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Abstract—In this paper we present two simulation techniques for
modeling periodic structures with three-dimensional elements in
general. The first of these is based on the Method of Moments (MoM)
and is suitable for thin-wire structures, which could be either PEC
or plasmonic, e.g., nanowires at optical wavelengths. The second is
a Finite Difference Time Domain (FDTD)-based approach, which is
well suited for handling arbitrary, inhomogeneous, three-dimensional
periodic structures. Neither of the two approaches make use of the
traditional Periodic Boundary Conditions (PBCs), and are free from
the difficulties encountered in the application of the PBC, as for
instance slowness in convergence (MoM) and instabilities (FDTD).

1. INTRODUCTION

Frequency Selective Surfaces (FSS) comprising of periodic arrays of
metallic or dielectric elements, have been extensively developed and
utilized in various applications for decades to control the transmission
of electromagnetic waves [1, 2]. They are also useful as Electromagnetic
Band-Gap structures(EBG) and Metamaterials, that are currently
finding widespread use for various applications.

The periodic structures are typically modeled as infinite doubly-
periodic arrays of scatterers, and are commonly analyzed by imposing
periodic boundary conditions to a unit cell to reduce the original
problem to a manageable size [3]. The conventional Method
of Moments (MoM) [4, 5] is often the algorithm of choice for
electromagnetic scattering problems. It also provides efficient means
for simulating FSSs, given the periodic elements are PEC and not
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inhomogeneous and complex objects, the latter being more amenable
to convenient analysis through the use of Finite Methods.

One caveat in using the Floquet-Bloch theorem to reduce the
computational domain of infinite periodic structures to a single unit cell
is that it leads to a slowly convergent series [6], which requires special
processing, e.g., the use of Ewald transform [7]. In addition, if the FSS
elements have multi-scale features and are made of metallo-dielectric
materials, the MoM matrices may suffer from ill-conditioning.

The technique proposed in this paper derives the solution to the
infinite doubly-periodic problem by first characterizing the current
distribution over the element via the derivation of its Characteristic
Basis Functions (CBFs) [8, 9]. The solution for the periodic array
is then derived by progressively enlarging the size of the truncated
structure and extrapolating its solution via the use of signal processing
techniques [10, 11]. The CPU time and memory requirements in this
approach were shown to be considerably less than those required
by commercial periodic MoM codes that utilize the periodic Green’s
function approach.

The ability to bypass an infinite summation, either in the spatial or
spectral domains, is what leads to the computational efficiency realized
by using this method. In addition, the methodology we propose is
very general and is already been extended to geometries and range of
incident angles that are not always easily handled by the commercial
codes [12].

Next, we turn to the problem of modeling of periodic structures
with inhomogeneous and complex-shaped 3D elements (see Fig. 1). It is
well known that MoM-based methods can become very inefficient when
handling such elements, and that 3D inhomogeneous FSS problems are
more amenable to convenient analysis via the use of Finite Methods.
We choose to use the Finite Difference Time Domain method for

Figure 1. Representative geometry of an infinite doubly periodic array
of inhomogeneous 3D elements.
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this purpose, because it provides us the simulation results over a
wide frequency band with a single run. We note, however, that the
imposition of the PBC is not very straightforward in the FDTD, which
requires a modification of the update equations when dealing with
periodic structures. Furthermore, FDTD is plagued by instability
issues and the update algorithm requires that the time step be
progressively reduced as the angle of incidence of the plane wave
impinging upon the periodic structure becomes increasingly oblique.

To obviate these difficulties, we introduce yet again a technique
in this paper that bypasses the use of PBCs in the FDTD. Instead,
in common with the MoM-based approach described above, we again
solve the problem of a truncated periodic structure to derive the
solution we seek for the original periodic structure.

Illustrative examples are also presented to demonstrate the
accuracy of the approach by comparing the results derived by using a
Finite Element Method (FEM) based, PBC version of the commercial
code.

It is worthwhile to point out that the proposed technique is
naturally suited for handling truncated periodic structures that are the
starting points in the proposed approach, and are difficult to handle
by using conventional methods. One of its main contributions is to
show how the solution to the limiting case of infinite doubly-periodic
structure can be accurately extracted from that of a corresponding
finite one, whose size is relatively small.

2. PROCEDURE FOR WIRE ELEMENTS

The technique begins by applying the Characteristic Basis Function
Method (CBFM) to a single unit cell of the grating (Fig. 2). The
element is illuminated with a set of plane waves whose angles of
incidence span the [θ, φ] space. The number of incident angles is
overestimated to capture all the possible Degrees of Freedom (DoFs)
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Figure 2. Geometry of the FSS unit cell with a spectrum of plane
waves incident on it.
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present in the solutions for the induced currents. These solutions
are denoted as CBFs, namely high-level basis functions especially
constructed to fit the actual geometry by incorporating the physics
of the problem into their generation.

Only N linearly independent CBFs are retained for the problem
at hand by applying a Singular Value Decomposition (SVD) procedure
to filter out the total set of solutions. The number of surviving CBFs
is relatively small, typically two or three in frequency ranges for which
the size of the unit cell is smaller than one wavelength.

Once the CBFs are generated for the isolated array element,
we invoke the Floquet’s theorem to argue that all of the elements
comprising the periodic structure must have the same current
distribution, apart from a phase shift ψ which is determined by the
angle of incidence of the plane wave impinging upon the grating.

Next, we construct the reduced CBF matrix Zk
RED

and use it to
solve a series of truncated array problems, by progressively increasing
its dimension k, with the objective of predicting the asymptotic limit of
the weights of the current as k →∞ and the truncated array becomes
a doubly-infinite periodic structure. The reduced matrix reads:

Zk
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(1)

As indicated in (2), the matrix elements are generated by following
a Galerkin procedure applied only at the center (0, 0) cell, with Es,i

k,CBF

representing the field produced by i-th CBF J i
CBF at U0,0. The

summation index k varies from 0 to R, where R is the number of
concentric rings. The Right Hand Side (RHS) vector represents the
tangential fields incident upon the center element of the array, tested
with the same CBFs. The weights wk of the CBFs are derived as
functions of k, by imposing the continuity of the tangential E-fields at
the center element surface:

wk =
(
Zk

RED

)−1
RHS (2)

Finally, the resulting current distribution at the center cell is
computed as a weighted linear combination of the CBFs.
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2.1. Extraction of Periodic Array Result

The procedure for extracting the asymptotic value for the current
distribution of the infinite array problem is based on processing the
results of a relatively small-size truncated array, comprising of only a
few rings. A typical behavior of the magnitude distribution of the
weight coefficients of the current, as a function of the number of
concentric rings ranging from 1 to 40, i.e., up to an 81 × 81 array,
is shown in Fig. 3. We observe that the coefficients exhibit a relatively
slow convergence behavior as we progressively increase the array size.
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Figure 3. Magnitude variation of the current coefficients in the unit
cell as functions of the size of the array, at the operating frequency
of 3 GHz. Dashed marker: original data, line marker: interpolated
data f(r), dark round marker: f(r) evaluated at first two consecutive
maximum(minimum) and minimum(maximum) of its derivative (f(k)
at k = k1 and k = k2).

The method proposed herein proceeds by smoothing the
magnitude and phase values of the weight coefficients through cubic
spline interpolation to construct fm(r) and fp(r) for the truncated
array problem. Next, we take the derivative of these functions and
select a threshold t to filter out the contributions of the first t−1 rings
which may contain artefacts. Finally, starting from r ≥ t, we find the
first two consecutive maximum (minimum) and minimum (maximum)
values of f ′(r), which correspond to the points of which the slope of
f(r) is maximum. We find two consecutive indices k = k1 and k = k2,
for which the slope is maximum, and then take the average of f values
evaluated at these two points as the asymptotic value we are seeking.

The reflection and transmission coefficients are defined as:

Γ =
Escat

Einc
and τ =

Etrans

Einc
(3)

where Escat and Etrans represent the scattered and transmitted fields
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in the far-region. Our final step is to work with the induced currents
to derive the Γ and τ using (3), in a manner similar to that in [13].

The methods described above, for analyzing periodic structures
can also be applied to problems involving plasmonic materials, such as
arrays of nanorods at optical frequencies, which find a wide range of
applications in photonics [14].

3. PROCEDURE FOR THREE-DIMENSIONAL
STRUCTURES

We will now turn to arbitrary three-dimensional elements that are not
amenable to efficient analysis by using the Method of Moments and
are best handled by Finite methods, e.g., the FEM or the FDTD.
The FEM analysis applied in conjunction with the Periodic Boundary
Condition (PBC) is well established and will not be discussed here.
The FDTD has also been applied in the past with the PBC, but is
fraught with a number of difficulties, primarily encountered when the
angle of incidence of the incident plane wave is not close to normal.
Specifically, it is very common to run into instabilities in the FDTD
time-updating process, despite the reduction of the time-step, which
must be done as the incident angle becomes more and more oblique.

The method described herein not only circumvents these
difficulties with the instabilities and time-step reduction, but it also
does not require the introduction of auxiliary functions [15] in the
FDTD update equations. As a first step, we modify the given doubly-
infinite periodic structure to the truncated model as shown in Fig. 4.
We place the truncated structure inside a parallel-plate waveguide; so
that it remains periodic in the y-direction by virtue of imaging by the
parallel planes. An incident field which is polarized in the y-direction,
with its k-vector in the x-z plane, impinges upon the structure at an
arbitrary angle relative to the z-axis. Of course, this configuration
restricts us to change the incident angle only in the x-z plane.

The computational domain is terminated in the x-direction

Figure 4. Modified waveguide geometry.
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by using Perfectly Matched Layers (PML), as is the case for the
conventional FDTD.

In common with the procedure described in Section 2.1 we again
truncate the doubly-periodic structure to a finite one and develop a
technique for extrapolating the results of the finite structure to that of
the infinite doubly-periodic geometry. However, the original approach,
which was based on the extrapolation of the weight coefficient of the
current distribution in the context of the Method of Moments must
be tailored for the FDTD, since it deals with E and H fields, and not
directly with induced currents. The details of the proposed procedure
appear in Section 3.1.

3.1. FDTD-based Method for Computing Reflection and
Transmission Coefficients

Our next step is to solve the waveguide structure scattering problem
shown in Fig. 4 by using a Finite Method, e.g., the FDTD and to
compute the scattered fields along the longitudinal direction on a line
at the center of the waveguide as shown in Fig. 4.

We note that the total field on the incident side of the waveguide
(z < 0) is a summation of the incident and scattered (reflected) fields,
while only the transmitted fields exist in the forward direction (z > 0),
as shown in Fig. 4.

Next, for the normal incidence case, we decompose the fields
measured along the line z1-z2 (see Fig. 4) within region z < 0 into their
incident and reflected components by using the Generalized Pencil-Of-
Function (GPOF) method [16]. For the oblique incidence case, the
fields are measured along specular directions both in the reflection and
the transmission regions.

The weights of the transmitted and reflected fields associated with
the dominant Floquet harmonic determined by the GPOF algorithm,
yield the transmission and reflection coefficients for the truncated
array. The reflection and transmission coefficients, computed by
using (3), are tracked progressively by increasing the number of
elements in the transverse direction (see Fig. 5).

Our next step is to plot Γ and τ as functions of the number of
cells as shown in Fig. 5. These intermediate values are processed
next to derive the asymptotic value for the reflection coefficient
of the particular frequency for which we have measured the fields.
This process is repeated for all the frequencies of interest and the
extrapolated reflection coefficient values are plotted over the desired
frequency band as shown below.
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Figure 5. Magnitude of the reflection coefficient as a function of
the number of elements, in the x-direction; solid line: original data,
dashed: extrapolated data.

4. NUMERICAL RESULTS

For the first test example, we consider a single-layer, planar, doubly-
periodic FSS of infinite extent (in the x- and y-directions) with
periodicities Dx = Dy = 0.7λ0, where λ0 is the wavelength at 5 GHz.
Each cell contains a PEC wire of λ0/2 in length, whose radius is λ0/500,
and which is tilted out of plane at an angle of θ = 60◦ (see Fig. 6).

Figure 6. Representative geometry of the analyzed periodic array of
dipoles tilted out-of-plane (θ = 60◦).

An x-polarized plane wave, traveling along the −z direction, is
normally incident upon the grating. Only one CBF is found to be
sufficient to describe the current distribution over this type of element;
hence, the related reduced matrix is just 1×1. The frequency range of
our interest spans from 3.5 to 6 GHz. The reflection and transmission
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Figure 7. Magnitude of the (a) reflection coefficient and
(b) transmission coefficient derived by using this method and compared
with those obtained by using: GPOF extrapolation; and commercial
MoM and FEM.

Table 1. Run-time performance for the dipole test example by using
the present method (CBFM with truncation procedure), CBFM with
GPOF extrapolation and commercial solvers implementing the MoM
and the FEM.

Numerical method This method GPOF extrapolation MoM FEM

Normalized time 1 3.5 454.5 901.9

characteristics of the array are compared in Fig. 7.
The agreement with the results obtained independently by using

GPOF extrapolation and software modules is seen to be good.
Table 1 below lists the time comparison, to illustrate the advantage

of our method in terms of run-time, both over existing EM solvers and
previous published data. The normalized time has been defined as
follows:

Norm. time =
Time for other method
Time for this method

(4)

Next, we present some representative results for the reflection
characteristics of 3D structures. In Fig. 8 we show the results for
an array of PEC spheres whose diameters are 0.5λ0 with periodicity of
0.75λ0, at the operating frequency of 5 GHz. The array is illuminated
by a plane wave at normal and 20 degree incidence angles, respectively.
We also compare the obtained results against those derived by using a
commercial FEM solver.

As it is well known, the FDTD can handle dielectric and PEC
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structures with ease, Fig. 9 shows the results for an array of dielectric
spheres with εr = 9 and diameters of 0.5λ0 with periodicity of 0.75λ0

at the operating frequency of 5 GHz. Again, the results have been
derived for normal and 20 degree incidence angles, respectively.

Figure 10 also shows the results for PEC spheres coated with
a dielectric layer, whose εr is 9. For this case, the PEC spheres
have diameters of 0.5λ0 and a periodicity of 0.75λ0 at the operating
frequency of 5GHz. The thickness of the dielectric is λ0/20.
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Figure 8. Magnitude of Reflection coefficient for (a) normal incidence
and (b) 20 degrees incidence, derived by using the present method and
compared with those from a commercial FEM (PBC) solver for PEC
spheres.
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Figure 9. Magnitude of Reflection coefficient for (a) normal incidence
and (b) 20 degrees incidence, derived by using the present method
and compared with those from a commercial FEM (PBC) solver for
dielectric spheres.
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incidence and (b) 20 degrees incidence, derived by using the present
method and compared with those from a commercial FEM (PBC)
solver for PEC spheres coated with dielectric material.

To further illustrate the versatility of this method, we have applied
this technique to FSSs with 3D elements [17], as shown in Fig. 11. This
structure is somewhat different from the one presented in [17], in that it
is tuned to a different frequency and is implemented with flat strips —
as opposed to wires-supported by RO4003 (εr = 3.55) dielectric layer
of thickness d. The flat strips at the top and bottom are connected by
vias, as shown in Fig. 11(a). Fig. 12 shows the transmission coefficient
of this structure. We note that there is slight difference at the low end
of the frequency band between the simulated and measured results,
and that the measured result shows a slightly wider bandwidth than
the simulated one. This difference could be due to tolerances in the
fabricated model, as well as due to conductor losses in the structure.
It is interesting to note, however, that our results are closer to the
measured ones than those predicted by the commercial FEM (PBC)
code.

It is evident from Figs. 8, 9, 10 and 12 that good agreement has
been achieved between the results obtained from a commercial FEM
solver and the proposed algorithm, despite the fact the use of PBCs is
totally avoided in the present method and, hence, concerns regarding
instability and reduction in the time step are obviated. As mentioned
earlier, working in the time domain, as we have done in the proposed
method, enables us to generate the solution over a frequency band
with a single run, but without the burden of instability and numerical
inefficiency that plague the conventional FDTD/PBC analysis.
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Figure 11. Geometry of analyzed FSS unit cell. (a) 3D view,
(b) side view, (c) top view. Geometry parameters are: H = 18.96mm,
d = 0.508mm, t = 1 mm, w = 1 mm, s = 2 ∗ 0.784mm, h = 0.76mm,
L = 6.5mm and periodicity Dx = Dy = 24.29mm.
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5. CONCLUSIONS

In this paper, we have introduced two simulation techniques for
modeling periodic structures with three-dimensional elements. The
proposed first technique yields accurate results for the reflection
and transmission characteristics of the array, at a fraction of the
computational cost when compared to those required by existing codes
for modeling periodic structures. The computational efficiency is
realized by totally bypassing the evaluation of the infinite summations,
either in the spatial or in the spectral domains. Also, we have
introduced a second technique to derive the response characteristics
of periodic arrays characterized by arbitrary 3D type of elements.
This method yields results that are in good agreement with those
obtained from commercial solvers, while it avoids the use of PBCs, thus
bypassing the difficulties encountered in the FDTD with the increase
in the solve-time, and with issues pertaining to the stability behavior.

Before closing, we mention that the techniques presented herein
can be modified to address the important problem of modeling periodic
structures with statistical variations in their geometries, as is typically
the case with MTMs for optical wavelengths, where the difficulties
in their fabrication almost always introduce small variations in the
dimensions of the elements that comprise the periodic array.
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