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NUMERICALLY FINITE HEREDITARY CATEGORIES WITH SERRE

DUALITY

ADAM-CHRISTIAAN VAN ROOSMALEN

Abstract. Let A be an abelian hereditary category with Serre duality. We provide a classi-
fication of such categories up to derived equivalence under the additional condition that the
Grothendieck group modulo the radical of the Euler form is a free abelian group of finite rank.
Such categories are called numerically finite and this condition is satisfied by the category of
coherent sheaves on a smooth projective variety.
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1. Introduction

Let k be an algebraically closed field; all categories will be assumed to be k-linear. In this
paper, we provide a classification of all numerically finite hereditary categories with Serre duality
(see below for definitions). In this way, we contribute to an ongoing project to classify hereditary
categories.

The conditions we impose on our hereditary categories will be of geometrical nature. Recall
that the following conditions are satisfied for the category cohX of coherent sheaves on a smooth
projective variety X:

(1) A is Ext-finite, meaning that for every two elements A,B ∈ A, we have dimk Ext
i(A,B) <

∞ for each i ≥ 0.
(2) A has finite global dimension, meaning that Extn(−,−) = 0 for some n≫ 0.
(3) A has Serre duality [10], meaning that there is an additive auto-equivalence S : DbA →

DbA such that for every A,B ∈ ObDbA there are isomorphisms

Hom(A,B) ∼= Hom(B, SA)∗

natural in A and B, and where (−)∗ is the vector-space dual.
(4) A is numerically finite, meaning that the rank of the free abelian group

NumA = K0A/ radχ(−,−)

is finite. Here, K0A is the Grothendieck group of A and χ(−,−) is the Euler form.
Numerical finiteness is an important concept in the theory of stability conditions [12].

Excepting finite global dimension, all of the other conditions are derived invariants. Thus if A
satisfies (1),(3), or (4), and B is an abelian category such that DbA ∼= DbB, then B satisfies the
same condition. It is known, however, that when A has finite global dimension, the same does not
need to hold for B ([8]).

The category A is called hereditary if Ext2(−,−) = 0 (note that although heredity is not
kept under derived equivalence, there is a satisfactory notion of heredity that can be defined for
Krull-Schmidt triangulated categories [40]). This condition is satisfied when A is the category
of coherent sheaves on a smooth projective curve. The theorem below may thus be regarded as
providing a classification of noncommutative curves.

Theorem 1. Let A be a nonzero indecomposable hereditary category with Serre duality over an
algebraically closed field. If A is numerically finite, then A is derived equivalent to either

(1) a tube,
(2) the category of finite-dimensional representations of a finite acyclic quiver, or
(3) the category of coherent sheaves of a hereditary OX-order where X is a smooth projective

curve.

It is worth noting that these three classes are not mutually disjoint. Indeed, it is known (see
[36, Appendix A]) that a category of coherent sheaves on a weighted projective line (in the sense
of [20]) is equivalent to the category of coherent sheaves of a hereditary OP1-order, and thus falls
into (3) where the smooth projective curve X is a projective line. However, when this weighted
projective line is of domestic type, then the category of coherent sheaves also fits in (2), up to
derived equivalence.

The proof of Theorem 1 is involved and consists of three major steps. One main idea is that
when A has an exceptional object E, one could consider the perpendicular category E⊥ which is,
in some sense, a smaller and easier category (this is called perpendicular induction [33]). If A is
numerically finite, then this procedure stops after finitely many steps.

The first theorem we prove states that if A does not contain any exceptional objects, then it
contains 1-spherical objects (defined in [41]). Since we do not require A to be numerically finite,
this theorem may be of independent interest.

Theorem 2. Let A be a nonzero abelian hereditary Ext-finite category with Serre duality over an
algebraically closed field. Then A has an object which is either exceptional or 1-spherical.
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For the proof of Theorem 2, we may assume that A does not have any exceptional objects.
Since A has Serre duality, we know that A has Auslander-Reiten sequences and the Auslander-
Reiten translation induces an auto-equivalence τ : A → A. In the proof of Theorem 2, we start
with an indecomposable object X ∈ A such that dimk Ext

1(X,X) is minimal. If X were not
1-spherical, and we can use a nonzero map X → τX to construct an object Y ∈ A such that
dimExt1(Y, Y ) < dimExt1(X,X), which contradicts the minimality of dimExt1(X,X).

Having proven Theorem 2, the next step is to consider hereditary categories with Serre duality
and without exceptional objects: we know that such a category will have 1-spherical objects. With
each such 1-spherical object, we can associate a twist functor which is an auto-equivalences of the
category DbA. Definitions and results about (simple) 1-spherical objects and twist functors are
recalled in §4.

In order to prove Theorem 3 below, we will use these twist functors to construct a noether-
ian hereditary category H derived equivalent to the original category A. We can then use the
classification in [37] to obtain the required classification.

Theorem 3. Let A be a nonzero indecomposable hereditary category with Serre duality over an
algebraically closed field. If A does not have any exceptional objects, then A is derived equivalent
to either

• a homogeneous tube, or
• the category of coherent sheaves on a smooth projective curve of genus at least one.

We will construct this hereditary noetherian categoryH in §5.1 using a 1-spherical object S ∈ A.
By our construction, S will be a simple object in H and, in fact, we will show that H has a “large
enough” set S of simple 1-spherical objects such that Hom(X,S) 6= 0 for any X ∈ S. Moreover,
all length modules of H are obtained by taking successive extensions of objects in S.

We then define a torsion pair (T ,F) by taking T ⊆ H to be all length modules. As in [37],
we will consider the category H/T in §5.3 and show that it has a simple object. This object
corresponds to a noetherian object in H and has to lie in a noetherian direct summand of H.

Note that Theorem 3 requires no conditions on the numerical Grothendieck group. In order to
find other and “larger” categories, we need to allow exceptional objects. If A has an exceptional
object E, we will consider the perpendicular categoryE⊥. This category is then another hereditary
category with Serre duality which may or may not have other exceptional objects. This is where the
condition on the size of the numerical Grothendieck group enters: if the numerical Grothendieck
group has finite rank, then this process stops after finitely many steps. In other words, the category
DbA has a finite maximal exceptional sequence E = E1, E2, . . . , En.

Here, we need to distinguish between two main cases. The first case is that where the resulting
category E⊥ is the zero category. In this case, we know that A has a tilting object and we may
invoke [25] to obtain the classification. We can thus restrict our attention to the case where the
resulting category is nonzero.

The first step in the proof of Theorem 1 is to consider the case where this process stops after
one step, namely the case where E⊥ does not have any exceptional objects anymore. In this case,
we show in Proposition 6.16 that E is simple in A and that E ⊕ τE is a generalized 1-spherical
object.

If the maximal exceptional sequence E = E1, E2, . . . , En consists of more than one element, we
will show in Proposition 6.22 that every exceptional object has a finite τ -orbit. This implies the
existence of more generalized 1-spherical objects, and we can again use these to find a derived
equivalent hereditary category H with a “large enough” set S of (semi-simple) generalized 1-
spherical objects. The proof of Theorem 1 then proceeds in a similar way as the proof of Theorem
3.

We wish to remark that although it is easy to recover the classification of all abelian 1-Calabi-
Yau categories ([43]) from Theorem 3 and the classification of hereditary categories with a tilting
object ([25]) from Theorem 1, both of these classification results are used in proving the results in
this paper.
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There are examples known of hereditary categories with Serre duality which are not numerically
finite. In fact, some of these categories are noetherian (see [37]). For all of the three classes in
Theorem 1, infinite versions have been constructed in [8, 39, 45].
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This work was partially funded by the Eduard Čech Institute under grant GA CR P201/12/G028.

2. Preliminaries and first results

We fix an algebraically closed field k. All vector spaces, algebras, and categories will be k-linear.
Furthermore, we will always work with essentially small categories. A k-linear category C is said
to be Hom-finite if dimk HomC(A,B) <∞ for every two objects A,B ∈ C.

For a Krull-Schmidt category C, let ind C be the full subcategory of C whose objects are repre-
sentatives of isomorphism classes of C. If C′ is a full Krull-Schmidt subcategory of C closed under
isomorphisms, we will choose ind C′ to be a subcategory of ind C. Thus for each isomorphism class
of indecomposable objects in C′, we will choose the same representative in ind C′ as we had chosen
in C.

2.1. Hereditary categories. An abelian category A is called hereditary if Ext2A(−,−) = 0, or
equivalently, if and only if Ext1(A,−) and Ext1(−, A) are right exact for all objects A ∈ A ([37,
Lemma A.1]).

We will follow standard notations and conventions about derived categories (see for example
[22, 28, 31]). Let DbA be the bounded derived category of an abelian category A. We will write
X [n] for the n-fold suspension of X ∈ DbA.

There is a fully faithful functionA → Db(A), mappingA to a complex which is the stalk complex
of A concentrated in degree 0; we denote this complex by A[0]. Also, we will write (A[0])[n] by
A[n]. We will write A[0] for the full subcategory of DbA given by the stalk complexes concentrated
in degree 0, and write A[n] for (A[0])[n]. A quasi-inverse to the functor A → A[0] is given by taking
the zeroth cohomologyH0 : A[0] → A. Furthermore, note thatA[n] ∼= A[m] as categories, but only
as subcategories of DbA if n = m. For A,B ∈ A, we have HomDbA(A[m], B[n]) ∼= Extn−mA (A,B).

For a hereditary categoryA it is well-known (see for example [24, 5.2 Lemma]) that every object
A ∈ DbA can be written as

∏

k∈Z

H−kA[k] ∼= A ∼=
∐

k∈Z

H−kA[k].

In particular, HomDb(A)(A,B) ∼=
∏

k,l Ext
l−k
A (H−k(A), H−l(B)).

2.2. Serre duality and saturation. Let C be a Hom-finite triangulated k-linear category. A
Serre functor [10] on C is an additive autoequivalence S : C → C such that for every X,Y ∈ ObC
there are isomorphisms

Hom(X,Y ) ∼= Hom(Y, SX)∗,

natural in X and Y , and where (−)∗ is the vector-space dual.
An abelian category A is said to satisfy Serre duality when A is Ext-finite and the bounded

derived category DbA admits a Serre functor.
It has been shown in [37] that C has Serre duality if and only if C has Auslander-Reiten triangles.

If we denote the Auslander-Reiten shift by τ , then S ∼= τ [1].
For easy reference, we recall the following result from [37].

Proposition 2.1. If A is an Ext-finite hereditary category, then A satisfies Serre duality if and
only if A has almost split sequences and there is a one-to-one correspondence between the inde-
composable projective objects P and the indecomposable injective objects I, such that the simple
top of P is isomorphic to the simple socle of I.



NUMERICALLY FINITE HEREDITARY CATEGORIES WITH SERRE DUALITY 5

If A is an Ext-finite hereditary category with no nonzero projectives or injective objects, then
A has Serre duality if and only if A has almost split sequences. In this case, the autoequivalence
τ : DbA → DbA restricts to an autoequivalence τ : A → A.

Let C be a Hom-finite triangulated category. Recall that a (co)homological functor H : C →
mod k is of finite type if

∑

i∈Z
dimH(A[n]) is finite. We will say that C is of finite type if the

functors HomC(C,−) and Hom(−, C) are of finite type. When A is an Ext-finite abelian category
of finite global dimension, then DbA is of finite type.

Following [10], we will say that a Hom-finite triangulated category C of finite type is saturated if
every (co)homological functor of finite type is representable. We will say that an abelian category
A is saturated if DbA is of finite type and DbA is saturated. We will use the following proposition
from [10].

Proposition 2.2. Let C and D be triangulated categories of finite type. If C is saturated, then
every exact functor C → D admits a left and a right adjoint.

It was shown in [37, Theorem C] (see also [10]) that the following categories are saturated:

(1) the category modΛ of finite-dimensional modules over a finite-dimensional algebra Λ of
finite global dimension, and

(2) the category cohO where O is a sheaf of hereditary OX-orders over a smooth projective
curve X.

2.3. (Numerical) Grothendieck group. Let A be an (essentially small) Ext-finite abelian cat-
egory of finite global dimension. The Euler form χ(−,−) : ObA × ObA → Z is defined to
be

χ(X,Y ) =
∑

n∈N

(−1)n dimk Ext
n(X,Y ).

Note that χ(−,−) is additive in the following sense: if 0 → X → Y → Z → 0 is a short exact
sequence in A, then χ(A,X)+χ(A,Z) = χ(A, Y ) and χ(X,A)+χ(Z,A) = χ(Y,A), for any A ∈ A.

The Grothendieck group K0(A) of A is the abelian group generated by the isomorphism classes
of ObA and with relations [X ] + [Z] = [Y ] for each short exact sequence 0 → X → Y → Z → 0
in A. Here we have denoted by [X ] the isomorphism class of [X ] in A.

Similar definitions hold for an (essentially small) triangulated category C of finite type. The
Euler form χ(−,−) : ObC ×Ob C → Z is given by

χ(X,Y ) =
∑

n∈Z

(−1)n dimk Hom(X,Y [n]),

and is additive in the following sense: if X → Y → Z → X [1] is a triangle in C, then χ(A,X) +
χ(A,Z) = χ(A, Y ) and χ(X,A) + χ(Z,A) = χ(Y,A), for any A ∈ C.

The Grothendieck group K0(C) of C is the abelian group generated by the isomorphism classes
of ObC and with relations [X ] + [Z] = [Y ] for each triangle X → Y → Z → X [1] in C, where [X ]
the isomorphism class of [X ] in C.

We have the following correspondence between A and DbA (see [24, Chapter III.1]).

Proposition 2.3. The embedding A → DbA induces an isomorphism K0(A) → K0(D
bA), com-

patible with the Euler form.

Assume now that A has Serre duality, thus there is an exact autoequivalence S : DbA → DbA
such that χ(X,Y ) = χ(Y, SX). This implies that χ(v,−) = 0 if and only if χ(−, v) = 0, for all
v ∈ K0(D

bA). Moreover, there is a Z-linear transformation Φ : K0(D
bA) → K0(D

bA), satisfying
the property χ(v,−) = −χ(−,Φ(v)) for all v ∈ K0(D

bA). Indeed, one can take Φ([X ]) = [τX ]
where τX ∼= SX [−1].

Using the isomorphism in Proposition 2.3, we find that similar properties hold for K0(A):
χ(v,−) = 0 if and only if χ(−, v) = 0 for all v ∈ A, and there is a Z-linear transformation
Φ : K0(A) → K0(A), satisfying the property χ(v,−) = −χ(−,Φ(v)) for all v ∈ K0(A).
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Remark 2.4. In general, for an object X ∈ A, there is no object Y ∈ A such that Φ([X ]) = [Y ]. If
A is a hereditary category and has no nonzero projective and injective objects, then the functor
τ : DbA → DbA restricts to a functor τ : A → A and we do have Φ([X ]) = [τX ], for all X ∈ A.

We write

radχ = {v ∈ K0(A) | χ(v,−) = 0} = {v ∈ K0(A) | χ(−, v) = 0}

(the last equality is due to Serre duality). The quotient K0(A)/ radχ is called the numerical
Grothendieck group of A, and is denoted by NumA. The induced bilinear form χ(−,−) : NumA×
NumA → Z is nondegenerate. Since Φ(radχ) = radχ, the transformation Φ : K0(A) → K0(A)
induces a transformation Φ : NumA → NumA, also satisfying χ(v,−) = −χ(−,Φ(v)) for all
v ∈ NumA.

It is easy to see that NumA is a torsion-free abelian group. We say that A is numerically finite
if NumA is finitely generated. In this case, NumA is a free abelian group of finite rank.

Assume now that A is numerically finite and choose a basis v1, . . . , vn of NumA. We may now
associate matrices to χ(−,−) and Φ with respect to this basis, called the Cartan matrix and the
Coxeter matrix, respectively. We have the following relation (see for example [32, Proposition
2.1]).

Proposition 2.5. Let A be an Ext-finite abelian category of finite global dimension. Assume
furthermore that A has Serre duality and is numerically finite. Let A be the Cartan matrix and
C be the Coxeter matrix with respect to a chosen basis of NumA. We have C = −A−1AT .

Proof. Let V = (NumA) ⊗Z Q. Writing v1, . . . vn for the chosen basis of NumA, we find a basis
v′1, . . . , v

′
n for V by v′i = vi⊗ 1. Furthermore, we well consider the bilinear form χ′(−,−) on V via

χ′(v ⊗ q, w ⊗ r) = χ(v, w) · qr

and the linear transformation Φ′ : V → V via

Φ′(v ⊗ q) = Φ′(v) · q.

Note that χ′(−,−) is nondegenerate and that Φ′ satisfies χ′(v ⊗ q,−) = −χ′(−,Φ′(v ⊗ q)) for all
v ∈ NumA and q ∈ Q.

Let Ψ be the linear transformation of V whose matrix is C = −A−1AT . It is then easily verified
that χ′(v ⊗ q,−) = −χ′(−,Ψ(v ⊗ q)) for all v ∈ NumA and q ∈ Q. Since then χ′(−,Φ′(v ⊗ q)) =
χ′(−,Ψ(v⊗q)), we can use that χ′(−,−) is nondegenerate to conclude that Φ′ = Ψ. This concludes
the proof. �

Remark 2.6. Since χ(−,−) is nondegenerate, we know that detA 6= 0, but we do not know whether
detA is invertible in Z. Thus, the matrix A−1 should be considered as a matrix over Q. However,
Proposition 2.5 does imply that the entries of C lie in Z.

Example 2.7. Let X be a smooth projective curve and let F ,G ∈ cohX. The Riemann-Roch
formula gives

χ(F ,G) =
(

degF rkF
)

(

0 −1
1 1− g

)(

degG
rkG

)

.

We see that Num(cohX) ∼= Z2 and that [k(P )] and [OX] form a basis of Num(cohX) (here, P ∈ X
is a closed point, and k(P ) is the associated simple sheaf); indeed, for any F ∈ cohX, we have
[F ] = degF · [k(P )] + rkF · [OX]. With respect to this basis, the Cartan matrix is

(

0 −1
1 1− g

)

and the Coxeter matrix is
(

1 2g − 2
0 1

)

.
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2.4. Tilting objects and exceptional sequences. Let A be a Hom-finite abelian category. We
say that an object E ∈ A is exceptional if Exti(E,E) = 0 whenever i 6= 0 and Hom(E,E) ∼= k.
If A is hereditary, then Ext1(E,E) = 0 implies Hom(E,E) ∼= k when E is indecomposable ([26,
Lemma 4.1], see also [33, Proposition 5.1]).

Similar notions will be used when working in the bounded derived category DbA instead of A:
an object E ∈ A is exceptional if Hom(E,E[i]) = 0 whenever i 6= 0 and Hom(E,E) ∼= k.

A sequence E = (Ei)i=1,...,n of exceptional objects inDbA is said to be exceptional if HomDbA(Ei, Ej [l]) =
0 whenever i > j and all l ∈ Z. An exceptional sequence is called a strong exceptional sequence
if and only if Extl(Ei, Ej) = 0 for all l 6= 0. An exceptional sequence E is said to be full if the
smallest triangulated subcategory of DbA which contains E is DbA itself.

Let A be a hereditary Ext-finite abelian category. An object F ∈ A is called a partial tilting ob-
ject if Ext1(F, F ) = 0, and F is called a tilting object if additionally Hom(F,X) = 0 = Ext1(F,X)
implies that X = 0.

We will use the following classification (see [25, Theorem 3.1]).

Theorem 2.8. Let A be an indecomposable Hom-finite hereditary abelian category. If A has a
tilting object, then A is derived equivalent to either

(1) the category modΛ of finite-dimensional modules over a finite-dimensional hereditary al-
gebra Λ, or

(2) the category cohX of coherent sheaves on a weighted projective line X.

The following proposition is well-known to the experts (see [18, Lemma 5] for the case of
the category of modules over a finite-dimensional hereditary algebra). It will allow us to use
the classification (up to derived equivalence) of hereditary categories with a tilting object from
Theorem 2.8 (see for example [33, Theorem 6.3]).

Proposition 2.9. Let A be a hereditary category, and let E = E1, E2, . . . , En be an exceptional
sequence in DbA. The abelian subcategory B generated by E is a hereditary category with a tilting
object F which is a direct sum of n pairwise nonisomorphic indecomposable objects. Furthermore,
we may order the indecomposable direct summands of F to form an exceptional sequence.

Proof. By possibly taking suspensions, we may assume that E ⊆ A. Let B be the smallest abelian
subcategory of A containing E . Since B is closed under extensions, we see that B is hereditary.
We will work by induction on the length of the exceptional sequence E .

Assume that the abelian category Bk generated by E1, E2, . . . , Ek has a tilting object given by
F ∼= ⊕ki=1Fi (here, the Fi’s are pairwise nonisomorphic indecomposable objects). Let Fk+1 be the
middle term of the universal extension:

0 → Ek+1 → Fk+1 → Ext1(F,Ek+1)⊗EndF F → 0.

Applying the functors Hom(F,−) and Hom(−, F ) shows that Ext1(F, Fk+1) = 0 and Hom(Fk+1, F ) =
0, respectively. From the long exact sequence obtained by applying Hom(Ek+1,−), we find
Ext1(Ek+1, Fk+1) = 0. Applying now Hom(−, Fk+1) yields Ext

1(Fk+1, Fk+1) = 0.

We find that the object⊕k+1
i=1 Fi is a tilting object for the categoryBk+1 generated byE1, E2, . . . , Ek, Ek+1.

The last statement then follows from [1, Theorem A]. �

We will use the following proposition about exceptional objects (compare with [29, Lemma 4.2],
[35, Proposition 4.1.1], and [33, Proposition 5.3]).

Proposition 2.10. Let A be an Ext-finite hereditary category with Serre duality. An exceptional
object in A is determined, up to isomorphism, by its image in NumA.

Proof. Let A and B be two exceptional objects in A such that [A] = [B] in NumA. Since A
is exceptional, we have χ(A,A) = 1 and since [A] = [B] in NumA, we know that χ(A,B) = 1.
Hence there is a nonzero morphism f : A→ B. Let I be the image of f .

Since I is a quotient object of A and Ext1(A,−) is right exact (due to heredity), we know there is
an epimorphism Ext1(A,A) → Ext1(A, I). Using that A is exceptional, we find that Ext1(A, I) = 0
and thus χ(A, I) > 0. It follows from [A] = [B] in NumA that χ(B, I) = χ(A, I) > 0 and hence
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there is a nonzero morphism B → I. Since I is a subobject of B and End(B) ∼= k, we conclude
that B ∼= I.

Likewise, we obtain from Ext1(I, B) = 0 that Hom(I, A) 6= 0 and thus that I ∼= A. We conclude
that A ∼= B. �

2.5. Paths in Krull-Schmidt categories. Let A and B be (essentially small) additive cate-
gories. The coproduct A⊕ B (as additive categories) has as objects pairs (A,B) with A ∈ A and
B ∈ B, and a morphism (A1, B1) → (A2, B2) is given by a pair (f, g) with f ∈ HomA(A1, A2)
and g ∈ HomB(B1, B2). The composition is pointwise. It is clear that A⊕ B is again an additive
category.

An additive category A is called indecomposable if it is nonzero and it is not the coproduct of
two nonzero additive categories. When A ∼= A1 ⊕ A2, where A1 is indecomposable, we will call
A1 a connected component of A.

Although a triangulated category is additive, this notion of indecomposability is too strong for
our purposes. Instead, we will call a triangulated category a block if and only if it is nonzero
and not the coproduct of two nonzero triangulated categories, thus if it is indecomposable in the
category of (essentially small) triangulated categories. Note that an indecomposable triangulated
category is a block, but not necessarily the other way around. For example, Dbmod k is a block,
but not indecomposable (as additive category).

An additive category is called Krull-Schmidt (or Krull-Remark-Schmidt) if every object is a
finite direct sum of objects with local endomorphism rings. This decomposition is then unique
up to permuation and isomorphisms of the direct summands. It is well-known that a Hom-finite
additive category is Krull-Schmidt if and only if idempotents split (see for example [16, Corollary
A.2]). If A is an abelian Ext-finite category, then A and DbA are Krull-Schmidt categories.
Indeed, both A and DbA are Hom-finite and idempotents split (idempotents split in A because A
is abelian; that they split in DbA has been shown in [5, 2.10. Corollary]).

Let A be an additive Krull-Schmidt category. An unoriented path of length n in A or DbA
is a sequence X0, X1, . . . , Xn of indecomposable objects such that for all i = 0, 1, . . . , n − 1 we
have that either Hom(Xi, Xi+1) 6= 0 or Hom(Xi+1, Xi) 6= 0. The sequence X0, X1, . . . , Xn of
indecomposable objects is called an (oriented) path of length n if Hom(Xi, Xi+1) 6= 0 for all
i = 0, 1, . . . , n− 1.

Let C be a triangulated Krull-Schmidt category. A suspended path in C is a sequenceX0, X1, . . . , Xn

of indecomposable objects such that for all i = 0, 1, . . . , n− 1 we have either Hom(Xi, Xi+1) 6= 0
or Xi+1

∼= Xi[1].
We recall the following result from [45] (based on [27]).

Theorem 2.11. Let A be an indecomposable Ext-finite hereditary category, and let A,B ∈ ObA
be indecomposable objects. There is an unoriented path of length at most two from A to B. If
there is an oriented path from A to B, then there is an oriented path from A to B of length at
most two.

We will also use the following results (see [40, Lemmas 3 and 6]).

Lemma 2.12. Let C be a triangulated Krull-Schmidt category, and let X,Z ∈ C be indecomposable
objects. If HomC(Z,X [1]) is nonzero, then there is a path from X to Z.

Lemma 2.13. Let C be a Krull-Schmidt triangulated category. If C is a block, then either

(1) all nonzero maps between indecomposable objects are invertible, or
(2) for every indecomposable object X ∈ C, there is a path from X to X [1].

Lemma 2.14. Let A be an Ext-finite abelian category. The additive category A is indecomposable
if and only if DbA is a block.

Proof. First, assume that A is indecomposable. Let A ∈ indA be any indecomposable object
and let B be the full subcategory of indA of all objects B such that there is an unoriented path
between A and B. Let C be the full subcategory of indA given by the objects not in B. It is then
clear that A ∼= addB ⊕ add C, where addB and add C are the additive closures of B and C in A,
repsectively. Since A is indecomposable, we know that B = indA.
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Let X ∈ DbA, and let i ∈ Z be the largest integer such that Hi(X) is nonzero. Note that
Hom(Hi(X)[−i], X) 6= 0 and [40, Lemma 5] implies that DbA is a block.

The other direction is easy, as a decomposition A ∼= A1 ⊕ A2 gives a decomposition DbA ∼=
DbA1 ⊕DbA2. Thus, if D

bA is a block, then A is indecomposable. �

2.6. Spanning classes and equivalences between triangulated categories. We will use
techniques and concepts from [11] and [13]. Throughout, let C1 and C2 be Hom-finite triangulated
categories with Serre duality; the Serre functors of C1 and C2 will be denoted by S1 and S2
respectively.

We will use the following definition from [11].

Definition 2.15. A subclass Ω of the objects of C will be called a spanning class , if for any object
X ∈ C

∀ω ∈ Ω, ∀i ∈ Z : Hom(ω,X [i]) = 0 ⇒ X ∼= 0,

∀ω ∈ Ω, ∀i ∈ Z : Hom(X,ω[i]) = 0 ⇒ X ∼= 0.

The following result is [13, Theorem 2.3].

Theorem 2.16. Let C1 and C2 be Hom-finite triangulated categories with Serre duality. Assume
C1 is nontrivial and C2 is indecomposable. Let F : C1 → C2 be an exact functor, admitting a left
adjoint. If there is a spanning class Ω of C1 such that

F : Hom(ω1, ω2[i])
∼
→ Hom(Fω1, Fω2[i])

is an isomorphism for all i ∈ Z and all ω1, ω2 ∈ Ω, and such that FS1(ω) ∼= S2F (ω), then F is an
equivalence of categories.

We will use the following corollary.

Corollary 2.17. Let C1 and C2 be Hom-finite triangulated categories with Serre duality. Assume
C1 is nontrivial and C2 is indecomposable. Let F : C1 → C2 be an exact functor, admitting a left
adjoint. If FS1 ∼= S2F , then F is an equivalence of categories.

Proof. Directly from Theorem 2.16 by taking Ob C1 to be the spanning class of C1. �

3. Existence of exceptional or 1-spherical objects

Let A be a hereditary Ext-finite abelian category with Serre duality. We denote the Auslander-
Reiten translate by τ . Recall that an object E is called exceptional if Ext1(E,E) = 0 and
EndE ∼= k. An object E ∈ A is called 1-spherical if E ∼= τE and EndE ∼= k (see also Definition
4.1 below).

The main result of this section is Theorem 2, which states that hereditary categories with Serre
duality have exceptional objects and/or 1-spherical objects. The main idea of the proof is to start
from an indecomposable object E such that dimk Ext

1(E,E) is minimal. If dimExt1(E,E) =
dimHom(E, τE) ≥ 2 then we will use a nonzero map E → τE to find an object X such that
dimExt1(X,X) < dimExt1(E,E).

We will say that an object E is endo-simple if EndE ∼= k. We start by listing a few properties
of objects which are not endo-simple.

3.1. Objects which are not endo-simple. We start by recalling the following result from [43,
Proposition 3.1].

Proposition 3.1. In a k-linear Hom-finite abelian category A, every object X admits an endo-
simple object Y which is both a subobject and a quotient object of X.

Proposition 3.2. Let A be an Ext-finite hereditary category. If Y is an endo-simple object
that is both (nontrivially) a subobject and a quotient object of an indecomposable object X, then
dimExt1(Y, Y ) ≤ dimExt1(X,X)− 1.
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Proof. Consider the short exact sequences

0 → K → X → Y → 0 and 0 → Y → X → C → 0.

We may use these to obtain the following commutative diagram with exact rows and columns:

0

0

0

Hom(X,Y )

��
Hom(Y, Y )

ϕ

��

Ext1(C, Y )

��

//

Ext1(X,Y )

��

//

Ext1(Y, Y )

��

//

0

Hom(X,X)

��

//

Hom(Y,X)

��

//

Ext1(C,X)

µ

��

ψ
//

Ext1(X,X)

��

//

Ext1(Y,X)

��

//

0

Note that there is an epimorphism Ext1(X,X) → Ext1(Y, Y ). Also, since Y is endo-simple
and X is indecomposable, the map Hom(Y,X) → Hom(Y, Y ) is zero. Let f ∈ Ext1(C,X) be
such that ψ(f) = ϕ(1). Then µ(f) is a nonzero element in Ext1(X,X) which lies in the kernel of
Ext1(X,X) → Ext1(Y, Y ), hence dimExt1(Y, Y ) ≤ dimExt1(X,X)− 1. �

3.2. Proof of existence. Throughout this subsection, let A be an Ext-finite hereditary abelian
category with Serre duality, and let E ∈ ObA be an object of A such that d = dimExt1(E,E) is
minimal. Proposition 3.2 yields that E is endo-simple.

Our first step is Proposition 3.4 where it is shown that, for the proof of Theorem 2, it suffices
to prove the existence of an object X with dimExt(X,X) ≤ 1. Since part of the proof will be
used later, we will give it in a separate lemma.

Lemma 3.3. Let X ∈ ObA be an endo-simple object such that dimExt1(X,X) = 1. If X is not
1-spherical (thus if τX 6∼= X), then A has an exceptional object.

Proof. Consider a nonzero morphism f : X → τX ; we know that either ker f or coker f is nonzero.
Using the epimorphism X ։ im f , the monomorphism im f →֒ τX , and dimHom(X, τX) =

dimExt1(X,X) = 1, we find

1 ≤ dimHom(X, im f) ≤ dimHom(X, τX) = 1

1 ≤ dimHom(im f, τX) ≤ dimHom(X, τX) = 1

so that dimHom(X, im f) = 1 = dimExt1(X, im f).
Assume first that ker f is nonzero. By applying the functor Hom(X,−) to the short exact

sequence

0 → ker f → X → im f → 0,

we find:

χ(X, ker f) = χ(X,X)− χ(X, im f).
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Since X is endo-simple and ker f is a subobject of X , we know that Hom(X, ker f) = 0. This
yields

dimExt1(X, ker f) = − dimHom(X,X) + dimExt1(X,X)

+ dimHom(X, im f)− dimExt1(X, im f)

= −1 + 1 + 1− 1 = 0.

Since Ext1(−, ker f) is right exact, we know that dimExt1(ker f, ker f) ≤ dimExt1(X, ker f), and
hence every indecomposable direct summand of ker f is exceptional.

A dual reasoning shows that, if coker f 6∼= 0, every direct summand of coker f is exceptional.
This completes the proof. �

Proposition 3.4. If there is an object X ∈ A with dimExt1(X,X) ≤ 1, then there is an object
Y ∈ ObA such that Y is either exceptional or 1-spherical.

Proof. If dimExt1(X,X) = 0, then X is exceptional and we are done. The case dimExt1(X,X) =
1 follows from Lemma 3.3. �

Recall that d ≥ 0 is the minimum of {dimExt(X,X)}X∈A. The following result shows that d
is a lower bound for the dimension of certain Hom-spaces.

Proposition 3.5. Let A,B ∈ ObA and let d ≥ 2. If Hom(A,B) 6= 0, then dimHom(A, τB) ≥ d.

Proof. Let f ∈ Hom(A,B) be nonzero, and consider the epi-mono factorization f : A
p
։ im f

i
→֒ B.

Since for every object X ∈ A, we have Ext1(X,X) ≥ d, the category A does not have projective
objects. Hence, the autoequivalence τ : DbA → DbA restricts to an autoequivalence τ : A → A.
In particular, τ(i) : τ(im f) → τB is a monomorphism. There is then a monomorphism

Hom(im f, τ im f) → Hom(A, τB)

g 7→ τ(i) ◦ g ◦ p

Because dimHom(im f, τ im f) ≥ d, we find dimHom(A, τB) ≥ d. �

Corollary 3.6. Let d ≥ 2. If Y is endo-simple, then Hom(τnY, Y ) = 0, for all n > 0.

In the proof of the main theorem, the following lemma will be important.

Lemma 3.7. Assume d ≥ 2 and X such that dimExt1(X,X) = d. Every nonzero map X → τX
is either a monomorphism or an epimorphism (but not an isomorphism).

Proof. Using the minimality of d, Proposition 3.2 implies that X is endo-simple. As before, let
f ∈ Hom(X, τX) be nonzero and consider the following two exact sequences

0 → ker f → X → im f → 0, 0 → im f → τX → coker f → 0.

By applying Hom(X,−) to the first sequence, and Hom(−, τX) to the second, we find

dimExt1(X, ker f) = d− 1 + χ(X, im f)

dimExt1(coker f, τX) = d− 1− χ(X, im f)

Since Ext1(−, ker f) and Ext1(coker f,−) are right exact, we find dimExt1(X, ker f) ≥ dimExt1(ker f, ker f)
and dimExt1(coker f, τX) ≥ dimExt1(coker f, coker f). The above equations then show that ei-
ther dimExt1(ker f, ker f) ≤ d − 1 or Ext1(coker f, coker f) ≤ d − 1. The minimality of d then
implies that either ker f ∼= 0 or coker f ∼= 0, thus f is either a monomorphism or an epimor-
phism. �

Theorem 2. Let A be a nonzero abelian hereditary Ext-finite category with Serre duality over an
algebraically closed field. Then A has an object which is either exceptional or 1-spherical.
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Proof. As before, let X be an object such that d = dimExt1(X,X) is minimal. By Proposition
3.2, we know that X is endo-simple. Proposition 3.4 yields that it is sufficient to show that d ≤ 1.
We will assume d ≥ 2 and obtain a contradiction. Since in this case, the category A cannot have
any nonzero projective objects, we know that the autoequivalence τ : Db → DbA restricts to an
autoequivalence τ : A → A.

Let f ∈ Hom(X, τX) be any nonzero morphism. By Lemma 3.7, it is either a monomorphism
or an epimorphism. We will assume the former, the latter case is dual.

To ease notations, we will write Q for coker f . By applying Hom(Q,−) to the short exact
sequence

0 → X → τX → Q→ 0

and using Hom(Q, τX) = 0 because τX is endo-simple, we find the exact sequence

0 → Hom(Q,Q) → Ext1(Q,X) → Ext1(Q, τX) → Ext1(Q,Q) → 0.

From the proof of Lemma 3.7 it follows that dimExt1(Q, τX) = d − 1 − χ(X,X) = 2d − 2, and
hence also dimExt1(Q,Q) ≤ 2d− 2. This shows that Q is indecomposable.

By applying Hom(X,−) to the above sequence, we find dimHom(X,Q) 6= 0 such that Propo-
sition 3.5 yields dimExt1(Q,X) = dimHom(X, τQ) ≥ d.

This gives

dimExt1(Q,Q) = dimExt1(Q, τX)− dimExt1(Q,X) + dimHom(Q,Q)

≤ (2d− 2)− d+ dimHom(Q,Q)

= d− 2 + dimHom(Q,Q).

If Q is endo-simple, then dimExt1(Q,Q) ≤ d − 1, and we are done. If dimHom(Q,Q) = 2,
then dimExt1(Q,Q) = d and Propositions 3.1 and 3.2 imply the existence of an object I with
dimExt1(I, I) ≤ d− 1.

Hence, assume that dimHom(Q,Q) ≥ 3. Since Q is indecomposable and we are working over

an algebraically closed field, we know that dim rad1(Q,Q) ≥ 2. Let I, J be the images of two
linearly independent noninvertible endomorphisms of Q, where I is chosen to be endo-simple. It
follows from Lemma 3.8 below that I and J are nonisomorphic either as subobjects of Q or as
quotient objects of Q. We will assume the former; if I ∼= J as subobjects, then we may apply a
dual argument.

If J is endo-simple, we may furthermore assume (possibly by exchanging I and J) that the
embedding J → Q does not factor through I → Q. If J is not endo-simple, then we let I be an
endo-simple subobject and quotient object of J (see Proposition 3.1). We may now assume the
embedding J → Q does not factor through I → Q.

Applying Hom(J,−) to the short exact sequence 0 → τI → τQ → τC → 0 yields the exact
sequence

(1) 0 → Hom(J, τI) → Hom(J, τQ) → Hom(J, τC) → Ext1(J, τI).

We know, due to the choice of I, that Hom(J,C) 6= 0, so that Proposition 3.5 implies that
dimHom(J, τC) ≥ d.

Since there is an epimorphismQ→ J , we may interpret Hom(J, τQ) as a subspace of Hom(Q, τQ).
Likewise, we may interpret Hom(I, τI) as a subspace of Hom(Q, τQ). We can then consider
the intersection V = Hom(J, τQ) ∩ Hom(I, τI) as subspaces of Hom(Q, τQ), thus a morphism
f ∈ Hom(Q, τQ) lies in V if and only if it can be factored as

Q։ I → τI →֒ τQ and Q։ J → Q,

for some maps I → τI and J → Q. Note that the image of such a map f : Q → τQ in V lies in
τI and thus every map in V can be decomposed as

Q։ J → τI →֒ τQ

for a certain J → τI. Hence, dimHom(J, τI) ≥ dimV .
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Since dimHom(I, τI) ≥ d and dimHom(Q, τQ) ≤ 2d− 2, we find

dimHom(J, τI) ≥ dimV

≥ dimHom(J, τQ) + dimHom(I, τI) − dimHom(Q, τQ)

≥ dimHom(J, τQ)− d+ 2.

If dimHom(I, J) = dimExt1(J, τI) ≤ 1, then it follows from the above exact sequence (1) that
dimHom(J, τC) ≤ d− 1, contradicting the earlier statement that dimHom(J, τC) ≥ d.

Hence, we know that dimHom(I, J) ≥ 2, and thus also that dimHom(I,Q) ≥ 2. In particular,
Hom(I, C) 6= 0 so that Proposition 3.5 implies that dimHom(I, τC) ≥ d.

However, applying Hom(I,−) to the short exact sequence 0 → τI → τQ → τC → 0 shows,
using that Hom(I, τQ) ≤ Hom(Q, τQ) ≤ 2d− 2:

dimHom(I, τC) = dimHom(I, τQ) + dimExt1(I, τI) − dimHom(I, τI)

+ dimExt1(I, τC)− dimExt1(I, τQ)

≤ (2d− 2) + 1− d+ dimExt1(I, τC) − dimExt1(I, τQ)

≤ d− 1

where we have used that dimExt1(I, τC) ≤ dimExt1(I, τQ) since τC is a quotient object of τQ.
We obtain a contradiction. �

Lemma 3.8. Let f, g ∈ Hom(Q,Q) be nonzero. Denote I = im f and J = im g, and assume
I is endo-simple. If f and g are linearly independent, then I and J are not isomorphic as both
subobjects and quotient objects of Q.

Proof. Seeking a contradiction, assume there are isomorphisms α, β : I → J such that the right-
most and the leftmost triangles commute

I

α

��

I
c

''❖❖
❖❖

❖❖

β

��
Q

a 77♦♦♦♦♦♦

b ''❖❖
❖❖

❖❖
Q

J J

d 77♦♦♦♦♦♦

Here, we have f = c ◦ a and g = d ◦ b. We see that d ◦ b = (c ◦ β−1) ◦ (α ◦ a). Using that
I is endo-simple (and hence β−1 ◦ α is multiplication by a scalar), we see that the composition
of the lower arm is a scalar multiple of the composition of the upper arm. This contradicts the
assumption that f and g are linearly independent. �

4. Twist functors and tubes

Twist functors and Calabi-Yau objects are essential to the proof presented in this paper. In this
section, we recall some relevant definitions and results, and we will prove some additional results
that will be used further in the paper.

4.1. Twist functors and generalized 1-spherical objects. Twist functors have appeared in
the literature under different names, for example tubular mutations [34], shrinking functors [38],
and twist functors [41]. Similar ideas were the mutations used in [23] in the context of exceptional
bundles on projective spaces and, more generally, in [9]. We will use a small generalization defined
in [44] (a similar generalization has been considered in [15] in a geometric setting).

Let A be an Ext-finite abelian category of finite global dimension. Let X ∈ DbA be any object
and write A = EndX . There is an associated twist functor TX : DbA → DbA and a natural
transformation idDbA → TX such that for every object Y ∈ DbA there is a triangle

RHom(X,Y )⊗A X → Y → TXY → (RHom(X,Y )⊗A X)[1].

Likewise, there is an associated twist functor T ∗
X : DbA → DbA and a natural transformation

T ∗
X → idDbA such that for every object Y ∈ DbA there is a triangle

T ∗
XY → Y → RHom(Y,X)∗ ⊗A X → T ∗

XY [1].
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Definition 4.1. Let A be an Ext-finite abelian category with Serre duality. An object Y ∈ DbA
is called generalized n-spherical if

(1) Hom(Y, Y [i]) = 0 for all i 6= 0 and i 6= n,
(2) Hom(Y, Y ) is semi-simple, and
(3) SY ∼= Y [n].

A minimal n-spherical object is a generalized n-spherical object such that no nontrivial direct
summands are generalized n-spherical objects.

We will say that an object Y ∈ A is minimal or generalized n-spherical if the corresponding
stalk complex Y [0] ∈ DbA is minimal or generalized n-spherical, respectively.

Remark 4.2. Note that SX ∼= X [n] implies that Hom(X,X [n]) ∼= Hom(X,X)∗.

Remark 4.3. Let X be generalized n-spherical. It is easily checked that TXX ∼= X [n− 1] ∼= T ∗
XX .

However, when n = 1, the natural transformations id→ TX and T ∗
X → id yield the zero morphisms

X → TXX and T ∗
XX → X .

Remark 4.4. The difference between a 1-spherical object in the sense of [41] and a generalized
1-spherical object is that we do not require that Hom(X,X) ∼= k. Generalized 1-spherical object
and minimal 1-spherical objects need not be indecomposable.

Remark 4.5. Minimal 1-spherical objects are minimal Calabi-Yau objects in the sense of [17].

We recall the following result ([44, Theorem 3.10]).

Theorem 4.6. Let A be an Ext-finite abelian category with Serre duality, and let E ∈ ObA be a
generalized n-spherical object, then the twist functors TE and T ∗

E are quasi-inverses.

Remark 4.7. Due to the previous theorem, we will also write T−n
Y for the functor (T ∗

Y )
n when Y

is a generalized n-spherical object (for n > 0).

4.2. Perpendicular subcategories. In this subsection, we will recall some results about per-
pendicular subcategories and their relation with twist functors. Let A be an abelian Ext-finite
hereditary category and let S ⊆ ObA. We will denote by S⊥ the full subcategory of A given by

ObS⊥ = {A ∈ A | Exti(S, X) = 0, for all i ≥ 0)}.

This subcategory is called the right perpendicular subcategory to S. It follows from [21, Proposition
1.1] that S⊥ is again an abelian hereditary category and that the embedding S⊥ → A is exact. If
S = {E} consists of a single object E ∈ ObA, then we will also write E⊥ for S⊥.

The embedding S⊥ → A induces an embedding Db
S⊥(A) → DbA. The essential image of this

embedding is given by (see [36, Lemma 3.6])

{X ∈ DbA | Hom(S[0], X [n]) = 0, for all n ∈ Z}.

We will often identify Db(S⊥) with this full subcategory of DbA.

Assume that A has Serre duality. Let E ∈ ObA be an exceptional object (i.e. Exti(E,E) = 0
for i 6= 0 and Hom(E,E) ∼= k). In this case, the embedding Db(E⊥) → A has a left and a right
adjoint given by the twist functors TE : DbA → Db(E⊥) and T ∗

SE : DbA → Db(E⊥) respectively.
When A is hereditary, these adjoint functors induce adjoint functors A → E⊥ to the embedding
E⊥ → A (see [42]).

Proposition 4.8. Let A be an abelian Ext-finite hereditary category with Serre duality, and let
E ∈ A be an exceptional object. The category E⊥ has Serre duality and NumA ∼= Num(E⊥)⊕Z[E].

Proof. Since the embedding Db(E⊥) → DbA has a left and a right adjoint, the statement about
Serre duality follows from [30, Lemma 1].

We know (see [33, Corollary 4.3] or [36, Corollary 3.8]) that K0(A) ∼= K0(E
⊥) ⊕ Z[E]; the

embeddings K0(E
⊥) → K0(A) and Z[E] → K0(A) are given by the natural maps and we will use

these maps to considerK0(E
⊥) and Z[E] as subgroups ofK0(A). We claim that radχE⊥ = radχA.

Let u ∈ radχE⊥ , and v ∈ K0(E
⊥) and w ∈ Z[E]. We have

χA(v + w, u) = χA(v, u) + χA(w, u) = χE⊥(v, u) = 0.
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This shows that χA(−, u) = 0 and thus u ∈ radχA.
Next, let v ∈ K0(E

⊥) and w ∈ Z[E] such that v + w ∈ radχA. Since

0 = χA([E], v + w) = χA([E], w)

and χ([E], [E]) = 1, we have w = 0. It then follows from v ∈ K0(E
⊥) and v ∈ radχA that

v ∈ radχE⊥ . We have shown that radχE⊥ = radχA.
The required isomorphism NumA ∼= Num(E⊥)⊕ Z[E] now follows easily. �

Proposition 4.9. Let A be an abelian Ext-finite hereditary category with Serre duality and without
nonzero projective objects. Let S ⊆ ObA be a set of objects. If S = τS, then τ(S⊥) = S⊥ and
τ(⊥S) = ⊥S. The Serre functor S : DbA → DbA restricts to Serre functors for the triangulated
subcategories Db

S⊥(A) = Db(S⊥) ⊆ A and Db
⊥S(A) = Db(⊥S) of DbA.

Proof. Since A has no nonzero projective objects, Proposition 2.1 shows that τ : A → A is an
autoequivalence.

Let X ∈ S⊥ ⊆ A, thus Exti(S, X) = 0 for all i ≥ 0. We find

Exti(S, τ±1X) ∼= Exti(τ∓1S, X) = Exti(S, X) = 0.

This shows that τ(S⊥) = S⊥; the equality τ(⊥S) = ⊥S is shown analogously.
Since the Serre functor S is given by τ [1], the last claim follows. �

Let D be a triangulated category, and let B and C be full subcategories of D. We recall the
following proposition ([9, Lemma 3.1])

Proposition 4.10. Let D be a triangulated category, and let B and C be full replete (= closed
under isomorphism) triangulated subcategories of D. Assume that HomD(B, C) = 0. The following
are equivalent:

(1) B and C generate D as triangulated category,
(2) every object D ∈ D lies in a triangle B → D → C → B[1] with B ∈ B and C ∈ C,
(3) C = B⊥ and the embedding B → D has a right adjoint, and
(4) B = ⊥C and the embedding C → D has a left adjoint.

If the pair (B, C) satisfies the conditions of the previous proposition, we say that (B, C) is a
semi-orthogonal decomposition of D.

Corollary 4.11. Let A be an abelian Ext-finite category of finite global dimension. Let C ⊆ DbA
be a full triangulated subcategory. If C is saturated, then (C, C⊥) and (⊥C, C) are semi-orthogonal
decompositions of DbA. If, additionally, DbA has a Serre functor S : DbA → DbA and S(C) = C,
then DbA = ⊥C ⊕ C = C ⊕ C⊥.

Proof. Since A is an abelian Ext-finite category of finite global dimension, we know that DbA,
and hence also C, are of finite type. By Proposition 2.2 we know that the embedding C → DbA
has a left and a right adjoint, so that (C, C⊥) and (⊥C, C) are semi-orthogonal decompositions of
DbA.

If furthermore DbA has a Serre functor S : DbA → DbA and S(C) = C, then ⊥C = C⊥. It now
follows that DbA = ⊥C ⊕ C = C ⊕ C⊥. �

4.3. Simple tubes. In this subsection, let A be an indecomposable Ext-finite hereditary abelian
category with Serre duality. We will investigate stable components of the Auslander-Reiten quiver
of A of the form ZA∞/〈τr〉. Such a stable component K is called a tube, and we will refer to r as
the rank of the tube (see Figure 1). If r = 1, then K is called a homogeneous tube.

For us, a tube in A will be the additive closure of the indecomposable objects lying in a stable
component of the Auslander-Reiten quiver of A of the form ZA∞/〈τr〉.

An indecomposable (nonprojective) object X ∈ A is called peripheral if the middle term M in
the almost split sequence 0 → τX → M → X → 0 is indecomposable (the peripheral objects in
the tube in Figure 1 are drawn at the bottom). The number of isomorphism classes of peripheral
objects in a tube is given by its rank. A tube in A is called a simple tube if all its peripheral
objects are simple objects in A.
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Figure 1. The Auslander-Reiten quiver of a tube of rank 6.

We will use the following description from [44, Proposition 4.4] (together with [44, Theorem
4.2]).

Proposition 4.12. A tube in A is equivalent to the category of finite-dimensional nilpotent rep-
resentations of an Ãn-quiver with cyclic orientation. The direct sum of a set of representatives
of the isomorphism classes of the peripheral objects of a tube is a minimal 1-spherical object, and
conversely, every minimal 1-spherical object occurs in this way.

Remark 4.13. The previous proposition implies that there is no difference between giving a minimal
1-spherical object or a tube. We will often change between these two notions. Given a minimal
1-spherical object Y , the associated tube T is the abelian subcategory generated by Y , thus
the full subcategory of A of which have a composition series given by direct summands of Y .
Conversely, given a tube T , the associated minimal 1-spherical object is the direct sum of a set of
representatives of the isomorphism classes of the peripheral objects.

This gives another way of looking at a tube: let C be the category of finite-dimensional nilpotent
representations of an Ãn-quiver with cyclic orientation; a tube T in A is the essential image of an
embedding F : C → A where F ◦ τC ∼= τA ◦ F .

We will use similar definitions when working in DbA, thus a tube in DbA is a stable component
of the Auslander-Reiten quiver of DbA of the form ZA∞/〈τr〉, or more accurately, the additive
closure of the indecomposable objects lying in such a stable component. The embedding A → DbA
maps a tube of A to a tube of DbA.

The following results are shown in [44].

Theorem 4.14. Let A be a hereditary abelian category with Serre duality. A connected component
of the Auslander-Reiten quiver in DbA is a tube if and only if it contains an indecomposable object
X such that τrX ∼= X, for r ≥ 1.

Theorem 4.15. Let A be a hereditary abelian category with Serre duality. A tube T in DbA is
convex in the sense that if there is a path X0 → · · · → Xn in DbA with X0, Xn ∈ T , then Xi ∈ T
for all i.
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As a consequence, we have the following results.

Corollary 4.16. Let A be a hereditary category with Serre duality and let T be a tube in DbA.
Let A,B ∈ DbA be indecomposable objects. If A lies in T and B[n] does not lie in T for all n ∈ Z,
then:

(1) Hom(A,B) 6= 0 implies that Hom(A,B[n]) = 0 for all n 6= 0, and
(2) Hom(B,A) 6= 0 implies that Hom(B,A[n]) = 0 for all n 6= 0.

Proof. We will only show the first claim. Seeking a contradiction, assume that Hom(A,B) 6= 0
and that Hom(A,B[n]) 6= 0 for some n 6= 0. We first prove the claim for n > 0.

It follows from Lemma 2.12 that Hom(A,B[n]) 6= 0 implies that there is a path from B[n−1] to
A, and it follows from Lemma 2.13 that there is a path from B to B[n− 1]. Since Hom(A,B) 6= 0,
we find a path from A to B and back to A, so that Theorem 4.15 yields that A and B lie in
the same tube. However, we have assumed that B does not lie in T ; this gives the required
contradiction.

In the case where n < 0, we consider the object B′ = B[n]. If Hom(A,B′) 6= 0, then the first
part of the proof yields that Hom(A,B′[−n]) = 0. Hence Hom(A,B) = Hom(A,B′[−n]) 6= 0
implies Hom(A,B[n]) = Hom(A,B′) = 0. �

Lemma 4.17. Let A be a hereditary category with Serre duality, and let Y ∈ DbA be a minimal
1-spherical object. An indecomposable A ∈ DbA lies in the tube containing Y if and only if
Hom(A, Y ) 6= 0 and Hom(Y,A) 6= 0.

Proof. If Hom(A, Y ) 6= 0 and Hom(Y,A) 6= 0, then it follows Theorem 4.15 that A lies in the tube
containing Y . The other implication follows from [44, Proposition 4.4]. �

We will now turn our attention to simple tubes. Our goal is to prove Proposition 4.20 which
gives some useful criteria for a tube to be simple. It states that simple tubes lie either “at the
beginning” or “at the end” of the abelian category (meaning that there are either no nonzero maps
going into the tube, or no nonzero maps going out of the tube). Furthermore, to check whether a
tube is simple or not, it suffices to see whether the twist functors associated to that tube restrict
from autoequivalences of the derived category to autoequivalences of the abelian category. Even
more strongly, after excluding the trivial cases, one only needs to check that the orbit of a single
object under the twist functors lies in the abelian category.

Recall that A[0] is the full subcategory of A consisting of all stalk complexes concentrated in
degree zero. There is a fully faithful functor A ∼= DbA whose image is given by A[0], mapping an
object A ∈ A to a stalk complex A[0] ∈ A[0] ⊂ DbA. A quasi-inverse is given by taking the zeroth
cohomology H0 : A[0] → A.

We start with the following lemmas. Recall from Remark 4.7 that we write T nY for (T ∗
Y )

−n

when n < 0.

Lemma 4.18. Let A be an Ext-finite abelian hereditary category with Serre duality. Let Y be a
minimal 1-spherical object in DbA, and A,B ∈ DbA be indecomposable objects such that

(1) Hom(A, Y [z]) 6= 0 if and only if z = 0, and
(2) Hom(B, Y [z]) 6= 0 if and only if z = 0,

then Hom(T iYA,B) 6= 0 for i≪ 0.

Proof. Since Y is generalized 1-spherical, we have Hom(Y,−) ∼= Hom(−, Y [1])∗. Let n < 0. We
start with the triangle

T n−1
Y A→ T nYA→ RHom(T nYA, Y )∗ ⊗ Y → T n−1

Y A[1].

By Corollary 4.16, we see that RHom(T n−1
Y A, Y ) only has nonzero homology in degree zero, and

by Remark 4.3 we know that Hom(T n−1
Y A, Y )∗ ∼= Hom(A, T−n+1

Y Y )∗ ∼= Hom(A, Y )∗.

By applying Hom(−, B) to T n−1
Y A → T nYA → Hom(A, Y )∗ ⊗ Y → T n−1

Y A[1] and using that

Hom(Y [−2], B) ∼= Hom(B, Y [−1])∗ = 0, we see that the map Hom(T nYA,B[1]) → Hom(T n−1
Y A,B[1])

is an epimorphism, for all n ∈ Z. This gives the following descending sequence

dimHom(A,B[1]) ≥ dimHom(T−1
Y A,B[1]) ≥ dimHom(T−2

Y A,B[1]) ≥ · · ·
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Hence, there is an N < 0 such that dimHom(T iYA,B[1]) = dimHom(T i−1
Y A,B[1]) for all i ≤ N .

For every such i, we have an exact sequence

0 → Hom(T iYA,B) → Hom(T i−1
Y A,B) → Hom(Hom(A, Y )∗ ⊗ Y,B[1]) → 0.

Since Hom(Y,B[1]) ∼= Hom(B, Y )∗ 6= 0 and Hom(A, Y ) 6= 0, the required property follows imme-
diately from this short exact sequence. �

Lemma 4.19. Let A be a hereditary abelian category with Serre duality and let Y ∈ A[0] ⊂ DbA
be a minimal 1-spherical object. Let A ∈ A[0] be indecomposable.

(1) If Hom(A, Y ) 6= 0, then TYA ∈ A[0]. Furthermore, T ∗
YA ∈ A[0] or T ∗

YA ∈ A[−1].
(2) If Hom(Y,A) 6= 0, then T ∗

YA ∈ A[0]. Furthermore, TYA ∈ A[0] or TYA ∈ A[1].

Proof. Since TY and T ∗
Y are autoequivalences of DbA (Theorem 4.6), we know that TYA and T ∗

YA
are indecomposable as well. We only consider the first statement, the other statement can be
proven in a similar fashion. Thus, assume that Hom(A, Y ) 6= 0.

If additionally Hom(Y,A) 6= 0, then Lemma 4.17 shows that A lies in the tube containing Y .
Since this tube corresponds to an abelian subcategory of A = H0(DbA), both H0(TYA) and
H0(T ∗

YA) are again nonzero objects in the same tube and hence TYA, T
∗
YA ∈ A[0].

We may thus assume that Hom(Y,A) = 0. Taking the cohomologies of the triangle

RHom(Y,A)⊗ Y → A→ TYA→ (RHom(Y,A)⊗ Y )[1]

yields the exact sequence

H0A→ H0(TY A) → Hom(Y,A[1])⊗H0Y → 0.

Using that Y is generalized 1-spherical, we find Hom(Y,A[1]) ∼= Hom(A, Y )∗ 6= 0 and hence
H0(TYA) 6= 0. Furthermore, since A is hereditary and TYA is indecomposable, the cohomology
can only be nonzero in a single degree, and thus TYA ∈ A[0].

Consider now the triangle

T ∗
YA→ A→ RHom(A, Y )∗ ⊗ Y → T ∗

YA[1].

Using that HiA = 0 and HiY = 0 for all i 6= 0, the long exact sequence obtained from taking
cohomologies of the above triangle shows that Hi(T ∗

Y A) = 0 for all i 6= 0 or i 6= −1. Since T ∗
YA

is indecomposable and A is hereditary, the cohomology of T ∗
YA can only be nonzero in a single

degree. If H0(T ∗
YA) = 0, then T ∗

YA ∈ A[0]; if H−1(T ∗
YA) = 0, then T ∗

YA ∈ A[−1]. �

Proposition 4.20. The following are equivalent for a minimal 1-spherical object Y ∈ A[0] ⊂ DbA.

(1) The object H0Y ∈ A is semi-simple.
(2) If there are indecomposables A,B ∈ A with Hom(A[0], Y ) 6= 0 and Hom(Y,B[0]) 6= 0, then

A,B lie in the tube containing H0Y .
(3) For every A ∈ A[0] with Hom(A, Y ) 6= 0 and Hom(Y,A) = 0, we have that T iYA ∈ A[0],

for all i ∈ Z.
(4) For every A ∈ A[0] with Hom(Y,A) 6= 0 and Hom(A, Y ) = 0, we have that T iYA ∈ A[0],

for all i ∈ Z.

Furthermore, these properties hold if one of the following two properties hold:

(a) there is an object A ∈ A[0] with Hom(A, Y ) 6= 0 and Hom(Y,A) = 0, and additionally
T iYA ∈ A[0], for all i ∈ Z,

(b) there is an object A ∈ A[0] with Hom(Y,A) 6= 0 and Hom(A, Y ) = 0, and additionally
T iYA ∈ A[0], for all i ∈ Z.

Proof. The implication (1) ⇒ (2) has been shown in [44, Proposition 4.7]. For the implication
(2) ⇒ (1), assume that H0Y is not semi-simple, thus there is an indecomposable direct summand
Y ′ of H0Y which is not simple. Let A be a (nontrivial) indecomposable subobject of Y ′. Since
Y ′ is a peripheral object in a tube, Y ′ is simple in the additive category generated by this tube
(recall from Proposition 4.12 that this additive subcategory is an abelian subcategory of A which
is equivalent to the category of finite-dimensional nilpotent representations of a cyclic quiver). In
particular, we know that A cannot lie in that tube. Let B be an indecomposable direct summand
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of Y ′/B. Similarly, B does not lie in the tube. These choices of A and B contradict the statement
in (2).

We will prove the implication (2) ⇒ (3). Let A ∈ A[0] with Hom(A, Y ) 6= 0 and Hom(Y,A) = 0.
We wish to show that T iYA ∈ A[0] for all i ∈ Z. We may assume that A is indecomposable. It
follows from Lemma 4.19 that T iYA ∈ A[0] for i ≥ 0.

For i < 0, we consider the triangle

T−1
Y A→ A→ RHom(A, Y )∗ ⊗ Y → T−1

Y A[1].

It follows from Lemma 4.19 that either T−1
Y A ∈ A[0] or T−1

Y A[1] ∈ A[0]. We want to show the
former. Seeking a contradiction, assume the latter.

Corollary 4.16 shows that RHom(A, Y )∗ ⊗ Y ∼= Hom(A, Y )∗ ⊗ Y , and hence Hom(Y,A) =
0 implies that the map A → RHom(A, Y )∗ ⊗ Y is not a split epimorphism. Thus, the map
Hom(A, Y )∗ ⊗ Y → T−1

Y A[1] is nonzero. Since H0A does not lie in the tube containing H0Y (see

Lemma 4.17), neither does H0(T−1
Y A[1]). This contradicts (2). Hence, T−1

Y A ∈ A[0], and thus
also T iYA ∈ A[0] for all i < 0, as required.

We will now show (3) ⇒ (2). Let A,B ∈ A such that Hom(A[0], Y ) 6= 0 and Hom(Y,B[0]) 6= 0.
We wish to show that either A or B lie in the tube containing H0Y . Without loss of generality,
we may assume that A does not lie in the tube containing Y .

Note that Hom(A[z], Y ) = 0 for all z 6= 0. Indeed, when z 6= 1 this follows from the heredity of
A while the case z = 1 is covered by Corollary 4.16.

Since SY ∼= Y [1], we know that Hom(B[−1], Y ) 6= 0. Note that B[−1] ∈ A[−1] so that the
heredity of A implies that Hom(B[z], Y ) = 0 for z 6∈ {0,−1}.

If we assume that Hom(B[0], Y ) = 0, then Lemma 4.18 would imply Hom(T iY (A[0]), B[−1]) 6= 0
for i ≪ 0. Since we have assumed that T iY (A[0]) ∈ A[0] for all i ∈ Z, this would give a nonzero
morphism from A[0] to A[−1], a contradiction. Hence, Hom(B[0], Y ) 6= 0. Lemma 4.17 shows
that B lies in the tube containing H0Y .

Showing (2) ⇔ (4) is dual to (2) ⇔ (3).
Next, we show that (a) ⇒ (3). Let A ∈ A[0] be as in the statement of (a). Let A′ ∈ A[0] be

such that Hom(A′, Y ) 6= 0 and Hom(Y,A′) = 0. We want to show that T iYA
′ ∈ A[0] for all i ∈ Z.

Lemma 4.19 shows that T iYA
′ ∈ A[0] for all i ≥ 0. We thus only need to consider the case

i < 0. Seeking a contradiction, let i < 0 be the largest i such that T iYA
′ 6∈ A[0], thus (by Lemma

4.19) T iYA
′ 6∈ A[−1].

As before, it follows from Corollary 4.16 and Lemma 4.17 that Hom(A, Y [z]) = Hom(A′, Y [z]) =

0 if and only if z 6= 0. Lemma 4.18 implies that Hom(T jYA, T
i
YA

′) 6= 0 for j ≪ 0. Since we have

assumed that T jYA ∈ A[0], this would give a map from A[0] to A[−1] and we have obtained a
contradiction.

The proof of (b) ⇒ (4) is similar. �

Corollary 4.21. Let A be a hereditary category with Serre duality. A minimal 1-spherical ob-
ject Y ∈ A is semi-simple if and only if the twist functors TY , T

∗
Y : DbA → DbA restrict to

autoequivalences A[0] → A[0].

The following propositions will help us to find simple tubes.

Proposition 4.22. Let S be a set of simple tubes in A. The embedding S⊥ → A maps a simple
tube in S⊥ to a simple tube in A.

Proof. Note that S⊥ = ⊥S. Proposition 4.9 implies that the embedding S⊥ → A maps a tube T
in S⊥ to a tube T in A. We thus need only that check that T is simple in A if it is simple in S⊥.

Let Y be a minimal 1-spherical object of the tube T (if T has rank r and E is a peripheral
object in T , then Y ∼= ⊕ri=1τ

iE). Seeking a contradiction, assume that T is not simple in A.
According to Proposition 4.20, we may assume that there is an indecomposable object A ∈ A such
that Hom(A, Y ) 6= 0 and Hom(Y,A) = 0, and such that T iY (A[0]) 6∈ A[0], for some i ∈ Z.

Since T is a simple tube in S⊥, this object A cannot lie in S⊥. There is thus a tube TS ∈ S
such that either Hom(TS , A) 6= 0 or Hom(A, TS) 6= 0. We will start by considering the former.
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Since Y ∈ S⊥, we know that Hom(TS , T
j
YA) 6= 0 for all j ∈ Z. However, Proposition 4.20 shows

that for some i ∈ Z, we have T iYA 6∈ A[0] but rather T iYA ∈ A[−1] (Lemma 4.19). This gives a
nonzero map from TS ⊆ A[0] to T iYA ∈ A[−1], which is impossible.

Assume now that Hom(A, TS) 6= 0. Similarly, we find an i ∈ Z such that Hom(T iYA, TS) 6= 0
and where T iYA ∈ A[−1]. Let X be a minimal 1-spherical object of the tube TS (if TS has rank s
and S is a peripheral object in TS , then X ∼= ⊕si=1τ

iS). By Serre duality, we have

0 6= Hom(T iYA,X) ∼= Hom(τ−1X,T iYA[1])
∗ ∼= Hom(X,T iYA[1])

∗.

This contradicts our assumption that TS ∈ S is a simple tube (see Proposition 4.20). We conclude
that T is a simple tube in A. �

The previous proposition does not hold if S does not consist of simple tubes.

Example 4.23. Let Q be the Kronecker quiver and let repk Q be the category of finite-dimensional
k-representations of Q. A description of this category can be found in [4, Section VIII.7]. It follows
from [4, Propositions 7.1 and 7.4] that all indecomposable regular objects lie in tubes, but none of
these tubes are simple. Let S be such a tube. It follows from [4, Theorem 7.5] that the category
S⊥ is a direct sum of tubes, and hence all these tubes are simple in S⊥. However, the embedding
S⊥ → repk Q maps none of these tubes to simple tubes in repk Q.

Proposition 4.24. Let T1 and T2 be two tubes in A. Assume that T2 ∈ T ⊥
1 . If there is a path

from T1 to T2, then T1 and T2 are simple tubes.

Proof. Let Y1 and Y2 be the minimal 1-spherical objects corresponding to the tubes T1 and T2,
respectively.

Let T1 → A1 → A2 → · · · → An → T2 be a path of minimal length between an indecomposable
object T1 ∈ T1 and T2 ∈ T2. This implies that Hom(T1, A2) = 0 and thus that T iY1

A2
∼= A2 for all

i ∈ Z. Seeking a contradiction, assume that T1 is not simple. According to Proposition 4.20, we
know that T iY1

A1 6∈ A[0] for some i ∈ Z and by Lemma 4.19 we may assume that i > 0. Let j ≥ 0

be the largest integer such that T jY1
A1 ∈ indA[0]. Then there is an epimorphism

Hom(Y1, A1)⊗ Y1 → T jY1
A1

and hence, using that T jY1
A2

∼= A2, also a nonzero morphism Y1 → A2, contradicting the mini-
mality of the path. �

If we assume that A is indecomposable, we have the following, stronger, proposition.

Proposition 4.25. Assume that A is indecomposable. Let T1 be a simple tube in A. Any tube T2
in T ⊥

1 is a simple tube in A.

Proof. Since A is indecomposable, we may assume that there is an unoriented path between T1
and T2. By Theorem 2.11, we may assume that this path has length at most two. If there is
an oriented path, then the statement follows from Proposition 4.24. Without loss of generality,
we may then assume that there is an indecomposable object A ∈ A with Hom(A, T1) 6= 0 and
Hom(A, T2) 6= 0.

Let Y1 and Y2 be the minimal 1-spherical objects associated to the tubes T1 and T2, respectively.
Seeking a contradiction, assume that T2 is not simple. To ease notation, we denote T iY2

A ∈ DbA
by Ai. Following Proposition 4.20, there is an i ∈ Z such that Ai ∈ A[0] and Ai−1[1] ∈ A[0].
Thus, there is a short exact sequence:

0 → Ai → Hom(Ai, Y2)
∗ ⊗ Y2 → Ai−1[1] → 0.

Since Y2 ∈ Y ⊥
1 = ⊥Y1, we know that Hom(Ai−1, Y1) ∼= Hom(Ai, Y1). This shows that

Hom(Y1, Ai−1[1]) ∼= Hom(Ai−1, Y1)
∗ 6= 0, which contradicts the assumption that Y1 lies in a

simple tube (see Proposition 4.20). �

Proposition 4.26. Let T1 and T2 be two distinct simple tubes. Then Hom(T1, T2) = Ext1(T1, T2) =
0.
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Proof. Let X1 and X2 be the minimal 1-spherical objects associated to the tubes T1 and T2,
respectively. Then X1 and X2 are semi-simple and have no nontrivial common direct summands.
This shows that Hom(X1, X2) = Hom(X2, X1) = 0. Using that τX1

∼= X1 and τX2
∼= X2, we see

that Ext1(X1, X2) ∼= Hom(X2, X1)
∗ = 0. �

4.4. t-Structures induced by tubes. We recall the definition of a t-structure from [6].

Definition 4.27. A t-structure on a triangulated category C is a pair (D≥0, D≤0) of non-zero
full subcategories of C satisfying the following conditions, where we denote D≤n = D≤0[−n] and
D≥n = D≥0[−n]:

(1) D≤0 ⊆ D≤1 and D≥1 ⊆ D≥0

(2) Hom(D≤0, D≥1) = 0
(3) ∀Y ∈ C, there exists a triangle X → Y → Z → X [1] with X ∈ D≤0 and Z ∈ D≥1.

Let D[n,m] = D≥n ∩D≤m . We will say the t-structure (D≥0, D≤0) is bounded if and only if every
object of C is contained in some D[n,m].

It is shown in [6] that the heart H = D≤0∩D≥0 is an abelian category. We will use the following
proposition from [7, Proposition 4.2] (see also [40, Theorem 1]).

Proposition 4.28. Let A be an abelian category and let (D≥0, D≤0) be a bounded t-structure
on DbA. If all the triangles X → Y → Z → X [1] with X ∈ D≤0 and Z ∈ D≥1 split, then
D≤0 ∩D≥0 = H is hereditary and DbA ∼= DbH as triangulated categories.

We will often work with the hereditary category H(Y ) given in the following construction.

Construction 4.29. Let A be an indecomposable hereditary category and and let Y be a minimal
1-spherical object in A. Assume furthermore that A is not equivalent to a tube.

Since A is not a tube, we know that there is an indecomposable object B ∈ A such that
HomDbA(B[0], Y [l]) 6= 0, for some l ∈ Z. Up to renaming, we may assume that we have chosen
B ∈ DbA such that HomDbA(B, Y [0]) 6= 0.

We will consider the following t-structure: an object A ∈ DbA lies in D≤0 if and only if for
each indecomposable direct summand A′ of A, there is a path from T iYB to A′, for i ≪ 0. Put
differently:

indD≤0 = {A ∈ indDbA | there is a path from T iYB to A, for i≪ 0}.

We then have the following description for D≥1: an object A ∈ DbA lies in D≥1 if and only if
for each indecomposable direct summand A′ of A, there is no path from T iYB to A′, for any i ∈ Z.

It follows from Lemma 4.18 that this t-structure does not depend on the choice of the indecom-
posable object B. We denote by H(Y ) = D≤0 ∩D≥1 the heart of this t-structure.

In the case that A is equivalent to a tube, we will write H(Y ) for A.

Remark 4.30. This t-structure was also considered in [43, §4.1].

Proposition 4.31. Let A be a connected abelian category and let Y be a minimal 1-spherical
object in A. The category H(Y ) is hereditary and derived equivalent to A. Furthermore, Y ∈ H
is semi-simple.

Proof. If A is generated by the minimal 1-spherical object Y (thus A is a tube), then the statement
is easy. So, assume that A is not a single tube.

Since A is connected, the t-structure from Construction 4.29 is bounded, and it follows from
Proposition 4.28 thatH is hereditary and derived equivalent toA. We know that Hom(Y [−1], B) 6=
0 so that Theorem 4.15 shows that there cannot be a path from B to Y [−1]. We conclude that
Y ∈ H.

Since T iYB ∈ H for all i ∈ Z, Proposition 4.20 shows that Y is semi-simple in H. �

Remark 4.32. It was shown in [44, Theorem 4.2] that for every tube T in A, there is a t-structure
in DbA with hereditary heart H (H is derived equivalent to A) such that T is a simple tube in H.
The t-structure considered in that proof is different from the one we consider in this article (i.e.
the one given in Construction 4.29).
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5. Hereditary categories without exceptional objects

Let A be an abelian hereditary category with Serre duality. We will consider the case where
A has no exceptional objects. Our main result will be Theorem 3, giving a classification up to
derived equivalence.

Since A has no exceptional objects, A has no nonzero projective or injective objects. Recall
from Proposition 2.1 that τ : DbA → DbA then restricts to an autoequivalence τ : A → A.

5.1. Choosing a tilt H. Let A be a hereditary category with Serre duality and assume that A
does not have exceptional objects. By Theorem 2, we know there is a 1-spherical object X . With
this 1-spherical object, we associate a t-structure with heart H = H(X) as in Construction 4.29.

The heart H is a hereditary abelian category, derived equivalent to A (see Proposition 4.31).
We want to show that H has a set of sincere orthogonal simple tubes, meaning that there is a set
S ⊆ H of mutually perpendicular simple 1-spherical objects such that for every E ∈ H, we have
Hom(E,S) 6= 0.

The following lemma shows that H has “enough” 1-spherical objects for our purposes.

Lemma 5.1. Let H = H(X) as above. There is a set S ⊂ H (containing X [0]) of mutually
orthogonal 1-spherical objects, such that for all A ∈ ObH either Hom(A,S) 6= 0 or Hom(S, A) 6= 0.

Proof. If H is a tube, then H is generated by a single 1-spherical object, and the statement is
easy.

Using Theorem 2, we infer that the perpendicular category X [0]⊥ in H also contains a 1-
spherical object. An easy application of Zorn’s Lemma yields that there is a maximal set S con-
sisting of orthogonal 1-spherical objects. Obviously, for this set, we have that either Hom(A,S) 6= 0
or Hom(S, A) 6= 0. �

Proposition 5.2. Let A be an abelian hereditary category with Serre duality and without any
exceptional objects. There is a t-structure with hereditary heart H, derived equivalent to A, and a
set S of indecomposable 1-spherical objects such that

(1) Hom(S1, S2) = 0 = Ext1(S1, S2), for every two nonisomorphic S1, S2 ∈ S
(2) each S ∈ S is simple in H, and
(3) for all A ∈ H, there is an S ∈ S such that Hom(A,S) 6= 0.

Proof. If A is generated by a single 1-spherical object X (thus A is a tube), then the statement
is trivial. Thus assume that A is not generated by X .

Let H and S be as above, thus X ∈ A is any 1-spherical object whose existence is given by
Theorem 2, S is given by Lemma 5.1, and H is given in Proposition 4.31. The first statement has
been shown in Lemma 5.1.

Next, we show that all objects in S are simple. It follows from Proposition 4.31 that X [0]
is simple in H. Let S ∈ S. In particular S ∈ H ⊆ D≤0 and we know that there is a path
B = B0 → B1 . . . → Bn → S in H where Hom(B0, X) 6= 0 and we may assume that B0 and Bn
do not lie in the tubes containing X and S respectively. According to Proposition 4.20, it suffices
to show that T iSBn ∈ H for all i ∈ Z.

By Lemma 4.19, we know that T iSB0 ∈ H for all i ≥ 0. We thus need only to consider the
case where i < 0. Seeking a contradiction, let i be the largest integer such that T iSB0 6∈ H, thus
Lemma 4.19 yields that T iSB0[1] ∈ H. Note that there is a path T iSB0 → T iSB1 . . . → T iSBn → S
in DbA. Applying HomDbA(−, X [0]) to the triangle

RHom(S, T iSB0, S)⊗ S → T iSB0 → T i+1
S B0 → RHom(S, T iSB0, S)⊗ S[1]

we find that Hom(T iSB0, X [0]) 6= 0 (this uses that Hom(B0, X [0]) 6= 0 and that S ∈ X [0]⊥ =
⊥X [0]). Lemma 2.12 implies that there is a path from X to T iSB0[1]. Since T iSB0[1] does not lie
in the tube containing X [0], this implies that there is an indecomposable Y ∈ H, which also does
not lie in the tube containing X [0], such that Hom(X [0], Y ) 6= 0. However, the object X [0] is
simple in H, and the existence of the objects B0, Y ∈ H contradicts Proposition 4.20. We have
obtained the required contradiction and may conclude that S is simple in H.
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It follows from Lemma 5.1 that Hom(S, A) 6= 0 or Hom(A,S) 6= 0, for each A ∈ H. If A lies in
a tube generated by S, then Hom(A,S) 6= 0. We will now show Hom(A,S) 6= 0 when A does not
lie in such a tube.

Let S ∈ S and let T be the tube generated by S. We will assume that S 6∼= X . By the
construction of H, we know that there is an indecomposable object B ∈ H and a path from
T iXB ∈ H to S for i ≪ 0. In particular, there is an indecomposable object A′ (not contained in
the tube T generated by S) such that Hom(A′, S) 6= 0. Since S is simple, Proposition 4.20 yields
that Hom(S,A) = 0 for all indecomposables A 6∈ T .

This completes the proof. �

Remark 5.3. Every object lying in one of the tubes generated by S has finite length, while all
other objects have infinite length. Indeed, for each A not lying in one of the tubes of S, there is
a short exact sequence

0 → T ∗
SA→ A→ Hom(A,S)∗ ⊗ S → 0

in H for some S ∈ S. This shows that A has infinite length.

We may define a torsion theory on H in the standard way:

T = {A ∈ ObH | A has finite length}

F = {A ∈ ObH | every nonzero direct summand of A has infinite length}.

Note that τT = T and thus also τF = F . It then follows from Serre duality that Ext1(F , T ) = 0
such that the objects of T act as injectives with respect to F . In particular, every object in H is
a direct sum of a torsion and a torsion-free object.

Proposition 5.4. Let (T ,F) be the aforementioned torsion theory on H. An object A ∈ H is
torsion if and only if χ(A,S) = 0 for all S ∈ S.

Proof. Assume that A is torsion. Without loss of generality, we may assume that A is indecompos-
able. By Remark 5.3 we know that A lies in a tube T generated by some S ∈ S. By Proposition
4.12, the tube is equivalent to the category of nilpotent representations of the one-loop quiver
(thus the category of nilpotent representations of k[t]) and thus χ(A,S) = 0.

For any S′ ∈ S, nonisomorphic to S, we know that Hom(S′, A) = 0 and Hom(A,S′) ∼=
Ext1(S′, A)∗ = 0 and thus also χ(S′, A) = 0.

Assume now that A ∈ H is torsion-free. Since S is torsion, we know that Ext1(A,S) = 0 so
that χ(A,S) = dimHom(A,S). The statement then follows from Proposition 5.2. �

5.2. Maps from torsion-free objects to torsion objects. In this section, we will show that
the categoryH admits a torsion-free object F such that dimk Hom(F, S) is bounded when S ranges
over S. Our first result is Proposition 5.5 where we give sufficient condition on this object F to
ensure the existence of such a bound. Lemmas 5.6 and 5.7 prove that such objects F can be found
in F .

For the following proposition, note that we do not require the object F to be endo-simple.

Proposition 5.5. Assume that H has a torsion-free object F ∈ F with e = dimExt1(F, F ) ≥
2 and such that every nonzero F → τF is a monomorphism. For every S ∈ S, we have
dimHom(F, S) ≤ 2e− 2.

Proof. Consider the short exact sequence 0 → F
f
→ τF → C → 0 based on a nonzero map

f : F → τF (thus C ∼= coker f). For any S ∈ S we have

χ(C, S) = χ(τX, S)− χ(X,S) = 0

where we have used that S ∼= τS. Proposition 5.4 now yields that C is torsion.
We will show that, for any S ∈ S, there is an f : F → τF such that Hom(C, S) 6= 0. Since C is

torsion, this would imply that S is also a subobject of C. Using furthermore that Ext1(F,C) = 0
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(since C is torsion and F is torsion-free), we obtain

dimHom(F, S) ≤ dimHom(F,C)

= χ(F,C)

= χ(F, τF ) − χ(F, F )

= −2χ(F, F )

= 2e− 2 dimHom(F, F )

≤ 2e− 2.

We fix an S ∈ S, and we look for nonzero morphisms f : F → τF and g : τF → τS such that
g ◦ f = 0. This would imply that Hom(C, S) 6= 0 (where C ∼= coker f).

To this end, we choose an isomorphism α : τS → S, and we define a linear map

ϕ : Hom(F, τF ) → Endk(Hom(F, S))

f 7→ ϕf

where ϕf (g) = α ◦ τg ◦ f , thus

ϕf (g) : F
f
→ τF

τg
→ τS

α
→ S.

If ϕ : f → ϕf is not a monomorphism, then we are done. Indeed, assume that f is a nonzero
element in Hom(F, τF ) such that ϕf = ϕ0, thus ϕf (h) = 0, for all h : F → S. Then we find
τh ◦ f = 0 as requested.

Thus, assume that ϕ : Hom(F, τF ) → End(Hom(F, S)) is a monomorphism. We will show that
ϕf is not an isomorphism for some f ∈ Hom(F, τF ) \ {0}. In the vector space End(Hom(F, S)),
the set of non-invertible endomorphisms forms a hypersurface H and imϕ forms a subspace of
End(Hom(F, S)) of dimension dimExt1(F, F ) ≥ 2. In the associated projective space P(End(Hom(F, S)),
Bézout’s theorem implies that the hypersurface P(H) intersects nontrivially with P(imϕ). We infer
that imϕ contains non-invertible, and hence non-injective, nonzero endomorphisms of Hom(F, S).

In particular, let f ∈ Hom(F, τF ) \ {0} be such that ϕf is not invertible. Then there is a
nonzero h ∈ Hom(F, S) such that ϕf (h) = 0, and thus τh ◦ f = 0 as requested. �

The following lemma shows the existence of an object F satisfying the conditions of Proposition
5.5, under the additional minimality condition on dimExt1(F, F ).

Lemma 5.6. Let F ∈ H be a torsion-free object. If d = dimExt1(F, F ) is minimal among all
torsion-free objects and d ≥ 2, then every nonzero map F → τF is a monomorphism.

Proof. The proof resembles that of Lemma 3.7. First note that by Proposition 3.2, we may assume
that F is endo-simple. Let f : F → τF be nonzero with kernel K, cokernel C, and image I. Since
K and I are subobjects of torsion-free objects, they are torsion-free as well. We have the following
exact sequences

0 → K → F → I → 0, 0 → I → τF → C → 0.

By applying Hom(F,−) to the first sequence, and Hom(−, τF ) to the second, we find

dimExt1(F,K) = d− 1 + χ(F, I)

dimExt1(C, τF ) = d− 1− χ(F, I)

SinceK is a subobject of F and Ext1(−,K) is right exact, we find dimExt1(F,K) ≥ dimExt1(K,K).
Likewise, we find dimExt1(C, τF ) ≥ dimExt1(C,C). Combining these inequalities with the two
equations above, we find that either dimExt1(K,K) < d or dimExt1(C,C) < d.

In the former case, the minimality of d implies that K is zero, and hence f is a monomorphism.
In the latter case, C is necessarily torsion (possibly zero) such that χ(C, S) = 0 for all S ∈ S by
Proposition 5.4. From this, we find that χ(I, S) = χ(τF, S) (by the second short exact sequence)
and that χ(τF, S) = χ(F, S) (since τS ∼= S). We see that χ(I, S) = χ(F, S), and hence χ(K,S) = 0
for all S ∈ S. Since K is torsion-free, Proposition 5.4 implies that K ∼= 0. We have shown that f
is a monomorphism. �
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As mentioned before, the case where d = 1 in Lemma 5.6 will not allow us to apply Proposition
5.5 directly; this case merits some extra attention. It will follow from the classification in Theorem
3 below that DbH ∼= Db cohX for an elliptic curve X. For now, we will have to consider the
possibility that there is an indecomposable torsion-free object F such that τF 6∼= F .

Lemma 5.7. Assume that there is a torsion-free object G with d = dimExt1(G,G) = 1. If there
is an object A such that τA 6∼= A, then there is an indecomposable torsion-free object F such that
τF 6∼= F , every nonzero morphism F → τF is a monomorphism, and dimExt1(F, F ) ≥ 2.

Proof. Let F be an indecomposable torsion-free module such that τF 6∼= F (thus F does not lie
in a tube of H). We will choose F such that e = dimExt1(F, F ) is minimal among all the objects
satisfying these properties. Note that we do not require F to be endo-simple.

We start by showing that dimExt1(F, F ) ≥ 2. Seeking a contradiction, assume that dimExt1(F, F ) =
1. Proposition 3.2 implies that F is endo-simple (recall that H does not have exceptional objects).
Lemma 3.3, together with F 6∼= τF , now shows that H has an exceptional object. This contradic-
tion shows that dimExt1(F, F ) ≥ 2.

Let f : F → τF be a nonzero morphism. Again, we associate the following short exact
sequences:

0 → K → F → I → 0, 0 → I → τF → C → 0,

where K ∼= ker f , I ∼= im f , and C ∼= coker f . If f were an epimorphism (and hence I ∼= τF ), then
we can use τT ∼= T (for all T ∈ T ) to see that χ(K, T ) = 0. Since K is torsion-free, we know that
χ(K, T ) = 0 implies that K ∼= 0 (Proposition 5.4), contradicting τF 6∼= F .

Thus, assume that f is not an epimorphism and thus C 6= 0. The short exact sequences above
yield the following equalities:

χ(F,K)− χ(F, F ) + χ(F, I) = 0

χ(I, τF )− χ(τF, τF ) + χ(C, τF ) = 0.

Using that dimHom(F, F ) > dimHom(F,K) and dimHom(τF, τF ) > dimHom(C, τF ), we find

dimExt1(F,K) < e+ χ(F, I)

dimExt1(C, τF ) = dimHom(F,C) < e− χ(F, I)

We recall that H is hereditary and thus that Ext1(−,K) and Ext1(C,−) are right exact. Since
dimExt1(F,K) ≥ dimExt1(K,K) and dimExt1(C, τF ) ≥ dimExt1(C,C), the above inequalities
show that either dimExt1(K,K) < e or dimExt1(C,C) < e.

We will assume the latter; the former is similar. Due to the minimality of e, we know that
C ∼= τC and hence τ permutes the indecomposable direct summands of C. Theorem 4.14 shows
that every indecomposable direct summand of C lies in a tube and since H has no exceptional
objects, we know that every tube is homogeneous.

Consider a direct sum decomposition C ∼= ⊕iCi into indecomposable objects. By Theorem
4.15, we know that we can choose the labeling such that χ(Cj , Ci) ≤ 0 when i ≤ j. In particular,
since χ(C1, C1) = 0, we have χ(C,C1) ≤ 0. Also note that there is a path from every direct
summand of K to Ci. Theorem 4.15 shows that there is no path from Ci to any direct summand
of K and Lemma 2.12 yields that Ext1(K,Ci) = 0. Hence, χ(K,Ci) ≥ 0. From the above short
exact sequences, we find

χ(I, C1)− χ(F,C1) + χ(K,C1) = 0

χ(I, C1)− χ(τF, C1) + χ(C,C1) = 0.

Using that χ(τF, C1) = χ(F, τ−1C1) = χ(F,C1), we can take the difference of these two equations
and find that χ(K,C1)− χ(C,C1) = 0. The signs of these terms now imply that

χ(K,C1) = χ(C,C1) = 0.

In particular, for all j > 1 we have that either either Cj ∼= C1 or Cj ∈ C⊥
1 , and we have

that χ(C,C2) ≤ 0. We can continue this procedure to conclude that Ci ∈ C⊥
j , for all Ci 6∼= Cj .

Moreover, we find that χ(K,C) = 0 = χ(C,K).
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Following Lemma 5.1, we can extend the set {Ci}i to a set S ′ ⊆ H of 1-spherical objects such
that either Hom(A,S ′) 6= 0 or Hom(S ′, A) 6= 0 for any A ∈ H. We claim that χ(Kj , S

′) = 0 for all
indecomposable direct summands Kj of K and all S′ ∈ S ′, so that it follows from Theorem 4.15
that K lies in the subcategory generated by S ′.

For an S′ ∈ S ′, we easily find that χ(I, S′) = χ(τF, S′) and, using that χ(τF, S′) = χ(F, τ−1S′) =
χ(F, S′), thus also that χ(K,S′) = 0.

Seeking a contradiction, letKj be an indecomposable direct summand ofK such that χ(Kj , S
′) <

0. This would imply that dimExt1(Kj , S
′) 6= 0, and thus by Lemma 2.12 there is a path from S′

to Kj. We can then concatenate this path with the given path from Kj to C1 giving a path from
S′ to C1 which passes F . Proposition 4.24 then yields that the tubes containing S′ and C1 are
simple tubes. However, this would imply that S′ ∈ T , and we have established that there are no
paths from T to F (recall that F ∈ F). We may conclude that χ(Kj, S

′) ≥ 0 for all S′ ∈ S ′ and
all indecomposable direct summands Kj of K.

It now follows from χ(K,S′) =
∑

j χ(Kj , S
′) = 0 and χ(Kj, S

′) ≥ 0 that χ(Kj , S
′) = 0.

Thus, by Proposition 5.4, we know that K lies in the subcategory generated by S ′. In particular,
τK ∼= K. We know that there are paths from all indecomposable direct summands of K to all
direct summands of C, so that ifK is nonzero then Proposition 4.24 shows thatK,C ∈ T . SinceK
is a subobject of F , this implies that K ∼= 0, and we can conclude that f is a monomorphism. �

5.3. The quotient category H/T . In this subsection, we will describe the quotient category
H/T . We will use the notation introduced before. Thus in particular, H is a connected hereditary
category with Serre duality without exceptional objects. Let S be the collection of simple objects
and assume that every object in H maps nonzero to at least one object in S (see Proposition
5.2 and Remark 5.3). Let T be the Serre subcategory generated by S, and let F be the right
Hom(−,−) orthogonal of T . Note that by Serre duality, we have Ext1(F , T ) = 0 so that every
object of T behaves as an injective object with respect to F .

Lemma 5.8. H/T is semi-simple in the sense that Ext1(−,−) between any two objects is zero.

Proof. As in [37, Corollary IV.1.4]. We will repeat the argument for the benefit of the reader. It
is sufficient to show that for any A,B ∈ H there is a subobject B′ of B with B/B′ ∈ T such that
Ext1(B′, A) = 0. Since every object in H is a direct sum of an object in F and an object in T ,
we may assume that B ∈ F .

Choose a B′ ⊆ B (with B/B′ ∈ T ) such that dimk Ext
1(B′, A) is minimal. Seeking a contra-

diction, we assume that dimk Ext
1(B′, A) 6= 0.

Since H has no nonzero injective objects, we have Ext1(B′, A) ∼= Hom(τ−1A,B′)∗. Let
f : τ−1A → B′ be any nonzero morphism. Let T be the torsion subobject of B′/ im f ; since
Ext1(F , T ) = 0, T is a direct summand of B′/ im f . We have the following commutative diagram
with exact rows and columns:

0

��

0

��
0 // im f // B′′ //

��

B′′/ im f //

��

0

0 // im f // B′ //

��

B′/ im f //

��

0

T

��

T

��
0 0
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Note that B′′ ⊆ B′ ⊆ B (hence B′′ ∈ F) and that B/B′′ ∈ T . Furthermore, B′′/ im f
is torsion-free and, by the minimality of dimk Ext

1(B′, A), we know that dimk Ext
1(B′, A) =

dimk Ext
1(B′′, A).

It follows from Proposition 5.2 that there is a simple S ∈ T such that Hom(im f, S) 6= 0.
Consider the short exact sequence

0 → T ∗
S(B

′′) → B′′ → Hom(B′′, S)∗ ⊗ S → 0.

Since B′′/ im f ∈ F and Ext1(F , T ) = 0, we know that any morphism im f → S factors through
the inclusion im f → B′′ and thus as

im f → B′′ → Hom(B′′, S)∗ ⊗ S → S.

Since Hom(im f, S) 6= 0, we know that im f 6⊆ T ∗
S(B

′′). We may conclude that the monomorphism
Hom(τ−1A, T ∗

S(B
′′)) → Hom(τ−1A,B′′) is not an epimorphism (since the image does not contain

the map f) and thus

dimHom(τ−1A, T ∗
S(B

′′)) � dimHom(τ−1A,B′′) = dimHom(τ−1A,B′).

However, it is easily checked thatB/T ∗
S(B

′′) ∈ T . This contradicts the minimality of dimk Ext
1(B′, A),

and hence we know that Ext1(B′, A) = 0. This concludes the proof. �

We will write π : H → H/T for the quotient functor. Let F be an object in H/T and let F̃ be

a lift of F in H, thus π(F̃ ) ∼= F . Since every object in H is a direct sum of an object in T and an

object in F , we can choose the lift F̃ to be in F . We put

v(F ) = (dimHom(F̃ , S))S∈S .

For lifts F̃ , G̃ of F,G we have

HomH(F̃ , G̃) →֒ HomH/T (F,G)

since the image of a map F̃ → τG̃ is torsion-free.
Furthermore, for an object F ∈ H/T , we will write τF for π(τF̃ ). Since τT = T , the object

τF ∈ H/T is well-defined.

Lemma 5.9. The function v is well-defined and additive on H/T . Furthermore v(τF ) = v(F ).
If F 6∼= 0 then v(F ) 6= 0.

Proof. To show that v is well-defined, let F̃ , F̄ be lifts of an object F ∈ H/T . Consider an

isomorphism π(F̃ ) ∼= π(F̄ ). Using that F̄ has no nonzero torsion subobjects, the existence of

the isomorphism means that there is a subobject G of F̃ such that F̃ /G is torsion, and a map
f : G → F̄ such that both the kernel ker f and the cokernel coker f are torsion. Using that
χ(T , S) = 0 for all S ∈ S, we find that

dimHom(F̃ , S) = dimHom(G,S) = dimHom(F̄ , S),

as required.
The equality v(τF ) = v(F ) follows from

Hom(F̃ , S) ∼= dimHom(F̃ , τ−1S) ∼= dimHom(τF̃ , S),

where we have used that τ−1S ∼= S.
The last statement follows from Proposition 5.2. �

Lemma 5.10. Assume that there is an E ∈ H/T such that v(E) is bounded. Then H/T contains
a simple object.

Proof. Choose E as in the statement of the lemma such that maxS vS(E) is minimal. We assume,

in addition, that Ẽ is indecomposable.
Assume that E ∈ H/T is not simple, i.e. E = E1 ⊕ E2 in H/T . Then there are lifts Ẽ, Ẽ1, Ẽ2

and an exact sequence (see [19, Corollaire 3.1.1])

0 → Ẽ1 → Ẽ → Ẽ2 → 0
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which is not split since Ẽ is indecomposable. Hence HomH(Ẽ1, τẼ2) 6= 0 and thus HomH/T (E1, τE2) 6=
0.

Choose a nonzero map E1 → τE2 and let F be its image. By Lemma 5.8, F is a summand of
both E1 and τE2. For an S ∈ S such that vS(F ) 6= 0, we have

vS(F ) ≤ min(vS(E1), vS(τE2)) ≤ min(vS(E1), vS(E2)) < vS(E1) + vS(E2) = vS(E)

where we have used that vS(F ) 6= 0 and thus also vS(E1) 6= 0 6= vS(E2). This contradicts the
minimality of E. �

5.4. Proof of classification. We are now ready to prove Theorem 3 below. Let H be the abelian
category derived equivalent to A, given in §5.1.

Proposition 5.11. Assume that H/T contains a simple object. Then DbH ∼= Db cohX for a
smooth projective curve X.

Proof. Let N be the full subcategory of noetherian objects in H. Since H has no nonzero excep-
tional objects, neither does N . In particular, H does not have nonzero projective and injective
objects and the Auslander-Reiten translate τ : DbH → DbH restricts to an autoequivalence
τ : H → H. We have that τN = N .

We claim that N contains at least one indecomposable non-simple object, namely the object
which becomes simple in H/T (see Lemma 5.10). Indeed, let N ∈ H/T be a simple object and let

Ñ ∈ F be a lift, thus πÑ ∼= N . Let M0 ⊆M1 ⊆M2 ⊆ . . . be an increasing sequence of subobjects
of Ñ . Since N is simple in H/T and Mi 6∈ T , we know that π(Mi) ∼= N . Hence Ñ/Mi ∈ T .

Since there are epimorphisms Ñ/Mi → Ñ/Mj for all i ≤ j, and T is a length category, we know
that these epimorphisms become isomorphisms for i, j ≫ 0. This shows that the sequence (Mi)i
of subobjects of Ñ stabilizes. We have shown that Ñ is a noetherian object.

Let N ′ be a connected component of N . Clearly τN ′ = N ′. It follows from the classification
in [37] that N ′ ∼= cohX where X is a smooth projective curve.

We now have a fully faithful map cohX → H which, due to Serre duality, also preserves
Ext1(−,−). It follows that the derived functor F : Db cohX → DbH is fully faithful as well. Since
Db cohX is saturated this map yields a semi-orthogonal decomposition ofDbH, and sinceDb cohX
is closed under the Serre functor this semi-orthogonal decomposition is a genuine decomposition
(see Corollary 4.11). By the fact that DbH is indecomposable, we obtain Db cohX = DbH. �

Theorem 3. Let A be a nonzero indecomposable hereditary category with Serre duality over an
algebraically closed field. If A does not have any exceptional objects, then A is derived equivalent
to either

• a homogeneous tube, or
• the category of coherent sheaves on a smooth projective curve of genus at least one.

Proof. Let S be as in Proposition 5.2. Let T be the Serre subcategory generated by S.
If A/T is zero, then A ∼= T , and hence A is a homogeneous tube.
Thus, assume that A/T is nonzero. In this case, let E ∈ F be a nonzero torsion-free object in

A such that d = dimExt1(E,E) is minimal among all nonzero torsion-free objects.
If d ≥ 2, then it follows from Lemma 5.6 and Proposition 5.5 that v(E) is bounded, and hence

A/T contains a simple object by Lemma 5.10. The classification follows from Proposition 5.11.
If d = 1, we consider two cases. The first case is where F ∼= τF for all indecomposable torsion-

free objects. In this case, it follows from [43] that DbA ∼= Db cohX where X is an elliptic curve
(the proof in [43] only uses that SX ∼= X [1] for all X ∈ DbA, not that S ∼= [1]).

The second case we consider is where there is an object F ∈ F such that τF 6∼= F . We can
then use Lemma 5.7 and Proposition 5.5 to see that there is an object F ∈ F such that v(F ) is
bounded, and hence A/T contains a simple object by Lemma 5.10. The classification follows from
Proposition 5.11. �

Remark 5.12. It follows from the classification in Theorem 3 that the final case in the proof cannot
occur. In particular, there are no categories satisfying the conditions in Lemma 5.7.
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Remark 5.13. As a corollary to Theorem 3, we can recover the classification of abelian 1-Calabi-
Yau categories from [43]. However, that classification was used in the proof of Theorem 3.

Remark 5.14. It now follows from the classification that the category H we constructed in §5.1 is
equivalent to either a homogeneous tube, or to the category cohX of coherent sheaves on a smooth
projective curve X of genus at least one.

Corollary 5.15. Let A be as in Theorem 3. Let S be a 1-spherical object. The category S⊥ is a
direct sum of homogeneous tubes.

Proof. We only need to consider the case where DbA ∼= Db cohX for a smooth projective curve X.
If the genus of X is at least 2, then the only 1-spherical objects in Db cohX correspond to simple
sheaves in cohX, and the statement follows easily.

When the genus is 1, then X is an elliptic curve and the statement follows from the classification
of coherent sheaves on cohX ([2], see also [14, 43]). �

Corollary 5.16. Let A be as in Theorem 3. Let S be the set of all simple 1-spherical objects. If
S is nonempty, then S⊥ = ⊥S = 0.

Proof. Let S be a simple 1-spherical object in A. In each of the examples, we know that S⊥ is a
direct sum of tubes. It follows from Proposition 4.25 that each of those tubes is simple in A. We
then obtain S⊥ = ⊥S = 0 as requested. �

6. Numerically finite categories

Let A be an indecomposable abelian hereditary category with Serre duality. If A has no
exceptional objects, then A is derived equivalent to one of the categories in Theorem 3. We will
now consider the case whereAmay have exceptional objects, but where every exceptional sequence
is finite. This is the case, for example, when A is numerically finite.

Let E = (Ei)i=1,...,n be a (finite) maximal exceptional sequence in DbA. It follows from Propo-
sition 2.9 that we may assume that E ⊆ A and that E is a strong exceptional sequence, thus
E = ⊕ni=1Ei is a partial tilting object in A. Throughout, we will assume that E is such an
exceptional sequence.

We will split our discussion into two cases. The first case is where A has a tilting object; these
categories are understood by the classification in [25] (see Theorem 2.8). In the second case, we
will show that we have “enough” generalized 1-spherical objects (as in Proposition 5.2) and use
this to find a derived equivalent category H which we can show to be noetherian. The categories
are then understood via the classification in [37].

Since the first case is easily dealt with, we will assume that A does not have a tilting object.
In §6.2 we will consider the case where E⊥ is a direct sum of tubes. Then in §6.3, we will consider
the case where E consists of a single indecomposable object E and we will show that E lies in a
simple tube of rank two in A. We will use these results in §6.4 to show that there are “enough”
simple tubes (as in Lemma 5.1). Afterward, the proof of the classification is similar to the proof
of Theorem 3.

6.1. A decomposition theorem. In this section, we will deal with numerically finite hereditary
categories with Serre duality and with nonzero projective objects. Our main result is Theorem 6.1
below, which says that such a category is a direct sum of a subcategory without nonzero projective
objects and a subcategory with enough projective objects. The theorem is thus an analogue of
[37, Theorem II.4.2] for non-noetherian categories.

Theorem 6.1. Let A be an abelian hereditary category. Let P be the full subcategory of A
consisting of projective objects and let B be the the abelian subcategory of A generated by B. The
subcategory B is a Serre subcategory of A and every object B ∈ B has a projective resolution of
length at most one.

If furthermore A is Ext-finite, satisfies Serre duality, and P has only finitely many isomorphism
classes of indecomposable objects, then

(1) there is a finite-dimensional hereditary algebra Λ such that B ∼= modΛ,
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(2) every injective object lies in B,
(3) every object in B has an injective resolution of length at most one,
(4) B⊥ = ⊥B and A ∼= B ⊕ B⊥ ∼= B ⊕ ⊥B.

Proof. Let P̃ be the full subcategory of A whose objects are quotient objects of projective objects.
Since A is hereditary, the kernel of such an epimorphism P0 ։ B is again projective and hence
every object B ∈ P̃ fits into a short exact sequence

0 → P1 → P0 → B → 0

where P0, P1 ∈ P . It is clear that P̃ is closed under extensions. We will now check that P̃ is
closed under subobjects. Let B′ be a subobject of B ∈ P̃ , and let P0 → B be an epimorphism
with P0 ∈ P . Let P ′

0 be the pullback of the induced co-span, thus:

P ′
0

//❴❴❴

��
✤

✤

✤
P0

��
B′ // B.

Since B′ → B is a monomorphism, so is P ′
0 → P0 and thus P ′

0 is a projective object. Since P0 → B

is an epimorphism, so is P ′
0 → B′ and thus B′ ∈ P̃ , as required.

We see that P̃ is an Serre subcategory of A and thus P̃ = B.
Assume now that A is Ext-finite and that P has only finitely many isomorphism classes of

indecomposable objects. Let P be an additive generator for P , thus every object in P is a
direct summand of a direct sum of copies of P . Since P is a projective generator for B, we have
B ∼= modEnd(P ). In particular, End(P ) is a hereditary algebra.

Assume now that A has Serre duality. We will show that all injective objects of A lie in B. Let
I be the category of injectives of A and let I be an additive generator for I (here we use Serre
duality and the correspondence between projective objects and injective objects from Proposition
2.1 to show such an additive generator exists). Consider the exact sequence

0 → ker f → Hom(P, I)⊗ P
f
→ I → coker f → 0

where f is the evaluation morphism. Since ker f is a subobject of a projective object, it itself is
projective. Likewise, coker f is injective. Using the lifting property for projectives, we know that
Hom(P, coker f) = 0. It then follows from Proposition 2.1 that coker f = 0. We conclude that

I ∈ P̃ = B.
Let Ĩ be the full subcategory of A whose objects are subobjects of objects in I. Dual to the

case of P̃ , we find that Ĩ is a Serre subcategory of A. Since I ∈ P̃ , we find

Ĩ = P̃ = B.

Moreover, I is a tilting object for B. Similar to the above considerations, for every object B ∈ B,
there is a short exact sequence

0 → B → I0 → I1 → 0

where I0, I1 ∈ I.
We will now show that B⊥ = ⊥B. We start with B⊥ ⊆ ⊥B. Let C ∈ B⊥ and let B ∈ B be any

object. For any nonzero morphism g ∈ Hom(C,B), the image im g lies in B. If im g were nonzero,
there would be a nonzero map P → im g. Using the lifting property for projectives, we would find
a nonzero map P → C. However, we have assumed that C ∈ B⊥ and may thus conclude that
im g = 0. For any nonzero extension g ∈ Ext1(C,B), we have a nonzero map C → I1, where

0 → B → I0 → I1 → 0

is an injective resolution of B. However, we have already excluded the existence of these maps.
We conclude that B⊥ ⊆ ⊥B. The other inclusion is shown dually. �

Remark 6.2. (1) The above theorem fails in general when P has infinitely many isomorphism
classes of indecomposable objects. For example, the properties (1) through (4) fail for
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the categories given in [7, Example 4.16]. In general, there will be no right adjoint to the
embedding B → A.

(2) Without the finiteness conditions on P , one does not know whether B has Serre duality
even if A satisfies Serre duality.

The next corollary explains why we are interested in categories without nonzero projective
objects.

Corollary 6.3. Let A be an indecomposable numerically finite abelian hereditary category with
Serre duality. If A has a nonzero projective direct summand, then A ∼= modΛ for a finite-
dimensional hereditary algebra Λ.

We end this subsection with two corollaries of Theorem 6.1 we will use later.

Proposition 6.4. Let A be an abelian Ext-finite hereditary category with a tilting object. If A
has no nonzero projective-injective objects, then A has a tilting object without projective direct
summands.

Proof. Since A has a tilting object, we know that A is numerically finite and that DbA has a Serre
functor (see for example [33, Theorem 6.1]). Since A is numerically finite and nonisomorphic pro-
jective objects are linearly independent in NumA, we know A has only finitely many isomorphism
classes of indecomposable projective objects. We can thus apply Theorem 6.1. Let B be the Serre
subcategory of A generated by the projective objects.

Let P and I be additive generators for the category of projectives and injectives in A, respec-
tively. Let T be a tilting object in A. Consider the evaluation morphism ϕ : Hom(P, T )⊗ P → T
and the short exact sequence

0 → imϕ→ T → T ′ → 0.

Applying the functor Hom(P,−) shows that T ′ ∈ B⊥ = ⊥B. Since imϕ ∈ B and Ext1(T ′, imϕ) =
0, we have T ∼= T ′⊕ imϕ. One can check that T ′ is a tilting object for B⊥ by applying Hom(−, C)
to the above short exact sequence and using that T is a tilting object.

Since I is a tilting object of B and T ′ is a tilting object of B⊥, we know that T ′ ⊕ I is a tilting
object for A. Since neither I nor T ′ have projective direct summands, we can conclude the same
about T ′ ⊕ I. �

Corollary 6.5. Let A be an abelian indecomposable Ext-finite hereditary category with a tilting
object. If A is not equivalent to modΓ where Γ is the algebra of upper-triangular n× n-matrices
over k (for some n ≥ 1), then A has a tilting object without projective direct summands.

Proof. As in the proof of Proposition 6.4, we know that A satisfies all conditions from Theorem
6.1. Since the case where A has no nonzero projectives is trivial, we may assume that A ∼= modΛ
for a finite-dimensional hereditary algebra Λ (by Theorem 6.1).

By Proposition 6.4, it suffices to show that A has no nonzero projective-injective objects.
According to [3, Propositions III.1.1 and III.1.3], A can only have projective-injective objects if
A ∼= modΓ where Γ is the ring of upper-triangular n× n-matrices over k (for some n ≥ 1). �

Remark 6.6. The algebra Γ of upper-triangular n× n-matrices over k mentioned in Corollary 6.5
is the path algebra of an An-quiver with linear orientation. We note that Γ is fractionally Calabi-
Yau of dimension n−1

n+1 (see for example [30, Examples 8.3(2)]) in the sense that Sn+1 ∼= [n− 1] in

DbmodΓ.

6.2. E⊥ is a direct sum of tubes. Let A be a numerically finite abelian hereditary category
with Serre duality, and let E be a maximal exceptional sequence in A. The first case we will
consider is where E⊥ is a direct sum of tubes.

We start with the following lemma.

Lemma 6.7. Let B be the abelian (and hereditary) subcategory of A generated by E. The natural
embedding B → A induces an isomorphism NumB → NumA. Furthermore, DbB has a Serre
functor SB and for each element B ∈ DbB, we have [SBB] = [SB] in NumDbA.
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Proof. Let E = (E1, E2, . . . , En). Since E is a full exceptional sequence in B, we know that
NumB ∼= ⊕ni=1Z[Ei]. It follows from Proposition 4.8 that NumA/NumB ∼= Num E⊥. Since we
have assumed that E⊥ is direct sum of tubes, we know that Num E⊥ = 0. This implies that the
embedding NumB → NumA is an isomorphism.

Since B has a tilting object, DbB has a Serre functor (see for example [33, Theorem 6.1]). For
an object B ∈ DbB, we have χ(−, [SBB]) = χ([B],−) = χ(−, [SB]) as functions NumDbB → Z.
Since χ(−,−) is nondegenerate, this shows that [SBB] = [SB] in NumDbB and thus also in
NumDbA. �

This implies the following proposition.

Proposition 6.8. Assume that A has no nonzero projective objects and assume that E⊥ is a direct
sum of tubes. Then A is a direct sum of categories, each of which is equivalent to either

(1) a tube, or
(2) a hereditary category with a tilting object.

Proof. Let B ⊆ A be the abelian subcategory generated by E , and let B′ be a connected component
of B. First assume that B′ 6∼= modΓ where Γ is the algebra of upper-triangular n × n-matrices
over k. We claim that B′ is a direct summand of A.

By Corollary 6.5, we know that there is a tilting object T in B′ such that no direct summand
of T is projective in B′. We see that T itself is a spanning class for B′ in the sense of [11] (see
Definition 2.15).

Let i : B′ → A be the embedding. Note that since B′ is a connected component of B, that the
Serre functor onDbB restricts to a Serre functor on B′, or for any object B′ ∈ B′ without projective
direct summands, we have τBB

′ ∼= τB′B′. Lemma 6.7 implies that [i ◦ SB′(T [0])] = [SA ◦ i(T [0])],
or equivalently that [i ◦ τB′(T )] ∼= [τA ◦ i(T )] (we use here that A has no projective objects and
no direct summands of T are projective in B′). We can now apply Proposition 2.10 to see that
i ◦ SB′(T [0]) ∼= SA ◦ i(T [0]). It follows from Corollary 2.17 that i : B′ → A induces an equivalence
between B′ and a direct summand of A.

Assume next that B′ is not a direct summand of A (thus in particular B′ ∼= modΓ where Γ is
the algebra of upper-triangular n× n-matrices over k). In this case, the action of τ on Num(B′)
is periodic (since DbmodΓ is fractionally Calabi-Yau, see for example 6.6). Since the action of
τ agrees on Num(B′) and Num(A), and since A has no projective objects, we know that every
object in the essential image of i has a finite τ orbit. It follows from Theorem 4.14 that every
object lies in a tube. These categories are understood via [44, Theorem 1.1 and Remark 6.19]. �

Corollary 6.9. Let A be indecomposable and assume that E⊥ is a direct sum of tubes. Then A
is equivalent to either

(1) a tube, or
(2) a hereditary category with a tilting object.

Proof. By Theorem 6.1, we may assume that either A has a tilting object, or that A does not have
any projective objects. The category A is thus equivalent to one of the categories in Proposition
6.8. �

Corollary 6.10. Assume that A is indecomposable. If E⊥ contains a connected component which
is a homogeneous tube, then A is a tube.

Proof. Directly from Corollary 6.9. �

6.3. E consists of a single object. Assume now that A is indecomposable, and that there is a
maximal exceptional sequence E consisting of a single object E. The situation where E⊥ contains
only tubes is understood by Proposition 6.8, so we can assume that E⊥ contains at least one
component which is not a tube. By Theorem 3, this component C is derived equivalent to cohX
for a smooth projective curve X. We want to investigate the relation between the simple tubes in
A and the simple tubes in E⊥ (see Proposition 6.18 below).

Since E 6∈ E⊥, we will instead consider M ∼= T ∗
SEE, thus M is the image of E under the right

adjoint T ∗
SE : DbA → DbE⊥ to the embedding DbE⊥ → DbA. We will use the description given
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in Lemma 6.11 below. We will use M as a means to convey information from E⊥ (using the
classification in Theorem 3) to A. Perhaps a surprising result is that E lies in a simple tube of
rank 2 in A (see Proposition 6.16 below), and consequently, M will lie in a homogeneous simple
tube in E⊥.

Lemma 6.11. Let E ∈ ObA be an exceptional object and assume that E⊥ has no exceptional
objects. If E is not projective then the following statements hold:

(1) M is the middle term of the Auslander-Reiten sequence 0 → τE →M → E → 0 in A,
(2) dimHom(E, τ2E) = dimExt1(M,M) 6= 0,
(3) Hom(τE,E) = 0,
(4) χ(M,M) ≤ 0, and
(5) M is indecomposable (thus E is peripheral in A).

Proof. Since Hom(E, SE) ∼= Hom(E,E)∗, there is (up to isomorphism) a unique nonsplit triangle
τE →M → E → SE in DbA, which is an Auslander-Reiten triangle. It is easily checked from this
thatM ∼= T ∗

SEE. This triangle restricts to an Auslander-Reiten sequence 0 → τE →M → E → 0,
proving the first statement.

From this Auslander-Reiten sequence, we obtain:

dimHom(M, τM) = dimHom(τE, τM) + dimHom(E, τM)

= dimHom(E,M) + dimExt1(M,E).

Since E is exceptional, we know that Hom(E, τE) = 0 and dimHom(E,E) = 1. Applying
the functor Hom(E,−) to the Auslander-Reiten sequence 0 → τE → M → E → 0 thus gives
dimHom(E,M) = 0.

Finally, applying Hom(−, E) gives

dimExt1(M,E) = dimExt1(τE,E) + dimExt1(E,E) = dimHom(E, τ2E).

Combining these equalities yields dimHom(E, τ2E) = dimExt1(M,M), as requested. Further-
more, we have assumed that E⊥ has no exceptional objects, so that M ∈ E⊥ implies that
Ext1(M,M) 6= 0.

We will now prove that Hom(τE,E) = 0. Seeking a contradiction, let f : τE → E be a nonzero
morphism. Such a nonzero morphism τE → E cannot be an epimorphism, since then there would
be a nonzero composition τE ։ E → τ2E, contradicting Hom(τE, τ2E) ∼= Ext1(E,E)∗ = 0.
Analogously, a monomorphism τE →֒ E would lead to a nonzero composition τE →֒ E → τ2E,
again contradicting Ext1(E,E) 6= 0.

For a nonzero morphism f : τE → E, one checks easily that im f ∈ E⊥ so that Ext1(im f, im f) 6=
0 since E⊥ has no exceptional objects. There is thus a nonzero morphism im f → τ im f which
we can use to find a nonzero morphism τE ։ im f → τ im f →֒ τE. Since τE is exceptional,
this composition is an isomorphism and hence τ im f → τE is a (split) epimorphism and thus an
isomorphism. Hence, f is a epimorphism, but we have already established that Hom(τE,E) has
no epimorphisms. We conclude that Hom(τE,E) = 0.

Applying Hom(τE,−) to the Auslander-Reiten sequence 0 → τE → M → E → 0 shows that
dimHom(τE,M) = 1 and hence M is indecomposable. �

We will now look closer at the Cartan matrix of A.

Lemma 6.12. One can extend [E] ∈ NumA to a basis of NumA such that the Cartan matrix is
block diagonal. Moreover, the block in the upper left corner is either (1), or





1 0 0
a 0 −1
b 1 1− g





for integers a, b, g, and where g ≥ 1 where the first basis element of NumA is given by [E].

Proof. First, note that E⊥ satisfies the conditions of Theorem 3 so that every connected component
B of E⊥ is derived equivalent to either a homogeneous tube or the category of coherent sheaves
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on a smooth projective variety X of genus g ≥ 1. The numerical Grothendieck group NumB is
zero in the former case, and isomorphic to Z2 in the latter case.

We consider the case where DbB ∼= Db cohX. We can choose a basis in NumB such that the
corresponding Cartan matrix is given by

(

0 −1
1 1− g

)

.

Indeed, it follows from the Riemann-Roch theorem that the above matrix is the Cartan matrix
with respect to the basis [k(P )] and [OX], where k(P ) is the simple sheaf supported on a closed
point P ∈ X and OX is the structure sheaf (see Example 2.7). We see that this gives a basis of
NumE⊥ such that the Cartan matrix is block diagonal, where all blocks are given by matrices of
the form described above.

Following Proposition 4.8, we know that NumA ∼= Z[E] ⊕NumE⊥. This extends the basis of
NumE⊥ to a basis for NumA. We will assume that [E] is the first of these basis elements, thus
the upper left entry in the Cartan matrix of A is χ(E,E).

If B′ is a connected component of E⊥ not containing M , then we have

Hom(B′,M) = Hom(M,B′) = Ext1(B′,M) = Ext1(M,B′) = 0.

Using the Auslander-Reiten sequence from Lemma 6.11, we find that the above equalities hold
after replacing M by E. Thus, for a connected component B′ of E⊥ not containing M , we find
χ(B′, E) = 0 and χ(E,B′) = 0.

We have the following possibilities. If the connected component B is a homogeneous tube,
then χ(−, [M ]) = 0 on NumB. Using the Auslander-Reiten sequence from Lemma 6.11 and
χ(−, [τE]) = −χ([E],−) = 0, we find χ(−, [E]) = 0 in NumB. In this case, the Cartan matrix
of A is given by the Cartan matrix of E⊥ with an additional 1 on the diagonal. If M lies in a
component of the form cohX for a smooth projective curve X, then we obtain the Cartan matrix
of A from the Cartan matrix of E⊥ by replacing the corresponding block by





1 0 0
a 0 −1
b 1 1− g





�

We can use this form of the Cartan matrix to prove the following proposition.

Proposition 6.13. We have E ∼= τ2E.

Proof. We will first show that Hom(τ2E,E) 6= 0 and that Hom(E, τ2E) 6= 0. The latter has been
shown in Lemma 6.11.

To show that Hom(E, τ−2E) 6= 0, we will look at the Cartan and the Coxeter matrix of A. It
follows from Lemma 6.12 that the Cartan matrixA is block diagonal and it follows from Proposition
2.5 that the Coxeter matrix C = −A−1AT follows this decomposition. Since we are interested in
E and τ2E, we need only to consider the block of A on the row and column corresponding to [E].

If this block is (1), then the corresponding block of the Coxeter matrix is (−1) and we find
[τ2E] = [E], so that χ(τ2E,E) = 1 and thus Hom(E, τ−2E) 6= 0. Note that in this case, we can
obtain E ∼= τ2E from Proposition 2.10.

The other case is where the block is given by




1 0 0
a 0 −1
b 1 1− g





The corresponding block of the Coxeter matrix C = −A−1AT is




−1 −a −b
a(1− g) + b a2(1 − g) + ab+ 1 (ab − 2)(1− g) + b2

−a −a2 1− ab



 .
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For the upper left block of the matrix C2, we find:




1− a2(1− g) ∗ ∗
a3(1− g)2 + a(ab + 2)(1− g) ∗ ∗

−a3(1− g) ∗ ∗





Since A and C are given with respect to a basis of NumA of which [E] is the first element,
we know that χ(τ2E,E) is the upper left entry of the matrix (C2)TA. We find χ(τ2E,E) =
a4(1− g)2 + a2(1− g) + 1 > 0. Hence, Hom(E, τ−2E) 6= 0.

We now know that Hom(τ2E,E) 6= 0 and Hom(E, τ2E) 6= 0 and will use this to prove that
E ∼= τ2E. Recall that we have shown in Lemma 6.11 that Hom(E, τ−1E) = 0, and thus also
that Ext1(E, τ2E) = 0. It follows from [26, Lemma 4.1] (see also [33, Proposition 5.1]) that every
nonzero morphism E → τ2E is either an epimorphism or a monomorphism.

Let f : E → τ2E be an epimorphism so that there is a nonzero composition E ։ τ2E → E.
Since E is exceptional, and thus every nonzero morphism is invertible, this implies that E ∼= τ2E.
Likewise, if f : E → τ2E is a monomorphism, then the composition E → τ−2E →֒ E is nonzero
and we again find that E ∼= τ2E. �

Corollary 6.14. The object E ∈ A lies in a tube of rank 2.

Proof. This follows from Proposition 6.13 and Theorem 4.14. �

Corollary 6.15. The object M is 1-spherical in E⊥.

Proof. We know from Proposition 6.11 that dimHom(E, τ2E) = dimExt1(M,M) and from Propo-
sition 6.13 that dimHom(E, τ2E) = 1. Furthermore, M lies in a category derived equivalent to
one of the categories described in Theorem 3. We conclude that M is 1-spherical. �

Proposition 6.16. The object E ∈ A lies in a simple tube of rank 2.

Proof. We know from Corollary 6.14 that E lies in a tube T of rank 2. We will show that T is a
simple tube in A.

Assume first that M lies in a connected component of E⊥ which is a (homogeneous) tube. We
will show that the category A is decomposable and one of the components is given by the tube T .
Seeking a contradiction, let A ∈ A be any indecomposable object not lying in the tube T , such
that either Hom(A,M) 6= 0 or Hom(M,A) 6= 0. We will begin by considering the former.

Since the tube is a connected component in E⊥, we know that A 6∈ E⊥. We apply the twist
functor TE : DbA → DbA to find a nonzero object TEA ∈ E⊥, fitting in a triangle

RHom(E,A)⊗k E → A→ TEA→ RHom(E,A)⊗k E[1].

Since M ∈ E⊥, we see that Hom(TEA,M) 6= 0. This implies that TEA lies in the tube T , and
hence so does A.

We now turn our attention to the latter case, namely the case where Hom(A,M) 6= 0. We then
know that τA 6∈ E⊥ = ⊥(τE). We apply the twist functor T ∗

τE : DbA → DbA to find a nonzero
object T ∗

τEA ∈ ⊥(τE), fitting in a triangle

T ∗
τEA→ A→ RHom(A,E)∗ ⊗k E → T ∗

τEA[1].

Since M ∈ E⊥ = ⊥(τE), we see that Hom(M,A) ∼= Hom(M,T ∗
τEA) and hence nonzero. This

implies that T ∗
τEA lies in the same tube as M in E⊥ and according to the above triangle, also in

A. Thus, both T ∗
τEA and A lie in T .

In both cases, it follows from Proposition 4.20 that E lies in a simple tube in A.
Assume thus that M lies in a connected component B which is derived equivalent to cohX for

a smooth projective curve. It follows from Lemma 6.12 that the Cartan matrix of A is a block
diagonal matrix such that with respect to a suitably chosen basis of NumA (the first element of
this basis is [E]), the upper left block is given by

A =





1 0 0
a 0 −1
b 1 1− g



 ,
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and the corresponding part of the Coxeter matrix C = −A−1AT of A is

C =





−1 −a −b
a(1− g) + b a2(1 − g) + ab+ 1 (ab − 2)(1− g) + b2

−a −a2 1− ab



 .

We still have some liberty in choosing this basis. We know from Corollary 6.15 that M is 1-
spherical in E⊥. We can thus choose M as the object X in the construction of the category H so
that M is simple in H (see Proposition 5.2). Using the equivalence H ∼= cohX from the proof of
Theorem 3 (see Remark 5.14), we see that the basis [M ], [OX] of Num(cohX) ∼= NumH ∼= NumB
can be chosen to obtain the above matrices. With respect to this basis, we find

[τE] = −1[E] + (a(1− g) + b)[M ]− a[OY].

Using that [M ] = [E] + [τE] then yields a = 0 and b = 1.
We are now ready to show that E lies in a simple tube. We will use Proposition 4.20. Seeking

a contradiction, let X,Y ∈ A be indecomposable objects, not lying in the tube containing E, such
that Hom(X,E ⊕ τE) 6= 0 and Hom(E ⊕ τE, Y ) 6= 0. We write

[X ] = x1[E] + x2[M ] + x3[OY]

[Y ] = y1[E] + y2[M ] + y3[OY]

Since Hom(X,E⊕ τE) 6= 0, Corollary 4.16 shows that Ext1(X,E⊕ τE) = 0 so that χ(X,M) > 0.
Using the Cartan matrix, we find that χ(X,M) = x3, and thus x3 > 0. Similarly, one shows that
y3 < 0.

We will be looking at τ2nY for n≫ 0. The square of the Coxeter matrix is

C2 =





1 0 0
0 1 4g − 3
0 0 1





so that [τ2nY ] = [Y ] + nx3(4g − 3)[M ] and χ(X, τ2nY ) = χ(X,Y ) + n(4g − 3)x3y3. Thus, for
some n ≫ 0, we know that χ(X, τ2nY ) < 0 and hence Ext1(X, τ2nY ) 6= 0. Using Lemma 2.12,
we know that there is a path from τ2nY to X . Since τ2E ∼= E, we find Hom(E ⊕ τE, τ2nY ) 6= 0.
This gives a path τ2nY → X → E ⊕ τE → τ2nY , which contradicts Theorem 4.15. Proposition
4.20 now yields that E ∈ A lies in a simple tube. �

Corollary 6.17. The object M is simple in E⊥.

The following proposition is one of the main reasons why we pay special attention to simple
tubes. Note that when we do not require S to be simple in E⊥, we cannot conclude that S is
1-spherical in A (see Example 6.19 below).

Proposition 6.18. Let S be a simple 1-spherical object in E⊥. If S 6∼= M , then S is a simple
1-spherical object in A.

Proof. We know by Proposition 6.16 that E lies in a simple tube in A, thus M lies in a simple
tube in E⊥. If S is a simple 1-spherical object in E⊥ and S 6∼= M , then Proposition 4.26 implies
that S ∈ M⊥ ∩ E⊥. Let B = E ⊕ τE. By Proposition 6.16, we know that τB ∼= B. Since
M⊥ ∩E⊥ = B⊥, we know that S ∼= τS in A. Since S is simple, we know that Hom(S, S) ∼= k and
hence S is 1-spherical in A.

It now follows from Proposition 4.22 that S is simple in A since S is simple in B⊥. �

Example 6.19. Let A be a tube of rank 2, and let E be any of the peripheral objects. The
category E⊥ is a simple (and homogeneous) tube, but the simple object S in E⊥ is not simple in
A. Indeed, there is a short exact sequence 0 → τE → S → E → 0.
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6.4. E does not consist of a single object. We will now consider the case where A is inde-
composable and contains a maximal strong exceptional sequence E = (E1, E2, . . . , En) which does
not necessarily consist of a single object. To avoid trivial cases, we will assume that E 6= ∅ (the
sequence is not empty) and that E⊥ 6= 0 (thus A does not have a tilting object).

Our goal in this subsection to prove Proposition 6.22, namely that each Ei lies in a simple tube
in A; this is a more general version of Proposition 6.16 above.

In what follows, let Bi = ⊥(E1, E2, . . . , Ei−1) ∩ (Ei+1, Ei+2, . . . , En)
⊥ ⊆ A. Note that Ei ∈ Bi,

and that Bi ∩ E⊥
i has no exceptional objects. Thus the category Bi is of the form as discussed in

§6.3.
However, recall that we assume that A does not have any nonzero projective objects, but we

do not know whether Bi has any nonzero projective objects.

Proposition 6.20. Let A be an indecomposable numerically finite abelian hereditary category with
Serre duality. Let E be a maximal exceptional sequence in A and assume that E 6= ∅ and E⊥ 6= 0.
Every connected component in E⊥ ⊆ A has a simple tube (the tube is simple in E⊥).

Proof. Let C be a connected component of E⊥ ⊆ A. Recall that A has no propjective objects
so that Proposition 2.1 implies that τ : DbA → DbA restricts to an autoequivalence τ : A → A
(Proposition 2.1). Since C is a connected component of E⊥, the embedding C → E⊥ has a left and
a right adjoint. Since the embedding E⊥ → A has a left and a right adjoint, we may infer the
same about the embedding C → A.

If C ⊆ ⊥E , then τC ∈ E⊥ so that C is a connected component of A, and thus C = A since A
is indecomposable. In particular, E = ∅. Since we have assumed this is not the case, we know
that C 6⊆ ⊥E , hence there is an Ei ∈ E such that Hom(C, Ei) 6= 0 or Ext1(C, Ei) 6= 0. Let i be the
smallest such number.

We will work in the category Bi = ⊥(E1, E2, . . . , Ei−1)∩ (Ei+1, Ei+2, . . . , En)
⊥. We know that

Ei ∈ Bi and C ⊆ Bi (by the minimality of i). By Theorem 6.1 we know that if Ei is projective in
Bi that the additive category generated by Ei is a connected component of Bi. However, since we
have Hom(C, Ei) 6= 0 or Ext1(C, Ei) 6= 0, this is not the case. Hence, Ei not projective in Bi.

As before, let Mi be the image of Ei under the right adjoint to the embedding Bi ∩ E⊥
i → Bi,

thus Mi is the middle term of an almost split sequence 0 → τiEi →Mi → Ei → 0 where τi is the
Auslander-Reiten translate in Bi. Lemma 6.11 then shows that the object Mi is indecomposable
and has to lie in C. Corollary 6.17 yields that C has a simple tube. �

Lemma 6.21. Let A be an indecomposable numerically finite abelian hereditary category with
Serre duality. Let E be a maximal exceptional sequence in A and assume that E 6= ∅ and E⊥ 6= 0.
There is a set S ′ ∈ A of simple 1-spherical objects in A such that S ′ ⊆ E⊥ and such that ⊥S ′∩E⊥

consists only of tubes.

Proof. Let S ⊆ ind E⊥ be a set of representatives of isomorphism classes of simple 1-spherical
objects in E⊥. Proposition 6.20 shows that each connected component of E⊥ has a simple tube,
and Corollary 5.16 shows that ⊥S ∩ E⊥ = 0.

Let S ′ = S ∩ ⊥E = S ∩ E⊥. We claim that S \ S ′ has only finitely many indecomposables.
Indeed, let S ∈ S \ S ′. This means that there is an Ei ∈ E such that Hom(S,Ei) 6= 0 or
Ext1(S,Ei) 6= 0. We will choose a minimal i with this property and work in the category Bi =
⊥(E1, E2, . . . , Ei−1) ∩ (Ei+1, Ei+2, . . . , En)

⊥.
We claim that Ei is not projective in Bi. Indeed, assume that Ei is projective in Bi. By

Theorem 6.1, this implies that the additive category generated by Ei is a connected component
of Bi. This contradicts that Hom(S,Ei) 6= 0 or Ext1(S,Ei) 6= 0. We may conclude that Ei is not
projective in Bi.

As before, let Mi be the middle term in the Auslander-Reiten sequence

0 → τiEi →Mi → Ei → 0

in Bi, where τi is the Auslander-Reiten translate in Bi. As in Lemma 6.11, we know that Mi is
indecomposable, and Corollary 6.17 shows that Mi ∈ Bi ∩ E⊥

i lies in a simple tube. It follows

from Hom(S,Ei) 6= 0 or Ext1(S,Ei) 6= 0 that Hom(S,Mi) 6= 0 or Ext1(S,Mi) 6= 0, thus Mi 6∈ S⊥.
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It follows from Proposition 6.18 that either S is a simple 1-spherical object in Bi ∩E⊥
i , or that

S ∼=Mi. Since we know that Mi 6∈ S⊥, Proposition 4.26 implies that S ∼=Mi.
We conclude that at most n objects will be removed when going from S to S ′ = S ∩ E⊥. By

Theorem 3, we know that the only connected components of E⊥ are derived equivalent to tubes
or to cohX for a smooth projective curve X. By proposition 6.20, each of these components has
a simple 1-spherical object in E⊥. The statement then follows from Corollary 5.15 (here we use
that Db cohX has infinitely many nonisomorphic 1-spherical objects). �

Proposition 6.22. Let A be indecomposable. If A does not have a tilting object, then A has a
set S of pairwise perpendicular simple tubes such that S⊥ = 0. Moreover, each object Ei in E lies
in a tube of S.

Proof. Let S ′ be as in the statement of Lemma 6.21. We can apply Proposition 6.8 to the category
⊥S ′ to see that ⊥S ′ is equivalent to a direct sum of tubes and hereditary categories with a tilting
object. However, the embedding ⊥S ′ → A commutes with the Serre functor (Proposition 4.9)
and, since a hereditary category with a tilting object is saturated, each such component will be
a direct summand of A. Since we assume that A is indecomposable and does not have a tilting
object, we know that ⊥S ′ is a direct sum of tubes. We know that each Ei lies in

⊥S ′, and hence
each object in E lies in a tube of ⊥S ′. Furthermore, S ′ consists of 1-spherical objects and since
the embedding ⊥S ′ → A commutes with the Serre functor, we may conclude that each Ei lies in
a tube of A.

Since each of the tubes in ⊥S ′ is simple in ⊥S ′, Proposition 4.22 implies that these are simple
in A. It is now easy to see that the tubes in S ′ together with the tubes in ⊥S ′ form the set of
orthogonal simple tubes from the statement of the proposition. �

6.5. A torsion theory when A does not have a tilting object. In this subsection, we will
consider the case where A does not have a tilting object. This setting resembles that of §5, and
we will follow the steps of the proof of Theorem 3 closely. Since the case where A is a single tube
is easily dealt with, we will exclude this case.

Proposition 6.22 implies thatA has at least one simple tube. Let S be the generalized 1-spherical
object of that tube (see Proposition 4.12).

Using these objects, we can define a t-structure with hereditary heart H = H(S) as in Con-
struction 4.29 (see Proposition 4.31).

The following proposition is analogous to Proposition 5.2.

Proposition 6.23. Let A be an abelian hereditary category with Serre duality and without a
tilting object. There is a t-structure with hereditary heart H, derived equivalent to A, and a set S
of minimal 1-spherical objects such that

(1) each S ∈ S is semi-simple in H,
(2) Hom(S1, S2) = 0 = Ext1(S1, S2), for every two nonisomorphic S1, S2 ∈ S,
(3) for all A ∈ H, there is an S ∈ S such that Hom(A,S) 6= 0, and
(4) all exceptional objects of H are contained in the abelian subcategory generated by S.

Proof. It follows from Proposition 4.31 that there is at least one semi-simple minimal 1-spherical
S in H. All the simple tubes in H are perpendicular to S (see Proposition 4.26). It follows
from Proposition 6.22 that ⊥S = S⊥ = 0. In order to show that S satisfies all conditions in the
statement of the proposition, we need to show that every exceptional object in H lies in a tube
generated by S.

Let E′
1 ∈ H be any exceptional object. By Proposition 2.9, there is a partial tilting object E′

in H which contains E′
1 as a direct summand and such that (E′)⊥ does not have any exceptional

objects. It follows from Proposition 6.22 that E′
1 lies in a tube generated S. This finishes the

proof. �

We can define a torsion theory on H as in §5.1:

T = {A ∈ ObH | A has finite length}

F = {A ∈ ObH | every nonzero direct summand of A has infinite length}.
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Note that τT = T and thus also τF = F . It then follows from Serre duality that Ext1(F , T ) = 0
such that the objects of T act as injectives with respect to F . In particular, every object in H is
a direct sum of a torsion and a torsion-free object.

We will now consider the quotient category H/T . As in Lemma 5.8, we find that the quotient
H/T is semi-simple.

For an object F ∈ H/T , let F̃ be a lift of F in H. Since every object in H is a direct sum of

an object in T and an object in F , we can choose the lift F̃ to be in F . We put

w(F ) = (dimHom(F̃ , S))S∈S .

where S ⊆ H is a set of representatives of isomorphism classes of all (semi-simple) minimal 1-
spherical objects in H.

As before, we have the following lemma (see Lemma 5.10).

Lemma 6.24. Assume that there is an object E ∈ H/T such that w(E) is bounded. Then H/T
contains a simple object.

Proposition 6.25. For every object H ∈ H, w(H) = (dimHom(H,S))S∈S is bounded.

Proof. Since the elements of S are mutually perpendicular and H is numerically finite, we know
that only finitely many objects in S are not 1-spherical objects. Indeed, each element of S which
is not 1-sperical (but rather generalised 1-spherical) lies in a tube with exceptional objects. Since
the different tubes are perpendicular, these exceptional objects correspond to linearly independant
elements in NumH (see 4.8). Let S ′ be the subset S consisting of all 1-spherical objects, thus S ′

is a cofinite subset of S.
Let B be the full abelian subcategory of A generated by E . We know by Proposition 6.23 that

all exceptional objects lie in T . Since then B is contained in the simple tubes of A, we know that
B is a Serre subcategory of A, and since B is generated by an exceptional sequence, the embedding
B → A has a left adjoint L : A → B. We infer that ⊥B → A admits a right adjoint R : A → B⊥

such that for each H ∈ H there is a short exact sequence

0 → R(H) → H → L(H) → 0.

We know that ⊥B is derived equivalent to a direct sum of categories listed in Theorem 3, and
hence we know that (dimHom(R(H), S′))S′∈S′ is bounded. Since L(H) ∈ T , we also know that
(dimHom(L(H), S′))S′∈S′ is bounded. We then know that (dimHom(H,S′))S′∈S′ is bounded.
Since S \ S ′ is finite, we may conclude that (dimHom(H,S))S∈S is bounded. �

6.6. Classification. Let A be a connected hereditary category with Serre duality, linear over an
algebraically closed field k. Let E = (Ei)i=1...n be a (finite) maximal exceptional sequence. It
follows from Proposition 2.9 that we may assume that E ⊆ A and that E is a strong exceptional
sequence. In particular, E = ⊕ni=1Ei is a partial tilting object in A.

We can now prove our main theorem.

Theorem 1. Let A be a nonzero indecomposable hereditary category with Serre duality over an
algebraically closed field. If A is numerically finite, then A is derived equivalent to either

(1) a tube,
(2) the category of finite-dimensional representations of a finite acyclic quiver, or
(3) the category of coherent sheaves of a hereditary OX-order where X is a smooth projective

curve.

Proof. Without loss of generality, assume that A is not derived equivalent to a tube. If A has a
tilting object, then the classification follows from [25] (see Theorem 2.8). Thus, assume that A
does not have a tilting object. We can repeat the proof of Proposition 5.11 to show that A is
noetherian. Here, we combine Proposition 6.25 and Lemma 6.24 to find a simple object in H/T .
The classification then follows from [37]. �
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