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Numerical valuation of optionsunder Kou’s model
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Numerical methods are developed for pricing European aneérfuan options under Kou'’s jump-diffusion model which
assumes the price of the underlying asset to behave likeragtgoal Brownian motion with a drift and jumps whose size
is log-double-exponentially distributed. The price of ar@ean option is given by a partial integro-differentiabiation
(PIDE) while American options lead to a linear complemstygrroblem (LCP) with the same operator. Spatial differ@nt
operators are discretized using finite differences on nibmum grids and time stepping is performed using the implici
Rannacher scheme. For the evaluation of the integral teey teaimplement recursion formulas are derived which have
optimal computational cost. When pricing European optibiesresulting dense linear systems are solved using arsayio
iteration. Also for pricing American options similar itéi@ns can be employed. A numerical experiment demonstthtgs
the described method is very efficient as accurate opti@egigan be computed in a few milliseconds on a PC.
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1 Kou'smodel and discretization

Under Kou's model [7] the value of a European option satisfies a final value problem defineddayt#al integro-differential
equation (PIDE)
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wheret andx denote the time and the value of the underlying asset, régelgc The risk free interest rateand the jump
intensity A are constants while we let the volatilityto be a function of andx as in [2]. The log-double-exponential density
f is defined by
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wherep, ¢, a1 > 1, andas are positive constants such tipat g = 1. The coefficient in (1) is given by¢ = a”lo‘_ll + a’fjl —1.
The final valuev(T', ) is given by the payoff function. The value of an American optatisfies a variational inequality based
on (1); see [3], for example. We discretize the spatial deires using finite differences on nonuniform grids. Our penal

discretizations are based on the implicit Rannacher tigpsibg.

2 Recursion formulasfor theintegral term

A straightforward treatment of the integral term leads tbeputational cost to b&(n?) flops for evaluating the integral on
all grid points, where: is the number of grid points. Using FFT this cost can be redtegbeO(n logn) flops; see [1, 2, 4, 5].
With FFT nonuniform grids lead to more involved implemeitat Instead we propose recursion formulas for the evalnati
[9] which are easy-to-implement also on nonuniform gridd #rey lead to the optimal computation cé¥tn) flops. In order
to describe the recursion formulas, we divide the integral iwo parts as
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We consider the first integral while the second one can beetléa the same way. By making the change of varigbte z /x,
we get
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We denote the value of the integiat at a grid pointr = z; by I;". The value off;_, can obtain usind;” as
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Hence, it is necessary to integrate only once over eachmgedvial in order evaluate all integrals, i = 1,...,n.
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3 lterative solution

For European options we use a stationary iterative methaglgsed in [8] and analyzed in [5]. Following the notationglij
we form a regular splitting for the coefficient matxasA = T — R, where—R corresponds the integral term in (1). With
this choic€T is a tridiagonal matrix. Then a rapidly converging iteratimethod for the linear systev = b reads
vt =T " (Rv' +b), i=0,1,..., (2)

where the initial guess® is taken to be the solution from the previous time step. Erhtion requires a solution with the
tridiagonal matriXI' and the multiplication of a vector by the full matdk which corresponds to the evaluation of the integral
term.

When pricing American options we solve the linear completagty problems (LCPs) arising at each time step using eithe

an operator splitting method [6] or a penalty method [4]; als® [9]. With the splitting method the above iteration can b
used while the penalty method uses its generalization.

4 Numerical example

In our example, we price European call options by computirggrices of corresponding put options and employing the
put-call parity. We use the model parameters [5]:

o =0.15,
A=0.1,

r = 0.05,
a1 = 3.0465,

T =0.25, K =100,
ag = 3.0775, and p = 0.3445.

The truncation boundary is & = 400 and we use highly refined grid in thedirection. On a very fine time-space grid we
obtain the reference price8:672677 atxz = 90, 3.973479 atz = 100, and11.794583 ata = 110 which are the same as in
[5].

The numerical results in Table 1 show that the discretimaoapproximately second-order accurate when the number
of time and space steps are increased at the same rate. Vileedba@curate prices in a few milliseconds on a PC. More
experiments with a local volatility function and Americaptions are presented in [9]. The behavior also in these arpets
is similar to the one in here.

m n error at 90 error at 100 error at 110 rate | iter. | time

6 40 44x1073 | =16 x 102 | —6.1 x 10~3 19 0.1
10 [ 80 6.0x10"%T [ —32x1073 | —1.8x10=3 | 48] 26| 04
18 | 160 62x107T | —6.9x107% | —1.7x10"% | 40| 43| 1.0
341320 —14x107T | —15x107% | —21x10~% | 32| 68 3.0
66 | 640 | —7.2x 1079 | —36x10"° | —3.7x10°° | 56| 132 | 10.3

Tablel The columns arexrh’ the number of time stepsp’ the number of space steps, errors computed using the nefeigices, rate’
the ratio of consecutiv& errors, ‘iter.” the number of iterations (2), and 'time’ te€U time in milliseconds on a 3.8GHz PC.
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