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Abstract. Generalizing the notion of a numerically flat vector bundle over a Kähler
manifoldM, we define a numerically flat principalG-bundle overM, whereG is a semisimple
complex algebraic group. It is proved that a principalG-bundleEG is numerically flat if and
only if ad(EG) is numerically flat. Numerically flat bundles are also characterized using the
notion of semistability.

1. Introduction. Let M be a compact Kähler manifold. In [DPS], the notion of a
numerically effective holomorphic vector bundle overM was introduced (see Section 2).

Let G be a semisimple complex algebraic group. LetP be a parabolic subgroup ofG
andχ a character ofP anti-dominant with respect to some Borel subgroup ofG contained in
P . So the line bundle over the projective varietyG/P defined byχ is numerically effective.

For a holomorphicG-bundleEG over M, the quotient mapEG → EG/P defines a
holomorphic principalP -bundle overEG/P . TheG-bundleEG will be called numerically
flat if for all pairs(P , χ) the line bundle overEG/P defined by the anti-dominant character
χ is numerically effective.

A principal SL(n, C )-bundle is numerically flat if and only if the vector bundle associated
to it by the standard representation is numerically flat (Proposition 2.3). For a numerically flat
G-bundle, any associated vector bundle isalso numerically flat (Theorem 2.4). AG-bundle
EG is numerically flat if and only if its adjoint vector bundle ad(EG) is numerically flat
(Theorem 2.5).

A numerically flatG-bundleEG is semistable and all the (rational) characteristic classes
of EG of positive degree vanish. In the converse direction, ifM is a projective manifold and
EG a semistableG-bundle overM such that all the characteristic classes ofEG of positive
degree vanish, thenEG is numerically flat (Theorem 3.1).

For a parabolic subgroupP of G, its Levi quotient will be denoted byL(P). For a
principalP -bundleEP , the principalL(P)-bundle obtained by extending the structure group
using the projection ofP to L(P) will be denoted byEL(P). A G-bundleEG over a Kähler
manifold M is numerically flat if and only if there is a parabolic subgroupP ⊂ G and a
reductionEP ⊂ EG of structure group such that the principalP -bundleEP admits a flat
holomorphic connection∇ with the property that the monodromy of the flat connection on
EL(P) induced by∇ is contained in a maximal compact subgroup ofL(P) (Proposition 3.2).
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2. Numerically flatness. Let M be a compact connected Kähler manifold equipped
with a Kähler metricω. Let L be a holomorphic line bundle overM. We recall from [DPS]
the definition of a numerically effective line bundle.

DEFINITION 2.1 (DPS, Definition 1.2). The line bundleL is callednumerically effec-
tive if for any ε > 0, there is a Hermitian metrichε on it such that the curvatureΘhε of the
Chern connection onL satisfies the inequality

Θhε ≥ −εω .

SinceM is compact, the above definition clearly does not depend on the choice ofω.
A vector bundleE overM is callednumerically effective if the tautological line bundle

OP(E)(1) over the projective bundleP(E) is numerically effective (cf. [DPS, p. 305, Defini-
tion 1.9]). A vector bundleE overM is callednumerically flat if both E and its dualE∗ are
numerically effective (cf. [DPS, p. 311, Definition 1.17]).

Let G be a semisimple linear algebraic group over the fieldC of complex numbers. A
Zariski closed proper subgroupP of G is called aparabolic subgroup if G/P is compact.

Let EG be a holomorphic principalG-bundle overM. For a parabolic subgroupP ⊂ G,
the projectionEG → EG/P defines a holomorphic principalP -bundle. Given any character
χ of P , let

EG ×P C := (EG × C)/P

be the associated line bundle overEG/P ; the quotient is for the action ofP defined as follows:
the action of anyg ∈ P sends any point(z, c) ∈ EG × C to (zg, χ(g−1)c) ∈ EG × C. This
associated line bundleEG ×P C will be denoted byLχ .

DEFINITION 2.2. TheG-bundleEG is callednumerically flat if for every parabolic
subgroupP ⊂ G and every characterχ : P → C∗ dominant with respect to some Borel
subgroup ofG contained inP , the dual line bundleL∗

χ overEG/P is numerically effective in
the sense of the above definition (Definition 2.1).

See [Ra] for the details on dominant characters ofP . A characterχ of P is dominant if
and only if the dual of the line bundle overG/P associated toχ is numerically effective.

Since the pullback of a numerically effective line bundle is also numerically effective
(see [DPS, p. 302, Proposition 1.8(i)]), and a line bundleL is numerically effective ifL⊗n is
numerically effective for somen ≥ 1, it suffices to check the condition in Definition 2.2 only
for maximal parabolic subgroupsP . To explain this in more detail, for an arbitrary parabolic
subgroupQ of G there are only finitely maximal parabolic subgroupsPi of G that containQ.
The ensuing map

G/Q →
∏

Q⊂Pi

G/Pi

is an embedding. Given any dominant characterχ of Q, there are dominant charactersχi of
Pi such that

∏
i χi on Q coincides withχ . Therefore, it is enough to check the condition in

Definition 2.2 only for maximal parabolic subgroups.
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Let E be a holomorphic vector bundle of rankn overM with
∧n

E ∼= OM . SoE defines
a holomorphic principal SL(n, C)-bundle overM. The principal SL(n, C )-bundle defined by
E will be denoted byESL.

PROPOSITION 2.3. The vector bundle E is numerically flat if and only if the principal
SL(n, C)-bundle ESL is numerically flat.

PROOF. Assume thatESL is numerically flat. LetP ⊂ SL(n, C) be the parabolic sub-
group that fixes a given lineV0 ⊂ Cn. Letχ be the character ofP defined by its action onV0.
So the quotientESL/P is P(E) andOP(E)(−1) is the line bundle associated toχ . Therefore,
from the definition of numerically flatness ofESL we conclude that the vector bundleE is
numerically effective. SinceE is numerically effective and

∧n
E ∼= OM , we conclude thatE

is numerically flat (see [DPS, p. 311, Definition 1.17], [DPS, p. 307, Proposition 1.14(iii)]).
Now assume thatE is numerically flat. Maximal parabolic subgroups of SL(n, C) are

those that preserve some subspace ofCn. The quotient is a Grassmannian. Let Gr(E, k) be the
Grassmann bundle overM consisting of allk dimensional subspaces in the fibers ofE, where
k ∈ [1, n − 1]. The condition thatE is numerically effective implies that the vector bundle∧k

E is also numerically effective [DPS, p. 307,Proposition 1.14(ii)]. The line bundles over
Gr(E, k) corresponding to the dominant characters are the nonnegative powers of the line
bundle over Gr(E, k) defined by the determinant of the tautological vector bundle of rankk.
Since the determinant of the rankk tautological vector bundle over Gr(E, k) is the pullback
of OP(∧kE)(−1) using the Plücker embedding, the numerically effectiveness of

∧k
E implies

that the dual of the determinant of the tautological vector bundle over Gr(E, k) is numerically
effective. �

Proposition 2.3 justifies Definition 2.2.
Let V be a finite-dimensional complexG-module. For anyG-bundleEG, the quotient

EG ×G V := (EG × V )/G for the twisted diagonal action is a vector bundle, which is called
the associated vector bundle.

The following theorem, which is proved using a basic result due to C. Mourougane, is
similar in spirit to the characterization of semistableG-bundles in terms of the semistability
of the associated vector bundles (see [RS, Theorem 3], [AB, Proposition 2.10]).

THEOREM 2.4. Let EG be a numerically flat G-bundle over M . For any finite dimen-
sional complex G-module V the associated vector bundle EG ×G V is numerically flat.

PROOF. SinceV is a direct sum of irreducibleG-modules, and a direct sum of nu-
merically flat vector bundles is again numerically flat, it suffices to prove the theorem for
irreducibleG-modules. So assumeV to be irreducible.

From the Borel-Weil-Bott theorem we know that there is a parabolic subgroupP of
G and an anti-dominant character (inverse of a dominant character)χ of P such that the
associated line bundleLχ = G ×P C overG/P is ample, and the induced representation of
G onH 0(G/P,Lχ ) coincides with theG-moduleV (cf. [Bo]).
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Let p : EG/P → M be the natural projection. The above form of the Borel-Weil-Bott
theorem immediately implies that the associated line bundleLχ = EG ×P C overEG/P has
the property that

p∗Lχ
∼= EG ×G V.(2.1)

Let K−1
rel := K−1

EG/P ⊗p∗KM be the relative anti-canonical line bundle overEG/P . Note

that the anti-canonical bundleK−1
G/P overG/P corresponds to an anti-dominant character (as

K−1
G/P is ample)χ̂ of P , that is,K−1

G/P is the line bundle associated toχ̂ . So the characterχχ̂

of P is anti-dominant.
The line bundleLχχ̂ = EG ×P C overEG/P associated to the characterχχ̂ is clearly

Lχ ⊗ K−1
rel . If EG is numerically flat, we know from the definition thatLχ ⊗ K−1

rel is numeri-
cally effective. Since the restriction ofLχ ⊗ K−1

rel to any fiber of the projectionp is an ample
line bundle, the direct image

p∗(Krel ⊗ Lχ ⊗ K−1
rel )

∼= p∗Lχ

is numerically effective (cf. [Mo, p. 895, Théorème 2]). This theorem of [Mo] says that ifL

is a numerically effective line bundle overEG/P whose restriction to any fiber ofp is ample,
then the direct imagep∗(Krel⊗L) is a numerically effective vector bundle overM. The above
assertion is obtained by settingL = Lχ ⊗ K−1

rel .
Finally using the isomorphism in (2.1) we conclude that the associated vector bundle

EG ×G V is numerically effective ifEG is numerically flat. SinceG does not have any
nontrivial character (as it is semisimple) we have

∧top
EG ×G V ∼= OM . Therefore, it follows

that ad(EG) is numerically flat ifEG is so. �

Let g denote the Lie algebra ofG, on whichG acts by conjugation. SinceG is semisim-
ple, the kernel of the homomorphism

ρ : G → SL(g)(2.2)

is a finite group. For a principalG-bundleEG, the associated adjoint bundleEG ×G g will be
denoted by ad(EG).

For a parabolic subgroupP of G, let Ru(P ) denote theunipotent radical of P . So
Ru(P ) is the (unique) maximal connected unipotent normal subgroup ofP . The quotient
L(P) := P/Ru(P ) is called theLevi factor of P . The groupL(P) is reductive. (See [Bor].)

THEOREM 2.5. Let V be as in Theorem 2.4such that the kernel of the homomorphism
G → SL(V ) is a finite group. A G-bundle EG is numerically flat if and only if the associated
vector bundle EG ×G V is numerically flat. In particular, EG is numerically flat if and only
if ad(EG) is numerically flat.

PROOF. If EG is numerically flat, then Theorem 2.4 implies that the vector bundle
EG ×G V is numerically flat.
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Let ESL(V ) be the principal SL(V )-bundle overM obtained by extending the structure
group ofEG using the homomorphism

τ : G → SL(V )(2.3)

defined by the action ofG onV .
For any maximal parabolic subgroupP of G and any dominant characterχ of P , there is

a parabolic subgroupQ (not necessarily maximal) of SL(V ) and a dominant characterχ ′ of Q
such thatτ (P ) = τ (G)∩Q andτ ∗χ ′ = χn for somen ≥ 1. To prove this first note that since
P is maximal parabolic the group of characters ofP is isomorphic toZ. If τ (P ) = τ (G)∩Q,
thenG/P embeds into SL(V )/Q. Since the pullback of a numerically effective line bundle
is numerically effective, we haveτ ∗χ ′ = χn for somen ≥ 1. So all we need to show is that
there is a parabolic subgroupQ with τ (G) ∩ Q = τ (P ).

Let N1 ⊂ SL(V ) be the normalizer of the subgroupτ (Ru(P )), whereτ is defined in
(2.3). LetR1 ⊂ N1 be its unipotent radical. Inductively defineNk+1 to be the normalizer of
Rk, andRk+1 to be the unipotent radical ofNk+1. Both {Ni}i≥1 and{Ri}i≥1 are increasing
subgroups of SL(V ). Note that eachNi is a proper subgroup of SL(V ), as it is a normalizer
of a nontrivial unipotent subgroup (the unipotent subgroup is nontrivial as the kernel of the
homomorphismG → SL(V ) is finite). The limiting group, call itQ, of {Ni}i≥1 has the
property that the normalizer of the unipotent radical ofQ is Q itself. This implies thatQ
is a parabolic subgroup of SL(V ). (The assumption that the kernel of the homomorphism
G → SL(V ) is finite ensures thatQ is a proper subgroup of SL(V ).) The parabolic groupQ
clearly has the property thatQ ∩ τ (G) = τ (P ).

Consequently, we have an embedding ofEG/P in ESL(V )/Q, and the line bundle over
EG/P defined byχn coincides with the restriction of the line bundle overESL(V )/Q defined
by χ ′. Therefore,EG is numerically flat ifESL(V ) is so. �

REMARK 2.6. . Let

σ : G → H

be a homomorphism to a complex semisimple groupH . Usingσ the Lie algebrah of H is a
left G-module. Consider the principalH -bundleEH := EG ×G H obtained by extending the
structure group ofEG usingσ . Since that adjoint vector bundle ad(EH ) is the one associated
to EG for the G-moduleh, if EG is numerically flat then Theorem 2.4 and Theorem 2.5
combine together to imply thatEH is numerically flat.

3. Semistability and numerical flatness. Let F be a holomorphic vector bundle de-
fined on a dense open subsetU ⊂ M such that the complementM \ U is a complex analytic
subset of (complex) codimension at least two. Letι : U ↪→ M be the inclusion map. The
condition on the codimension ofM \ U implies that the direct imageι∗F is a coherent sheaf
onM. The degree ofF is defined as
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deg(F ) :=
∫

M

c1(ι∗F)ωd−1 ,

whered = dimM andω is the fixed Kähler form onM.
A principal G-bundleEG overM is calledsemistable (respectively,stable) if for any

reduction of structure groupEP ⊂ EG|U to any parabolic subgroupP over an open subsetU ,
with codim(M \ U) ≥ 2, and any nontrivial characterχ of P dominant with respect to some
Borel subgroup contained inP , the associated line bundleLχ = EP ×P C overU satisfies
the condition

deg(Lχ ) ≤ 0

(respectively, deg(Lχ) < 0) (see [Ra], [RS], [AB]).
TakeP to be a maximal parabolic subgroup in the above definition. Letι be the inclusion

map ofU in M andσ : U → EG/P the section of the projectionEG/P → M defining the
reduction of structure group toP . The above the inequality can be replaced by the inequality

deg(ι∗σ ∗Trel) ≥ 0

(respectively, deg(ι∗σ ∗Trel) > 0), whereTrel is the relative tangent bundle for the projection
EG/P → M; see [Ra, Lemma 2.1] for a proof that the two formulations of the definition of
(semi)stability are equivalent.

THEOREM 3.1. Let EG be a principal G-bundle over a Kähler manifold M . If EG is
numerically flat, then EG is semistable and all the (rational) characteristic classes of EG of
degree at least one vanish.

If EG is semistable and all the (rational) characteristic classes of EG of degree at least
one vanish, then EG is numerically flat provided M is a projective manifold.

PROOF. Let EG be a numerically flatG-bundle overM. Theorem 2.5 says that the
adjoint vector bundle ad(EG) is numerically flat. From [DPS, p. 311, Theorem 1.18] it follows
that ad(EG) is semistable. The semistability of ad(EG) implies that theG-bundleEG is
semistable (cf. [AB, Proposition 2.10]).

Writing G as a product of simple groups we see that it is enough to prove that all the
higher characteristic classes (higher than degree zero) ofEG vanish assuming thatG is sim-
ple. But forG simple, all the characteristic classes ofEG are contained in the characteristic
classes of the adjoint vector bundle ad(EG). As ad(EG) is numerically flat, all the higher
Chern classes (higher than degree zero) of ad(EG) vanish (cf. [DPS, p. 311, Corollary 1.19]).
Consequently, all the characteristic classes ofEG of positive degree vanish.

Now assume thatM is a projective manifold andEG a semistable principalG-bundle
overM such that all the characteristic classes ofEG of positive degree vanish.

The semistability ofEG implies that the vector bundle ad(EG) is semistable (cf. [RS,
Theorem 3], [AB, Proposition 2.10]). Since all the characteristic classes ofEG of positive
degree vanish, it follows immediately thatci(ad(EG)) = 0 for all i ≥ 1.
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Since ad(EG) is semistable with vanishing Chern classes, Theorem 2 of [Si, p. 39] says
that there is a filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk−1 ⊂ Fk = ad(EG)(3.1)

of ad(EG) by holomorphic subbundles such that each quotient vector bundleFi/Fi−1, i ∈
[1, k], is a stable vector bundles withcj (Fi/Fi−1) = 0 for all j ≥ 1. To deduce this from
[Si, p. 39, Theorem 2] simply set the Higgs field to be zero in [Si, Theorem 2]; we need the
assumption thatM is projective to be able to use this result of Simpson.

Now a theorem due to Donaldson [Do] and Uhlenbeck-Yau [UY] says thatFi/Fi−1

admits a unitary flat connection. Consequently, the vector bundleFi/Fi−1 is numerically flat
by [DPS, p. 311, Theorem 1.18]. Since an extension of a numerically flat vector bundle by a
numerically flat vector bundle is again numerically flat by [DPS, p. 308, Proposition 1.15(ii)],
using (3.1) it follows immediately that ad(EG) is numerically flat. Now Theorem 2.5 says
that theG-bundleEG is numerically flat. �

Let EP be a holomorphic principalP -bundle over the compact Kähler manifoldM
equipped with a holomorphic flat connection∇, whereP is a parabolic subgroup ofG. Let
EL(P) := EP ×P L(P ) be the corresponding principalL(P)-bundle, whereL(P) is the Levi
factor (defined prior to Theorem 2.5); hereP acts onL(P) on the left using the projection
of P to L(P). The connection∇ on EP induces a connection∇L(P ) on EL(P), which is flat
holomorphic as∇ is so.

PROPOSITION 3.2. A holomorphic G-bundle EG over a compact Kähler manifold M

is numerically flat if and only if there is a parabolic subgroup P ⊂ G, a reduction of struc-
ture group EP ⊂ EG, and a flat holomorphic connection ∇ on the P -bundle EP such that
the monodromy of the connection ∇L(P ) on EL(P) is contained in some maximal compact
subgroup of L(P).

PROOF. Let EP ⊂ EG be a reduction of structure group to a parabolic subgroupP

and∇ a flat holomorphic connection onEP with the above property. There is a parabolic
subgroupQ ⊂ SL(g), whereg is the Lie algebra ofG, such that for the adjoint representation
ρ (defined in (2.2)) we haveρ(P ) = ρ(G) ∩ Q. The construction ofQ is given in the proof
of Theorem 2.5.

LetEQ = EP ×P Q be the principalQ-bundle obtained by extending the structure group
of EP usingρ. Note that the adjoint vector bundle ad(EG) is the vector bundle associated (by
the standard action) to the SL(g)-bundle obtained by extending the structure group ofEG

usingρ. TheQ-bundleEQ is a reduction of structure group toQ of ad(EG), asEQ is the
extension of structure group ofEP usingρ. So the reductionEQ defines a filtration

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 ⊂ Vk = ad(EG)(3.2)

of the vector bundle ad(EG) by holomorphic subbundles.
Let ∇Q denote the flat holomorphic connection onEQ defined by the connection∇ on

EP . So∇Q preserves the filtration in (3.2). Consequently,∇Q induces a flat holomorphic
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connection on each subsequent quotientVi/Vi−1 in (3.2). The corresponding connection on
the graded vector bundle

⊕k
i=1 Vi/Vi−1 coincides with the one induced by the connection

∇L(P ) onEL(P). Indeed, the homomorphismρ : P → Q (in (2.2)) induces a homomorphism
L(P) → L(Q) of the Levi quotients. Using this induced homomorphism theL(P)-bundle
EL(P) gives aL(Q)-bundleEL(Q) (by extension of structure group). The vector bundle asso-
ciated toEL(Q) for the action ofL(Q) on the graded vector space (for the filtration ofg thatQ
preserves) is identified with

⊕k
i=1 Vi/Vi−1. So a connection onEL(P) gives a connection on⊕k

i=1 Vi/Vi−1 by inducing a connection onEL(Q). Clearly, the connection on
⊕k

i=1 Vi/Vi−1

obtained from∇Q (constructed as above) coincides with the one given by∇L(P ).
Since the monodromy of the flat connection∇L(P ) is contained in some maximal com-

pact subgroup ofL(P) it follows immediately that the connection onVi/Vi−1 preserves some
Hermitian structure onVi/Vi−1. In other words, eachVi/Vi−1 admits a unitary flat connec-
tion. This implies that ad(EG) is numerically flat by [DPS, p. 311, Theorem 1.18]. Conse-
quently, by Theorem 2.5 theG-bundleEG is numerically flat.

To prove the converse, letEG be a numerically flatG-bundle overM. So ad(EG) is
numerically flat (Theorem 2.5). Now [DPS, p. 311, Theorem 1.18] says that ad(EG) admits
a filtration by holomorphic subbundles such that each successive quotient is a stable vector
bundle with vanishing Chern classes of every positive degree.

Let

0 = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wk−1 ⊂ Wk = ad(EG)(3.3)

be the filtration of the vector bundle ad(EG) defined by socle. In other words,Wi/Wi−1 is the
(unique) maximal polystable subsheaf of degree zero (the socle) of ad(EG)/Wi−1 (see [AB,
p. 211, Lemma 2.5] for properties of the socle).

Since ad(EG) admits a filtration by holomorphic subbundles such that each successive
quotient is a stable vector bundle with vanishing higher Chern classes, it follows immediately
that each subsheafWi in (3.3) is a subbundle of ad(EG). Furthermore, for the same reason
cj (Wi/Wi−1) = 0 for all i, j ≥ 1. (If F is a subbundle of degree zero of a polystable vector
bundleE with cj (E) = 0 for all j ≥ 1, thencj (F ) = 0 = cj (E/F) for all j ≥ 1.)

From the above properties of ad(EG) it follows that it has a natural flat holomorphic con-
nection∇ that preserves the filtration in (3.3), and the connection on each successive quotient
Wi/Wi−1 induced by∇ is unitary flat (cf. [Si, p. 40, Corollary 3.10]). The construction of
the connection∇ in [Si] needs the base manifold to be projective. But this assumption is only
needed to conclude that the vector bundle admits a filtration by subbundles such that each
successive quotient is stable of degree zero, that is, to have [Si, p. 39, Theorem 2] valid for
the vector bundle. But using the assumption that ad(EG) is numerically flat we already have
such a filtration in (3.3).

Let V ⊂ End(ad(EG)) be the subbundle that preserves the filtration in (3.3). So for any
point x ∈ M and any endomorphismT ∈ End(ad(EG)x) we haveT ∈ Vx if and only if
T ((Wi)x) ⊂ (Wi)x for all i ≥ 1. The Lie algebra structure of the fibers of ad(EG) define a
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homomorphism of vector bundles

τ : ad(EG) → End(ad(EG)).

SinceG is semisimple, its Lie algebrag has trivial center. Hence the above homomorphismτ

is pointwise injective.
Consider the intersectionV ∩ τ (ad(EG)) inside End(ad(EG)). For eachx ∈ M, this

intersection defines a parabolic subalgebra of ad(EG)x . Since the normalizer (insideG) of
a parabolic subgroupP ⊂ G is P itself, the subalgebra bundleV ∩ τ (ad(EG)) defines a
reduction of structure groupEP ⊂ EG to a parabolic subgroupP such that ad(EP ) = V ∩
τ (ad(EG)) (see the construction of this reduction in the last paragraph of p. 341 in [ABi]).

Using the Killing form ong, the vector bundle ad(EG) gets identified with ad(EG)∗.
Indeed, since the Killing form isG-invariant, it defines a nondegenerate symmetric bilinear
form on ad(EG). Consider the vector bundleW := ∧2 ad(EG). The Lie algebra structure on
the fibers of ad(EG) gives a nowhere vanishing section

s ∈ H 0(M,W)

using the identification of ad(EG) with its dual. LetLs ⊂ W be the trivial line subbundle
generated bys.

The canonical flat connection∇ on ad(EG) constructed in [Si] induces a flat connection
∇̃ onW . SinceLs is a trivial line subbundle ofW , the connectioñ∇ preservesLs , and the
induced connection onLs is the trivial connection, that is, it has trivial monodromy; this
property of∇̃ follows immediately from the general properties of the connection constructed
in [Si].

Consequently, the connection∇ on ad(EG) is compatible with the Lie algebra structure
of the fibers. The following lemma shows that the connection∇ induces a connection on the
G-bundleEG.

LEMMA 3.3. Let E′
G be a smooth principal G-bundle over a smooth manifold M ′,

where G is a semisimple linear algebraic group defined over C. Let ∇′ be a connection on the
adjoint vector bundle ad(E′

G) such that

[∇′
v(s), t] + [s,∇′

v(t)] = ∇′
v([s, t])

for all locally defined sections s, t of ad(E′
G) and all locally defined vector field on M ′. (The

Lie algebra structure of the fibers of ad(E′
G) gives a smooth section of the vector bundle

ad(E′
G) ⊗ ad(E′

G)∗ ⊗ ad(E′
G)∗; the above condition on ∇′ is equivalent to the condition that

this section is flat with respect to the connection on ad(E′
G) ⊗ ad(E′

G)∗ ⊗ ad(E′
G)∗ induced

by ∇′.) Then there is a unique connection ∇′′ on the principal G-bundle E′
G such that ∇′ is

obtained from ∇′′ by extension of structure group.

PROOF. Let E′
GL(�) be the smooth principal GL(g)-bundle overM ′ defined by ad(E′

G).
SinceE′

GL(�) is obtained by extending the structure group ofE′
G using the adjoint representa-

tion of G, a connection onE′
G induces a connection onE′

GL(�). Since the kernel of the adjoint
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representation ofG is finite, there can be at most one connection onE′
G inducing a given

connection onE′
GL(�).

Let ∇′
0 be the smooth one-form onE′

GL(�) defining the connection∇′. Let

ρ : E′
G → E′

GL(�)

be the natural map. We will show thatρ∗∇′
0 is a connection onE′

G. Let

ρG : G → GL(g)

be the adjoint representation ofG. The kernel ofρG coincides with the centerZ(G) ⊂ G.
Hence the imageρ(E′

G) is a principalG/Z(G)-bundle overM ′. Furthermore,ρG(G) is a
connected component of the subgroup Aut(g) ⊂ GL(g). Therefore, the condition

[∇′
v(s), t] + [s,∇′

v(t)] = ∇′
v([s, t])

in the lemma means that the pullbackρ∗∇′
0 on E′

G is a g-valued one-form. Consequently,
ρ∗∇′

0 defines a connection onE′
G. It is easy to see that this connection onE′

G defined by
ρ∗∇′

0 induces the connection∇′ onE′
GL(�). �

Continuing with the proof of the proposition, let∇G be the connection onEG obtained
from the connection∇ on ad(EG) using Lemma 3.3. Since∇ is flat holomorphic, it follows
immediately that the connection∇G onEG is also flat holomorphic.

Finally, since∇ preserves the filtration in (3.3), and ad(EP ) = V ∩ τ (ad(EG)), the
connection∇G on EG induces a connection onEP . In other words, the connection∇G is
the extension of a connection on theP -bundleEP . This connection onEP clearly has the
property stated in the proposition. �
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