
EasyChair Preprint

№ 812

Numerical Verification of Affine Systems with up

to a Billion Dimensions

Stanley Bak, Hoang-Dung Tran and Taylor T. Johnson

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 5, 2019

Numerical Verification of Affine Systems
with up to a Billion Dimensions

Stanley Bak

Safe Sky Analytics

Manlius, NY

stanleybak@gmail.com

Hoang-Dung Tran

Vanderbilt University

Nashville, TN

dung.h.tran@vanderbilt.edu

Taylor T. Johnson

Vanderbilt University

Nashville, TN

taylor.johnson@vanderbilt.edu

ABSTRACT
Affine systems reachability is the basis of many verification meth-

ods.With further computation, methods exist to reason about richer

models with inputs, nonlinear differential equations, and hybrid

dynamics. As such, the scalability of affine systems verification is a

prerequisite to scalable analysis for more complex systems. In this

paper, we improve the scalability of affine systems verification, in

terms of the number of dimensions (variables) in the system.

The reachable states of affine systems can be written in terms

of the matrix exponential, and safety checking can be performed

at specific time steps with linear programming. Unfortunately, for

large systems with many state variables, this direct approach re-

quires an intractable amount of memory while using an intractable

amount of computation time. We overcome these challenges by

combining several methods that leverage common problem struc-

ture. Memory is reduced by exploiting initial states that are not

full-dimensional and safety properties (outputs) over a few linear

projections of the state variables. Computation time is saved by

using numerical simulations to compute only projections of the

matrix exponential relevant for the verification problem. Since large

systems often have sparse dynamics, we use Krylov-subspace sim-

ulation approaches based on the Arnoldi or Lanczos iterations. Our

method produces accurate counter-examples when properties are

violated and, in the extreme case with sufficient problem structure,

can analyze a system with one billion real-valued state variables.

CCS CONCEPTS
• General and reference → Verification; • Theory of compu-
tation→ Timed and hybrid models; • Software and its engineer-
ing → Formal methods;

KEYWORDS
reachability, formal verification, hybrid systems

DISTRIBUTION STATEMENT
DISTRIBUTION A. Approved for public release; Distribution un-

limited. AFRL PA # 88ABW-2017-5562 cleared on 07 Nov 2017.

1 INTRODUCTION
An affine system is modeled with the ordinary differential equation

Ûx = Ax + b, where x is a vector of n state variables, A is the n × n
dynamics matrix, and b is an n × 1 vector of constant forcing terms.

Given a set of initial states, a set of unsafe states, and a time bound,

the time-bounded safety verification problem is to check if there

exists an initial state and a time within the bound such that the

solution of the affine system enters the unsafe set.

One way to solve the verification problem is to construct the

reachable set of states. The reachable set contains all states that lie

along any solution to the differential equation Ûx = Ax + b, starting
from any initial state up to the time bound. If the reachable set does

not intersect with the unsafe states, then the system is verified as

safe. In the discrete-time setting, we construct the reachable set at

each time instant, and then perform the unsafe check once per step

using linear programming (LP).

This discrete-time approach forms the core of many verification

methods for richer classes of systems. For example, when systems

have time-varying inputs, an additional input-effects term can be

computed at each step and added to the discrete-time reachable set

using a Minkowski sum operation [11, 29]. Overapproximation of

the continuous-time reachable set is possible by noting that, in the

finite time between time steps, the system can only go a bounded

distance from the discrete-time solution. Based on this observation,

methods exist that perform bloating from the discrete-time solution

in order to guarantee an overapproximation of the continuous-

time reachable set [26, 38, 39]. The reachable set for nonlinear

dynamical systems can also be overapproximated with techniques

based on affine methods, by linearizing the nonlinear dynamics

and then adding uncertain terms to account for mismatch between

the linear and nonlinear systems. In hybridization methods [2, 8,

18], this process is repeated in multiple domains to reduce the

overapproximation error. Finally, methods to verify hybrid systems

that combine continuous dynamics and discrete behaviors, such as

a physical system controlled by software, also build upon the core

operations needed to analyze affine systems [3, 41], in conjunction

with additional techniques to handle combinatorial aspects. All of

these powerful methods build on the core computations used for

affine systems reachability. In this paper, we focus on the scalability

of this fundamental computation.

Verification approaches for systems that have real numbers can

be categorized into validated methods and numerical methods. Vali-

dated methods, such as interval analysis [46], maintain guaranteed

bounds on values used throughout the computation. Numerical

Stanley Bak, Hoang-Dung Tran, and Taylor T. Johnson

10-2

100

102

104

106

108

1010

1012

102 103 104 105 106 107 108 109

Prediction

Prediction

One Year

Ti
m

e
 (

se
c)

Dimensions

Matrix Exponential Computation Time

scipy expm (Python)
expm (Matlab)

Figure 1: Ignoring memory issues, off-the-shelf methods
require intractable computation time to compute a single
high-dimensional matrix exponential for the 3D Heat Dif-
fusion system used in our evaluation.

methods, on the other hand, accept using finite-precision floating-

point numbers and algorithms that perform operations up to any

user-desired accuracy, such as finite series expansions to compute

a matrix exponential. Although desirable, validated methods are

typically slower and often fail to work on large systems to due the

accumulation of overapproximation error. In this work, we focus

on numerical verification methods, as the scale of systems we want

to analyze would make current validated approaches infeasible.

As time advances, the behaviors of affine systems can be written

in terms of the matrix exponential, which can be used to compute

the reachable set. For high-dimensional systems, however, comput-

ing the matrix exponential becomes both the runtime and memory

bottleneck. A simple experiment demonstrating the runtime prob-

lem is shown in Figure 1, where extrapolation predicts it would take

over a year to compute a single matrix exponential once a system

has over ten million dimensions. A second problem is memory:

although the A matrix for large systems can often be sparse, the

matrix exponential of A is dense. The amount of memory needed

to simply store the matrix exponential result, a dense n × n matrix,

can greatly exceed what is available, even if its computation time

was instant. For a million-dimensional system, this matrix would

have 10
12

numbers and need about 8 TB of main memory.

The main contribution of this paper is an approach for affine

systems verification that can, with sufficient problem structure,

scale to extremely high-dimensional systems, thousands to millions

of times larger than existing methods. We overcome the memory

and computation time problems through an original combination
of new and existing techniques. The memory improvements are

possible through a method that uses both aspects of reachabil-

ity with support functions [39] (projecting the reachable set onto

an output space) and affine representations [36] / zonotopes [28]

(low-dimensional initial spaces). The run-time improvements use

simulations to compute parts of the matrix exponential [21]. Since

large dynamics matrices are often sparse (and must be sparse to

simply fit into memory), we can perform numerical simulations

using efficient Krylov subspace methods [27, 36]. We use a recently-

published a posteriori error bound [51] to determine when the

dimension of the Krylov subspace is sufficient for an accurate sim-

ulation result. Further, we propose a modification to the Lanczos

iteration (used by Krylov subspace methods) that reduces memory

requirements, allowing us to significantly increase the number of

iterations before memory is exhausted. Although some of the tech-

niques have been used individually before, no existing method for

affine systems has demonstrated scalability beyond a few thousand

dimensions. In our evaluation, the largest system we analyze has

one billion dimensions.

The research presented here builds off a previous workshop

paper [7], with several new developments: (i) this paper focuses

on scalability in high dimensions (up to 10
9
dimensions), whereas

the earlier work performed a runtime improvement evaluation on

comparatively smaller systems (up to 10
4
dimensions); (ii) Section 4

provides a detailed description and pseudo-code for the modified

Krylov methods, which use an a posteriori error bound (Lemma 4.1),

as opposed to the relative error estimate in the earlier paper; (iii) we

provide memory improvements to the projected Lanczos iteration

in Section 4.3 which, in our evaluation in Section 5.3, is shown to

increase scalability by two orders of magnitude.

Section 2 first reviews affine discrete-time safety verification,

which uses an n × n matrix exponential at each time step in the

analysis. Next, Section 3 presents memory improvements followed

by Section 4, which focuses on reducing computation time. An eval-

uation on several large benchmarks, including a 3D Heat Diffusion

system with one billion dimensions, is given in Section 5, followed

by a review of related work and a conclusion.

2 AFFINE VERIFICATION REVIEW
An affine, discrete-time, bounded safety verification problem is

defined by the system dynamics Ûx = Ax + b, a set of initial states
I defined as all states x0 where the linear constraints Ixx0 ≤ ιx
hold, unsafe states U defined with linear constraints Uxx ≤ υx ,
a step size δ and time bound T . The system is called unsafe if and

only if there exists a time t = kδ ≤ T such that x0 ∈ I, x = eAtx0,
and x ∈ U. The goal is to prove a system is safe or find a counter-

example, which can be defined by an initial state x0 and time t .

2.1 Basic Verification Approach
An affine system with dynamics Ûx = Ax + b can be verified by first

converting it to a linear system (without the b term), by adding

a fresh variable to account for the effects of the forcing term b.
The new Amatrix has an extra column consisting of the entries of

the b vector, and an extra row of all zeros. The initial value of the

new variable is assigned to 1, and, since the row in A defining its

differential equation is all zeros, the new variable’s value remains at

1 at all times. Thus, the effect of the extra column in the Amatrix is

the same as the b vector in the original system. We consider linear

systems after this transformation, assuming the form Ûx = Ax .
Safety can be checked by constructing a LP at each discrete time t

that contains two copies of the state variables, x0 and x , and encodes
the initial state conditions Ixx0 ≤ ιx , the unsafe state conditions
Uxx ≤ υx , and the linear relationship (for a fixed t) between the

initial and final variables x = eAtx0. If the LP is feasible, the solver

provides an assignment to the variables that can be used to construct

the counter-example. The bulk of the computation time is spent on

these two operations: (i) computing eAt and (ii) solving the LP.

Numerical Verification of Affine Systems with up to a Billion Dimensions

Init

U
ns
af
e

π
4

π
2 3π

4

Figure 2: The timed harmonic oscillator system can reach an
unsafe state at time 3π

4
.

2.2 Timed Harmonic Oscillator Example
We will use an example of a timed harmonic oscillator to demon-

strate the methods in this paper. The timed harmonic oscillator is

a system with dynamics Ûx = y, Ûy = −x , and Ût = 1. For the initial

set of states, take x0 = −5, y0 ∈ [0, 1], and t0 = 0. The unsafe set

of states consists of all states where x = 4. We attempt to verify

the system with a discrete time step of δ = π
4
and a time bound of

T = π .
On the x-y plane, solutions of the system rotate clockwise around

the origin. The reachable set is shown in Figure 2. From the figure,

it is apparent that at time
3π
4
, the unsafe states are reachable.

We can show this computationally and find the initial state that

leads to the violation. First, we convert the three-variable affine

system (the t variable has an affine term), to a four-variable linear

system using the affine-to-linear transformation described before.

The variables in the transformed system are ®x = (x ,y, t ,a)T , where
a is the newly-introduced variable, which is initially 1 and remains

constant at all times. The transformed dynamics now form the

four-dimensional linear system
Û®x = A®x , with

A =
©«
0 1 0 0

−1 0 0 0

0 0 0 1

0 0 0 0

ª®®®¬ .
Next, at each discrete time step, we construct a set of linear

constraints. The constraints have two copies of the variables, one set

at the initial time {x0,y0, t0,a0}, and one set at the current time step

{x ,y, t ,a}. The linear constraints at the time of the violation,
3π
4
,

are shown in Figure 3a. The only constraints that change between

time steps are the ones encoding the matrix exponential at the

current time (the values surrounded by a red rounded rectangle),

for which we reuse terminology [9] and refer to as the basis matrix.
The linear constraints are then passed to an LP solver to check if

they are feasible. For time steps 0,
π
4
, and

π
2
, the LP solver returns

that no solution exists. At time
3π
4
, which has the constraints shown

in the figure, the LP solver finds a feasible solution, and provides

an assignment to the variables. In particular, its output indicates

that starting from initial state (x0,y0, t0,a0)
T
= (−5, 0.66, 0, 1)T , the

system can reach the unsafe state (x ,y, t ,a)T = (4, 3.07, 2.36, 1)T .

3 MEMORY IMPROVEMENTS
Although the basic verification approach works, it does not scale to

very high dimensions. As mentioned in the introduction, computing

and storing the basis matrix (the matrix exponential) is typically

the bottleneck to verification scalability. In this section we focus

on the memory problem, and show how we can reduce the height

(Section 3.1) and width (Section 3.2) of the basis matrix, by taking

advantage of common problem structure.

3.1 Projecting onto the Output Space
First, we reduce the height of the basis matrix (compare the basis

matrices in Figure 3a and Figure 3b). This is done by a method

similar to the use of support functions with a fixed number of

directions for reachability analysis [39]. The common problem

structure exploited is that the verification result often only depends

on a small number of directions, much smaller than the number of

system variables.

Depending on the type of problem being solved (linear verifica-

tion, plotting, or hybrid automaton reachability), these directions

arise from different sources. For a safety verification problem for

linear systems, these directions come from each of the constraints

in the conjunction defining the unsafe states. For a plot, we only

need to compute a projection onto the two or three plot dimensions.

In this case, the important directions are the unit vectors in each of

these dimensions. Plots can then be produced efficiently by running

multiple optimizations over projections of the convex reachable

set at each time step [32, 40]. For the hybrid automaton setting,

additional directions can come from the constraints in the mode

invariants, as well as from the guard conditions.

We can combine these directions into an output matrixC , where
the output variables are y = Cx , and the height of the matrix is the

number of output directions, o, needed for the current problem. The

unsafe states,U, are then redefined in the output space,Uyy ≤ υy .
Finally, the basis matrix in the constraints is the o × n projection of

the matrix exponential onto the output space, CeAt .
Consider applying this approach to the timed harmonic oscillator

system of Section 2.2, where the unsafe states are defined by x = 4.

The other three dimensions, y, t , and a, do not impact the result of

the safety check, and so they (and their corresponding constraints)

can be removed from the set of linear constraints, as is done in

Figure 3b. In this case, the output matrix for this system is the 1× 4

matrix C = (1 0 0 0). We then define the unsafe states in terms of

the single output space variable ox , and replace the basis matrix by

the projected matrix exponential CeAt .

3.2 Projecting from the Initial Space
Next, we reduce the width of the basis matrix (compare the basis

matrix in Figure 3b and Figure 3c). This is done with a method

similar to reachability using affine representations [36], and is also

similar to reachability with zonotopes [28] with a small number of

generators. The common problem structure exploited is that the

initial states are often low-dimensional. For example, there may not

be uncertainty in every variable, or the initial states of variables

may be related.

In this case, we can define an i-dimensional initial space using

an n×i matrix E, where the initial states z are related to the original
variables by x = Ez. The initial states I are then redefined with

constraints in the initial space, Izz ≤ ιz . The o × i basis matrix is

now computed using both projections, CeAtE.

Stanley Bak, Hoang-Dung Tran, and Taylor T. Johnson

−1 0 0 0 −0.707 0.707 0 0

0 −1 0 0 −0.707 −0.707 0 0

0 0 −1 0 0 0 1 2.36

0 0 0 −1 0 0 0 1

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

©«

ª®®®®®®®®®®®®®®®®®®¬

Basis Matrix

Unsafe
Condition

Initial State Conditions

x

y

t

a

x0

y0

t0

a0

©«

ª®®®®®®®®®®®®®®®®®¬

= 0

= 0

= 0

= 0

= 4
= −5
≤ 0
≤ 1
= 0
= 1

(a) Basic approach with full linear constraints (Section 2.1)

−1 −0.707 0.707 0 0

1 0 0 0 0

0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

©«

ª®®®®®®®®®®®¬

Basis Matrix

Initial State Conditions

ox

x0

y0

t0

a0

©«

ª®®®®®®®®®¬

= 0

= 4
= −5
≤ 0
≤ 1
= 0
= 1

(b) Projecting onto the output space (Section 3.1)

−1 0.707 3.54

1 0 0

0 −1 0
0 1 0
0 0 1

©«

ª®®®®®®®¬

Basis Matrix

Initial State Conditions

ox

iy

if

©«
ª®®®®¬
= 0

= 4
≤ 0
≤ 1
= 1

(c) Projecting from the initial space onto the output space (Section 3.2)

Figure 3: The linear constraints at time 3π
4

for the timed harmonic oscillator example described in Section 2.2 can be encoded
in different ways. At each time step, only the basis matrix changes in the constraints.

In the timed harmonic oscillator system of Section 2.2, we can

define the initial states using i = 2 dimensions. These are iy , which
corresponds to the initial y value, and if which is the fixed initial

values of all the other variables. The E matrix is the 4 × 2 matrix(
0 1 0 0

−5 0 0 1

)T
, and the initial constraints are 0 ≤ iy ≤ 1 and if = 1.

The basis matrix is the product CeAtE at each step.

Using both methods, we have reduced the basis matrix from an

n×nmatrix to a o×i matrix. Importantly, we do not need both o and
i to be very small for this reduction to be useful, only their product.
Given, say, 800 MB to store the basis matrix (10

8
double-precision

numbers), the original approach would fill the memory when n =
10

4
, a ten-thousand dimensional system. In contrast, a million-

dimensional system with every dimension initially independent

and uncertain, i = 10
6
, could still be analyzed as long as the unsafe

states are defined using less than 100 output directions.

4 COMPUTATION TIME IMPROVEMENTS
Although we can define the smaller basis matrix using CeAtE, this
does not help in terms of computation time if we use the direct

approach of computing eAt at each step and then multiplying by

C and E. In this section, we describe a series of improvements

targeting the computational efficiency of the method.

4.1 Basis Matrix using Numerical Simulations
There are many ways to compute the matrix exponential [43]. Gen-

erally, the methods implemented in off-the-shelf libraries use a com-

bination of squaring and scaling and Pade approximation (methods

2 and 3 [43]), which compute the entire matrix at once.

Here, we instead use an alternativemethod to compute thematrix

exponential, using a series of numerical simulations (method 5 [43]).

The matrix exponential is computed one column at time by using

the fact that eAt = eAt In×n = eAt (e1 |e2 | . . . |en). The jth column

of eAt is equal to eAt ej , where ej is the jth column of the identity

matrix. The value of eAt ej , however, is just the solution of the linear
system Ûx = Ax at time t from initial state x(0) = ej . To compute

this, we can perform a numerical simulation with an off-the-shelf

numerical method such as Runge-Kutta. This process is repeated

for each column of the identity matrix to compute the full matrix

exponential. For the verification problem, we need the value of eAt

at multiple time steps, and so we run the numerical simulations

up to the time bound T , recording the value at each multiple of

the step size δ . The values from each column are then combined at

each multiple of time step to form the basis matrix in the LP [21].

We propose to adapt this method to take advantage of initial and

output spaces. Since we need to compute the basis matrix CeAtE,
rather than using each column of the identity matrix, we can instead

compute simulations from each column of the E matrix, and then

project the state in the simulation using the C matrix. We compute

eAtE by noting that eAt E = eAt (E∗,1 |E∗,2 | . . . |E∗,i), where E∗, j
is the jth column of E. As before with the identity matrix, each

column j can be computed separately with a numerical simulation

of the linear system Ûx = Ax at time t from initial state x(0) = E∗, j .
There are i columns in E, corresponding to the i dimensions of

the initial states. If i is much smaller than n, this approach will

be significantly faster than computing the full matrix exponential

and then doing the multiplication with E. For the timed-harmonic

oscillator system constraints in Figure 3c, for example, since the

Numerical Verification of Affine Systems with up to a Billion Dimensions

Algorithm 1 Original Arnoldi algorithm

Input: normalized init n × 1 vector v , n × n matrix A, iterations k
Output: n × k matrix V , k × k matrix H
1: V∗,1 ← v ▷ assign to first column of V
2: for i from 2 to k + 1 do
3: V∗,i ← AV∗,i−1
4: for j from 1 to i do
5: Hj,i−1 ← (V∗, j)

TV∗,i
6: V∗,i ← V∗,i − Hj,i−1V∗, j

7: Hi,i−1 ← ||V∗,i | |

8: V∗,i ←
V∗,i
Hi,i−1

9: H ← H
1:k,∗ ▷ discard extra row of H

10: V ← V∗,1:k ▷ discard extra column of V

dimension of the initial space i = 2, the basis matrix could be

computed in this fashion using two numerical simulations.

If the initial state dimension is large, the computation may still

require a large number of simulations. In this work, we propose a

new approach that can reduce the required number of simulations

if the output space is small. The method works by performing

simulations using the transpose system dynamics. Since CeAtE =

((CeAtE)T)T = (ET (eAt)TCT)T = (ET eA
T tCT)T , the basis matrix

can also be computed by performing o simulations (one for each

column of CT). We compute eA
T t CT by noting that eA

T t CT =

eA
T t (CT

∗,1 |C
T
∗,2 | . . . |C

T
∗,o), and performing a numerical simulation

of the linear system Ûx = AT x up to time t from initial state x(0) =
CT
∗, j , for each column j of CT . The results are then multiplied by

ET , and transposed to recover the basis matrix. This allows us to

compute values of the basis matrix one row at a time, and so we can

compute the basis matrix using only o numerical simulations. In

practice, only one of these is necessary, and so we can choose the

minimum of i and o and perform that many numerical simulations,

rather than computing an n × n matrix exponential.

In the timed-harmonic oscillator system, for example, since o = 1,

the entire basis matrix at each step can be computed with a single

numerical simulation. Starting from the state corresponding to the

single output direction (1, 0, 0, 0)T , we can simulate using the trans-

pose dynamicsAT up to time
3π
4

to get the state (−0.707, 0.707, 0, 0).

This is then projecting with ET =
(
0 1 0 0

−5 0 0 1

)
to get (0.707, 3.54)T ,

which is transposed to get the basis matrix in Figure 3c.

4.2 Simulations using the Krylov Subspace
When the system matrix A is high-dimensional, it is also often

sparse (in fact, if A has more than tens of thousands of dimensions

and can fit in memory, it must be sparse or otherwise compressed).

We can exploit this structure to speed up numerical simulations.

The Krylov subspace simulation method [27] computes an ap-

proximation of eAv , where v is some initial state. This is done by

finding the element of the k-dimensional Krylov subspace Kk ≡

span{v,Av, . . . ,Ak−1v} that best approximates eAv . Intuitively, the
k-dimensional Krylov subspace can exactly represent the first k
terms of the Taylor expansion of eAv , making it a good candidate

for accurate approximation. We do not review the full theory here,

Algorithm 2 Arnoldi algorithm with a posteriori error control

Input: normalized init n× 1 vectorv , n×n matrixA, error target ϵ
Output: n × k matrix V , k × k matrix H
1: V∗,1 ← v
2: k ← 4

3: for i from 2 to∞ do
4: V∗,i ← AV∗,i−1
5: for j from 1 to i do
6: Hj,i−1 ← (V∗, j)

TV∗,i
7: V∗,i ← V∗,i − Hj,i−1V∗, j

8: Hi,i−1 ← ||V∗,i | |

9: V∗,i ←
V∗,i
Hi,i−1

10: if i = k then ▷ check error upon reaching k iterations

11: if compute-error(A,H1:i−1,∗) < ϵ then
12: break
13: else
14: k ← ceil(1.1 ∗ k)

15: H ← H
1:k,∗ ▷ discard extra row of H

16: V ← V∗,1:k ▷ discard extra column of V

but instead focus on computational aspects as they relate to the

verification problem.

Note, however, that each simulation has a different initial state,

and different initial states v will have different Krylov subspaces.

This is important, since it means we are not proposing to verify

the system through an abstraction of the dynamics matrix A by a

single lower-dimensional system matrix.

The approximation uses a fixed number of iterations of the well-

known Arnoldi algorithm [6, 50]. The pseudocode is shown in

Algorithm 1. The Arnoldi algorithm computes an orthonormal

basis for the Krylov subspace Kk by starting with a normalized

version of v as both the first orthonormal direction and the current

vector and, at each iteration, (1) multiplying the current vector by

A (line 3), (2) projecting out the previous orthonormal directions

from the current vector (the loop on lines 4-6), (3) normalizing the

current vector (lines 7-8), and (4) adding it to the list of orthonormal

directions (line 8). If the norm computed on line 7 is ever zero, the

loop can terminate early (not shown) and the approximation will

be exact. The memory needed for the Arnoldi iteration, which can

be obtained by looking at the sizes of the outputs, is thus:

k × (n + k) × sizeof(double) (1)

Afterk iterations complete, the outputs are twomatricesV andH ,

whichwe refer to asVk andHk .Vk is then×k matrix of orthonormal

basis vectors and Hk is the k × k matrix that is a projection of the

linear transformation A in the Krylov subspace Kk .
The outputs of the Arnoldi algorithm can be used to approxi-

mate eAv . This is done by projecting the initial n-dimensional state

onto the smaller, k-dimensional Krylov subspace, computing the

matrix exponential using the projected linear transformation Hk ,

and then projecting the result back to the original n-dimensional

space usingVk . By the design of the Krylov subspace, the projection
of the initial state v is just the length of v multiplied by the first

unit vector in the subspace, e1. Further, since for any time t , the
Krylov subspaces associated with A and At are identical (because

Stanley Bak, Hoang-Dung Tran, and Taylor T. Johnson

Algorithm 3 Original Lanczos algorithm

Input: normalized init n × 1 vector v , n × n matrix A, iterations k
Output: n × k matrix V , k × k matrix H
1: V∗,1 ← v
2: for i from 2 to k + 1 do
3: V∗,i ← AV∗,i−1
4: if i > 2 then
5: Hi−2,i−1 ← Hi−1,i−2
6: V∗,i ← V∗,i − Hi−2,i−1V∗,i−2

7: Hi−1,i−1 ← (V∗,i−1)
TV∗,i

8: V∗,i ← V∗,i − Hi−1,i−1V∗,i−1
9: Hi,i−1 ← ||V∗,i | |

10: V∗,i ←
V∗,i
Hi,i−1

11: H ← H
1:k,∗ ▷ discard extra row of H

12: V ← V∗,1:k ▷ discard extra column of V

span{v,Av, . . . ,Ak−1v} is the same as span{tv, tAv, . . . , tAk−1v}),
we can use the same Vk and Hk to compute the approximation at

any point in time. The formula for the approximation is:

eAtv ≈ ∥v ∥Vke
Hk t e1 (2)

Equation 2 is especially useful when the size of A is huge, e.g.,

millions of dimensions, since it transforms the computation with a

large matrixA to a problem with a much smaller matrixHk . For fast

computation, we would like to minimize the size of Hk by using

a small number of Arnoldi iterations k , but this has the effect of
reducing the approximation accuracy. Thus, it is critical to select k
large enough to be accurate, but small enough to be fast.

Earlier work on reachability with Krylov subspace methods [36]

used an a priori error bound [27] to determine k . The error of the
approximation for a fixed k is bounded by

∥v ∥
∥At ∥k e ∥At ∥

k!
. (3)

Unfortunately, the a priori error bound can often be unusably

pessimistic. For example, one of the models we will use in our evalu-

ation is a 100x100x100 3DHeat Diffusion system (onemillion dimen-

sions). At time 50, this system has matrix norm ∥At ∥ = 32771611.

For an initial unit vector with ∥v ∥ = 1, even using a full dimensional

Krylov subspace (k = 10
6
), the computed a priori error bound from

Equation 3 is effectively unusable, 10
16182319

.

In this work, we instead use a recently-developed a posteriori

error bound [51], which uses information from theH matrix as well

as the extreme eigenvalues of A to compute a bound on the error.

The bound works by creating an error function using the log norm

of A and looking at the derivative of this error over time.

Lemma 4.1 ([51]). Let A ∈ Rn×n and v ∈ Rn with ∥v ∥ = 1.
Let Vk be the orthogonal matrix and Hk be the upper Hessenberg
matrix generated by the Arnoldi process for A and v . Let ωk (τ) =
Vke
−τHk e1 be the Arnoldi approximation to ω(τ) = e−τAv . Then the

approximation error satisfies

∥ω(τ) − ωk (τ)∥ ≤ hk+1,ke
−min {ν (A),0}τ

∫ τ

0

|h(t)|dt , (4)

Algorithm 4 Lanczos algorithm with projection and error control

Input: normalized initn×1 vectorv ,n×nmatrixA, o×n projection
matrix C , error target ϵ

Output: o × k projected output matrix P = CV , k × k matrix H
1: V∗,1 ← v
2: P∗,1 = CV∗,1
3: k ← 4

4: for i from 2 to∞ do
5: V∗,i ← AV∗,i−1
6: if i > 2 then
7: Hi−2,i−1 ← Hi−1,i−2
8: V∗,i ← V∗,i − Hi−2,i−1V∗,i−2
9: free-memory(V∗,i−2)

10: Hi−1,i−1 ← (V∗,i−1)
TV∗,i

11: V∗,i ← V∗,i − Hi−1,i−1V∗,i−1
12: Hi,i−1 ← ||V∗,i | |

13: V∗,i ←
V∗,i
Hi,i−1

14: P∗,i = CV∗,i
15: if i = k then ▷ check error upon reaching k iterations

16: if compute-error(A,H1:i−1,∗) < ϵ then
17: break
18: else
19: k ← ceil(1.1 ∗ k)

20: H ← H
1:k,∗ ▷ discard extra row of H

21: P ← P∗,1:k ▷ discard extra column of P

where h(t) := eTk e
−tHk e1 is the (k, 1) entry of the matrix e−tHk and

ν (A) is the smallest eigenvalues of (A+A
T

2
).

The above lemma computes the error bound of approximating

ω(τ) = e−τAv with the Arnoldi algorithm. In our application, we

want to approximate eτAv = e−τ (−A)v . To do that, we only need

to feed B = −A as an input to the Arnoldi algorithm and use the

lemma with the matrix B when computing the error bound.

Since this error bound uses values of the H matrix which is an

output of the Arnoldi algorithm, we cannot determine k ahead of

time, as we could with an a priori bound. However, with this bound

we can provide an accuracy guarantee with significantly fewer

iterations.

We use Lemma 4.1 by incrementally increasing the number of

Arnoldi iterations performed, k , until the approximation error is

smaller than a target accuracy. The implemented algorithm starts

with a small k = 4, and computes the corresponding error bound

defined in Lemma 4.1. If the error bound satisfies the required

accuracy, we use that value of k . If not, we continue iterating,

increasing k by a factor of 1.1 before the error is checked again.

The pseudocode is shown in Algorithm 2, with red lines indicating

changes from the original Arnoldi process. The compute-error
function implements the error computation from Lemma 4.1, which

uses the H matrix.

In our implementation, we target a simulation accuracy of 10
−6
,

the tolerance used in our LP solver. In practice, the observed accu-

racy of the counter-examples produced upon reaching an unsafe

state has been significantly higher, as we will show in the evalua-

tion.

Numerical Verification of Affine Systems with up to a Billion Dimensions

4.3 Krylov Simulations of Symmetric Matrices
A further improvement is possible when the system matrix is both

sparse and symmetric. This may be the case when the dynamics

matrix comes from a physical system due to the symmetry of many

physical laws. In this case, the Arnoldi iteration can be replaced

by the more efficient Lanczos iteration [37, 50]. The difference

between the two is that H matrix in the symmetric case is both

symmetric and tridiagonal. This means that step (2) in the algorithm,

projecting out the previous orthonormal directions from the current

vector, only needs to be done for the previous two directions, and

requires only a single dot product. The Lanczos iteration is shown

in Algorithm 3. Notice that the loop which projected out all the

previous directions on lines 4-6 of the original Arnoldi iteration in

Algorithm 1 is replaced by the j = i − 2 case on lines 4-6 and the

j = i − 1 case on lines 7-8. This change reduces the computation

time from O(k2) to O(k).
Although the computation time is reduced with the Lanczos

iteration, since the outputs are matrices of the same size as with

Arnoldi, the memory required is basically the same as what was

given in Equation 1. Some savings is possible if H is stored as a

sparse matrix, since H is now tridiagonal rather than dense, but

since typically k ≪ n, this is savings is small.

We propose a new modification to the Lanczos iteration that

can save significant memory, when it is used for the verification

problem. Since we eventually project the result of Vke
Hk t e1 onto

the output space matrix C (or the transpose of the initial space

matrix ET), we propose to embed this projection inside the loop in

the Lanczos algorithm, at each iteration. The output of the iteration

is then the much smaller o×k matrixCVk (or the i×k matrix ETVk).
This eliminates the need to storeVk , a potentially large n×k matrix,

reducing the memory required for the algorithm. The modified

Lanczos iteration, which includes both this projection and the a

posteriori error bound for selecting k , is shown in Algorithm 4. As

before, changes compared with the original Lanczos algorithm are

in red. With this improvement, the memory needed to perform the

computation is reduced to:

(3k + (n ×min(i,o)) + 3n) × sizeof(double) (5)

Importantly, compared with Equation 1, there is no term where k is

multiplied by n. This makes it possible to analyze high-dimensional

systems with a much larger number of Krylov iterations, which may

be needed for accuracy. This will be needed in our evaluation when

we evaluate a billion-dimensional system with k = 5932 iterations.

5 EVALUATION
We evaluate the proposed approach on several high dimensional

benchmarks
1
. Measurements were performed using Amazon Web

Services Elastic Computing Cloud (EC2), on a powerful m4.10xlarge
instance with 40 cores and a large 160 GB of memory that can be

rented by the hour. Note that we perform analysis in discrete time,

whereas SpaceEx [26] and the decomposition method [13] we com-

pare against do dense time analysis. Although this requires a few

more operations, specifically a bloating at the initial step using

an approximation model, we do not expect qualitative runtime

differences.

1
The code is available at http://stanleybak.com/papers/bak2019hscc_repeatability.zip.

5.1 Modified Nodal Analysis (MNA5)
We first verify a benchmark model based on a system from the

field of electrical circuit analysis, where the state variables relate

to the node voltage and currents inside a circuit [14, 48]. Originally

a DAE system, the dynamics matrix has been adapted to create a

benchmark for verification using ODE reachability methods. As far

as we are aware, this benchmark is the largest linear system ever

verified [9], where full analysis of the safe version previously took

a little over 24 hours. This model has also been investigated using

a decomposition approach that uses a series of two-dimensional

projections to enable much faster analysis with modest overap-

proximation error [13]. Here, we apply the proposed algorithm

which does not have overapproximation error and can provide

counter-examples when property violations are detected.

In this system, the number of dimensions n = 10923, the num-

ber of output space dimensions o = 2, the number of initial space

dimensions i = 10, and the number of steps is 20000. Our imple-

mentation selected a Krylov subspace dimension k = 63 using the

a posteriori error bound approach, and verified the safe version of

this system in 3.8 seconds. The unsafe version of the benchmark

was checked in 1.1 seconds, with a counter-example at the same

time in the analysis as the earlier approach, at exactly step 1919.

The initial state from the counter-example was then used to

compute an external, high accuracy simulation of the system. By

comparing the final value in the external simulation versus the out-

put variables assigned by the LP solver when the counter-example

was found, we can gauge our method’s accuracy. In this case, the

relative error between the two was 6.17 × 10−9, demonstrating the

accuracy of the proposed approach.

5.2 Replicated Helicopter
A tunable benchmark is created based on a 28-dimensional heli-

copter model and controller originally released as an example sys-

tem with the SpaceEx tool
2
. The helicopter is copied multiple times

within the same model, in order to create a verification problem

that can scale to an arbitrary number of dimensions.

In the replicated helicopter benchmark, the 28-dimensional heli-

copter model is copied h times, so that the number of dimensions

n = 28h. We take initial conditions from the x8_over_time_large
configuration, where eight of the variables for each helicopter are

initially intervals, making the dimension of initial space i = 8h. The
error condition checks if the average of the x8 variables is greater
than 0.45, o = 1. Finally, the problem calls to verify up to time 30

with a step of 0.1, so that the number of steps is 300.

Figure 4 shows the scalability of the new approaches compared

with the SpaceEx tool and the basic approach implemented in the

Hylaa tool. We also tried to compare against the linear dynamics

method in the Flow* tool [15], but could not analyze the h = 1

case due to the large uncertainty in the initial set. Using the stc
scenario [25] of SpaceEx [26], the largest system successfully an-

alyzed had h = 20 (560 dimensions) and took 17 minutes (larger

systems crashed). The basic approach implemented in the Hylaa
tool, which computes the full n × n basis matrix using numerical

simulations, verified a system h = 79 (2212 dimensions) in 42 min-

utes (larger systems had a memory error). Using the proposed input

2
http://spaceex.imag.fr/news/helicopter-example-posted-39

http://stanleybak.com/papers/bak2019hscc_repeatability.zip
http://spaceex.imag.fr/news/helicopter-example-posted-39

Stanley Bak, Hoang-Dung Tran, and Taylor T. Johnson

 0.1

 1

 10

 100

 1000

102 103 104 105 106 107

One Minute

One Hour

R
u
n
ti

m
e
 (

se
co

n
d
s)

Dimensions (n)

Replicated Helicopter Verification Time

SpaceEx
Hylaa (Basic)

RK45
Krylov (Arnoldi)

Figure 4: The Krylovmethod scales better than the RK45 numerical simulationmethod with input/output spaces, the full space
method using numerical simulation used by Hylaa, and the space-time clustering scenario of the SpaceEx tool.

/ output spaces with Runge-Kutta numerical simulations, the RK45
method scaled up to h = 131389 (3.6 million dimensions) in about

22 minutes (larger systems had a memory error). Finally, combin-

ing both input / output spaces and Krylov subspace simulations,

the Krylov approach analyzed the system with h = 2714654 (76

million dimensions) in 79 minutes, without memory errors. Since

the initial space dimension i grows as the number of helicopters h
increases, the LP solving step takes increasing amounts of time for

this benchmark. This explains why the slopes for RK45 and Krylov
are similar: the LP solving step has become the bottleneck.

5.3 Symmetric 3D Heat Diffusion
The third benchmark considered is a 3D Heat Diffusion system

taken from the field of partial differential equations (PDEs). This

benchmark is based on a 2D version that has previously been ana-

lyzed up to a 50× 50 mesh (2500 dimensions) [34, 36]. The problem

is to examine the temperature at the center point of a 1.0× 1.0× 1.0

block, where one edge of the block is initially heated. As before,

all of the sides of the block are insulated except the x = 1.0 edge,

which allows for heat exchange with the ambient environment with

a heat exchange constant of 0.5. A heated initial region is present

in the region where x ∈ [0.0, 0.4], y ∈ [0.0, 0.2], and z ∈ [0.0, 0.1].
The heated region temperature is between 0.9 and 1.1, with the

rest of material initially at temperature 0.0. The system dynamics

is given by the heat equation PDE ut = α2(uxx +uyy +uzz), where
α = 0.01 is the diffusivity of the material, as in the previous work.

A linear state space model of the system is obtained using the

semi-finite difference method [24], discretizing the block with an

m ×m ×m grid. This results in anm3
-dimensional linear system

describing the evolution of the temperature at each mesh point.

Due to the initially heated region, we expect the temperature at

the center of the block to first increase, and then decrease due to

the heat loss along the x = 1 edge. Further, there may be error due

to the space discretization step, so ifm is too small, the model does

not accurately predict the behavior of the PDE. We can see both

of these effects by computing and plotting the reachable states, as

shown in Figure 5. Since the peak temperature happens at around

Figure 5: The maximum temperature at the center point oc-
curs around time 15.

time t = 15, we perform further analysis by running the system

with max time T = 20.0 and step size δ = 0.02, making the number

of steps 1000. This system presents a particularly good case for our

analysis method, since i = 1, o = 1, and the dynamics matrix is

symmetric which allows us to use the Lanczos iteration.

The runtimes and temperatures reachable for various values of

m are given in Table 1. Accurate analysis requires high dimensions,

motivating the need for the types of analysis methods developed

in this paper. The 1000 × 1000 × 1000 version can be analyzed

using our approach in about 30 hours of computation time. Over

95% of the runtime was spent in the Lanczos iteration, indicating

that we optimized the correct operation. In this case, each of the

billion rows of the A matrix generally has 7 entries, so that simply

storing the elements of the matrix (8 bytes per double-precision

number) consumes 56GB of RAM. Further, since a 5932-dimensional

Krylov subspace is needed for sufficient numerical accuracy, the

unmodified Lanczos iteration would be infeasible for this system,

as it would require storing 5932 vectors for the V matrix, each of

which contains a billion numbers (8 GB each), for a total memory

requirement of 46 TB (recall Equation 1).

Lastly, we examine the computed error bound from Lemma 4.1

for the 100x100x100 version of this benchmark, as the dimension of

the Krylov subspace k is increased. While performing the Arnoldi

Numerical Verification of Affine Systems with up to a Billion Dimensions

Table 1: 3D Heat Diffusion with n =m3 Dimensions

m Tmax k Lanczos Arnoldi

10 0.02934 57 0.6s 0.4s

20 0.01713 115 1.0s 1.2s

50 0.01161 277 4.4s 16.8s

100 0.01005 544 18.0s 7m13s

200 0.00933 1170 3m56s 9h14m

500 0.00890 2764 1h46m -

1000 0.00877 5932 29h46m -

or Lanczos algorithm, our implementation periodically checks the

current error. Once k = 544 iterations have been performed, the

computed error bound is 5.8 ∗ 10−7, which is below the desired

error threshold of 10
−6
. The plot is shown in Figure 6. The blue

line is the error bound computed using Lemma 4.1 at each iteration,

and the points indicate where the bound gets sampled. The thinner

green line is the relative error of the projected simulation between

iterations k and k + 1, which provides an error estimate that was
used as a stopping criteria in previous work [7]. Notice that the

old error bound can not be used when the number of iterations is

low, as the projected simulation onto the output variables is zero

when k is small. For this system, using the old bound might reach

the 10
−6

threshold earlier and terminate prematurely, although the

number of iterations for both bounds is similar, within a factor of

two. Recall from the discussion after Equation 3 that the a priori

bound was unusable for this system, even with k = 10
6
.

6 RELATEDWORK
The proposed method uses convergent numerical schemes to com-

pute simulations as part of a verification procedure. Convergent

numerical schemes have been used before to approximate reachable

sets of nonlinear hybrid systems, in particular, level-set methods

that approximate solutions to Hamilton-Jacobi PDEs [12, 42, 47].

These methods compute reachable states with a grid over the state

space, and in the limit at the number of grid points increases, the

computed result approaches the true solution.

Other methods for this class of systems have used simulations for

formal analysis, where individual executions are bloated according

to model-specific discrepancy functions [22], as implemented in

tools such as C2E2 [20, 23]. Another analysis approach for nonlinear

systems uses Taylor models, such as those in Flow* [15], which

can scale to around ten real variables [16]. For affine systems, as

recently as 2011 the state-of-the-art for reachability computation

was on the order of a hundred real variables [26].

Our work uses the Krylov subspace to simulate high-dimensional

systems, which is often also used in model order reduction meth-

ods [5]. Notice that in our case, since each simulation has a different

Krylov subspace, there is no single reduced order model that can be
constructed and analyzed (we are not creating a low-dimensional ab-

straction of the system). Model-order reduction approaches verify

a smaller dimensional model [17], and can sometimes use an error

bound to compute a guaranteed overapproximation of the original

full-order system [34, 35, 49]. Such approximation methods may

be formalized as sound abstractions or developed in the context of

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

 0 100 200 300 400 500

Error Target

E
rr

o
r

Number of Arnoldi Iterations (k)

Krylov Error
Lemma 4.1 Bound

Relative Error

Figure 6: A 544-dimensional Krylov subspace exceeds the de-
sired error target of 10−6 for the 100x100x100 (one million
dimensional) 3D Heat diffusion system.

approximate simulation and bisimulation relations [30, 31]. Model

order reduction methods have verified linear systems with on the

order of a thousand real variables.

Our approach builds on the basic verification approach used

in the Hylaa tool [10], which has verified systems with up to ten

thousand dimensions [7, 9, 11]. We scale to larger systems here

by leveraging initial and output spaces and using Krylov subspace

methods for numerical simulation. The basic approach here is also

related to the symbolic orthogonal projection method [33], where

the current-time variables in our approach could be considered the

variables onto which we are computing the projection.

Recent work on reachablity with Krylov methods [1] has used

better a priori bounds to reduce the number of required Arnoldi

iterations, compared with earlier work [36]. Further, more effi-

cient methods exist which perform Krylov simulations in multiple

stages [44], rather than only from the initial time as in this work. In-

tegrating these into our approach could further improve our result

by reducing the required dimension of the Krylov subspace.

For large systems, the only analysis option we are aware of be-

yond simple simulation would be falsification methods [4, 19, 45],

which run individual simulations trying to optimize towards an un-

safe region. Unlike our approach, thesemethods do not exhaustively

explore the state space.

7 CONCLUSION
The state-space explosion problem usually prevents analysis of

high-dimensional affine systems. In order to achieve scalability,

we exploited up to four types of problem structure: (i) a small di-

mension of initial states, (ii) a small dimension of the output space,

(iii) the sparsity of the system A matrix, and (iv), optionally, the

symmetry of the A matrix. When problems have this structure, we

have shown it is possible to efficiently perform verification or plot

projections of the reachable states despite a large number of state

variables. As the structure assumptions are violated, the proposed

approach degrades gracefully, requiring more computation time

and memory depending on the degree of the violation. We have

evaluated our approach on several large benchmarks, including a

3D Heat Diffusion system with one billion continuous state vari-

ables. Prior to this work, no existing method for affine systems has

demonstrated scalability beyond a few thousand variables.

Stanley Bak, Hoang-Dung Tran, and Taylor T. Johnson

ACKNOWLEDGMENT
Effort sponsored in whole or in part by the Air Force Research Lab-

oratory, USAF, under Memorandum of Understanding/Partnership

Intermediary Agreement No. FA8650-18-3-9325. Additionally, the

material presented in this paper is based upon work supported

by the National Science Foundation (NSF) under grant numbers

CNS 1464311, CNS 1713253, SHF 1527398, and SHF 1736323, the

Air Force Office of Scientific Research (AFOSR) through contract

numbers FA9550-15-1-0258, FA9550-16-1-0246, and FA9550-18-1-

0122, as well as FA8650-12-3-7255 via subcontract number WBSC

7255 SOI VU 0001, and the Defense Advanced Research Projects

Agency (DARPA) through contract number FA8750-18-C-0089. The

U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation

thereon. The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements, either expressed or

implied, of AFOSR, AFRL, DARPA, or NSF.

REFERENCES
[1] Matthias Althoff. 2017. Reachability Analysis of Large Linear Systems with

Uncertain Inputs in the Krylov Subspace. arXiv preprint arXiv:1712.00369 (2017).
[2] Matthias Althoff, Olaf Stursberg, and Martin Buss. 2008. Reachability analysis of

nonlinear systems with uncertain parameters using conservative linearization. In

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, 4042–4048.
[3] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. 1993.

Hybrid automata: An algorithmic approach to the specification and verification

of hybrid systems. In Hybrid systems. Springer, 209–229.
[4] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-

narayanan. 2011. S-taliro: A tool for temporal logic falsification for hybrid

systems. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 254–257.

[5] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. 2001. A survey ofmodel reduction

methods for large-scale systems. Contemp. Math. 280 (2001), 193–219.
[6] Walter Edwin Arnoldi. 1951. The principle of minimized iterations in the solution

of the matrix eigenvalue problem. Quarterly of applied mathematics 9, 1 (1951).
[7] Stanley Bak. 2018. Numerical Verification of 10000-dimensional Linear Systems

10000x Faster. In ARCH18. 5th International Workshop on Applied Verification of
Continuous and Hybrid Systems (EPiC Series in Computing), Goran Frehse (Ed.),

Vol. 54. EasyChair, 135–144. https://doi.org/10.29007/gv5q

[8] Stanley Bak, Sergiy Bogomolov, Thomas A. Henzinger, Taylor T. Johnson, and

Pradyot Prakash. 2016. Scalable Static Hybridization Methods for Analysis of

Nonlinear Systems. In International Conference on Hybrid Systems: Computation
and Control. 10. https://doi.org/10.1145/2883817.2883837

[9] Stanley Bak and Parasara Sridhar Duggirala. 2017. Direct Verification of Linear

Systems with over 10000 Dimensions. In 4th International Workshop on Applied
Verification of Continuous and Hybrid Systems (EPiC). EasyChair.

[10] Stanley Bak and Parasara Sridhar Duggirala. 2017. Hylaa: A tool for computing

simulation-equivalent reachability for linear systems. In Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control. ACM.

[11] Stanley Bak and Parasara Sridhar Duggirala. 2017. Simulation-Equivalent Reacha-

bility of Large Linear Systems with Inputs. In Proceedings of the 29th International
Conference on Computer Aided Verification. Springer.

[12] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. 2017. Hamilton-

Jacobi Reachability: A Brief Overview and Recent Advances. 1709.07523 (2017).
[13] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Andreas Podelski, Christian

Schilling, and Frédéric Viry. 2018. Reach Set Approximation through Decom-

position with Low-dimensional Sets and High-dimensional Matrices. In 21st
International Conference on Hybrid Systems: Computation and Control. ACM.

[14] Younes Chahlaoui and Paul Van Dooren. 2002. A collection of benchmark exam-

ples for model reduction of linear time invariant dynamical systems. (2002).

[15] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. 2012. Taylor Model

Flowpipe Construction for Non-linear Hybrid Systems. Real-Time Systems Sym-
posium (2012). https://doi.org/10.1109/RTSS.2012.70

[16] Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám, Goran Frehse,

and Stefan Kowalewski. 2015. A benchmark suite for hybrid systems reachability

analysis. In NASA Formal Methods Symposium. Springer, 408–414.

[17] Yi Chou, Xin Chen, and Sriram Sankaranarayanan. 2017. A Study of Model-Order

Reduction Techniques for Verification. In Numerical Software Verification.

[18] Thao Dang, Oded Maler, and Romain Testylier. 2010. Accurate hybridization of

nonlinear systems. In Hybrid systems: computation and control. 10.
[19] Alexandre Donzé. 2010. Breach, a toolbox for verification and parameter synthesis

of hybrid systems. In Computer Aided Verification. Springer.
[20] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew

Potok. 2015. C2E2: a verification tool for stateflow models. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.

[21] Parasara Sridhar Duggirala and Mahesh Viswanathan. 2016. Parsimonious,

simulation based verification of linear systems. In Computer Aided Verification.
[22] Chuchu Fan and Sayan Mitra. 2015. Bounded verification with on-the-fly dis-

crepancy computation. In Automated Technology for Verification and Analysis.
[23] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and Parasara Sridhar

Duggirala. 2016. Automatic reachability analysis for nonlinear hybrid models

with C2E2. In International Conference on Computer Aided Verification.
[24] Stanley J Farlow. 1993. Partial differential equations for scientists and engineers.
[25] Goran Frehse, Rajat Kateja, and Colas Le Guernic. 2013. Flowpipe approximation

and clustering in space-time. In Hybrid systems: computation and control.
[26] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.

2011. SpaceEx: Scalable Verification of Hybrid Systems. In International Confer-
ence on Computer Aided Verification. Springer.

[27] Efstratios Gallopoulos and Yousef Saad. 1992. Efficient solution of parabolic

equations by Krylov approximation methods. SIAM J. Sci. Statist. Comput. (1992).
[28] Antoine Girard. 2005. Reachability of uncertain linear systems using zonotopes.

In International Workshop on Hybrid Systems: Computation and Control. Springer.
[29] Antoine Girard, Colas Le Guernic, and Oded Maler. 2006. Efficient computation

of reachable sets of linear time-invariant systems with inputs. In International
Workshop on Hybrid Systems: Computation and Control. Springer, 257–271.

[30] Antoine Girard and George J Pappas. 2007. Approximation metrics for discrete

and continuous systems. Automatic Control, IEEE Transactions on 52, 5 (2007).

[31] Antoine Girard and George J Pappas. 2011. Approximate bisimulation: A bridge

between computer science and control theory. European Journal of Control (2011).
[32] Amit Gurung and Rajarshi Ray. 2016. An Efficient Algorithm for Vertex Enumer-

ation of Two-Dimensional Projection of Polytopes. CoRR abs/1611.10059 (2016).

http://arxiv.org/abs/1611.10059

[33] Willem Hagemann. 2014. Reachability analysis of hybrid systems using symbolic

orthogonal projections. In Computer Aided Verification.
[34] Zhi Han. 2005. Formal verification of hybrid systems using model order reduction

and decomposition. Ph.D. Dissertation. Dept. of ECE, Carnegie Mellon University.

[35] Zhi Han and Bruce Krogh. 2004. Reachability analysis of hybrid control systems

using reduced-order models. In American Control Conference.
[36] Zhi Han and Bruce H Krogh. 2006. Reachability analysis of large-scale affine

systems using low-dimensional polytopes. In HSCC, Vol. 6. Springer, 287–301.
[37] Cornelius Lanczos. 1950. An iteration method for the solution of the eigenvalue

problem of linear differential and integral operators. USA Press Office.

[38] Colas Le Guernic. 2009. Reachability analysis of hybrid systems with linear
continuous dynamics. Ph.D. Dissertation. Université Joseph-Fourier-Grenoble I.

[39] Colas Le Guernic and Antoine Girard. 2010. Reachability analysis of linear

systems using support functions. Nonlinear Analysis: Hybrid Systems 4, 2 (2010).
[40] Alexander V Lotov, Vladimir A Bushenkov, and Georgy K Kamenev. 2013. Inter-

active decision maps: Approximation and visualization of Pareto frontier.
[41] Oded Maler, Zohar Manna, and Amir Pnueli. 1991. From timed to hybrid systems.

In Workshop/School/Symposium of the REX Project.
[42] Ian Mitchell and Claire Tomlin. 2000. Level set methods for computation in

hybrid systems. In HSCC, Vol. 1790. Springer, 310–323.
[43] Cleve Moler and Charles Van Loan. 2003. Nineteen dubious ways to compute the

exponential of a matrix, twenty-five years later. SIAM review 45, 1 (2003), 3–49.

[44] Jitse Niesen and Will M. Wright. 2012. A Krylov Subspace Algorithm for Evalu-

ating the ϕ-Functions Appearing in Exponential Integrators. ACM Trans. Math.
Softw. (2012). http://doi.acm.org/10.1145/2168773.2168781

[45] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. 2008. On a

continuous degree of satisfaction of temporal logic formulae with applications

to systems biology. In Computational Methods in Systems Biology.
[46] O. Stauning. 1997. Automatic validation of numerical solutions. Ph.D. Dissertation.

IMU-DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby.

[47] C.J. Tomlin, I. Mitchell, A.M. Bayen, andM. Oishi. 2003. Computational techniques

for the verification of hybrid systems. Proc. IEEE (2003).

[48] Hoang-Dung Tran, Luan Viet Nguyen, and Taylor T Johnson. 2016. Large-

scale linear systems from order-reduction (benchmark proposal). In 3rd Applied
Verification for Continuous and Hybrid SystemsWorkshop (ARCH), Vienna, Austria.

[49] Hoang-Dung Tran, Luan Viet Nguyen, Weiming Xiang, and Taylor T Johnson.

2017. Order-Reduction Abstractions for Safety Verification of High-Dimensional

Linear Systems. Discrete Event Dynamic Systems (2017).
[50] Lloyd N Trefethen and David Bau III. 1997. Numerical linear algebra. SIAM.

[51] Hao Wang and Qiang Ye. 2017. Error bounds for the Krylov subspace methods

for computations of matrix exponentials. SIAM J. Matrix Anal. Appl. 38, 1 (2017).

https://doi.org/10.29007/gv5q
https://doi.org/10.1145/2883817.2883837
https://doi.org/10.1109/RTSS.2012.70
http://arxiv.org/abs/1611.10059
http://doi.acm.org/10.1145/2168773.2168781

	Abstract
	1 Introduction
	2 Affine Verification Review
	2.1 Basic Verification Approach
	2.2 Timed Harmonic Oscillator Example

	3 Memory Improvements
	3.1 Projecting onto the Output Space
	3.2 Projecting from the Initial Space

	4 Computation Time Improvements
	4.1 Basis Matrix using Numerical Simulations
	4.2 Simulations using the Krylov Subspace
	4.3 Krylov Simulations of Symmetric Matrices

	5 Evaluation
	5.1 Modified Nodal Analysis (MNA5)
	5.2 Replicated Helicopter
	5.3 Symmetric 3D Heat Diffusion

	6 Related Work
	7 Conclusion
	References

