NUMERICALLY FLAT PRINCIPAL BUNDLES

Indranil Biswas and Swaminathan Subramanian

(Received May 12, 2003, revised July 29, 2004)

Abstract

Generalizing the notion of a numerically flat vector bundle over a Kähler manifold M, we define a numerically flat principal G-bundle over M, where G is a semisimple complex algebraic group. It is proved that a principal G-bundle E_{G} is numerically flat if and only if $\operatorname{ad}\left(E_{G}\right)$ is numerically flat. Numerically flat bundles are also characterized using the notion of semistability.

1. Introduction. Let M be a compact Kähler manifold. In [DPS], the notion of a numerically effective holomorphic vector bundle over M was introduced (see Section 2).

Let G be a semisimple complex algebraic group. Let P be a parabolic subgroup of G and χ a character of P anti-dominant with respect to some Borel subgroup of G contained in P. So the line bundle over the projective variety G / P defined by χ is numerically effective.

For a holomorphic G-bundle E_{G} over M, the quotient map $E_{G} \rightarrow E_{G} / P$ defines a holomorphic principal P-bundle over E_{G} / P. The G-bundle E_{G} will be called numerically flat if for all pairs (P, χ) the line bundle over E_{G} / P defined by the anti-dominant character χ is numerically effective.

A principal $\operatorname{SL}(n, \boldsymbol{C})$-bundle is numerically flat if and only if the vector bundle associated to it by the standard representation is numerically flat (Proposition 2.3). For a numerically flat G-bundle, any associated vector bundle is also numerically flat (Theorem 2.4). A G-bundle E_{G} is numerically flat if and only if its adjoint vector bundle $\operatorname{ad}\left(E_{G}\right)$ is numerically flat (Theorem 2.5).

A numerically flat G-bundle E_{G} is semistable and all the (rational) characteristic classes of E_{G} of positive degree vanish. In the converse direction, if M is a projective manifold and E_{G} a semistable G-bundle over M such that all the characteristic classes of E_{G} of positive degree vanish, then E_{G} is numerically flat (Theorem 3.1).

For a parabolic subgroup P of G, its Levi quotient will be denoted by $L(P)$. For a principal P-bundle E_{P}, the principal $L(P)$-bundle obtained by extending the structure group using the projection of P to $L(P)$ will be denoted by $E_{L(P)}$. A G-bundle E_{G} over a Kähler manifold M is numerically flat if and only if there is a parabolic subgroup $P \subset G$ and a reduction $E_{P} \subset E_{G}$ of structure group such that the principal P-bundle E_{P} admits a flat holomorphic connection ∇ with the property that the monodromy of the flat connection on $E_{L(P)}$ induced by ∇ is contained in a maximal compact subgroup of $L(P)$ (Proposition 3.2).

[^0]2. Numerically flatness. Let M be a compact connected Kähler manifold equipped with a Kähler metric ω. Let L be a holomorphic line bundle over M. We recall from [DPS] the definition of a numerically effective line bundle.

DEFINITION 2.1 (DPS, Definition 1.2). The line bundle L is called numerically effective if for any $\varepsilon>0$, there is a Hermitian metric h_{ε} on it such that the curvature $\Theta_{h_{\varepsilon}}$ of the Chern connection on L satisfies the inequality

$$
\Theta_{h_{\varepsilon}} \geq-\varepsilon \omega
$$

Since M is compact, the above definition clearly does not depend on the choice of ω.
A vector bundle E over M is called numerically effective if the tautological line bundle $\mathcal{O}_{\boldsymbol{P}(E)}(1)$ over the projective bundle $\boldsymbol{P}(E)$ is numerically effective (cf. [DPS, p. 305, Definition 1.9]). A vector bundle E over M is called numerically flat if both E and its dual E^{*} are numerically effective (cf. [DPS, p. 311, Definition 1.17]).

Let G be a semisimple linear algebraic group over the field \boldsymbol{C} of complex numbers. A Zariski closed proper subgroup P of G is called a parabolic subgroup if G / P is compact.

Let E_{G} be a holomorphic principal G-bundle over M. For a parabolic subgroup $P \subset G$, the projection $E_{G} \rightarrow E_{G} / P$ defines a holomorphic principal P-bundle. Given any character χ of P, let

$$
E_{G} \times{ }^{P} \boldsymbol{C}:=\left(E_{G} \times \boldsymbol{C}\right) / P
$$

be the associated line bundle over E_{G} / P; the quotient is for the action of P defined as follows: the action of any $g \in P$ sends any point $(z, c) \in E_{G} \times \boldsymbol{C}$ to $\left(z g, \chi\left(g^{-1}\right) c\right) \in E_{G} \times \boldsymbol{C}$. This associated line bundle $E_{G} \times{ }^{P} \boldsymbol{C}$ will be denoted by L_{χ}.

Definition 2.2. The G-bundle E_{G} is called numerically flat if for every parabolic subgroup $P \subset G$ and every character $\chi: P \rightarrow \boldsymbol{C}^{*}$ dominant with respect to some Borel subgroup of G contained in P, the dual line bundle L_{χ}^{*} over E_{G} / P is numerically effective in the sense of the above definition (Definition 2.1).

See [Ra] for the details on dominant characters of P. A character χ of P is dominant if and only if the dual of the line bundle over G / P associated to χ is numerically effective.

Since the pullback of a numerically effective line bundle is also numerically effective (see [DPS, p. 302, Proposition 1.8(i)]), and a line bundle L is numerically effective if $L^{\otimes n}$ is numerically effective for some $n \geq 1$, it suffices to check the condition in Definition 2.2 only for maximal parabolic subgroups P. To explain this in more detail, for an arbitrary parabolic subgroup Q of G there are only finitely maximal parabolic subgroups P_{i} of G that contain Q. The ensuing map

$$
G / Q \rightarrow \prod_{Q \subset P_{i}} G / P_{i}
$$

is an embedding. Given any dominant character χ of Q, there are dominant characters χ_{i} of P_{i} such that $\prod_{i} \chi_{i}$ on Q coincides with χ. Therefore, it is enough to check the condition in Definition 2.2 only for maximal parabolic subgroups.

Let E be a holomorphic vector bundle of rank n over M with $\bigwedge^{n} E \cong \mathcal{O}_{M}$. So E defines a holomorphic principal $\operatorname{SL}(n, \boldsymbol{C})$-bundle over M. The principal $\operatorname{SL}(n, \boldsymbol{C})$-bundle defined by E will be denoted by E_{SL}.

Proposition 2.3. The vector bundle E is numerically flat if and only if the principal $\mathrm{SL}(n, \boldsymbol{C})$-bundle E_{SL} is numerically flat.

Proof. Assume that $E_{\text {SL }}$ is numerically flat. Let $P \subset \operatorname{SL}(n, C)$ be the parabolic subgroup that fixes a given line $V_{0} \subset \boldsymbol{C}^{n}$. Let χ be the character of P defined by its action on V_{0}. So the quotient E_{SL} / P is $\boldsymbol{P}(E)$ and $\mathcal{O}_{\boldsymbol{P}(E)}(-1)$ is the line bundle associated to χ. Therefore, from the definition of numerically flatness of $E_{\text {SL }}$ we conclude that the vector bundle E is numerically effective. Since E is numerically effective and $\bigwedge^{n} E \cong \mathcal{O}_{M}$, we conclude that E is numerically flat (see [DPS, p. 311, Definition 1.17], [DPS, p. 307, Proposition 1.14(iii)]).

Now assume that E is numerically flat. Maximal parabolic subgroups of $\operatorname{SL}(n, \boldsymbol{C})$ are those that preserve some subspace of \boldsymbol{C}^{n}. The quotient is a Grassmannian. Let $\operatorname{Gr}(E, k)$ be the Grassmann bundle over M consisting of all k dimensional subspaces in the fibers of E, where $k \in[1, n-1]$. The condition that E is numerically effective implies that the vector bundle $\bigwedge^{k} E$ is also numerically effective [DPS, p. 307, Proposition 1.14(ii)]. The line bundles over $\operatorname{Gr}(E, k)$ corresponding to the dominant characters are the nonnegative powers of the line bundle over $\operatorname{Gr}(E, k)$ defined by the determinant of the tautological vector bundle of rank k. Since the determinant of the rank k tautological vector bundle over $\operatorname{Gr}(E, k)$ is the pullback of $\mathcal{O}_{\boldsymbol{P}\left(\wedge^{k} E\right)}(-1)$ using the Plücker embedding, the numerically effectiveness of $\bigwedge^{k} E$ implies that the dual of the determinant of the tautological vector bundle over $\operatorname{Gr}(E, k)$ is numerically effective.

Proposition 2.3 justifies Definition 2.2.
Let V be a finite-dimensional complex G-module. For any G-bundle E_{G}, the quotient $E_{G} \times{ }^{G} V:=\left(E_{G} \times V\right) / G$ for the twisted diagonal action is a vector bundle, which is called the associated vector bundle.

The following theorem, which is proved using a basic result due to C. Mourougane, is similar in spirit to the characterization of semistable G-bundles in terms of the semistability of the associated vector bundles (see [RS, Theorem 3], [AB, Proposition 2.10]).

THEOREM 2.4. Let E_{G} be a numerically flat G-bundle over M. For any finite dimensional complex G-module V the associated vector bundle $E_{G} \times{ }^{G} V$ is numerically flat.

Proof. Since V is a direct sum of irreducible G-modules, and a direct sum of numerically flat vector bundles is again numerically flat, it suffices to prove the theorem for irreducible G-modules. So assume V to be irreducible.

From the Borel-Weil-Bott theorem we know that there is a parabolic subgroup P of G and an anti-dominant character (inverse of a dominant character) χ of P such that the associated line bundle $\mathcal{L}_{\chi}=G \times{ }^{P} \boldsymbol{C}$ over G / P is ample, and the induced representation of G on $H^{0}\left(G / P, L_{\chi}\right)$ coincides with the G-module V (cf. [Bo]).

Let $p: E_{G} / P \rightarrow M$ be the natural projection. The above form of the Borel-Weil-Bott theorem immediately implies that the associated line bundle $L_{\chi}=E_{G} \times{ }^{P} \boldsymbol{C}$ over E_{G} / P has the property that

$$
\begin{equation*}
p_{*} L_{\chi} \cong E_{G} \times{ }^{G} V \tag{2.1}
\end{equation*}
$$

Let $K_{\text {rel }}^{-1}:=K_{E_{G} / P}^{-1} \otimes p^{*} K_{M}$ be the relative anti-canonical line bundle over E_{G} / P. Note that the anti-canonical bundle $K_{G / P}^{-1}$ over G / P corresponds to an anti-dominant character (as $K_{G / P}^{-1}$ is ample) $\hat{\chi}$ of P, that is, $K_{G / P}^{-1}$ is the line bundle associated to $\hat{\chi}$. So the character $\chi \hat{\chi}$ of P is anti-dominant.

The line bundle $L_{\chi \hat{\chi}}=E_{G} \times{ }^{P} \boldsymbol{C}$ over E_{G} / P associated to the character $\chi \hat{\chi}$ is clearly $L_{\chi} \otimes K_{\text {rel }}^{-1}$. If E_{G} is numerically flat, we know from the definition that $L_{\chi} \otimes K_{\text {rel }}^{-1}$ is numerically effective. Since the restriction of $L_{\chi} \otimes K_{\text {rel }}^{-1}$ to any fiber of the projection p is an ample line bundle, the direct image

$$
p_{*}\left(K_{\mathrm{rel}} \otimes L_{\chi} \otimes K_{\mathrm{rel}}^{-1}\right) \cong p_{*} L_{\chi}
$$

is numerically effective (cf. [Mo, p. 895, Théorème 2]). This theorem of [Mo] says that if L is a numerically effective line bundle over E_{G} / P whose restriction to any fiber of p is ample, then the direct image $p_{*}\left(K_{\mathrm{rel}} \otimes L\right)$ is a numerically effective vector bundle over M. The above assertion is obtained by setting $L=L_{\chi} \otimes K_{\text {rel }}^{-1}$.

Finally using the isomorphism in (2.1) we conclude that the associated vector bundle $E_{G} \times{ }^{G} V$ is numerically effective if E_{G} is numerically flat. Since G does not have any nontrivial character (as it is semisimple) we have $\bigwedge^{\text {top }} E_{G} \times{ }^{G} V \cong \mathcal{O}_{M}$. Therefore, it follows that ad $\left(E_{G}\right)$ is numerically flat if E_{G} is so.

Let \mathfrak{g} denote the Lie algebra of G, on which G acts by conjugation. Since G is semisimple, the kernel of the homomorphism

$$
\begin{equation*}
\rho: G \rightarrow \mathrm{SL}(\mathfrak{g}) \tag{2.2}
\end{equation*}
$$

is a finite group. For a principal G-bundle E_{G}, the associated adjoint bundle $E_{G} \times{ }^{G} \mathfrak{g}$ will be denoted by $\operatorname{ad}\left(E_{G}\right)$.

For a parabolic subgroup P of G, let $R_{u}(P)$ denote the unipotent radical of P. So $R_{u}(P)$ is the (unique) maximal connected unipotent normal subgroup of P. The quotient $L(P):=P / R_{u}(P)$ is called the Levi factor of P. The group $L(P)$ is reductive. (See [Bor].)

THEOREM 2.5. Let V be as in Theorem 2.4 such that the kernel of the homomorphism $G \rightarrow \mathrm{SL}(V)$ is a finite group. A G-bundle E_{G} is numerically flat if and only if the associated vector bundle $E_{G} \times{ }^{G} V$ is numerically flat. In particular, E_{G} is numerically flat if and only if $\operatorname{ad}\left(E_{G}\right)$ is numerically flat.

Proof. If E_{G} is numerically flat, then Theorem 2.4 implies that the vector bundle $E_{G} \times{ }^{G} V$ is numerically flat.

Let $E_{\mathrm{SL}(V)}$ be the principal $\mathrm{SL}(V)$-bundle over M obtained by extending the structure group of E_{G} using the homomorphism

$$
\begin{equation*}
\tau: G \rightarrow \mathrm{SL}(V) \tag{2.3}
\end{equation*}
$$

defined by the action of G on V.
For any maximal parabolic subgroup P of G and any dominant character χ of P, there is a parabolic subgroup Q (not necessarily maximal) of $\operatorname{SL}(V)$ and a dominant character χ^{\prime} of Q such that $\tau(P)=\tau(G) \cap Q$ and $\tau^{*} \chi^{\prime}=\chi^{n}$ for some $n \geq 1$. To prove this first note that since P is maximal parabolic the group of characters of P is isomorphic to \boldsymbol{Z}. If $\tau(P)=\tau(G) \cap Q$, then G / P embeds into $\operatorname{SL}(V) / Q$. Since the pullback of a numerically effective line bundle is numerically effective, we have $\tau^{*} \chi^{\prime}=\chi^{n}$ for some $n \geq 1$. So all we need to show is that there is a parabolic subgroup Q with $\tau(G) \cap Q=\tau(P)$.

Let $N_{1} \subset \mathrm{SL}(V)$ be the normalizer of the subgroup $\tau\left(R_{u}(P)\right)$, where τ is defined in (2.3). Let $R_{1} \subset N_{1}$ be its unipotent radical. Inductively define N_{k+1} to be the normalizer of R_{k}, and R_{k+1} to be the unipotent radical of N_{k+1}. Both $\left\{N_{i}\right\}_{i \geq 1}$ and $\left\{R_{i}\right\}_{i \geq 1}$ are increasing subgroups of $\operatorname{SL}(V)$. Note that each N_{i} is a proper subgroup of $\operatorname{SL}(V)$, as it is a normalizer of a nontrivial unipotent subgroup (the unipotent subgroup is nontrivial as the kernel of the homomorphism $G \rightarrow \mathrm{SL}(V)$ is finite). The limiting group, call it Q, of $\left\{N_{i}\right\}_{i \geq 1}$ has the property that the normalizer of the unipotent radical of Q is Q itself. This implies that Q is a parabolic subgroup of $\operatorname{SL}(V)$. (The assumption that the kernel of the homomorphism $G \rightarrow \mathrm{SL}(V)$ is finite ensures that Q is a proper subgroup of $\mathrm{SL}(V)$.) The parabolic group Q clearly has the property that $Q \cap \tau(G)=\tau(P)$.

Consequently, we have an embedding of E_{G} / P in $E_{S L(V)} / Q$, and the line bundle over E_{G} / P defined by χ^{n} coincides with the restriction of the line bundle over $E_{S L(V)} / Q$ defined by χ^{\prime}. Therefore, E_{G} is numerically flat if $E_{\mathrm{SL}(V)}$ is so.

Remark 2.6. Let

$$
\sigma: G \rightarrow H
$$

be a homomorphism to a complex semisimple group H. Using σ the Lie algebra \mathfrak{h} of H is a left G-module. Consider the principal H-bundle $E_{H}:=E_{G} \times{ }^{G} H$ obtained by extending the structure group of E_{G} using σ. Since that adjoint vector bundle ad $\left(E_{H}\right)$ is the one associated to E_{G} for the G-module \mathfrak{h}, if E_{G} is numerically flat then Theorem 2.4 and Theorem 2.5 combine together to imply that E_{H} is numerically flat.
3. Semistability and numerical flatness. Let F be a holomorphic vector bundle defined on a dense open subset $U \subset M$ such that the complement $M \backslash U$ is a complex analytic subset of (complex) codimension at least two. Let $\iota: U \hookrightarrow M$ be the inclusion map. The condition on the codimension of $M \backslash U$ implies that the direct image $\iota_{*} F$ is a coherent sheaf on M. The degree of F is defined as

$$
\operatorname{deg}(F):=\int_{M} c_{1}\left(\iota_{*} F\right) \omega^{d-1},
$$

where $d=\operatorname{dim} M$ and ω is the fixed Kähler form on M.
A principal G-bundle E_{G} over M is called semistable (respectively, stable) if for any reduction of structure group $\left.E_{P} \subset E_{G}\right|_{U}$ to any parabolic subgroup P over an open subset U, with $\operatorname{codim}(M \backslash U) \geq 2$, and any nontrivial character χ of P dominant with respect to some Borel subgroup contained in P, the associated line bundle $L_{\chi}=E_{P} \times{ }^{P} \boldsymbol{C}$ over U satisfies the condition

$$
\operatorname{deg}\left(L_{\chi}\right) \leq 0
$$

(respectively, $\operatorname{deg}\left(L_{\chi}\right)<0$) (see [Ra], $[\mathrm{RS}],[\mathrm{AB}]$).
Take P to be a maximal parabolic subgroup in the above definition. Let ι be the inclusion map of U in M and $\sigma: U \rightarrow E_{G} / P$ the section of the projection $E_{G} / P \rightarrow M$ defining the reduction of structure group to P. The above the inequality can be replaced by the inequality

$$
\operatorname{deg}\left(\iota_{*} \sigma^{*} T_{\text {rel }}\right) \geq 0
$$

(respectively, $\operatorname{deg}\left(\iota_{*} \sigma^{*} T_{\text {rel }}\right)>0$), where $T_{\text {rel }}$ is the relative tangent bundle for the projection $E_{G} / P \rightarrow M$; see [Ra, Lemma 2.1] for a proof that the two formulations of the definition of (semi)stability are equivalent.

THEOREM 3.1. Let E_{G} be a principal G-bundle over a Kähler manifold M. If E_{G} is numerically flat, then E_{G} is semistable and all the (rational) characteristic classes of E_{G} of degree at least one vanish.

If E_{G} is semistable and all the (rational) characteristic classes of E_{G} of degree at least one vanish, then E_{G} is numerically flat provided M is a projective manifold.

Proof. Let E_{G} be a numerically flat G-bundle over M. Theorem 2.5 says that the adjoint vector bundle $\operatorname{ad}\left(E_{G}\right)$ is numerically flat. From [DPS, p. 311, Theorem 1.18] it follows that $\operatorname{ad}\left(E_{G}\right)$ is semistable. The semistability of $\operatorname{ad}\left(E_{G}\right)$ implies that the G-bundle E_{G} is semistable (cf. [AB, Proposition 2.10]).

Writing G as a product of simple groups we see that it is enough to prove that all the higher characteristic classes (higher than degree zero) of E_{G} vanish assuming that G is simple. But for G simple, all the characteristic classes of E_{G} are contained in the characteristic classes of the adjoint vector bundle $\operatorname{ad}\left(E_{G}\right) . \operatorname{As~} \operatorname{ad}\left(E_{G}\right)$ is numerically flat, all the higher Chern classes (higher than degree zero) of ad $\left(E_{G}\right)$ vanish (cf. [DPS, p. 311, Corollary 1.19]). Consequently, all the characteristic classes of E_{G} of positive degree vanish.

Now assume that M is a projective manifold and E_{G} a semistable principal G-bundle over M such that all the characteristic classes of E_{G} of positive degree vanish.

The semistability of E_{G} implies that the vector bundle $\operatorname{ad}\left(E_{G}\right)$ is semistable (cf. [RS, Theorem 3], [AB, Proposition 2.10]). Since all the characteristic classes of E_{G} of positive degree vanish, it follows immediately that $c_{i}\left(\operatorname{ad}\left(E_{G}\right)\right)=0$ for all $i \geq 1$.

Since $\operatorname{ad}\left(E_{G}\right)$ is semistable with vanishing Chern classes, Theorem 2 of [Si, p. 39] says that there is a filtration

$$
\begin{equation*}
0=F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset F_{k-1} \subset F_{k}=\operatorname{ad}\left(E_{G}\right) \tag{3.1}
\end{equation*}
$$

of $\operatorname{ad}\left(E_{G}\right)$ by holomorphic subbundles such that each quotient vector bundle $F_{i} / F_{i-1}, i \in$ $[1, k]$, is a stable vector bundles with $c_{j}\left(F_{i} / F_{i-1}\right)=0$ for all $j \geq 1$. To deduce this from [Si, p. 39, Theorem 2] simply set the Higgs field to be zero in [Si, Theorem 2]; we need the assumption that M is projective to be able to use this result of Simpson.

Now a theorem due to Donaldson [Do] and Uhlenbeck-Yau [UY] says that F_{i} / F_{i-1} admits a unitary flat connection. Consequently, the vector bundle F_{i} / F_{i-1} is numerically flat by [DPS, p. 311, Theorem 1.18]. Since an extension of a numerically flat vector bundle by a numerically flat vector bundle is again numerically flat by [DPS, p. 308, Proposition 1.15(ii)], using (3.1) it follows immediately that $\operatorname{ad}\left(E_{G}\right)$ is numerically flat. Now Theorem 2.5 says that the G-bundle E_{G} is numerically flat.

Let E_{P} be a holomorphic principal P-bundle over the compact Kähler manifold M equipped with a holomorphic flat connection ∇, where P is a parabolic subgroup of G. Let $E_{L(P)}:=E_{P} \times{ }^{P} L(P)$ be the corresponding principal $L(P)$-bundle, where $L(P)$ is the Levi factor (defined prior to Theorem 2.5); here P acts on $L(P)$ on the left using the projection of P to $L(P)$. The connection ∇ on E_{P} induces a connection $\nabla^{L(P)}$ on $E_{L(P)}$, which is flat holomorphic as ∇ is so.

Proposition 3.2. A holomorphic G-bundle E_{G} over a compact Kähler manifold M is numerically flat if and only if there is a parabolic subgroup $P \subset G$, a reduction of structure group $E_{P} \subset E_{G}$, and a flat holomorphic connection ∇ on the P-bundle E_{P} such that the monodromy of the connection $\nabla^{L(P)}$ on $E_{L(P)}$ is contained in some maximal compact subgroup of $L(P)$.

PRoof. Let $E_{P} \subset E_{G}$ be a reduction of structure group to a parabolic subgroup P and ∇ a flat holomorphic connection on E_{P} with the above property. There is a parabolic subgroup $Q \subset \operatorname{SL}(\mathfrak{g})$, where \mathfrak{g} is the Lie algebra of G, such that for the adjoint representation ρ (defined in (2.2)) we have $\rho(P)=\rho(G) \cap Q$. The construction of Q is given in the proof of Theorem 2.5.

Let $E_{Q}=E_{P} \times{ }^{P} Q$ be the principal Q-bundle obtained by extending the structure group of E_{P} using ρ. Note that the adjoint vector bundle ad $\left(E_{G}\right)$ is the vector bundle associated (by the standard action) to the $\operatorname{SL}(\mathfrak{g})$-bundle obtained by extending the structure group of E_{G} using ρ. The Q-bundle E_{Q} is a reduction of structure group to Q of $\operatorname{ad}\left(E_{G}\right)$, as E_{Q} is the extension of structure group of E_{P} using ρ. So the reduction E_{Q} defines a filtration

$$
\begin{equation*}
0=V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{k-1} \subset V_{k}=\operatorname{ad}\left(E_{G}\right) \tag{3.2}
\end{equation*}
$$

of the vector bundle $\operatorname{ad}\left(E_{G}\right)$ by holomorphic subbundles.
Let ∇Q denote the flat holomorphic connection on E_{Q} defined by the connection ∇ on E_{P}. So ∇^{Q} preserves the filtration in (3.2). Consequently, ∇^{Q} induces a flat holomorphic
connection on each subsequent quotient V_{i} / V_{i-1} in (3.2). The corresponding connection on the graded vector bundle $\bigoplus_{i=1}^{k} V_{i} / V_{i-1}$ coincides with the one induced by the connection $\nabla^{L(P)}$ on $E_{L(P)}$. Indeed, the homomorphism $\rho: P \rightarrow Q$ (in (2.2)) induces a homomorphism $L(P) \rightarrow L(Q)$ of the Levi quotients. Using this induced homomorphism the $L(P)$-bundle $E_{L(P)}$ gives a $L(Q)$-bundle $E_{L(Q)}$ (by extension of structure group). The vector bundle associated to $E_{L(Q)}$ for the action of $L(Q)$ on the graded vector space (for the filtration of \mathfrak{g} that Q preserves) is identified with $\bigoplus_{i=1}^{k} V_{i} / V_{i-1}$. So a connection on $E_{L(P)}$ gives a connection on $\bigoplus_{i=1}^{k} V_{i} / V_{i-1}$ by inducing a connection on $E_{L(Q)}$. Clearly, the connection on $\bigoplus_{i=1}^{k} V_{i} / V_{i-1}$ obtained from ∇^{Q} (constructed as above) coincides with the one given by $\nabla^{L(P)}$.

Since the monodromy of the flat connection $\nabla^{L(P)}$ is contained in some maximal compact subgroup of $L(P)$ it follows immediately that the connection on V_{i} / V_{i-1} preserves some Hermitian structure on V_{i} / V_{i-1}. In other words, each V_{i} / V_{i-1} admits a unitary flat connection. This implies that $\operatorname{ad}\left(E_{G}\right)$ is numerically flat by [DPS, p. 311, Theorem 1.18]. Consequently, by Theorem 2.5 the G-bundle E_{G} is numerically flat.

To prove the converse, let E_{G} be a numerically flat G-bundle over M. So $\operatorname{ad}\left(E_{G}\right)$ is numerically flat (Theorem 2.5). Now [DPS, p. 311, Theorem 1.18] says that ad $\left(E_{G}\right)$ admits a filtration by holomorphic subbundles such that each successive quotient is a stable vector bundle with vanishing Chern classes of every positive degree.

Let

$$
\begin{equation*}
0=W_{0} \subset W_{1} \subset W_{2} \subset \cdots \subset W_{k-1} \subset W_{k}=\operatorname{ad}\left(E_{G}\right) \tag{3.3}
\end{equation*}
$$

be the filtration of the vector bundle $\operatorname{ad}\left(E_{G}\right)$ defined by socle. In other words, W_{i} / W_{i-1} is the (unique) maximal polystable subsheaf of degree zero (the socle) of $\operatorname{ad}\left(E_{G}\right) / W_{i-1}$ (see $[\mathrm{AB}$, p. 211, Lemma 2.5] for properties of the socle).

Since $\operatorname{ad}\left(E_{G}\right)$ admits a filtration by holomorphic subbundles such that each successive quotient is a stable vector bundle with vanishing higher Chern classes, it follows immediately that each subsheaf W_{i} in (3.3) is a subbundle of $\operatorname{ad}\left(E_{G}\right)$. Furthermore, for the same reason $c_{j}\left(W_{i} / W_{i-1}\right)=0$ for all $i, j \geq 1$. (If F is a subbundle of degree zero of a polystable vector bundle E with $c_{j}(E)=0$ for all $j \geq 1$, then $c_{j}(F)=0=c_{j}(E / F)$ for all $j \geq 1$.)

From the above properties of $\operatorname{ad}\left(E_{G}\right)$ it follows that it has a natural flat holomorphic connection ∇ that preserves the filtration in (3.3), and the connection on each successive quotient W_{i} / W_{i-1} induced by ∇ is unitary flat (cf. [Si, p. 40, Corollary 3.10]). The construction of the connection ∇ in $[\mathrm{Si}]$ needs the base manifold to be projective. But this assumption is only needed to conclude that the vector bundle admits a filtration by subbundles such that each successive quotient is stable of degree zero, that is, to have [$\mathrm{Si}, \mathrm{p} .39$, Theorem 2] valid for the vector bundle. But using the assumption that $\operatorname{ad}\left(E_{G}\right)$ is numerically flat we already have such a filtration in (3.3).

Let $\mathcal{V} \subset \operatorname{End}\left(\operatorname{ad}\left(E_{G}\right)\right)$ be the subbundle that preserves the filtration in (3.3). So for any point $x \in M$ and any endomorphism $T \in \operatorname{End}\left(\operatorname{ad}\left(E_{G}\right)_{x}\right)$ we have $T \in \mathcal{V}_{x}$ if and only if $T\left(\left(W_{i}\right)_{x}\right) \subset\left(W_{i}\right)_{x}$ for all $i \geq 1$. The Lie algebra structure of the fibers of $\operatorname{ad}\left(E_{G}\right)$ define a
homomorphism of vector bundles

$$
\tau: \operatorname{ad}\left(E_{G}\right) \rightarrow \operatorname{End}\left(\operatorname{ad}\left(E_{G}\right)\right)
$$

Since G is semisimple, its Lie algebra \mathfrak{g} has trivial center. Hence the above homomorphism τ is pointwise injective.

Consider the intersection $\mathcal{V} \cap \tau\left(\operatorname{ad}\left(E_{G}\right)\right)$ inside $\operatorname{End}\left(\operatorname{ad}\left(E_{G}\right)\right)$. For each $x \in M$, this intersection defines a parabolic subalgebra of $\operatorname{ad}\left(E_{G}\right)_{x}$. Since the normalizer (inside G) of a parabolic subgroup $P \subset G$ is P itself, the subalgebra bundle $\mathcal{V} \cap \tau\left(\operatorname{ad}\left(E_{G}\right)\right)$ defines a reduction of structure group $E_{P} \subset E_{G}$ to a parabolic subgroup P such that $\operatorname{ad}\left(E_{P}\right)=\mathcal{V} \cap$ $\tau\left(\operatorname{ad}\left(E_{G}\right)\right)$ (see the construction of this reduction in the last paragraph of p. 341 in [ABi]).

Using the Killing form on \mathfrak{g}, the vector bundle $\operatorname{ad}\left(E_{G}\right)$ gets identified with $\operatorname{ad}\left(E_{G}\right)^{*}$. Indeed, since the Killing form is G-invariant, it defines a nondegenerate symmetric bilinear form on $\operatorname{ad}\left(E_{G}\right)$. Consider the vector bundle $\mathcal{W}:=\bigwedge^{2} \operatorname{ad}\left(E_{G}\right)$. The Lie algebra structure on the fibers of $\operatorname{ad}\left(E_{G}\right)$ gives a nowhere vanishing section

$$
s \in H^{0}(M, \mathcal{W})
$$

using the identification of $\operatorname{ad}\left(E_{G}\right)$ with its dual. Let $L_{s} \subset \mathcal{W}$ be the trivial line subbundle generated by s.

The canonical flat connection ∇ on $\operatorname{ad}\left(E_{G}\right)$ constructed in [Si] induces a flat connection $\widetilde{\nabla}$ on \mathcal{W}. Since L_{s} is a trivial line subbundle of \mathcal{W}, the connection $\widetilde{\nabla}$ preserves L_{s}, and the induced connection on L_{s} is the trivial connection, that is, it has trivial monodromy; this property of $\widetilde{\nabla}$ follows immediately from the general properties of the connection constructed in [Si].

Consequently, the connection ∇ on $\operatorname{ad}\left(E_{G}\right)$ is compatible with the Lie algebra structure of the fibers. The following lemma shows that the connection ∇ induces a connection on the G-bundle E_{G}.

Lemma 3.3. Let E_{G}^{\prime} be a smooth principal G-bundle over a smooth manifold M^{\prime}, where G is a semisimple linear algebraic group defined over \boldsymbol{C}. Let ∇^{\prime} be a connection on the adjoint vector bundle $\operatorname{ad}\left(E_{G}^{\prime}\right)$ such that

$$
\left[\nabla_{v}^{\prime}(s), t\right]+\left[s, \nabla_{v}^{\prime}(t)\right]=\nabla_{v}^{\prime}([s, t])
$$

for all locally defined sections s, t of $\operatorname{ad}\left(E_{G}^{\prime}\right)$ and all locally defined vector field on M^{\prime}. (The Lie algebra structure of the fibers of $\operatorname{ad}\left(E_{G}^{\prime}\right)$ gives a smooth section of the vector bundle $\operatorname{ad}\left(E_{G}^{\prime}\right) \otimes \operatorname{ad}\left(E_{G}^{\prime}\right)^{*} \otimes \operatorname{ad}\left(E_{G}^{\prime}\right)^{*} ;$ the above condition on ∇^{\prime} is equivalent to the condition that this section is flat with respect to the connection on $\operatorname{ad}\left(E_{G}^{\prime}\right) \otimes \operatorname{ad}\left(E_{G}^{\prime}\right)^{*} \otimes \operatorname{ad}\left(E_{G}^{\prime}\right)^{*}$ induced by ∇^{\prime}.) Then there is a unique connection $\nabla^{\prime \prime}$ on the principal G-bundle E_{G}^{\prime} such that ∇^{\prime} is obtained from $\nabla^{\prime \prime}$ by extension of structure group.

Proof. Let $E_{\mathrm{GL}(\mathfrak{g})}^{\prime}$ be the smooth principal GL(g)-bundle over M^{\prime} defined by $\operatorname{ad}\left(E_{G}^{\prime}\right)$. Since $E_{\mathrm{GL}(\mathfrak{g})}^{\prime}$ is obtained by extending the structure group of E_{G}^{\prime} using the adjoint representation of G, a connection on E_{G}^{\prime} induces a connection on $E_{G L(\mathfrak{g})}^{\prime}$. Since the kernel of the adjoint
representation of G is finite, there can be at most one connection on E_{G}^{\prime} inducing a given connection on $E_{\mathrm{GL}(\mathfrak{g})}^{\prime}$.

Let ∇_{0}^{\prime} be the smooth one-form on $E_{G L(\mathfrak{g})}^{\prime}$ defining the connection ∇^{\prime}. Let

$$
\rho: E_{G}^{\prime} \rightarrow E_{\mathrm{GL}(\mathfrak{g})}^{\prime}
$$

be the natural map. We will show that $\rho^{*} \nabla_{0}^{\prime}$ is a connection on E_{G}^{\prime}. Let

$$
\rho_{G}: G \rightarrow \mathrm{GL}(\mathfrak{g})
$$

be the adjoint representation of G. The kernel of ρ_{G} coincides with the center $Z(G) \subset G$. Hence the image $\rho\left(E_{G}^{\prime}\right)$ is a principal $G / Z(G)$-bundle over M^{\prime}. Furthermore, $\rho_{G}(G)$ is a connected component of the subgroup $\operatorname{Aut}(\mathfrak{g}) \subset \mathrm{GL}(\mathfrak{g})$. Therefore, the condition

$$
\left[\nabla_{v}^{\prime}(s), t\right]+\left[s, \nabla_{v}^{\prime}(t)\right]=\nabla_{v}^{\prime}([s, t])
$$

in the lemma means that the pullback $\rho^{*} \nabla_{0}^{\prime}$ on E_{G}^{\prime} is a \mathfrak{g}-valued one-form. Consequently, $\rho^{*} \nabla_{0}^{\prime}$ defines a connection on E_{G}^{\prime}. It is easy to see that this connection on E_{G}^{\prime} defined by $\rho^{*} \nabla_{0}^{\prime}$ induces the connection ∇^{\prime} on $E_{\mathrm{GL}(\mathfrak{g})}^{\prime}$.

Continuing with the proof of the proposition, let ∇^{G} be the connection on E_{G} obtained from the connection ∇ on $\operatorname{ad}\left(E_{G}\right)$ using Lemma 3.3. Since ∇ is flat holomorphic, it follows immediately that the connection ∇^{G} on E_{G} is also flat holomorphic.

Finally, since ∇ preserves the filtration in (3.3), and $\operatorname{ad}\left(E_{P}\right)=\mathcal{V} \cap \tau\left(\operatorname{ad}\left(E_{G}\right)\right)$, the connection ∇^{G} on E_{G} induces a connection on E_{P}. In other words, the connection ∇^{G} is the extension of a connection on the P-bundle E_{P}. This connection on E_{P} clearly has the property stated in the proposition.

REFERENCES

[AB] B. Anchouche and I. Biswas, Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001), 207-228.
[ABi] H. AZAD and I.BISWAS, On holomorphic principal bundles over a compact Riemann surface admitting a flat connection, Math. Ann. 322 (2002), 333-346.
[Bor] A. Borel, Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.
[Bo] R. Bott, Homogeneous vector bundles, Ann. Math. 66 (1957), 203-248.
[DPS] J.-P. Demailly, T. Peternell and M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), 295-345.
[Do] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231-247.
[Mo] C. Mourougane, Images directes de fibrés adjoints, Publ. Res. Inst. Math. Sci. Kyoto Univ. 33 (1997), 893-916.
[Ra] A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129152.
[RS] A. RAMANATHAN and S. SUbramanian, Einstein-Hermitian connections on principal bundles and stability, J. Reine Angew. Math. 36 (1984), 269-291.
[Si] C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.
[UY] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986), 257-293.

School of Mathematics
Tata Institute of Fundamental Research Homi Bhabha Road
Bombay 400005
INDIA
E-mail address: indranil@math.tifr.res.in subramnn@math.tifr.res.in

[^0]: 2000 Mathematics Subject Classification. Primary 32L05; Secondary 53C05.
 Key words and phrases. Principal bundle, numerically flat bundle, Kähler manifold.

