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Abstract—This paper presents an efficient carbon nanotube
(CNT) transistor modeling technique which is based on cubic
spline approximation of the non-equilibrium mobile charge
density. The approximation facilitates the solution of the self-
consistent voltage equation in a carbon nanotube so that cal-
culation of the CNT drain-source current is accelerated by at
least two orders of magnitude. A salient feature of the proposed
technique is its ability to incorporate both ballistic and non-
ballistic transport effects without a significant computational cost.
The proposed models have been extensively validated against
reported CNT ballistic and non-ballistic transport theories and
experimental results.

Index Terms—Carbon nanotube transistors, numerical model-
ing, non-ballistic effects, circuit simulation.

I. INTRODUCTION

Carbon Nanotube Transistors (CNTs) have been demon-
strated to have potential of becoming an attractive solution
in addition to their silicon counterparts, mainly due to their
electrostatic properties, such as ballistic or near ballistic trans-
port of electrons and very low conduction threshold voltages
[1], [2], [3], which make CNTs suitable for ultra high speed
and ultra low power circuit design. While physical properties
of carbon nanotubes are studied in greater depth and the
theory of CNTs becomes better understood, most state-of-the-
art physical and circuit-level models are currently concerning
ballistic or near-ballistic transport [1], [4], [S], [6], [7], [8],
[9], [10], [11], [12]. There is a growing need for numerically
efficient CNT transistor models suitable for implementation in
circuit-level simulators, especially in the light of the recently
reported successful implementations of logic circuits built
with CNTs [13]. Very recently breakthrough improvements
to accurate SPICE-compatible CNT transistor modeling have
been proposed where not only the ballistic transport but also a
number of non-ballistic effects have been included [11], [12].
However, the main stumbling block in the development of a
circuit-level model is the fact that accurate calculation of the
mobile charge involves numerical integration of the densities
of states over the number of allowed energy levels using the
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Fermi probability distribution. In addition, as the total drain
current is affected not only by the non-equilibrium mobile
charge in the nanotube but also by the charges present at
terminal capacitances, the solution of an implicit non-linear
algebraic equation is necessary using some iterative approach,
such as the Newton-Raphson method [1], [6]. Resulting CPU
times are prohibitive for the purpose of circuit simulation
where networks involving large numbers of such devices may
need to be analyzed. For example, the MATLAB script named
FETToy [14] available on line as a reference implementation
of the state-of-the art ballistic CNT theory, requires more than
12 seconds of the CPU time on a Pentium IV PC to calculate
a family of current drain characteristics for a single transistor
[15]. Inclusion of non-ballistic effects aggravates the problem
of excessive CPU time consumption.

It has been recently proposed to eliminate the need for costly
Newton-Raphson iterations and the numerical evaluation of the
Fermi-Dirac integral while still maintaining a good agreement
with the physical theory [8], [16]. These techniques are based
on piecewise approximation of the charge density profiles,
either linear [8] or non-linear [16] to simplify calculations.
In this paper we investigate the use of a cubic spline approx-
imation of the charge density which, like the piecewise non-
linear approximation, also allows a closed-form solution of the
self-consistent voltage equation. The main advantage of using
cubic splines is an improved control of the approximation
accuracy. Furthermore, as some theories on the non-ballistic
effects have recently emerged [17], [18], [19], [20], [21],
[11], [12], in addition to the ballistic transport model [16] we
demonstrate how the proposed approximation can be applied
to include non-ballistic behavior.

The approach presented in this paper addresses the need
for efficient calculation of the Ipg current resulting from
ballistic and non-ballistic transport in the carbon nanotube
itself. To develop a complete CNT transistor model, a number
of additional effects representing non-idealities and parasitics,
such as contact effects or series resistances, which are external
to the inner CNT transistor, also need to be considered.

II. MOBILE CHARGE DENSITY AND SELF-CONSISTENT
VOLTAGE

When an electric field is applied between the drain and
the source of a CNT transistor illustrated in figure 1, a non-
equilibrium mobile charge is induced in the nanotube[1], [22],
[23]:
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Fig. 1. Structure layout of a top-gate CNT transistor showing components
of the proposed equivalent circuit model with the virtual node ¥ for Vsc.

AQ = q(Ns + Np — Ny) (D)

where Ng is the density of positive velocity states filled
by the source, Np is the density of negative velocity states
filled by the drain and Ny is the equilibrium electron density.
These densities are determined by the Fermi-Dirac probability
distribution as follows:
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where D(E), Usr and Upp are defined as
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D(FE) is the density of states at the channel, Dy =
8/(3mVeeac.) is the constant density of states of a metallic
nanotube, E, is the band gap which can be calculated using
2a0:Vee/d [14], where a.. and V.. are the carbon 7 — 7
nearest-neighbor bond length and energy of the tight bonding
model respectively. O(F — E,/2) equals 1 when E > E /2
and 0 when £ < E,/2.

Vsc is the self-consistent voltage, a recently introduced con-
cept [1] which illustrates that the CNT energy band is affected
by external terminal voltages, D(E) is the density of states,
Er is the Fermi level, f is the Fermi probability distribution,
q is the electronic charge and E represents the energy levels
per nanotube unit length. The self-consistent voltage Vgc is
implicitly related to the device terminal voltages and charges
at terminal capacitances by the following non-linear algebraic
equation [1], [8]:

_ Qi qNs(Vsc) + gNp(Vse) — gNo
Cx,

Vsc (8)

where (); represents the charge stored in terminal capaci-
tances and is defined as

Q¢ =VaCa +VpCp + VsCs + VsuCsup 9)

where Cg,Cp,Cs,Csyp are the gate, drain, source and
substrate capacitances correspondingly and the total terminal
capacitance Cs; is

Cx =Cg+Cp+Cs+ Csu (10)
Aoy + d

Cow = 27rk1£0/ln(T+) (11)

CS'ub = 27Tk280/ln(4Hsub/d) (12)

where d is the diameter of the carbon nanotube, Hg,;
is the thickness of the Si0O, layer on the substrate, t,,
is the thickness of the gate insulator and ki, ko are the
relative permittivities of the gate and the substrate respectively
[24]. Meanwhile, the capacitances between terminals can be
obtained as follows as reported previously [14].

CG = Cow (13)
Cs =0.097C,, (14)
Cp =0.040C,,, (15)

And the addition of Cgy; also implies that the body effects
may be taken into account in further work. The standard
approach to the solution of equation (8) is to use the Newton-
Raphson iterative method and in each iteration evaluate the
integrals in equations (3) and (4) to obtain the state densities
Np and Ng.

III. CIRCUIT MODEL AND SPLINE-BASED APPROXIMATION
OF CHARGE DENSITIES

In an earlier work [15] we proposed to apportion equal
parts of the equilibrium mobile charge density Ny to the
drain and source. This facilitates circuit implementation of the
model because now the corresponding non-equilibrium mobile
charge densities Qs and (Jp can be modeled as non-linear
circuit capacitances, dependent on the self-consistent voltage
Vsc, and connected between a conceptual inner node, which
represents the self-consistent potential, and CNT terminal
nodes:

Qs(Vse) = a(Ns(Vsc) — 5N0) (16)

and

Qn(Vse) = a(Np(Vsc) — 5 No) (17)

The resulting equivalent circuit is shown in figure 2 where
Y is the hypothetical inner node described above, which



comprises all the CNT charges. The current I; represents
the tunneling, one of the non-ballistic effects discussed in
section IV. Ipg is the transport current determined by the
self-consistent voltage Vsc. If only ballistic transport is con-
sidered, Ipg is equivalent to current Ipg,, given by equation
(18) below. In section IV we consider models of non-ballistic
effects which allow a more accurate representation of the
transport current Ipg.
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Fig. 2. Equivalent circuit for the proposed CNT transistor model.

According to the ballistic CNT ballistic transport theory
[1], [14] the drain current caused by the transport of the non-
equilibrium charge across the nanotube can be calculated using
the Fermi-Dirac statistics as follows:

2qkT (USF

Upr
foso == |0 = PG

where Fy represents the Fermi-Dirac integral of order 0, k
is Boltzmann’s constant, 7" is the temperature and # is reduced
Planck’s constant.

If the self-consistent voltage Vsc is known, the evaluation
of the drain current poses no numerical difficulty as energy
levels Usr, Upr can be found quickly from equations 6,7
and Ipg calculated directly using the closed-form analytical
solution of the Fermi-Dirac integral of order 0 [25]. However,
as it has already been highlighted above, the solution of the
self-consistent voltage equation (8) is very time consuming
because it involves a Newton-Raphson iterative process in
which each iteration requires numerical integration to obtain
state densities Np(Vsc) and Np(Vse). This is the main
drawback of general methods in calculating charge densities.
The next section outlines a piecewise approximation technique
that eliminates the need for these complex calculations while
maintaining a high modeling accuracy.

Our earlier work [16] proposed a piecewise non-linear
approximation technique that eliminates the need for these
complex calculations. Although the piecewise non-linear ap-
proach was demonstrated to be very fast and accurate in the
transistor modeling, it requires a complex fitting process when
deciding on the number of approximation pieces and intervals
of the ranges, which makes this type of modeling inflexible.
To improve the ease of use of the model without losing much
of the computational efficiency, a piecewise approximation of

(18)

the mobile charge based on cubic splines [26] can be used as
an alternative. While cubic splines are generally cumbersome
to apply in semiconductor modeling where multi-dimensional
approximations are usually required, here they are particularly
suitable and easy to apply because the dependence of non-
equilibrium mobile charge on the self-consistence voltage is
one dimensional. As illustrated below, the numerical efficiency
of the ballistic CNT transport model hinges on an efficient
calculation of the non-equilibrium mobile charge. For the
charge density defined in Section II
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a simple spline structure can be build, using n equally
spaced points, to approximate the mobile charge dependence
on Vgc using cubic polynomial pieces of the following form

Q(Vsc) = a;iVis +b;Vas + ¢iVsc + d; (20)

where a;, b;, ¢; and d;, © = 1,...,n — 1 are spline
coefficients. This enables a closed-form solution of the self-
consistent voltage equation (8) as, for each piece, it now
becomes a a polynomial equation of the third order. Thus, the
need for costly Newton-Raphson iterations and evaluations of
Fermi-Dirac integrals is eliminated.

IV. NON-BALLISTIC TRANSPORT EFFECTS

Research into non-ballistic transport in carbon nanotubes
has recently yielded results and some new theories have been
reported. Studies of the energy domain reveal that the in-
commensurate system within a non-ideal nanotube implies the
existence of a general non-ballistic regime [17]. The transport
type in carbon nanotubes, ballistic or non-ballistic, depends
on the energy region. Studies of the energy domain reveal
that the incommensurate system within a non-ideal nanotube
implies the existence of a general non-ballistic regime [17].
For a CNT transistor with the length smaller than the carrier
mean free path but larger than the Coulomb blockade length,
the ballistic transport will dominate. To travel through a
single defect Coulomb potential, the transmission coefficient
can be calculated by Tictect(E) = Gyitied(E)/Gempty(E)
[18], where E is the energy of the hole in a nanotube.
Therefore, the charging and discharging decides the maximum
differential conductance through single transport channels, and
E is directly determined by the terminal voltage Vpg. For non-
ballistic CNTs, this transmission coefficient fluctuation could
be caused by mobility fluctuation. However, under the effects
of scattering, F is much smaller than qVpg in the case. It has
also been shown that a mismatch of helicity between adjacent
shells may result in a short mean-free path [19]. In addition,
all kinds of likely defects, such as vacancies, contamination,
contact to the substrate, and adsorbed molecules may cause
non-ballistic transport [19]. In the light of these results,
the non-ballistic transport in CNTs is likely to attract more
research attention in the near future. Below we outline four
major non-ballistic effects which have been implemented in
our numerical models.



A. Elastic scattering

The elastic scattering mechanism in the CNT channel region
affects the channel resistance and therefore makes a potential
drop of the channel voltage. Assuming that mean free path
(MFP) l.ss is proportional to the diameter of the nanotube
[27], [28], which is l.;y = d/(do)Aefs, Where dy is the
reference diameter when A.r; is the elastic-scattering MFP
[12], and the transmission probability in the elastic-scattering
channel region can be expressed using Tef¢ = lerf/(L+ler ),
where d is the CNT diameter, A\cry ~ 200nm [29] and L is
the channel length. The channel potential drop can hereby be
derived as

L

— (2D
L+ d% : /\eff

VDsers = Vbs

The contribution to the device current characteristics can be
computed directly from the variable voltage Vpg.ry due to
the elastic scattering instead of the channel resistance, which
simplifies the calculation efficiently [12]. Figure 3 illustrates
how the drain current changes when the elastic scattering effect

relating to the channel length is considered.
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Fig. 3.  Comparison of the drain currents at Vg = 0.6V, T = 300K,
Er = —0.32¢V and L = 300nm for models with the elastic scattering
effect: FETToy model (dotted line), the FETToy-plus model (solid line) and
the proposed spline Model 1 with the elastic scattering effect (dashed line).

B. Band gap tuning with strain

It has been demonstrated that the transport property of a
CNT can vary under strain [30]. Measurements have shown
that the strain exerted onto a nanotube can change the band gap
thus affect the transport characteristics. The shape distortion
formed by the strain can be treated as a key factor when
calculating the extra band gap caused by the effect.

dEgstrain

I IV
X

where Ey ¢y is the effective band gap under strain,

dEgstrain is the gap shift due to the strain and x is defined
as the distortion factor under strain.

Egeff = Eg + (22)

It has also be indicated that the change rate of the band gap
dBgstroin i the light of strain is chirality dependent, which
can be computed using

dEgstrain
dx
In the equation, o is the overlap integral of the tight-binding
C-C model, with a value of circa 2.7¢V, rg ~ 0.2 is the
Poisson’s ratio, ¢ is the chiral angle of the nanotube and p
comes from the CNT chirality: for a CNT with the chirality
(m,n), m —n = 3l + p, where | and p are both integrals.
It is indicated that the chirality and strain can both influence
the band gap of a CNT and the total gap E,.rs could be
either larger or less than the ideal diameter-based calculation
Eg4, which might cause the transport to decrease or increase
respectively.

= 30 (1 4 ro)sign(2p + 1)cos(3¢) (23)

Figure 4 illustrates that when under certain strain conditions
(x = 0.1, p =1 and ¢ = 20°) the drain current has been
reduced due to the bang gap variation.

_x10°[A]
8 .

7" without strain effects

i with strain effects

IDS
S

% 0.1 0.2 0.3 0.4 05 0.6

VDS V]

Fig. 4. Comparison of the drain currents at Vi = 0.6V for models with
(dashed line) and without (solid line) strain effects for a 300nm long CNT
channel with the diameter oflnm at Fp = —0.32eV and T' = 300K.

C. Tunneling effect

The tunneling effect is also inevitable in the subthreshold
region, which may cause self-consistence potential lowering
and thereby worsen the threshold characteristics of the tran-
sistor. One simplified method to describe the tunneling effect
is to introduce a parameter 73, called the tunneling probability
[11], which is calculated as

ﬂ_Q w,/m*Eg

T~ —e¢ ViaiF (24)

where F' is a parameter which triggers the tunneling under
high electrical field [11] and m* is the effective electron mass
[11]. The tunneling current then can be obtained by 7} timing
the maximum possible tunneling current using
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Fig. 5. Comparison of the drain currents at Vi = 0.6V for models with
(circlet line) and without (solid line) tunneling effects for a 300nm long CNT
channel with the diameter of 1nm at Ep = —0.32¢V and T' = 300K.

It can be noticed from figure 5 that the tunneling current
has increased the total drain current throughout the Vg range,
but the effect only becomes obvious when the bias voltage is
getting large and exceed a certain turning point depending on
the coefficients.

D. Phonon scattering

For semiconducting carbon nanotubes, the scattering effects
are related to the band energy. The effective phonon scattering
mean free path in a semiconducting nanotube can be computed
by

1 1 1
lee(WV2)  lap {1 14 e(EFqVSC+qu)/KBT:|

(26)

1 1
+E |:1 - 1+e(EFqVSChWop+qVI)/KBT:|

where [,, = 500nm is a typical acoustic phonon scattering
MFP value while [,, = 15nm is a typical optical phonon
scattering MFP, and fiw,, ~ 0.16eV is a typical OP energy
[20], [21]. It can be noticed that at low carrier energy (e.g. <
0.15eV), the acoustic scattering dominates; while the optical
scattering is more important at high kinetic energy.

1.(0)
S0+ @7
TD _ lsc(VDSeff) (28)
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e
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Equations (27),(28) and (29) are to describe the scattering
effects on the I — V' characteristics. Figure 6 illustrates that
the phonon scattering effects may limit the transport capability
of carriers in the channel and hence restrain the drain current.
Different from equation (18), the scattering coefficients T's and
Tp are introduced in equation (29) which indicates the effects
of the phonon scattering.
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Fig. 6. Comparison of the drain currents at Vi = 0.6V for models with
(dashed line) and without (solid line) phonon scattering effects for a 300nm
long CNT channel with the diameter of 1nm at Ep = —0.32eV and T' =
300K.

It can be seen from above subsections that some non-ideal
effects exist when operating a CNT transistor and therefore
the transport characteristics becomes non-ballistic. There can
be quite a large number of factors including scattering mecha-
nisms, parasitic capacitances and energy barriers as well, and
the transport phenomenons introduced above are just part of
them. Some non-idealities, such as contact junction effects, are
also of great importance. However, more theoretical analysis
and mathematic expressions are needed before they can be
added into the model. In reality, the non-ballistic effects
are caused by a number of factors, including fabrication
technologies and materials, etc. Therefore, it becomes difficult
to identify which effect is more important, and it can be seen
certain effects are dominant when the related coefficients are
of great value in the provided device. For a model with non-
ballistic effects introduces above, the transport equation can
be treated as the summary of the transport current and the
tunneling current, which is also reflected in figure 2 as the
parallel current sources.

By adding equations (21), (22), (25) and (29) to the original
FETToy MATLAB scripts, we developed an extended model
named FETToy+ [31] which has included the above four non-
ballistic effects in the model. Figure 7 shows an accuracy
comparison between FETToy and FETToy+ which combines
the effects shown in Figures 3, 4, 5 and 6 respectively.
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Fig. 7. Comparison of the drain currents at Vg = 0.6V for FETToy (solid
line) and FETToy+ (dashed line) models with 300nm channel length and
1nm diameter at Fp = —0.32eV and T = 300K.

V. PERFORMANCE OF PROPOSED MODEL

For an ideal model with no non-ballistic effects, once the
self-consistent voltage Vs is efficiently calculated from the
closed-form solutions of equation (8) after the approximation
which yields only linear, quadratic or a 3rd order polynomial
relations, the total drain current can be directly obtained
from equations (6), (7) and (18). However, when non-ballistic
transport features are considered, a more complicated model
which includes additional coefficients and equations is needed.
To clarify the distinction and compare the performance of the
proposed models, separate simulations have been carried out
for both ideal and non-ballistic scenarios.

A. Ballistic model

In the ballistic modeling approach, the calculations are
extremely fast, as Newton-Raphson iterations and integration
of the Fermi-Dirac probability distribution are now eliminated.
Table I shows the average CPU times for proposed models
and those for FETToy. For accurate measurement, experiments
were carried out by invoking all models 100 times. Results
show that spline models are more than two orders of magni-
tude faster than FETToy. The extent to which the modeling
accuracy was compromised by numerical approximation was
also measured by calculating average RMS errors in the
simulations. Here we chose the concept of normalized RMS
error which is expressed in equation (30).

e (@i—bi)?

lized RMSE = g
normalized RM S max(a;, b;) — min(a;, b;)

(30)

Figures 8 and 9 show the Ipg characteristics calculated by
FETToy compared with two spline ballistic models, Model 1
and Model 2 using n = 4 and n = 5 points respectively.
As shown in Table I, both models maintain a high accuracy
in terms of the average RMS error. As expected, Model 2
is slightly more accurate with errors not exceeding 1.1% at
T = 300K and Er = —0.32eV throughout the typical ranges
of drain voltages Vpg and gate bias V.
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Fig. 8. Drain current characteristics at 7' = 300K and Er = —0.32eV

for FETToy(solid lines) and piecewise approximation using ballistic Model 1
(dashed lines).
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Fig. 9. Drain current characteristics at 7' = 300K and Er = —0.32¢eV
for FETToy(solid lines) and piecewise approximation using ballistic Model 2
(dashed lines).

TABLE 1
COMPARISON OF AVERAGE CPU TIME AND MAXIMUM RMS ERROR OF
PROPOSED BALLISTIC MODELS WITH FETTOY.

FETToy Spline Max CPU

CPU time model RMSE time
Model 1 1.4% 11.7Sec

1287 sec I Niodel 2 | 1.1% | 19.3Sec

B. Models with ballistic and non-ballistic effects

When taking into account the non-ballistic effects described
in section IV, the FETToy model [14], which implements
the purely ballistic transport theory, cannot be used as a
reference for accuracy and speed analysis. By adding equations
(21), (22), (25) and (29) to the original FETToy MATLAB
scripts, we developed an extended model named FETToy-+
[31] which is capable of analyzing both ballistic and non-



ballistic performance of CNTs. Similarly, the cubic spline
model has been enhanced to include the non-ideal effects. The
second group of simulations illustrate that the drain current
may be reduced dramatically due to the presence of non-
ballistic effects. We have tested two spline-based non-ballistic
models, Model 3 and Model 4 with n = 4 and n = 5 spline
points correspondingly. Figure 10 and 11 show the simulation
results for FETToy-+ and both the spline non-ballistic models.
In addition, the accuracy and the speed of the proposed models
have been measured and compared with those of FETToy+,
and results are listed in Table II. It can also be seen that the
non-ballistic models consume more CPU time than ballistic
models due to more complicated calculations.
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Fig. 10. Drain current characteristics at 77 = 300K and Ep =
—0.32eV for a L = 300nm CNT channel including non-ballistic effects
for FETToy+(solid lines) and piecewise approximation using non-ballistic
Model 3 (dashed lines).
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Fig. 11. Drain current characteristics at 77 = 300K and Ep =
—0.32eV for a L = 300nm CNT channel including non-ballistic effects
for FETToy+(solid lines) and piecewise approximation using non-ballistic
Model 4 (dashed lines).

VI. COMPARISON WITH EXPERIMENTAL RESULTS

Additionally, to validate the performance of the proposed
models, some reported experimental characteristics were com-
pared with the simulation results for d = 1.6nm,t,, =

TABLE I
MAXIMUM RMS ERROR TO FETTOY+ AND AVERAGE CPU TIMES OF
SPLINE MODELS WITH NON-BALLISTIC EFFECTS.

FETToy+ | Spline Max CPU
CPU time model RMSE time
Model 3 | 1.9% | 13.4 sec
2261 sec I Npodel 4 | 1.5% | 22.85ec
TABLE III

AVERAGE RMS ERRORS IN I p g COMPARISON TO THE EXPERIMENTAL
RESULTS OF FETTOY MODEL AND THE PROPOSED NON-BALLISTIC (NB)
MODELS FOR d = 1.6nm, tog = 50nm, T = 300K AND Er = —0.05eV.

Va[V] | Spline Model 3 | Spline Model 4

02 | 133% | 128%
04 | 125% | 119%
0.6 | 113% | 10.6%

50nm, T = 300K and Er = —0.05eV. Figures 12 shows that
the proposed cubic spline model with non-idealities obtains
close drain current performance to the experimental measure-
ments which were derived recently and provided sufficient
information about the transistor parameters [32]. The n-type
carbon nanotube transistor was fabricated with K-doping and
grounded back gate in the reported experiment. Table III shows
the corresponding average normalized RMS errors. As it can
be seen from the following table and figure, both models
maintain high accuracy over a wide range temperature and
Fermi level values for different carbon-nanotube diameters
with the non-ballistic Model 4 being slightly mode accurate.
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Fig. 12. Comparison to the experimental results(circlet lines) of the proposed
non-ballistic Model 4 (dashed lines) for d = 1.6nm,tox = 50nm, T =
300K and Er = —0.05eV.

VII. CONCLUSION

A fast and efficient numerical approach to CNT transistor
modeling has been proposed. It allows a straightforward in-
corporation of both ballistic and non-ballistic transport effects.



Results have shown that CPU times can be accelerated by
two, or in some cases three, orders of magnitude compared
with the traditional approach where time-consuming Fermi-
Dirac integral and Newton-Raphson iterations are used. The
key advantage of the presented technique is that it overcomes
numerical difficulties in the calculation of the drain-source cur-
rent by allowing a closed-form solution of the self-consistent
voltage equation. Numerical integration and Newton-Raphson
iterations are therefore avoided leading to a substantial accel-
eration in the model evaluation. The presented model concerns
ballistic and non-ballistic transport in the carbon nanotube
itself. Future work involves the development of an enhanced
CNT transistor model by adding effects external to the inner
CNT transistor, such as the Schottky barrier between the
carbon nanotube and metal contacts, multiple CNTs at a
single gate, channel fringe capacitances, parasitic source/drain
resistance, series resistance due to the scattering effects.
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