the eight node
plain strain elements for discretization of the structure
domain and four node elements for discretization of the
fluid domain. In this study, fluid is considered as com-
pressible, inviscid, and irrotational, and concrete is assumed
to be homogenous and isotropic.

As a first example, the dam reservoir system analyzed by
Lee and Tsai [15] is considered. Dam with vertical upstream
with 180m height and reservoir has been subjected to ramp
acceleration as shown in Figure 3. In this analysis, the width
of the dam was w � 32.32m and reservoir length was
5H� 900m (H is structure height) as shown in Figure 4.
Parameters assumed to describe the structural system in [15]

x
y

32.32m

900m

1
8
0
m

Figure 4: Geometrical detail of structure-reservoir system.
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Figure 3: Ramp acceleration.
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are (case A) EI� 9.8437×109 ton·m2 and weight per unit
length of the structure� 36 ton/m. Lee and Tsai [15] have
studied this example analytically. For analysis of dam as
plain strain, we need to convert these quantities to unit
weight (ρs) and modulus of elasticity (E) as follows:

I �
tw3

12
�
1∗ 32.323

12
� 2813.4m3⇒E � rigiditis

I
� 35GPa,

ρs �
36000

w∗ t �
36000

32.32∗ 1 � 1113.86 kg/m3
,

(17)
where I is area moment of inertia related to the z axis. z axis
is the third axis in a Cartesian coordinate system. For 2D
modeling, element thickness t� 1 was assumed.

�e material of the dam was assumed to be linearly
elastic. For the concrete of the dam, Poisson’s ratio was taken
as 0.2. For the water, unit weight and sound speed in the
water were taken as 1000 kg/m3 and 1440m/s, respectively.

In order to evaluate the accuracy and capability of the
proposed solution, results are presented and compared with
those presented by Lee and Tsai [15]. Crest displacement of
the dam without and with interaction is presented in Figure 5
and Figure 6, respectively. Hydrodynamic pressure at bottom
of the reservoir is presented in Figure 7. As shown in the
figures, good agreement is found between the responses.

For comparison purpose, the model was analyzed by
using two different programs: first program solved the
equations by frontal method and second program solved the
equations by iterative scheme. �e results are presented in
Figure 8 and Figure 9. As shown in the figures, excellent
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Figure 8: Crest displacement with interaction.
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agreement between the results is achieved from proposed
method and iterative solution.

For second example, Pine Flat concrete gravity dam with
121.92m height and reservoir with 116.12m depth and 580m
length (Figure 10) has been subjected to Taft Lincoln acceleration
(Figure 11).�e groundmotion has a peak acceleration of 0.18 g.
For the concrete, unit weight, Poisson’s ratio, and modulus of
elasticity were taken as 2500kg/m3, 0.2, and 22.75GPa, re-
spectively. For the water, unit weight and sound speed in the
water were taken as 1000kg/m3 and 1440m/s, respectively.

Crest displacement obtained from present study and
response obtained by Fenves and Vargas-Loli [20] pre-
viously (case: without cavitation) are illustrated in Figure 12.

It should be considered that ground motion is scaled to
a peak acceleration of 1.0 g in [20].

As shown in Figure 12, good agreement is found between
the results.

In Figure 13 and Figure 14, the response of the Pine Flat
is investigated by using two different schemes, first frontal
method and second iterative method.

As shown in the figures, excellent agreement between the
results is achieved fromproposedmethod and iterative solution.

Table 1 presents the calculation time of two solution
scheme for two examples. As shown, frontal solution is
found 1.37 and 1.65 times less time-consuming than iterative
method, in example one and two, respectively.
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6. Conclusions

Frontal solution is proposed for solving the dynamic analysis
of concrete gravity dams. Coupled equations of dam-
reservoir interaction in time domain are obtained and
solved by frontal method. A Fortran program is developed
and its accuracy is verified by comparing results with
published results. Two examples of dam-reservoir model
were analyzed.�e results of frontal solution were compared
with the results of iterative method.�e major advantages of
the frontal solution are as follows:

(1) �e accuracy of the solution is the same as solution of
the total equations in each time step.

(2) Separate solution of the structure and reservoir
causes the suitable formulation for each one to be
used, namely, Lagrangian and Eulerian, respectively.

(3) Solving very different order variables is eliminated.

(4) �e presented scheme takes less system memory and
calculation time than iterative method. For two
models examined in this paper, execution time was
reduced to 37 and 65 percent for example 1 and
example 2, respectively.

(5) �e presented scheme does not have the geometrical
and boundary condition limitation.

(6) �e presented scheme is capable of considering the
nonlinear phenomenon.
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