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Abstract. We introduce a new efficient importance sampler for nonlinear non-Gaussian state

space models. By combining existing numerical and Monte Carlo integration methods, we obtain

a general and efficient likelihood evaluation method for this class of models. Our approach is based

on the idea that only a small part of the likelihood evaluation problem requires simulation, even

in high dimensional settings. We refer to this method as Numerically Accelerated Importance

Sampling. Computational gains of our efficient importance sampler are obtained by relying on

Kalman filter and smoothing methods associated with an approximated linear Gaussian state

space model. Our approach also leads to the removal of the bias-variance tradeoff in the efficient

importance sampling estimator of the likelihood function. We illustrate our new methods by an

elaborate simulation study which reveals high computational and numerical efficiency gains for a

range of well-known models.

Keywords: State space models, importance sampling, simulated maximum likelihood, stochastic

volatility, stochastic copula, stochastic conditional duration.

1. Introduction

The evaluation of an analytically intractable likelihood function is a challenging problem for a
variety of econometric models. The core difficulty is the numerical evaluation of a high-dimensional
integral. Importance sampling methods are typically used to approximate such integrals. The
advances in importance sampling over the past three decades have contributed to the interest in
nonlinear non-Gaussian state space models including stochastic volatility models by Ghysels et al.
(1996), stochastic conditional intensity models by Bauwens and Hautsch (2006), non-Gaussian un-
observed components time series models by Durbin and Koopman (2000), and flexible non-linear
panel data models with unobserved heterogeneity by Heiss (2008).

We propose a new importance sampler with a high level of numerical and computational efficiency
for a general class of nonlinear non-Gaussian state space models. We first show that the likelihood

*Contact author: Marcel Scharth (mscharth@feweb.vu.nl).
Acknowledgements: the authors are thankful for the helpful comments of seminar participants at Mannheim University,

Tinbergen Institute Amsterdam, Chicago Booth School of Business, Université Paris I, Sorbonne, and the 4th CSDA
conference in London.
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evaluation problem for this class of models can be in large part approached by numerical integration.
It is known that numerical integration is fast and accurate but its applicability is typically limited
to lower dimensional problems. Monte Carlo integration is subject to simulation error but widely
applicable to high-dimensional problems. By combining the two approaches, we are able to carry the
virtues of numerical integration over to high-dimensional state space models for long time series. We
therefore depart from the numerical approaches of Kitagawa (1987) and Fridman and Harris (1998)
but also from the simulation methods of Danielsson and Richard (1993) and Durbin and Koopman
(1997). We will refer to our method as numerically accelerated importance sampling (NAIS).

We next show that the two different importance sampling approaches can be integrated into the
implementation of NAIS in a computationally efficient way. The approach of Shephard and Pitt
(1997) and Durbin and Koopman (1997), which we refer to as SPDK, is based on an approximating
linear Gaussian state space model from which importance samples can be generated by fast methods
based on the Kalman filter and smoother (KFS). The approximation of SPDK is optimal as a
mode estimator but is a local approximation of the likelihood integral. We adopt the device in
Koopman and Nguyen (2011) to show that the efficient importance sampling method of Liesenfeld
and Richard (2003) and Richard and Zhang (2007), which we refer to as EIS, can be implemented
using the KFS methods used in SPDK. The approximation of EIS is a global approximation of the
likelihood integral. The implementation of our NAIS attains a nearly exact numerical solution for
obtaining the global approximate likelihood function which we will use as an importance density.
The computations rely fully on the computationally efficient KFS methods.

Our method also eliminates the bias-efficiency tradeoff in the EIS method. It is shown that
the standard implementation of EIS method is subject to finite sample bias as the algorithm uses
the same random numbers for estimating the optimal importance sampling coefficients and for
computing the likelihood function estimate. This procedure leads to a violation of the assumption
that the parameters of the importance samplers are fixed for sampling purposes. On the other hand,
the immediate alternative of using distinct random draws across the two steps may lead to an increase
in the variance of the likelihood estimator if the number of Monte Carlo samples used for estimating
the optimal sampling coefficients is small. The iterative solution of hundreds of auxiliary regressions
within the EIS algorithm therefore imposes a large cost on a numerically efficient implementation
of the method. It will be shown that the bias problem can be completely eliminated by the use of
NAIS for selecting the importance sampling coefficients. The bias removal comes with a substantial
increase in computational efficiency.

We conduct a simulation study to analyze the efficiency gains of the new methods proposed in this
paper. To check for the robustness of our results, we consider three different model specifications:
the stochastic volatility model, see for example Ghysels et al. (1996), the stochastic duration model
of Bauwens and Veredas (2004), and the stochastic copula model of Hafner and Manner (2011). Each
of these models requires likelihood evaluation by numerical techniques such as importance sampling.
We show that all our methods can be efficiently implemented in each of these different contexts.
We obtain three main results. First, we show that the linear state space model approximation
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always performs substantially faster than a standard implementation of the EIS method. This holds
even without considering numerical acceleration. Second, as we increase the number of importance
sampling trajectories our NAIS method proves significantly faster and more accurate than standard
EIS. The NAIS method unambiguously improves the tradeoff between computational and numerical
efficiency in the number of samples. Finally, for all models considered in our simulation study
we are able to reduce the variance of our likelihood estimates by more than 40% with the use of
efficiently computed NAIS based control variates, relative to the use of antithetic variables as a
variance reduction device.

The paper is structured as follows. Section 2 introduces the notation and the importance sampling
concepts used throughout the paper. Section 3 introduces the new importance sampler. Section 4
compare the different IS methods in an extensive simulation study. Section 5 concludes.

2. Importance sampling for nonlinear non-Gaussian state space models

The main ideas of importance sampling are presented in Kloek and van Dijk (1978), Ripley (1987)
and Geweke (1989), among others. Importance sampling techniques for state space models have been
examined in Danielsson and Richard (1993), Shephard and Pitt (1997), Durbin and Koopman (1997)
and other papers. A textbook treatment can be found in Durbin and Koopman (2001). A short
review of the literature with additional references is also provided by Richard and Zhang (2007).

Our aim is to evaluate the likelihood function for the nonlinear non-Gaussian state space model

yt|θt ∼ p(yt|θt;ψ), θt = Ztαt, t = 1, . . . , n,

αt = dt + Ttαt−1 + ηt, α1 ∼ N(a1, P1), ηt ∼ N(0, Qt),
(1)

where yt is a p× 1 observation vector, θt is the signal vector, and αt is an m× 1 state vector. The
m × 1 constant vector dt, the m × m transition matrix Tt and the variance matrix Qt determine
the dynamic properties of the model. The observation density p(yt|θt;ψ) may rely on a non-linear
transformation of the signal θt. The unknown fixed parameter vector ψ contains the unknown
coefficients in the observation density as well as unknown coefficients on which the system matrices
depend.

When we assume that p(yt|θt;ψ) is a Gaussian density with mean θt = Ztαt and some variance
Vt, for t = 1, . . . , n, we can adopt Kalman filter and smoothing methods for evaluating the likelihood
function and the minimum mean squared error estimates of the state vector αt together with its mean
square error. However, this paper focuses on non-Gaussian densities for p(yt|θt;ψ) with parameters
that possibly depend on θt in a possibly nonlinear fashion.

In our treatment we focus on the signal θt. Define θ′ = (θ′1 , . . . , θ
′
n) and y′ = (y′1 , . . . , y

′
n) and

let ψ be a fixed and unknown parameter vector. The likelihood for (1) is given by the analytically
intractable integral

(2) L(y;ψ) =
∫
p(θ, y;ψ)dθ =

∫ n∏
t=1

p(yt|θt;ψ)p(θt|αt−1;ψ)dθ1 . . . dθn,
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where p(θ, y;ψ) is the joint model density for y and θ that are generated by (1). Kitagawa (1987)
has developed a numerical integration method for the evaluation of the likelihood integral. This
approach is only feasible when the dimensions of θ and y are small.

For the evaluation of the likelihood function by means of importance sampling, we consider the
importance model density g(θ, y;ψ) = g(y|θ;ψ)g(θ;ψ) that we assume to be Gaussian, including
g(y|θ;ψ) and g(θ;ψ), where g(θ;ψ) = p(θ;ψ) is the density for θ from model (1). The likelihood
function can then be expressed by

L(y;ψ) =
∫
p(θ, y;ψ)
g(θ|y;ψ)

g(θ|y;ψ)dθ

= g(y;ψ)
∫
p(θ, y;ψ)
g(θ, y;ψ)

g(θ|y;ψ)dθ

= g(y;ψ)
∫
ω(θ, y;ψ)g(θ|y;ψ)dθ,(3)

where g(y;ψ) is the likelihood function of the Gaussian importance model and

(4) ω(θ, y;ψ) ≡ p(y|θ;ψ)
g(y|θ;ψ)

,

is referred to as the importance weight function. The last equality in (3) is valid since p(θ;ψ) =
g(θ;ψ). By generating S independent trajectories θ(1) , . . . , θ(S) from the importance density
g(θ|y;ψ), the likelihood function (3) can be estimated by the sample mean

(5) L̂(y;ψ) = g(y;ψ)ω̄, ω̄ =
1
S

S∑
s=1

ωs, ωs = ω(θ(s), y;ψ),

where ωs is the realized importance weight for θ(s). Under suitable regularity conditions, the law of
large numbers ensures that

(6) L̂(y;ψ)
p−→ L(y;ψ).

Geweke (1989) has argued that importance sampling should only be used in settings where the
variance of the importance weights ω1, . . . , ωS is known to exist. Failure of this condition can lead
to slow and unstable convergence of the estimator as the central limit theorem governing convergence
fails to hold. Koopman et al. (2009) have discussed methods to check for this condition.

The Gaussian importance model density function can be represented as

g(θ, y;ψ) =
n∏
t=1

g(yt|θt;ψ)g(θt|αt−1;ψ),(7)

where g(θt|αt−1;ψ) is the Gaussian density for θt as given by (1) and where Gaussian density
g(yt|θt;ψ) can be expressed as

g(yt|θt;ψ) = exp
{
at + b′t θt −

1
2
θ′t Ct θt

}
,(8)

with at, bt and Ct defined as functions of data vector y and parameter vector ψ, for t = 1, . . . , n.
The constants a1, . . . , an are chosen such that the model density g(θ, y;ψ) integrates to unity while
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the mean and variance of the density function (8) are determined by bt and Ct only, for t = 1, . . . , n.
The variables bt and Ct therefore determine the properties of importance sampling density. The set
of importance sampling parameters is given by

(9) χ = {b1, . . . , bn, C1, . . . , Cn}.

2.1. SPDK method. The importance sampling method of Shephard and Pitt (1997) and Durbin
and Koopman (1997), which we refer to as SPDK, chooses the variables in χ implicitly via the
second-order Taylor expansion of log p(yt|θt;ψ) in (1), around a fixed pre-determined value for θt,
say θ̂t, that is

(10) log p(yt|θt;ψ) ≈ x̂0t + x̂′1t (θt − θ̂t) +
1
2

(θt − θ̂t)′ x̂2t (θt − θ̂t),

where x̂it = xit(θ̂t), i = 0, 1, 2, with

x0t(st) = log p(yt|θt;ψ)|θt=st , x1t(st) =
∂ log p(yt|θt;ψ)

∂θt
|θt=st , x2t(st) =

∂2 log p(yt|θt;ψ)
∂θt∂θ′t

|θt=st ,

for any p × 1 vector st and t = 1, . . . , n. The three right-handside terms of the expansion (10) can
be represented by the Gaussian importance density function (8) where

(11) bt = x̂1t − x̂2t θ̂t, Ct = −x̂2t, t = 1, . . . , n.

The integrating constants do not play a role in the SPDK method. The importance density (8)
is equivalent to the density function associated with the linear Gaussian observation equation for
y∗t = C−1

t bt as given by

y∗t = θt + εt, εt ∼ N(0, C−1
t ), t = 1, . . . , n,(12)

with θt specified as in (1). The Gaussian logdensity log g(y∗t |θt;ψ) for (12) is given by

log g(y∗t |θt;ψ) = −1
2

log 2π +
1
2

log |Ct| −
1
2
{(C−1

t bt − θt)′ Ct (C−1
t bt − θt)}

= at + b′t θt −
1
2
θ′t Ct θt,

(13)

which is (8) in logs and therefore g(yt|θt;ψ) ≡ g(y∗t |θt;ψ) for t = 1, . . . , n. By considering the linear
Gaussian “approximating” model (12), with y∗t = C−1

t bt where bt and Ct are given by (11), for
t = 1, . . . , n, we effectively take the second-order Taylor expansion of p(y|θ;ψ) as the observation
equation of the importance density g(θ, y;ψ). The expansion is around θ̂t, for t = 1, . . . , n, and is
therefore regarded as a local approximation to p(y|θ;ψ).

The importance variables bt and Ct are functions of θ̂t, for t = 1, . . . , n. The choice of θ̂1, . . . , θ̂n
therefore determines the accuracy of the Taylor approximation of log p(y|θ;ψ). The optimal choice
for θ̂ = (θ̂′1, . . . , θ̂

′
n)′ is the mode of the smooth density log p(θ|y;ψ) which can be obtained by a

Newton-Raphson procedure; see So (2003) and Jungbacker and Koopman (2007). It consists of
repeatedly estimating θ given y∗ = (y∗ ′1 , . . . , y

∗ ′
n )′ for the linear Gaussian model (12) using the
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Kalman filter and smoothing methods. The estimate θ̂t allows the computation of new values for
bt, Ct and y∗t , for t = 1, . . . , n. A new estimate θ̂t can then be obtained from (12) for the new y∗t ’s.

After convergence of this recursive process, the linear Gaussian model (12), with θt specified by
(1), is used to sample θt from g(θt|y;ψ), t = 1, . . . , n, by a simulation smoothing method; see, for
example, de Jong and Shephard (1995) and Durbin and Koopman (2002). This step follows by
noting that g(θ|y∗) ∝ g(y∗, θ). Jungbacker and Koopman (2007) show that the individual matrices
Ct only need to be non-singular for g(θ|y∗) to be well defined. However, when any of the matrices
Ct fails to be negative definite the alternative sampling scheme developed therein is required. The
simulations are collected in θ(s). This sampling step is repeated S times. The vector θ(s) is used to
compute the importance sampling weight ωs in (5) for s = 1, . . . , S. The Monte Carlo estimate of
the likelihood function is then evaluated as in (5).

2.2. Modified EIS method. In the EIS method of Liesenfeld and Richard (2003) and Richard and
Zhang (2007), the importance sampling density is obtained by focusing on the importance weights
directly. Here we discuss a modification of the EIS method which we refer to as the modified EIS
(MEIS) and is proposed by Koopman and Nguyen (2011). The modification consists of an alternative
method for the simulation of θt based on a linear state space approximation. The objective is to
(i) increase computational efficiency (ii) implement the EIS algorithm for a sampler in which the
marginal distribution of θt is available, as required by the NAIS method of Section 3. The reader is
referred to Appendix A for a review of the approach proposed by Richard and Zhang (2007).

The aim of EIS is to choose the importance parameters in χ of (9) such that the variance of the
log-weights logω(θ, y, ψ) is minimized where the weight ω(θ, y, ψ) is defined in (4). It is expected that
the resulting importance sampling density accurately approximates the smooth density of interest.
We have

(14) min
χ

∫
λ2(θ, y;ψ)p(θ|y;ψ)dθ,

where

(15) λ(θ, y;ψ) = log p(y|θ;ψ)− log g(y|θ;ψ)− λ0,

where g(y|θ;ψ) =
∏n
t=1 g(yt|θt;ψ) and g(yt|θt;ψ) is given by (8). The normalizing constant λ0

ensures that λ(θ, y;ψ) has mean zero. The resulting importance density that we obtain from this
minimization can be regarded as a global approximation of p(y|θ;ψ).

The minimization (14) encounters three problems: (i) the minimization is high-dimensional and
numerically not feasible in most cases of interest; (ii) the evaluation of the integral in (14) is only
feasible via importance sampling based on a given value of χ (iii) Monte Carlo methods for ap-
proximating the minimization problem entail a bias-variance trade-off for estimating the likelihood
function (3). To address problem (i), we follow Richard and Zhang (2007) and carry out the mini-
mization separately for each time point t. For a given set of importance parameters χ = χ∗ and for
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each t, we minimize

(16) min
χt

∫
λ2(θt, yt;ψ)p(θt|y;ψ) ⇔ min

χt

∫
λ2(θt, yt;ψ)ω(θt, yt;ψ)g(θt|y;ψ),

where

λ(θt, yt;ψ) = log p(yt|θt;ψ)− log g(yt|θt;ψ)− λ0t, ω(θt, yt;ψ) =
p(yt|θt;ψ)
g(yt|θt;ψ)

,

to obtain new values for χt = {bt , Ct} where λ0t is the normalizing constant. The equivalence of both
minimizations in (16) follows from the usual identities such as p(θt|yt;ψ) = p(θt;ψ)p(yt|θt;ψ)/p(yt;ψ)
and from p(θt;ψ) = g(θt;ψ) while g(yt;ψ)/p(yt;ψ) can be treated as a fixed scaling constant for the
minimization (16).

To address problem (ii), we follow an approach similar to Richard and Zhang (2007). The integral
in (16) is evaluated by importance sampling and therefore the minimization (16) is replaced by

min
χt

1
S

S∑
s=1

λ2
t (θ

(s)
t , yt;ψ)ωts,

where ωts = ω(θ(s)t , yt;ψ) and the draw θ
(s)
t is from g(θt|y;ψ), that is the Gaussian importance

density model (12) for y∗t = C−1
t bt with bt and Ct taken from χ∗t . Since log g(yt|θt;ψ) is of the form

(8), λt(θt, yt;ψ) is a function of bt and Ct due to logdensity log g(yt|θt;ψ) only. The minimization
is with respect to both bt and Ct and can be carried out by standard least squares calculations once
we have computed sufficient S draws θ(1)t , . . . , θ

(S)
t . The least squares estimates can be taken as new

values for bt and Ct. The minimization can then be repeated by taking the new values of bt and
Ct as χ∗t . It leads to a recursive algorithm that typically converges quickly. In each step of the
recursion, we require to simulate S draws from g(θ|y;ψ) and we use a simulation smoothing method
that uses the same underlying random values for each step in the recursion and for t = 1, . . . , n.
The simulation smoothing method of SPDK can be adopted for this purpose.

The bias-variance trade off is referred to as problem (iii) for EIS and is due to the possible use
of the same set of random numbers for obtaining χ and for computing the loglikelihood function.
When the same random numbers are used for determining χ and for computing θ(s), which is the
typical case in applied work, a finite sample bias is introduced in the estimation of the loglikelihood
function; the details are discussed in the Appendix B. This implementation minimizes the sample
variance of importance weights and therefore reduces the variance of the likelihood estimate. The
simulation results reported in Section 4 indicate that the bias is substantive in practice, although
the biased estimator is mean-square efficient in most cases of interest.

3. Numerically Accelerated Importance Sampling

In our exposition below we take θt univariate. Even though extensions to higher dimensional
signals follow immediately from the notation, cases where θt is multivariate bring additional com-
putational challenges that are out of the scope of this paper. We note that a moderate dimension
for signal vector θt can still rely on a high-dimensional state vector αt in (1).
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When some continuous function ϕ(x) is known analytically for any x, we can efficiently evaluate
integrals of the form ∫

ϕ(x)dx,(17)

by numerical integration methods which are fast, reliable, and accurate. Numerical integration is
not prone to simulation uncertainty and can be computed to any degree of precision.

The numerical evaluation of integral (17) via Gauss-Hermite quadrature designates a set of M
abscissae zj and associated weights h(zj) with j = 1, . . . ,M . The numerical approximation is then
based on ∫ ∞

−∞
ϕ(x)dx =

∫ ∞
−∞

e−x
2
[ex

2
ϕ(x)]dx ≈

M∑
j=1

h(zj)ez
2
jϕ(zj),

where M is typically between 20 and 30. The weights h(zj) can be tabulized. For a more detailed
discussion on Gauss-Hermite quadrature, we refer to Press et al. (1992).

3.1. Construction of importance sampler via numerical integration. The SPDK and MEIS
methods are designed to construct an importance sampler by computing an appropriate value for χ
in (9). The values in χ are used in (8) for drawing θ’s from g(θ|y;ψ) using a simulation smoothing
method. The local SPDK determines χ from a Taylor expansion of p(y|θ;ψ) around the mode
θ̂ = (θ̂′1, . . . , θ̂

′
n)′ of the smooth density p(θ|y;ψ) while the global MEIS is based on the variance

minimization (16).
Here we propose to obtain χ via the minimization (16) as in MEIS but we evaluate the integral

in via Gauss-Hermite quadrature which is possible since g(θt|y;ψ) is known analytically. In effect,
the integral in (16) is equivalent to (17) with x = θt and

ϕ(θt) = λ2(θt, yt;ψ)ω(θt, yt;ψ)g(θt|y;ψ).

Since p(yt|θt;ψ), g(yt|θt;ψ) and g(θt|y;ψ) are known analytically, we can adopt the Gauss-Hermite
method. We notice that

g(θt|y;ψ) = N(θ̂t , Vt) = exp
{
−1

2
V −1
t (θt − θ̂t)2

}
/
√

2π Vt,

where θ̂t and Vt are computed by the Kalman filter and smoother applied to the importance model
(12) for y∗t = C−1

t bt and for θt specified as (1). The minimization (16) reduces to

min
χt

M∑
j=1

λ2
t (θ̃tj , yt;ψ) g(θ̃tj |y;ψ)ωtj h(zj)ez

2
j ,(18)

where θ̃tj = θ̂t + V
1/2
t zj and ωtj = ω(θ̃tj , yt;ψ). It follows that g(θ̃tj |y;ψ) = exp

{
− 1

2z
2
j

}
/
√

2π.
The minimization (18) takes place in the same recursive manner as described for the MEIS method

in Section 2.2. For a given χ = χ∗, we obtain θ̂t and Vt from the Kalman filter and smoother for
t = 1, . . . , n. The minimization (18) is solved via least squares computations and the estimates for
bt and Ct replace their values in χ∗ in the next recursive step. These two steps are repeated until
convergence. The computing time can be reduced when parallel computing techniques are used.
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Our method opens this possibility since no dependency exist between the computations for different
time periods once θ̂t and Vt, t = 1, . . . , n, are computed by the Kalman filter and smoother.

When the importance parameters in χ are obtained, importance sampling based on g(θ|y;ψ)
takes place as usual. For example, the likelihood function can be estimated by importance sampling
as in (5). Draws for θ are obtained by simulation smoothing methods based on the importance
density model (12) with parameter set χ. Because we solve (16) by numerical integration, the NAIS
algorithm is not subject to the bias-efficiency problem of the EIS method as described in Appendix
B.

3.2. Introducing control variables. Antithetic variables can be used to improve the efficiency
of the likelihood estimate computed by importance sampling; see, for example, Ripley (1987) and
Durbin and Koopman (2000). Here we introduce new control variates that reduce variances of
estimates computed by NAIS. A control variate is a variable whose mean is known such that the
difference between its sample estimate and the true mean can be used to adjust the importance
sampling estimate. In contrast to earlier applications, we adopt control variates that can be quickly
computed numerically.

The likelihood estimate (5) is the sample average ω̄ = S−1
∑S
s=1 ωs multiplied by g(y;ψ) where

ωs = ω(θ(s), y;ψ) =
n∏
t=1

ωts, ωts = ω(θ(s)t , yt;ψ), t = 1, . . . , n, s = 1, . . . , S,

for a sample of S draws of θ generated from the smooth density g(θ|y;ψ) and denoted by θ(1), . . . , θ(S),
where the tth element of θ(s) is denoted by θ

(s)
t . The density g(y;ψ) is computed by the Kalman

filter. The densities g(y;ψ) and g(θ|y;ψ) refer to the importance model (12) with θt specified as (1)
and with the importance parameter set χ obtained as in Section 3.1. The variance of the sample
average ω̄ determines the efficiency of the importance sampling likelihood estimate (5).

To reduce the variance of ω̄ we construct a control variate based on

x(θ, y;ψ) = logω(θ, y;ψ) = log p(y|θ;ψ)− log g(y|θ;ψ).

The tth element of these functions are given by x(θt, yt;ψ) = logω(θt, yt;ψ) such that x(θ, y;ψ) =∑n
t=1 x(θt, yt;ψ) Given the draws θ(1), . . . , θ(S), we have xs = log(ωs) =

∑n
t=1 xts where

xts = log(ωts), ωts = exp(xts),

for t = 1, . . . , n and s = 1, . . . , S. The sample average of ωs can be written in terms of xs = logωs
by means of a Taylor series around some value x∗, that is

(19) ω̄ = exp(x∗)
1
S

S∑
s=1

(
1 + [xs − x∗] +

1
2

[xs − x∗]2 + . . .

)
.

The second and higher order terms of this expansion can be used as control variables. The use of
these control variables is equivalent to replacing the highest variance terms of the Taylor series by
their probability limits which are computed to the desired degree of precision.

9
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3.3. A first control variable. Under suitable regularity conditions, we have

(20) x̄ =
1
S

S∑
s=1

xs
p−→ x̂,

where x̂ = Egx(θ, y;ψ) and where Eg is expectation with respect to density g(θ|y;ψ). It follows that
an accurate Taylor expansion (19) is around x∗ = x̂. Since

x̂ =
n∑
t=1

Eg [x(θt, yt;ψ)] ,

we can evaluate x̂ by means of the Gauss-Hermite quadrature method for each t separately as
discussed in Section 3.1, that is

x̂t = Egx(θt, yt;ψ) =
∫
x(θt, yt;ψ) g(θt|y;ψ) dθt ≈

M∑
j=1

x(θ̃tj , yt;ψ) g(θ̃tj |y;ψ)h(zj)ez
2
j ,

where θ̃tj = θ̂t + V
1/2
t zj with θ̂t and Vt computed by the Kalman filter smoother for t = 1, . . . , n. It

follows that x̂ =
∑n
t=1 x̂t.

The likelihood estimate (5) corrected for the control variable that is based on the second term of
the Taylor expansion (19) around x∗ = x̂ is given by

L̂(y;ψ)c = g(y;ψ)

(
exp(x̂)x̂+

1
S

∑
s

[ωs − exp(x̂)xs]

)
= L̂(y;ψ) + g(y;ψ) exp(x̂) (x̂− x̄).

It follows that
L̂(y;ψ)c

p−→ L(y;ψ),

given (6) and (20). When the importance model is accurately designed, we expect ωs to be close
to one and xs to be close to zero. The two-term Taylor series of an exponent function insists that
ωs ≈ 1 + xs. Hence, we expect ωs and exp(x̂)xs to be highly and positively correlated. When the
importance model is less accurate, the positive correlation remains. Therefore we expect in practice
that L̂(y;ψ)c is a more efficient estimate of the likelihood function compared to L̂(y;ψ).

3.4. A second control variable. Our second control variable is based on the third term of the
Taylor expansion (19). We aim to correct for the sample variation of (xts − x̂t)2 within the sample
of draws θ(1)t , . . . , θ

(S)
t for each t individually, where x̂t is the tth element of x̂. Based on the same

arguments of Section 3.3, we have
σ̄2
t

p−→ σ̂2
t ,

where
σ̄2
t =

1
S

(xts − x̂t)2, σ̂2
t = Eg(xts − x̂t)2 =

∫
(xts − x̂t)2g(θt|y;ψ)dθt.

10
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The mean variance σ̂2
t can be computed using the Gauss-Hermite quadrature. Define

L̂(y;ψ)cc = L̂(y;ψ)c +
1
2
g(y;ψ) exp(x̂)

n∑
t=1

(σ̂2
t − σ̄2

t ),

from which it follows that L̂(y;ψ)cc
p−→ L(y;ψ). Since we replace the sample variation of (xts− x̂t)2

by its probability limit, we can expect estimate L̂(y;ψ)cc to be more efficient than L̂(y;ψ) and
L̂(y;ψ)c.

The estimate L̂(y;ψ)cc can be written as

L̂(y;ψ)cc = L̂(y;ψ) + g(y;ψ) exp(x̂)
1
S

S∑
s=1

n∑
t=1

τts, τts = (x̂t − xts) +
1
2

(σ̂2
t − [x̂t − xts]2),

where τts can be regarded as a Taylor approximation of exp(−x̂)ωts − 1.
The weights of 1 and 1

2 for the two terms in τts are justified by the Taylor expansion (19). However,
these values might not be optimal as they do not fully take into account the covariances between
L̂(y;ψ), x̄ and

∑n
t=1 σ̄t. For a finite sample θ(1), . . . , θ(S), we can estimate the variance minimizing

weights by ordinary least squares applied to the regression equation

exp(−x̂)ωs = β0 + β1(x̂− xs) + β2

n∑
t=1

(σ̂2
t − [x̂t − xts]2) + εs,

where βk are regression coefficients for k = 0, 1, 2 and εs is the disturbance. We denote the resulting
estimate as L̂(y;ψ)∗cc. The use of least squares estimates of this type for assigning weights to control
variables dates back to Ripley (1987). As pointed out by the author, a drawback of the current
modification is the introduction of a small sample bias, which arises because the OLS regression
involves independent variables which are random.

4. Simulation Study

4.1. Likelihood estimation. We examine the performances of the importance sampling methods
listed in Table 1 for likelihood estimation. The design of the simulation study is as follows. We
consider fifty randomly generated time series from the models discussed below. For each of simulated
time series, we estimate the loglikelihood function at the true parameters hundred times and each
time with a different choice of a random seed. For each method, we report results based on S = 20
and S = 200 Monte Carlo trajectories. We are interested in the bias, the variance and the root mean
squared error of these estimates. Although the true loglikelihood value is unknown, we approximate
it as the average of loglikelihood estimates from the NAIS and NAIScc methods. This corresponds
to a NAIS likelihood estimate with S = 40000 and therefore the error in this approximation is
imperceptible in the arithmetic precision of the reported results.

The reported values are the average statistics across the fifty simulated time series. We have
taken fifty simulations to avoid the dependence of our conclusion on particular trajectories. We
have take hundred estimates to obtain reliable statistics for bias, standard deviation and root mean

11
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square error. The reported statistics are computed as

Bias = 0.0002
50∑
i=1

100∑
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)
,(21)

Stand.dev = 0.002
50∑
i=1

 100∑
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)2

1/2

,(22)

Rmse = 0.002
50∑
i=1

 100∑
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)2

1/2

,(23)

where logL(yi;ψ) = 0.01
∑100
j=1 logLj(yi;ψ). The Rmse is reported as a ratio with the MEIS method

as the benchmark in each setting.
Since computational efficiency is the main objective of importance sampling, for each method

and setting, we report the median computing times based on a machine equipped with an Intel Duo
Core 2.5GHz. For our simulation study below we also report a statistic that takes into account both
the numerical and computational efficiencies for each method. We therefore also report the Rmse
ratio normalized by the associated computing times, that is

TNRi =
R̂msei ×

√
Ti

R̂mseb ×
√
Tb
,

where Ti is the median computing time for method i and b indexes the benchmark. All reported
computing times include the fixed time costs required for obtaining the sampling parameters.

We consider time series lengths of 1000 and 3000 observations. The antithetic variables for
location and scale, as in Durbin and Koopman (2001), are used for variance reduction in all cases,
except for the NAIScc and NAIScc∗ methods. The number of nodes for the methods that involve
numerical integration is kept at 20 in all cases. We verify the sensitivity of this choice of 20 nodes
at the end of §4.3 and in Table 7. All methods have been implemented using MATLAB and C.

4.2. Models.

4.2.1. Stochastic volatility model. The stochastic volatility (SV) model is a special case of a non-
Gaussian state space model; key references are Tauchen and Pitts (1983), Taylor (1986) and Melino
and Turnbull (1990). Ghysels et al. (1996) have provided a review of SV models. Liesenfeld and
Richard (2003) analyzes the simulated maximum likelihood estimation via efficient importance sam-
pling for a wide range of stochastic volatility specifications. For a time series of log-returns yt, we
consider the model specification

yt ∼ N(0, σ2
t ), σ2

t = exp(αt),

αt = d+ Tαt−1 + ηt, ηt ∼ N(0, Q),(24)

α1 ∼ N(d/(1− T ), Q/(1− T 2)),

12
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for t = 1, . . . , n, where d is a scalar constant, T is the autoregressive coefficient with |T | < 1, and Q
is the variance of the disturbance ηt of the stochastic log-volatility process αt. We have two sets of
parameter values for the unknown coefficients of the SV model. The first set consists of d = 0.01,
T = 0.98 and Qt = 0.01 which reflects a typical set of parameters found for daily stock returns.
The second set is the same but with a lower value for the autoregressive coefficient, T = 0.9 (the
constant is set to d = 0.05 to imply the same unconditional mean). It will reveal how importance
sampling methods perform when the volatility process is less persistent.

4.2.2. Stochastic conditional duration model. The stochastic conditional duration (SCD) model is
proposed by Bauwens and Veredas (2004) for modelling high-frequency durations between financial
transactions. Efficient importance sampling estimation for the SCD model has been studied by
Bauwens and Galli (2009). For a time series of durations yt, we consider the model specification

yt ∼Weibull(λt, ψ), λt = exp(αt),

for t = 1, . . . , n, where λt is the time varying scale parameter, ψ is the shape parameter of the
Weibull distribution and with αt modelled as the autoregressive process (24). The set of parameters
is chosen to reflect the estimation results of Bauwens and Galli (2009), that is d = 0, T = 0.98,
Q = 0.0225, and ψ = 1.2. The choice of d = 0, T = 0.96, Q = 0.01, ψ = 1.7 approximates the
parameters for volume durations in the same paper. The choice of d = 0, T = 0.9, Q = 0.0225,
ψ = 1.2 is taken to illustrate the performance of the methods for less persistent price durations.

4.2.3. Stochastic copula. Stochastic copula (SC) models are designed to capture time-varying and
possibly non-linear dependence between multiple time series and have been proposed by Banachewicz
and Lucas (2008) and Hafner and Manner (2011). A short introduction of the main concepts and
results for (static) copulas can be found in Schmidt (2006), while Nelsen (1999) and Joe (1997)
provide a more comprehensive discussion. Dynamic copula models have been introduced by Patton
(2006) who extends the copula theory for models with conditionally time-varying parameters.

We consider a dynamic stochastic bivariate t-copula. Let u1t, u2t be two random variables with
uniform (0, 1) marginal distributions. The dependence structure for the random variables is described
by the t-copula Cν,P (ut), with ut = (u1t, u2t)′ and 2× 2 correlation matrix P , and is given by

Cν,P (ut) = tν,P (t−1
ν,1(u1t), t−1

ν,1(u2t)),

where tν,P∗ is the cumulative density function of the standardized t distribution with ν degrees of
freedom for variables with its dimension implied by the correlation matrix P ∗ for P ∗ = P and P = 1.
The copula is invariant under any standardization of the marginal distributions. It follows that

(25) Cν,P (ut) =
∫ t−1

ν (u1t)

−∞

∫ t−1
ν (u2t)

−∞

Γ(ν+2
2 )

Γ(ν/2)
√

(πν)2|P |

(
1 +

x′P−1x

ν

)− ν+2
2

dx.

In our simulation study, we take ut as probability integral transforms of two independent univariate
series. The converse of Sklar’s theorem implies that by combining any set of univariate distributions
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with a copula, a bivariate distribution is defined. The modeling of the marginal variables and the
dependence between them can be completely disentangled.

The state space representation of the stochastic copula with the time-varying correlation coeffi-
cient ρt and with the time-varying correlation matrix

Pt =

[
1 ρt

ρt 1

]
,

is given by
ut ∼ Cν,Pt(ut), ρt = (1 + exp(−αt))−1,

for t = 1, . . . , n, with αt modeled as the autoregressive process (24). The set of parameters are taken
from the empirical study of a bivariate financial time series of log-returns in Hafner and Manner
(2011) and is approximately equal to the set d = 0.017, T = 0.98, Q = 0.01, and ν = 5. The
constant d implies an unconditional correlation coefficient of approximately 0.7. Since Hafner and
Manner (2011) do not consider a t-copula, we take the degrees of freedom ν = 5 to have sufficient
tail dependence.

4.3. Simulation results. The results for the persistent stochastic volatility model specification are
presented on Table 2. The first important finding is that the MEIS method (the EIS based on
an approximating linear state space model) is computationally much more efficient than the EIS
method itself. The increase in computing speed comes without loss of numerical efficiency. While
the EIS and MEIS methods are numerically equivalent, the time needed for evaluating the likelihood
is reduced by at least 50% when the approximating linear state space model is used for MEIS. For
sample size n = 3000 and S = 20, the MEIS likelihood evaluation procedure takes 0.11 seconds
while the EIS takes 0.39 seconds, a computational saving of more than 70%. The fast computations
for S = 20 come however at the cost of substantial bias; for the EIS and MEIS methods, the bias
is approximately 30% higher than the standard deviation. The low variance of the EIS method
compared to the SPDK method shows the numerical efficiency of the global approximation used
in the EIS method. However, when we normalize the computing times by the Rmse statistic, the
SPDK method turns out to be nearly as efficient as the EIS method.

By increasing the number of importance samples to S = 200 the bias in the EIS and MEIS
methods is mostly eliminated, at the cost of a tenfold increase in computing time. On the other
hand, by increasing S from 20 to 200, we expect a 1/

√
10 reduction in standard deviation but we

obtain a much smaller reduction for the EIS and MEIS methods. For both S = 20 and S = 200 the
NAIS method (without control variables) produces slightly higher variance and Rmse values when
compared the MEIS method. This result suggests that the biased EIS algorithm is mean square
efficient in the SV case. However, when S = 200 the NAIS method compute the likelihood function
four times faster and hence is much more efficient in real time. By obtaining the optimal sampling
coefficients at a small and fixed cost, the NAIS method significantly improves the trade off between
numerical and computational efficiency in the number of samples relative to the SPDK, EIS and
MEIS methods. We regard this result as one of our main findings from the simulation study. We
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also highlight the minimal additional computational time required for the NAIS method to increase
S from 20 to 200.

Another interesting finding is that NAIScc and NAIScc∗ methods are substantially more efficient
in Rmse compared to the NAIS algorithm, while likelihood evaluation is just as fast. For S = 20, the
results show that the control variates reduce the Rmse by 30%, relative to the NAIS method with
antithetic variables. The relative efficiency of the NAIScc method also improves in the number of
samples. For S = 200, the NAIScc is 36% more efficient in Rmse for n = 1000 and 42% more efficient
for n = 3000. The results show that the NAIScc∗ method further improves the Rmse by around
10% relative to the NAIScc procedure. Although this difference is small, the NAIScc∗ method is still
an useful extension when S is large since the additional computational cost is low. Finally, we note
that the bias statistics suggest no systematic differences between the average estimates for the NAIS
and NAIScc methods, supporting the claim that the numerical integration error in constructing the
control variables can be ignored.

Table 3 for the stochastic volatility model with the autoregressive coefficient of 0.9 presents some
revealing results. For less persistent specifications of the state space model, the EIS bias becomes
a larger problem. The bias almost completely dominates the Rmse of the EIS and MEIS methods
when S = 20; it is 10 times larger then the standard deviation. However the results for our methods
become even more convincing. The reduction in Rmse is 95% when we compare the EIS method for
S = 20 with the NAIS method for S = 200. The NAIScc method is again more efficient than the
NAIS method; the variance of the likelihood estimate is reduced by 75%.

Tables 4, 5 and 6 present the findings for the different specifications of the stochastic conditional
duration and the stochastic copula models. Although these models are more complex and the
likelihood evaluation algorithms become more time consuming, the results confirm our previous
findings. For S = 200, the NAIScc and NAIScc∗ methods consistently bring Rmse reductions of
25-50% or more when compared to the simpler NAIS alternative. Similar results hold for S = 20.
For the SCD model and S = 20, we find that the EIS and MEIS methods produce estimates with
the lowest Rmse but with substantial biases. Hence, certain parameter combinations may favor the
MEIS method if S is low. However, the cost of increasing the number of simulations from S = 20
to S = 200 is small for all NAIS methods. We therefore conclude that the results strongly favor
the NAIS methods with a higher value for S, since the additional computational cost is low and the
properties of the estimates are much improved.

Tables 7 and 8 present additional results. Table 7 presents the standard deviation of the log
importance sampling weights for different choices of S under the MEIS method, both in sample and
out of sample, for the SV and SC models. The standard deviation of the log importance sampling
weights, also when the importance parameters are selected through the numerical method, are also
reported. When S increases, the variance of the MEIS log importance sampling weights converges to
a limiting value that is obtained by our NAIS method. The table also further illustrates the source
of the EIS bias. For low values of S, the sample variance of the weights is artificially small. Table 8
focuses on the robustness of the NAIS method with respect to the choice of the number of numerical
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integration nodes. As typical in other applications of Gauss Hermite integration, any value of M
between 20 and 30 guarantees a high degree of accuracy. A comparison between Table 8 and the
previous results confirms that the numerical integration error is negligible in relation to standard
deviation of the likelihood estimates.

4.4. Parameter estimation. To further illustrate the performance of our preferred NAIScc method,
we consider the simulated maximum likelihood estimation for a three component stochastic volatility
model which we specify as (24) but with

σ2
t = exp(θt), θt = d+ α1,t + α2,t + α3,t,

with 3× 1 state vector αt = (α1,t, α2,t, α3,t)′, with 3× 3 diagonal matrices T and Q given by

T =

 φ1 0 0
0 φ2 0
0 0 φ3

 , Q =

 q1 0 0
0 q2 0
0 0 q3

 ,
and with unknown coefficients |φi| < 1 and qi > 0, for i = 1, 2, 3. The model is identified by imposing
φ1 > φ2 > φ3. The scalar signal θt represents log-volatility. The initial condition for α1 is adjusted
straightforwardly.

The three component SV model is motivated from the two component GARCH model of Engle and
Lee (1999). We have extended the volatility specification by an additional component to capture
the weakly serially correlated noise that is typically found in realized volatility studies; see, for
example, Bollerslev et al. (2009). Liesenfeld and Richard (2003) investigate their EIS method for a
two component SV model. The parameter values are set as d = 0.5, φ1 = 0.99, φ2 = 0.9 φ3 = 0.4,
q1 = 0.005, q2 = 0.016 q3 = 0.05.

We adopt the following steps for parameter estimation:

(1) Set starting values for the parameter vector.
(2) Set starting values for the sampling coefficients.
(3) Maximize the loglikelihood function using an approximate but fast method. We suggest

to take the NAIScc method with S = 0 (no simulation, only numerical integration). The
maximization of the loglikelihood function is carried out by direct numerical optimization.

(4) Re-start maximization of loglikelihood function using NAIScc method with S > 0.

The efficiency of this algorithm is primarily due to the accurate approximation of the loglikelihood
function with the NAIScc method using S = 0. As a result convergence of the maximization in the
last step will be very fast, only requiring a small number of iterations. It gives the procedure the
desirable property that S can be set at a high value with only a relatively small increase of computing
time. We have a set of common random numbers that we use for each likelihood evaluation to
ensure smoothness of the likelihood function. The smoothness with respect to the parameter vector
is necessary for numerical optimization methods. It is also important to work with transformed
parameters so that they stay within their admissible ranges.
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In our illustration we set the number of observations equal to n = 5000. The large time series
dimension is required for being able to estimate the parameters in the model because the third
volatility component has low persistence and may be hard to identify from a short sample. We set
the number of samples to S = 200. We take 20 different time series realizations of the model. For
each realized time series, we obtain parameter estimates and compute their Monte Carlo standard
errors. The reported standard errors are averages across those from the 20 realizations. Since we
have set the true parameters ourselves, we can also calculate the Rmse of the estimates. It allows
us to compare the relative importance of the simulation and statistical errors in estimating the
parameters.

The results are summarized in Table 9. The average estimation time for each realization has been
slightly under two minutes. Table 9 further presents the simulation errors which are small for all
parameters, in absolute and in relative terms. In the estimation results the Monte Carlo standard
errors represent only between 1% and 3% of the total Rmse. We conclude that the NAIS method
can be successfully applied for the estimation of fairly demanding model specifications.

5. Conclusion

We have developed a new efficient importance sampling method for a likelihood-based analysis
of nonlinear non-Gaussian state space models. The numerically accelerating importance sampling
method is a mix of numerical integration and Monte Carlo integration. We adopt the Gauss-Hermite
quadrature method for computing the importance sampling coefficients and the importance sampling
method for the actual evaluation of the likelihood function. New control variables are introduced to
reduce the sampling variance of the Monte Carlo estimate of the likelihood function. We have carried
out a comprehensive Monte Carlo study for different model classes to illustrate the performance of
our approach, relative to earlier importance sampling methods. Overall we can conclude that our
methods lead to an outstanding performance in terms of numerical and computational efficiency.
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Appendix A. The high-dimensional EIS method

The high-dimensional EIS method of Liesenfeld and Richard (2003) and Richard and Zhang
(2007) considers the Gaussian importance model density characterized by equations (7) and (8) of
Section 2. The period t expressions g(yt|θt;ψ) and g(θt|αt−1;ψ) can be merged and interpreted as
a Gaussian density g(αt|yt, αt−1) with covariance matrix

(26) Vt = (Q−1
t + Z ′tCtZt)

−1

and mean

(27) α̂t = V −1
t (b′tZt + (dt + Ttαt−1)′Q−1

t )′,

provided that the constant at is set to

(28) at(χt, αt−1) =
1
2

log(|Q|/|Vt|) +
1
2

(dt + Ttαt−1)′Q−1
t (dt + Ttαt−1)− 1

2
α̂′tV

−1
t α̂t

See for example Bauwens and Galli (2009) for a derivation of this result.
The state vectors are therefore sampled sequentially from g(αt|yt, αt−1) for a given set of im-

portance parameters χt. In contrast with the approximating linear state space model approach of
sections 2.1 and 2.2, the constant at now depends on αt−1. This property marks the fundamental
difference between the EIS and MEIS and leads to a different setup for the recursive procedure for
selecting χ. Let k index the EIS iterations. The method minimizes backwards from t = n to t = 1

(29) min
χ

[k+1]
t

∫
λ2(θt, yt;ψ)ω(θt, yt;ψ)g(θt|y;ψ),

where

λ(θt, yt;ψ) = log p(yt|θt;ψ) + at+1(χt+1[k], αt)− log g(yt|θt;ψ)− λ0t, ω(θt, yt;ψ) =
p(yt|θt;ψ)
g(yt|θt;ψ)

,

Richard and Zhang (2007) argue that the dynamic structure of the model is captured by the
integration constant at, which is shifted through time. The fact that the EIS and MEIS methods rely
on the same basic approximation to p(yt|θt;ψ) given by (8) implies that the procedures are largely
equivalent numerically (though not identical). This observation is confirmed the the simulation
results of Section 4.1. From a computational perspective, however, the MEIS method has two
advantages in addition to the ones we have discussed in Section 2. First, it avoids the large number
of computations required by the EIS method to track the constants at. Second, it enables the direct
simulation of the signal vector θt rather then the possibly higher dimensional state vector αt.
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Appendix B. The Bias in the standard implementation of the EIS method

In section 2.2 we have argued that a finite sample bias arises in the EIS algorithm when the same
set of common random numbers (CRN) is used for obtaining the importance parameters χ via the
MC variance minimization problem (29) and computing the likelihood estimate (5). As the CRNs
u determine both χ(y) = χ(y, u) and θ(s) = θ(s)(u), we obtain that g(θ(s)(u)|χ(y, u);ψ) is not well
defined as an importance density. Consider the Taylor series expansion of the likelihood estimate
round some value x∗ given by (19)

(30) ω̄ = exp(x∗)
1
S

S∑
s=1

(
1 + [xs − x∗] +

1
2

[xs − x∗]2 + . . .

)
,

where xs = logω(θ(s), y, ψ) and θ(s) does not necessarily depend on u.
In the MEIS algorithm described in Section 2.2 and the EIS method detailed in the previous ap-

pendix, χ(y, u) is explicitly selected to minimize the sample variance of the log importance sampling
weights logω(θ(s)(u), y, ψ). Consequently, the minimized variance of logω(θ(s)(u), y, ψ) is artificially
low in relation to what is the case in the full support of g(θ|χ(y, u);ψ). It follows that the third
term in the Taylor expansion (30) is biased downwards when θ(s) = θ(s)(u). This problem also
contaminates the other terms, with ambiguous net effects for the likelihood estimate.
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Appendix C. Tables

Table 1. Inportance sampling methods.
The table reviews the importance sampling methods and provide their acronyms.

SPDK the method of Section 2.1 by Shephard and Pitt (1997) and
Durbin and Koopman (1997).

EIS the high-dimensional efficient importance sampling method by
Richard and Zhang (2007) and described in Appendix A.

MEIS the method of Section 2.2 by Koopman and Nguyen (2011).
NAIS the method of Section 3.1.
NAIScc the method of Section 3.1 with the two control variables of

Sections 3.3 and 3.4.

NAIScc∗ the estimate L̂(y;ψ)∗cc of Section 3.4.

Table 2. Loglikelihood Errors for Stochastic Volatility I.
The table shows average bias, standard deviation and Rmse of loglikelihood estimation errors for different

IS methods. The Rmse statistic is reported as its ratio with respect to the MEIS method. We simulate 20

different realizations from the model. For each of these realizations, we obtain loglikelihood estimates

for 100 different sets of random numbers and then calculate the bias, variance and Rmse with the

unknown loglikelihood being approximated by the average of estimates of the best unbiased methods.

We also report TNR as computing time normalized for an Rmse ratio of unity. The reported values

are the average statistics across the 20 realizations. The methods (with their acronyms) are discussed

in Table. The stochastic volatility model is specified as: yt ∼ N(0, σ2
t ) with σ2

t = exp(αt) and αt =

0.01 + 0.98αt−1 + ηt where ηt ∼ N(0, Q = 0.12) for t = 1, . . . , n.

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.014 0.163 5.52 1.99 0.01 -0.107 0.423 4.93 1.66 0.01
EIS 0.025 0.016 0.99 1.74 0.13 0.079 0.042 1.00 1.88 0.39
MEIS 0.026 0.015 1.00 1.00 0.04 0.079 0.043 1.00 1.00 0.11
NAIS -0.001 0.035 1.19 1.25 0.05 -0.002 0.094 1.06 1.08 0.12
NAIScc -0.001 0.026 0.91 0.89 0.04 -0.006 0.068 0.77 0.80 0.12
NAIScc∗ -0.007 0.024 0.84 0.82 0.04 -0.024 0.066 0.79 0.82 0.12

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.001 0.069 5.53 1.93 0.05 -0.023 0.203 6.00 2.05 0.13
EIS 0.003 0.012 1.00 1.61 0.98 0.009 0.034 1.02 1.69 3.02
MEIS 0.003 0.012 1.00 1.00 0.38 0.009 0.033 1.00 1.00 1.10
NAIS 0.000 0.014 1.15 0.54 0.08 -0.001 0.039 1.15 0.53 0.23
NAIScc 0.000 0.009 0.71 0.33 0.08 0.000 0.023 0.67 0.32 0.25
NAIScc∗ -0.001 0.008 0.61 0.28 0.08 -0.001 0.021 0.62 0.30 0.25
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Table 3. Loglikelihood Errors for Stochastic Volatility II.
We report the same results as Table 2 for a less persistent stochastic volatility model given by yt ∼
N(0, σ2

t ) with σ2
t = exp(αt) and αt = 0.05 + 0.9αt−1 + ηt where ηt ∼ N(0, Q = 0.12) for t = 1, . . . , n.

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.001 0.025 1.01 0.41 0.00 -0.004 0.069 0.94 0.37 0.01
EIS 0.024 0.003 1.00 1.72 0.09 0.074 0.007 1.00 1.81 0.26
MEIS 0.024 0.003 1.00 1.00 0.03 0.074 0.007 1.00 1.00 0.08
NAIS 0.000 0.006 0.23 0.26 0.04 0.000 0.014 0.19 0.20 0.09
NAIScc 0.000 0.004 0.15 0.16 0.03 0.000 0.010 0.14 0.15 0.09
NAIScc∗ -0.001 0.004 0.16 0.16 0.03 -0.003 0.011 0.15 0.16 0.09

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK 0.000 0.009 1.99 0.78 0.05 0.000 0.028 2.07 0.82 0.13
EIS 0.004 0.002 1.00 1.57 0.74 0.013 0.005 1.01 1.62 2.12
MEIS 0.004 0.002 1.00 1.00 0.30 0.012 0.005 1.00 1.00 0.83
NAIS 0.000 0.002 0.51 0.25 0.07 0.000 0.006 0.43 0.22 0.20
NAIScc 0.000 0.001 0.25 0.13 0.07 0.000 0.003 0.24 0.12 0.22
NAIScc∗ 0.000 0.001 0.25 0.12 0.07 0.000 0.003 0.23 0.12 0.22

Table 4. Loglikelihood Errors for Stochastic Conditional Duration I.
The model is specified as: yt ∼ Weibull(λt, ψ = 1.2), λt = exp(αt), αt = 0.98αt−1 +ηt, ηt ∼ N(0, Q =

0.152).

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.144 0.493 6.27 2.68 0.02 -0.492 0.616 6.54 2.45 0.04
EIS 0.061 0.054 0.99 1.44 0.22 0.093 0.079 1.02 1.48 0.67
MEIS 0.062 0.054 1.00 1.00 0.10 0.093 0.077 1.00 1.00 0.32
NAIS -0.008 0.115 1.41 1.07 0.06 -0.032 0.160 1.37 1.05 0.19
NAIScc -0.005 0.086 1.06 0.84 0.06 -0.029 0.138 1.18 0.95 0.21
NAIScc∗ -0.026 0.086 1.10 0.87 0.06 -0.064 0.134 1.24 1.00 0.20

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.039 0.246 6.08 1.93 0.09 -0.197 0.386 6.45 1.86 0.25
EIS 0.002 0.043 1.04 1.52 1.84 -0.002 0.065 0.96 1.33 5.73
MEIS 0.001 0.041 1.00 1.00 0.87 0.002 0.067 1.00 1.00 3.03
NAIS -0.002 0.049 1.18 0.45 0.12 -0.006 0.076 1.13 0.40 0.38
NAIScc 0.000 0.032 0.77 0.30 0.13 -0.003 0.056 0.83 0.32 0.43
NAIScc∗ -0.002 0.030 0.74 0.29 0.13 -0.007 0.051 0.77 0.29 0.43
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Table 5. Loglikelihood Errors for Stochastic Conditional Duration II.
The model is specified as: yt ∼ Weibull(λt, ψ), λt = exp(αt), αt = Tαt−1 + ηt, ηt ∼ N(0, Q).

n = 1000 n = 1000
T = 0.96, Q = 0.12, ψ = 1.7 T = 0.9, Q = 0.152, ψ = 1.2

S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.110 0.422 5.76 2.50 0.02 -0.060 0.331 3.56 1.46 0.01
EIS 0.061 0.043 0.98 1.44 0.19 0.089 0.036 1.01 1.47 0.16
MEIS 0.062 0.044 1.00 1.00 0.09 0.088 0.035 1.00 1.00 0.08
NAIS -0.008 0.094 1.25 0.98 0.06 -0.003 0.075 0.80 0.78 0.07
NAIScc -0.001 0.074 0.98 0.80 0.06 -0.001 0.056 0.60 0.58 0.07
NAIScc∗ -0.020 0.071 0.97 0.80 0.06 -0.014 0.057 0.63 0.62 0.07

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.034 0.197 5.81 1.82 0.09 -0.009 0.150 5.32 1.76 0.08
EIS 0.004 0.035 1.02 1.44 1.74 0.009 0.026 0.99 1.41 1.45
MEIS 0.004 0.035 1.00 1.00 0.88 0.009 0.027 1.00 1.00 0.72
NAIS -0.001 0.041 1.17 0.43 0.12 -0.001 0.031 1.12 0.47 0.13
NAIScc 0.000 0.025 0.72 0.28 0.13 0.000 0.018 0.64 0.28 0.14
NAIScc∗ -0.002 0.023 0.67 0.26 0.13 -0.001 0.017 0.60 0.26 0.14

Table 6. Loglikelihood Errors for Stochastic Copula.
The model is specified as: u1t, u2t ∼ Cν=5,Pt (ut), ρt = (1 + exp(−αt)−1, αt = 0.017 + 0.98αt−1 +

ηt, ηt ∼ N(0, Q = 0.12).

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.014 0.148 4.58 6.64 0.16 -0.092 0.342 3.90 5.12 0.35
EIS -0.032 0.015 1.00 1.45 0.16 -0.093 0.037 1.01 1.55 0.48
MEIS -0.032 0.015 1.00 1.00 0.07 -0.093 0.037 1.00 1.00 0.20
NAIS -0.003 0.035 1.04 0.82 0.05 -0.001 0.095 0.96 0.77 0.13
NAIScc -0.001 0.026 0.75 0.63 0.05 0.000 0.078 0.82 0.72 0.15
NAIScc∗ -0.008 0.019 0.59 0.50 0.05 -0.021 0.062 0.67 0.58 0.15

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.002 0.063 4.56 2.32 0.22 -0.015 0.161 4.56 2.35 0.55
EIS -0.007 0.013 1.02 1.34 1.46 -0.023 0.032 1.01 1.42 4.05
MEIS -0.007 0.013 1.00 1.00 0.85 -0.022 0.032 1.00 1.00 2.05
NAIS 0.000 0.016 1.12 0.41 0.12 -0.001 0.041 1.09 0.44 0.34
NAIScc 0.000 0.012 0.81 0.31 0.13 -0.001 0.026 0.68 0.29 0.37
NAIScc∗ -0.002 0.007 0.51 0.21 0.13 -0.003 0.021 0.55 0.23 0.38
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Table 7. Standard Deviations for the logged Importance Sampling Weights.
For R = 100 replications of the stochastic volatility specification of Table 2 and the stochastic copula specification

of Table 6, we obtain auxiliary coefficients under different numbers of MC trajectories S (for the MEIS method)

and different numbers of integration nodes M (for the numerical procedure of section of 3.1). We then simulate a

thousand independent MC paths from these coefficients and compute the variance of the resulting log importance

sampling weights. The displayed results are the average standard deviations across the R replications.

SV, n = 3000 SC, n = 3000
In Sample Out of Sample Time In Sample Out of Sample Time

MEIS S = 20 0.4179 0.7815 0.85s 0.3675 0.7070 1.68s
S = 40 0.4728 0.7294 0.97s 0.4143 0.6528 1.90s
S = 80 0.5254 0.6871 1.18s 0.4719 0.6185 2.25s
S = 200 0.5761 0.6495 2.07s 0.5275 0.5870 3.48s
S = 1000 0.6025 0.6262 5.78s 0.5556 0.5678 10.34s

Numerical M = 10 - 0.6190 0.86s - 0.5609 1.88s
M = 20 - 0.6190 0.88s - 0.5609 1.90s
M = 30 - 0.6190 0.95s - 0.5609 2.00s

Table 8. Robustness to Choice of Number Integration Nodes.
For R = 1000 replications of the stochastic volatility specification of Table 2 and the stochastic copula

specification of Table 6, we obtain auxiliary coefficients under different numbers of integration nodes M

(for the numerical procedure of section of 3.1). We then simulate a thousand independent MC paths

from these coefficients and compute the variance of the resulting log importance sampling weights. The

displayed results are the average standard deviations across the R replications.

n = 1000 n = 3000
SV SC SV SC

Std. Dev. log(L̂(y;ψ)M=10) 0.0075 0.0072 0.0236 0.0203

Std. Dev. log(L̂(y;ψ)M=20) 0.0069 0.0067 0.0216 0.0189

Std. Dev. log(L̂(y;ψ)M=30) 0.0069 0.0067 0.0216 0.0189

| log(L̂(y;ψ)M=30)− log(L̂(y;ψ)M=10)| 0.0059 0.0032 0.0183 0.0102

| log(L̂(y;ψ)M=30)− log(L̂(y;ψ)M=20)| 6.24× 1−6 5.55× 1−7 1.91× 1−5 1.94× 1−6
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Table 9. Three Component SV Model Estimation.
We simulate 20 different realizations of a three component sto-

chastic volatility model. For each of these realizations, we ob-

tain simulated maximum likelihood parameter estimates using the

NAIScc method for for 20 different sets of common random num-

bers. We report the average MC standard error across the 20 re-

alizations. The Rmse column reports the total root mean squared

error by comparing the estimates to the true parameters. The

number of observations is n=5000. The number of MC trajec-

tories is S = 200. Average estimation time: 116 seconds. The

model is specified as yt ∼ N(0, σ2
t ), t = 1, . . . , n, σ2

t = exp(θt),

θt = d + α1,t + α2,t + α3,t, αt = Tαt−1 + ηt, α1 ∼ N(a1, P1),

ηt ∼ N(0, Q), where T is a diagonal matrix with elements φ1, φ2

and φ3 and Q is a diagonal matrix with elements ν1, ν2 and ν3.

Parameter True MC Error Rmse MC Error/Rmse
d 0.5 0.0016 0.103 0.016
φ1 0.99 0.0001 0.006 0.009
ν1 0.005 0.0000 0.003 0.011
φ2 0.9 0.0006 0.049 0.011
ν2 0.015 0.0002 0.010 0.018
φ3 0.4 0.0032 0.280 0.012
ν3 0.05 0.0008 0.029 0.029
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