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Numerical valuation of options under Kou’s model
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Numerical methods are developed for pricing European and American options under Kou’s jump-diffusion model which
assumes the price of the underlying asset to behave like a geometrical Brownian motion with a drift and jumps whose size
is log-double-exponentially distributed. The price of a European option is given by a partial integro-differential equation
(PIDE) while American options lead to a linear complementarity problem (LCP) with the same operator. Spatial differential
operators are discretized using finite differences on nonuniform grids and time stepping is performed using the implicit
Rannacher scheme. For the evaluation of the integral term easy to implement recursion formulas are derived which have
optimal computational cost. When pricing European optionsthe resulting dense linear systems are solved using a stationary
iteration. Also for pricing American options similar iterations can be employed. A numerical experiment demonstratesthat
the described method is very efficient as accurate option prices can be computed in a few milliseconds on a PC.
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1 Kou’s model and discretization

Under Kou’s model [7] the valuev of a European option satisfies a final value problem defined by apartial integro-differential
equation (PIDE)

vt +
1

2
σ2x2vxx + (r − λζ)xvx − (r + λ)v + λ

∫

R+

v(t, xy)f(y) dy = 0 ∀ (t, x) ∈ [0, T )× R+, (1)

wheret andx denote the time and the value of the underlying asset, respectively. The risk free interest rater and the jump
intensityλ are constants while we let the volatilityσ to be a function oft andx as in [2]. The log-double-exponential density
f is defined by

f(y) =

{

qα2y
α2−1, y < 1

pα1y
−α1−1, y ≥ 1,

wherep, q, α1 > 1, andα2 are positive constants such thatp+q = 1. The coefficientζ in (1) is given byζ = pα1

α1−1
+ qα2

α2+1
−1.

The final valuev(T, x) is given by the payoff function. The value of an American option satisfies a variational inequality based
on (1); see [3], for example. We discretize the spatial derivatives using finite differences on nonuniform grids. Our temporal
discretizations are based on the implicit Rannacher time stepping.

2 Recursion formulas for the integral term

A straightforward treatment of the integral term leads the computational cost to beO(n2) flops for evaluating the integral on
all grid points, wheren is the number of grid points. Using FFT this cost can be reduced to beO(n log n) flops; see [1, 2, 4, 5].
With FFT nonuniform grids lead to more involved implementation. Instead we propose recursion formulas for the evaluation
[9] which are easy-to-implement also on nonuniform grids and they lead to the optimal computation costO(n) flops. In order
to describe the recursion formulas, we divide the integral into two parts as

∫

R+

v(t, xy)f(y) dy =

∫ x

0

v(t, xy)f(y) dy +

∫

∞

x

v(t, xy)f(y) dy.

We consider the first integral while the second one can be treated in the same way. By making the change of variabley = z/x,
we get

I− =

∫ x

0

v(t, xy)f(y) dy = qα2x
−α2

∫ x

0

v(t, z)zα2−1dz.

We denote the value of the integralI− at a grid pointx = xi by I−i . The value ofI−i+1
can obtain usingI−i as

I−i+1
=

x−α2

i+1

x−α2

i

I−i + qα2x
−α2

i+1

∫ xi+1

xi

v(t, z)zα2−1dz.

Hence, it is necessary to integrate only once over each grid interval in order evaluate all integralsI−i , i = 1, . . . , n.

∗ Corresponding author: e-mail:toivanen@stanford.edu

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 2

3 Iterative solution

For European options we use a stationary iterative method proposed in [8] and analyzed in [5]. Following the notations in[1],
we form a regular splitting for the coefficient matrixA asA = T− R, where−R corresponds the integral term in (1). With
this choiceT is a tridiagonal matrix. Then a rapidly converging iterative method for the linear systemAv = b reads

v
i+1 = T

−1
(

Rv
i + b

)

, i = 0, 1, . . . , (2)

where the initial guessv0 is taken to be the solution from the previous time step. Each iteration requires a solution with the
tridiagonal matrixT and the multiplication of a vector by the full matrixR which corresponds to the evaluation of the integral
term.

When pricing American options we solve the linear complementarity problems (LCPs) arising at each time step using either
an operator splitting method [6] or a penalty method [4]; seealso [9]. With the splitting method the above iteration can be
used while the penalty method uses its generalization.

4 Numerical example

In our example, we price European call options by computing the prices of corresponding put options and employing the
put-call parity. We use the model parameters [5]:

σ = 0.15, r = 0.05, T = 0.25, K = 100,

λ = 0.1, α1 = 3.0465, α2 = 3.0775, and p = 0.3445.

The truncation boundary is atX = 400 and we use highly refined grid in thex-direction. On a very fine time-space grid we
obtain the reference prices:0.672677 at x = 90, 3.973479 at x = 100, and11.794583 at x = 110 which are the same as in
[5].

The numerical results in Table 1 show that the discretization is approximately second-order accurate when the number
of time and space steps are increased at the same rate. We obtained accurate prices in a few milliseconds on a PC. More
experiments with a local volatility function and American options are presented in [9]. The behavior also in these experiments
is similar to the one in here.

m n error at 90 error at 100 error at 110 rate iter. time
6 40 4.4 × 10−3

−1.6 × 10−2
−6.1 × 10−3 19 0.1

10 80 6.0 × 10−4
−3.2 × 10−3

−1.8 × 10−3 4.8 26 0.4
18 160 6.2 × 10−4

−6.9 × 10−4
−1.7 × 10−4 4.0 43 1.0

34 320 −1.4 × 10−4
−1.5 × 10−4

−2.1 × 10−4 3.2 68 3.0
66 640 −7.2 × 10

−6
−3.6 × 10

−5
−3.7 × 10

−5 5.6 132 10.3

Table 1 The columns are: ’m’ the number of time steps, ’n’ the number of space steps, errors computed using the reference prices, ’rate’
the ratio of consecutivel2 errors, ’iter.’ the number of iterations (2), and ’time’ theCPU time in milliseconds on a 3.8GHz PC.
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