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Transparent boundary conditions for the transient Schr6dinger equation on a domain f2 can be
derived explicitly under the assumption that the given potential V is constant outside of this
domain. In 1D these boundary conditions are non-local in time (of memory type). For the
Crank-Nicolson finite difference scheme, discrete transparent boundary conditions are
derived, and the resulting scheme is proved to be unconditionally stable. A numerical exam-
ple illustrates the superiority of discrete transparent boundary conditions over existing ad-hoc
discretizations of the differential transparent boundary conditions.

As an application of these boundary conditions to the modeling of quantum devices, a tran-
sient 1D scattering model for mixed quantum states is presented.
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1. INTRODUCTION

The formulation and implementation of physically
reasonable and mathematically well-posed boundary
conditions (BC) is one of the big open problems and
challenges for transient simulations of semiconductor
devices through quantum mechanical models. This

paper is concerned with the construction and discreti-
zation of absorbing boundary conditions (ABC) for
the Schr6dinger equation (SE)

ihtt 2 At+ V(x,t)t, x E v, t > O,

v(x,0)
(1.1)

where the electrostatic potential V is assumed to be
given. These BC’s are derived from mathematical
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considerations, and they can be used as ingredients
for modeling quantum contacts.

When numerically solving a whole-space evolution
problem, the computation has to be confined to a

finite domain by introducing artificial BC’s. If the ini-
tial data is supported on this finite domain D,, one can

approximate lfa, the exact solution of the whole
space problem restricted to D,, by solving the original
problem only on D,, together with ABC’s on /)if2. If
this approximate solution coincides on f with the
exact solution, one refers to these BC’s as transparent
boundary conditions (TBC).
ABC’s were first derived by Engquist and Majda

for hyperbolic systems by requiring that outgoing
waves can leave the computational domain without

being reflected back in ([7]). Since then, these ideas
have been adapted and refined for numerous applica-
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tions. E.g., ABC’s for the Wigner equation of quan-
tum mechanics were obtained and analyzed in [16],
[1 ], and they were used for transient simulations of
resonant tunneling devices in 10].
The recent interest in finding reasonable BC’s for

the SE was mostly prompted by applications from
outside of quantum mechanics. We remark that a

Schr6dinger-type equation naturally appears as a

small-angle approximation to the Helrnholtz equation
in cylindrical coordinates. There, the radial variable r

plays the role of the time in (1.1), and the axial varia-
ble z the role of the spatial variable x. In optical appli-
cations this model is referred to as the Fresnel
equation ([17]), and in underwater acoustics it is
called the parabolic equation ([ 15]).

In previous simulations, several heuristic BC’s were
introduced for the SE, and they yield reasonable results
for either short time calculations or a limited frequency
range. These existing strategies include the introduc-
tion of an artificial absorption or attenuation layer close
to the boundary, which can also be interpreted as add-
ing a complex potential in (1.1) (see 11 ], 19], [20]). In
another approach, the wave function is fitted to a
plane wave close to the boundary ([8], [20]).
Our goal is to first derive (homogeneous) TBC’s

for the 2D SE under the two assumptions, that the ini-
tial data xlr is supported in D,, and that the medium

(here modeled by the potential V) is homogeneous
and time-independent outside of . Otherwise infor-
mation would be lost, and the whole space evolution
could not be mimicked on the finite domain

For the 1D SE, the TBC was independently derived
by several authors from various application fields

([ 141, [41, [9]).
As this general construction may be useful for

many other applications, we will sketch this deriva-
tion in 2 for the 1D and 2D Schr6dinger equation,
and analyze the well-posedness of the resulting initial
boundary value problems (IBVP). In 3 we derive
and investigate an unconditionally stable numerical
discretization of the 1D problem, based on a
Crank-Nicolson finite difference scheme. As an appli-
cation of these TBC’s we present in 4 a transient
Schr6dinger-Poisson scattering model for mixed
quantum states.

2. TRANSPARENT BOUNDARY CONDITIONS
FOR THE SCHRODINGER EQUATION
IN 1D AND 2D

In this Section we will first derive the TBC’s for the
2D Schr6dinger equation on the slab f2 {(x,y)
210 < x < L }. We assume that the initial data xr is

supported in g2, and that the given potential is constant
outside: V(x,y,t) 0 for x < O, V(x,y,t) V/ for x > L.
We first cut the original whole space problem (1.1)

into three subproblems, the interior problem on D,
and a left and right exterior problem. They are cou-
pled by the assumption that V, Vx are continuous
across the boundary. The interior problem reads

h2
ihwt 2 AW+ V(x,y,t)W,

(x,y) E g2, > O,
V(x,y, 0) xlt (x,y), (2.1)
tx(O,y,t) (T_v)(O,y,t),
XVx(L,y,t (T+x)(L,y,t).

Here, T__. denote the Dirichlet-to-Neumann maps at

the boundaries, and they are obtained by solving the
two exterior problems:

h2
ihvt -mAv, x<0, yEIl, t>0,

2
v(x,y,O) O, (2.2)
v(O,y,t) O(y,t), yE IR, > 0,

(T_O)(y,t) vx(O,y,t),

and analogously for T/. In (2.2) we also have to

require that v decays as x -oo. Since the potential is
constant in the exterior problems, we can solve them
explicitly by the Fourier-Laplace method and thus
obtain the two boundary operators T_ needed in (2.1).
The Fourier-Laplace transform of v is

O(x, k, s) v(x, y, t)e-ikye-"’dy dt, (2.3)

where we set s rl + i, , and rl > 0 is fixed,
with the idea to later perform the limit rl -- 0. Now
the exterior problem (2.2) is transformed to

h2
ihsO -m(xx-k2f), x<0, kEI, (2.4)

Since its solutions have to decrease as x -- --oo, we
obtain
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eX/k2-2is/hxt(k, s)
I

f(x,k,s) Re/k2 2is/h > O.

(2.)

Hence the transformed Dirichlet-to-Neumann opera-
tor T_ reads

T_O(k,s) e- + k2(k,s),

h
ke + ig >o, (.

and T+ is calculated analogously.
Now we will first discuss e 1D situation. For-

mally settingk 0 in (2.6),e left TBC is obtained by
inverse Laplace transfo:

,(0,tl- e-N
Similly, the right TBC is derived as

2e-ie-,V+t/d Zt v(L,)
dS dx. .8)

ese BC’s e non-local in and of memory-type,
thus requiringe storage of all the past history ate
boundy in a numerical discretization.

We remk thate term

can be interpreted as a fractional , time derivative. A

simple calculation also shows that (2.7) is equivalent
to the impedance boundary condition derived in [14]"

nifootVX(O’Z)dz. (2.10)v(O,t) V .eZ x/t ’- x
From the used construction, it is clear that the 1D

Schr6dinger equation with the TBC’s (2.7) and (2.8)
has a solution. For regular enough initial data, e.g. x
H6 (0, L), the whole space solution (x,t) will sat-

isfy the TBC’s at least in a weak sense. The unique-
ness of the solution is, however, not trivial. In order to

prove uniform boundedness of II(.,t)ll0,) in we
will need the following simple lemma.

Lemma 2.1 For any T > 0, let u HI/4(O,T) with the
extension u(t) 0for > T. Then

dRe{e f0 /,i(t) [f0 d’c dt} >0. (2.11)

Proof Using the Plancherel equality for the Laplace
transform, the l.h.s, of (2.11) equals

1Re{efr-(i)/a(i)d}>O’2rt (2.12)

Here, the branch of the square root with non-neg-
ative real part.
A straight forward calculation with the ID

Schr6dinger equation now shows

IIv(t)ll./0,/_< IIvll/0,,./, > 0, (2.13)
and this implies uniqueness of the solution to the

Schr6dinger IBVP. In this calculation one needs the
estimate (2.11) for the left boundary term, and an

analogous estimate for the right boundary. (2.13)
reflects the fact that some of the initial mass or parti-

cle density n(x, t) --I(x,t)l2 leaves the computational
domain [0, L] during the evolution. In the whole

space problem IIv(/)ll)is of course conserved.

We now return to the 2D problem on the vertical

strip 0 < x< L. For this case we derived the TBC in

(2.6). After inverse Fourier and Laplace transforma-
tion, this TBC is a convolution in and y, generalizing
the explicit 1D representation (2.7). From a numerical

point of view, an implementation of this non-local (in
and y) BC would be rather costly. It is therefore

desirable to first approximate this TBC by a BC that
is at least local in y.
In order to motivate our approximation, we first

sketch an alternative, heuristic derivation of the 2D
TBC (2.6) at x --0. We consider left traveling plane
wave solutions to the free SE (since the potential V--0
close to the left boundary)

(x,y,t) -exp[i(-v/2----k2x+ky-tot)] (2.14

with to > 0 and k fixed. At x 0 this plane wave satis-
fies

oV/2t-O[/x -l k21t, (2.15)
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and this coincides with (2.6) if we set co is. One eas-
ily sees that 0, the impact angle of the plane wave at

the boundary (measured towards the normal) is given
by sin2 0 hk2/(2c0). If outgoing waves hit the bound-
ary almost orthogonally (0 0), it is a standard strat-

egy (see [7]) to use a Taylor approximation in 0 of the
symbol of the pseudo-differential operator T_ (see
(2.6)):

s (ih)+ik2= {/qcos0 or 9q 1+
(2.16)

In lowest order this yields a first order ABC for the
2D SE at x 0:

i9 for v(O,y, r,)
dx.x(O,y,t)

2 e_i..
Vq (2.17)

This BC essentially neglects 2D effects at the bound-
ary, and the well-posedness of the resulting IBVP car-
ries over from the 1D situation. On finite time
intervals, this solution can be expected to be a reason-
able approximation to the whole space solution, under
the assumption 0 0.

In the next order approximation from (2.16) we
first get after multiplying by +

+v-sfltx(O,k,s) e-i s + @(0,k,s). (2.18)

And by inverse Laplace-transformation, the second
order ABC then reads

e’-i(vt- -Vyy), x-0. (2.19)

We conjecture that the resulting IBVP is well-posed;
this problem will be analyzed in a forthcoming paper.

3. DISCRETIZATION OF THE TRANSPARENT
BOUNDARY CONDITION IN 1D

In this Section we will discuss a discretization of the
1D TBC (2.7) based on the Crank-Nicolson finite dif-
ference scheme for the SE. With the uniform grid
points xj-- jkx, n nat, and the approximations

’ -(x.,t,) this scheme reads for the whole space

problem

r(j+1 j) j++l 2j+’ + j-+l + j+,

-2xj+xj_, +wV;+1/2(j+’ +jj), (3.1)

with

4iAx2 2Ax2 t/-F
V ).r-

hat
w-

For our analysis, one of the main advantages of this

second order (in zXx and At) scheme is, that it is
unconditionally stable, and it preserves the discrete

L2-norm IIv"I[22 AxE IV’I )-

jeT/

We remark that most existing discretization

schemes for the 1D Schr6dinger equation with TBC’s
are also based on Crank-Nicolson finite differences
([4], [13], [15]). In [17] a semi-discrete TBC for the
1D SE with time-dependent potentials in the exterior
domains (i.e., V/ V/(t)) was derived. For constant

potentials, the obtained method (also Crank-Nicol-

son) is related to our ideas.

The delicate question is how to discretize the con-

volution (2.7) with its singular kernel. In [13], May-
field used the approximation

ftu Us(O, tN --"r.) N-, ft,,+, dr,

,a e E ,g, " ,go .Jo tl--0 tn

(3.2)

for theC in e equivalent foulation (2.10). For
e resulting scheme she obtainede following result:

Theorem 3.1 ([13]) The discretization scheme
(3.1), (3.2) is stub&, ifand only if

4
At=n [(2j+ 1)-, (2j)-2]. (3.3)

je0

is shows at the chosen boundy discretization
destroys the unconditional stability of the underlying
Cra-Nicolson scheme.
Our aim is to derive a different boundaw discreti-

zation of (2.7) which gives an unconditionally stable
scheme and a discrete analogue of (2.13), the unifo
boundedness of the continuous L2-norm. When con-

sidering the discretization of TBC’s, it should be a
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standard strategy to derive the discrete TBC’s of the
fully discretized problem, rather then attempting to

discretize the differential TBC. Discrete TBC’s not

only completely avoid any numerical reflections at
the boundary, but their numerical stability is often
also better-behaved, as it is the case here. A compari-
son of these two strategies for a ID wave propagation
problem is given in [6].

To derive the discrete TBC we will now mimic the
derivation from 2 on a discrete level, and we will
again only consider the lbft BC. The idea is to explic-
itly solve the discrete exterior problems. The Z-trans-
form of the sequence {’}, n 0, with j
considered fixed, is defined as the Laurent series

Z{xj} j(z) jz-n. (3.4)
n=0

In analogy to the continuous problem we assume
that the potential and initial data vanish for x < 0

0V;+1/2-0 for j<0, Vj=0 for j<l. (3.5)

Then, the Z-transformed Crank-Nicolson scheme for
the left exterior problem reads

j+l- 2+r j+V)’_l=0, j<0. (3.6)
z+l

This difference equation has the two linearly inde-

pendent solutions

tj=(J, j<l"

Iz 4 4rz-1 r
2(1-F--)-2z+l--.Ctl,2(z) + +

r r
(3.7)

Since we need decreasing modes as j -- --oo, we have
to require letl (z)l > 1.

The (Z-transformed) discrete TBC is now obtained
as l (z) etl(Z)0(z) which remains to be inverse
transformed. In a tedious calculation this can be
achieved explicitly:

Theorem 3.2 The left (at j-- O) and right (at j J)
discrete TBC’s for the Crank-Nicolson discretization
(3.1) ofthe 1D SchrSdinger equation are

n

k=l

j_l

_
jly-k j-l, n >_ l, (3.8)

k=l

with

l= (1-i+)50n+(l+i+)5n+
Clje_inj Pn(Pj) Pn-2(ttj)

2n-1
j- O,J, (3.9)

29(y+2) 2&"2 Wj,2, O’j-- h’’"(pj arctan
p2_4oj_o

2192 q- 40j q- Oj
(3.1 O)]gJ

V/(p2 + o)(p2 + [Oj q’- 412)

o})(p2 [CIj 412)eipj/2 (3.11etj- ’(’132 q- -I- +

where Pn denotes the Legendre polynomials (P-I P-2
0), and 5, the Kronecker symbol.

The Pn only have to be evaluated at the two values
go and gj, and hence the numerically stable recursion

formula for the Legendre polynomials can be used.

1, 1 O(n-3/2) which agrees with the decay of the
convolution kernel in the differential TBC’s (2.7),
(2.8) (after an integration by parts).
The system matrix of the implicit scheme (3.1),

(3.8) is diagonal-dominant and hence invertible. To
prove stability of the scheme, one can derive a dis-
crete analogue of Lemma 2.1 and (2.13). We then
have the main result of this Section:

Theorem 3.3 The solution of the discretized SE
(3.1) with the discrete TBC’s (3.8) is uniformly
bounded

J-I

IIv"ll 2< IIvll , n _> l, (3.12)
j=l

and the scheme is thus unconditionally stable.
It can also be shown that (3.8) is a consistent dis-

cretization of the differential BC’s (2.7), (2.8). The
details of the numerical analysis will be presented in
[2]. Fig. shows a simulation of a right traveling
Gaussian beam evolving under the free Schr6dinger
equation (h 1) with the rather course discretization
Ax 0.00625, At 0.00002. Discretizing the analytic
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TBC’s via (3.2) introduces strong numerical reflec-
tions, while our discrete TBC’s (3.8) recovers the
smooth solution.
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FIGURE (x,t)l for a fight traveling Gaussian beam at three
consecutive times with discrete TBC’s (3.8) (solid) and the discre-
tized analytic TBC’s (3.2) (dotted)

4. A TRANSIENT SCHRODINGER-POISSON
SCATTERING MODEL WITH TBC’S

TBC’s for the 2D steady state SE have been used in

[12] to model current carrying states in quantum
devices. In 1D, these BC’s are the steady state ana-

logue of (2.7), (2.8). A similar ID Schr6dinger-Pois-
son scattering model has been analyzed
mathematically in [5].

The (transient) 1D TBC’s of {}2 can of course only
be used for simulating the time evolution of a pure
state wave function. For the application to transient
semiconductor device modeling, we will now present
a self-consistent Schr6dinger-Poisson model for
mixed quantum states with inhomogeneous TBC’s.
The (homogeneous) TBC (2,7) was derived for

modeling the situation where an initial wave function
is supported in the computational domain [0, L], and
it is leaving this domain without being reflected back.
If an incoming wave function Xin(t is given at the left
boundary (e.g. a right traveling plane wave), the inho-
mogeneous TBC

[l/’(0,/) ltin(t)]x e
V )t [gt(0,t) llfin(t)]

(4.1)

has to be prescribed at x 0.

In our 1D transient scattering model the state of the
electrons is represented by the sum of two density
matrices p],2(x, y, t). P describes the contribution of
the initial state Or, which is supported in the consid-
ered domain [0, L]2, and P2 is the density matrix for
the incoming wave packets from the boundary.

Since we assume p] L2((0, L)2), it can be factor-
ized into pure state wave functions as

191 (x,y,t) ., ,jVj(X,t)ltj(y,t), (4.2)
jEN

and they satisfy

h2
ihOtxj

2
)xxVj + V(x,t)j,

O<x<L, >0,
tj(x,O) -j(x), supp(j)C (O,L),
V(x,t) =0 forx<0,

V (x,t) V+ forx>_L,

(4.3)
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together with the homogeneous TBC’s (2.7), (2.8) for
each j, j [.

For simplicity we assume that there is a constant

incoming wave packet, only at the left boundary, that
consists of the right-traveling plane waves

exp[i/h (kx- k2t/2)], k > 0. Each wave vector k of this

incoming packet is associated with a weight g(k) > O.
The density matrix 02 can then be represented as

p2(x,y,t) g(k)k(X,t)k(y,t) dk, (4.4)

and these wave functions k, k > 0 satisfy

h
ih)ttk ---OxxVk + V (x,t)tk,

0<x<L, >0,
W (x,0) =0.

(4.5)

At the left boundary x-- 0 they satisfy the inhomoge-
neous TBC (4.1) with

tk,in(t exp --t (4.6)

and at the right boundary the homogeneous TBC
(.8).
The total particle density associated with the state

191 + 02 is

n(x,t) .jr jlVj(x,t)lz

+ g(k)l(x,t)ldk, 0 < x < L. (4.7)

In a self-consistent model, the potential V(x,t) would
then be obtained from the Poisson equation:

Vxx--n, 0<x<L, (4.8)V(0,/) -0, V(L,t) V+.
We remark that the scattering model of [5] is the
steady state analogue of the above model (4.2)-(4.8).

The presented model was obtained in collaboration
with N. Ben Abdallah, and a mathematical analysis of
this model will be given in [3].
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