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Abstract. Generalizing the notion of a numeaity flat vector bundle over a Kahler
manifold M, we define a numerically flat principél-bundle oven, whereG is a semisimple
complex algebraic group. It is proved that a princigabundle E is numerically flat if and
only if ad(E¢) is numerically flat. Numerically flat bundles are also characterized using the
notion of semistability.

1. Introduction. Let M be a compact Kahler manifold. In [DPS], the notion of a
numerically effective holomorphic vector bundle owgrwas introduced (see Section 2).

Let G be a semisimple complex algebraic group. [Pebe a parabolic subgroup ¢f
andy a character oP anti-dominant with respect to some Borel subgrougafontained in
P. So the line bundle over the projective variéty P defined byy is numerically effective.

For a holomorphioG-bundle E; over M, the quotient magE¢ — Eg/P defines a
holomorphic principalP-bundle overEg/P. The G-bundle E¢ will be called numerically
flat if for all pairs (P, x) the line bundle oveE;/ P defined by the anti-dominant character
x is numerically effective.

A principal SL(n, C)-bundle is numerically flat if and only if the vector bundle associated
to it by the standard representation is numerically flat (Proposition 2.3). For a numerically flat
G-bundle, any associated vector bundlaliso numerically flat (Theorem 2.4). &-bundle
E¢ is numerically flat if and only if its adjoint vector bundle @};) is numerically flat
(Theorem 2.5).

A numerically flatG-bundleE is semistable and all the (rational) characteristic classes
of E¢ of positive degree vanish. In the converse directioi/ ifs a projective manifold and
E¢ a semistables-bundle overM such that all the characteristic classes@f of positive
degree vanish, theBg is numerically flat (Theorem 3.1).

For a parabolic subgroup of G, its Levi quotient will be denoted by.(P). For a
principal P-bundleE p, the principalL (P)-bundle obtained by extending the structure group
using the projection of to L(P) will be denoted byE; py. A G-bundleEg over a Kéhler
manifold M is numerically flat if and only if there is a parabolic subgroBpc G and a
reductionEp C E¢ of structure group such that the princip@tbundle Ep admits a flat
holomorphic connectiolv with the property that the monodromy of the flat connection on
Er(py induced byV is contained in a maximal compact subgroug.oP) (Proposition 3.2).
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2. Numerically flatness. Let M be a compact connected Kahler manifold equipped
with a Kéhler metriaw. Let L be a holomorphic line bundle ové#. We recall from [DPS]
the definition of a numeridly effective line bundle.

DeFINITION 2.1 (DPS, Definition 1.2). The line bundleis callednumerically effec-
tiveif for any ¢ > 0O, there is a Hermitian metric, on it such that the curvatur@;,, of the
Chern connection oh satisfies the inequality

O, > —cw.

SinceM is compact, the above definition clearly does not depend on the chaice of

A vector bundleE over M is callednumerically effective if the tautological line bundle
Op(k)(1) over the projective bundIB(E) is numerically effective (cf. [DPS, p. 305, Defini-
tion 1.9]). A vector bundleE over M is callednumerically flat if both E and its dualE* are
numerically effective (cf. [DPS, p. 311, Definition 1.17]).

Let G be a semisimple linear algebraic group over the fieldf complex numbers. A
Zariski closed proper subgroup of G is called gparabolic subgroup if G/ P is compact.

Let Eg be a holomorphic principal-bundle overM . For a parabolic subgroup c G,
the projectionE — Eg/ P defines a holomorphic princip&-bundle. Given any character
x of P, let

Eg xP C:= (Eg x C/P

be the associated line bundle ov&s/ P; the quotient is for the action @t defined as follows:
the action of any; € P sends any pointz, ¢) € Eg x Cto (zg, x(¢-Yc) € Eg x C. This
associated line bundlé; x ¥ C will be denoted by, .

DEFINITION 2.2. TheG-bundle E¢ is callednumerically flat if for every parabolic
subgroupP C G and every charactey : P — C* dominant with respect to some Borel
subgroup ofG contained in?, the dual line bundl& overEg/ P is numerically effective in
the sense of the above definition (Definition 2.1).

See [Ra] for the details on dominant character® oA charactery of P is dominant if
and only if the dual of the line bundle ovét/ P associated tg is numerically effective.

Since the pullback of a numerically effeaiVine bundle is also numerically effective
(see [DPS, p. 302, Proposition 1.8(i)]), and a line buridis numerically effective ifL®" is
numerically effective for some > 1, it suffices to check the condition in Definition 2.2 only
for maximal parabolic subgroup®. To explain this in more detail, for an arbitrary parabolic
subgroupQ of G there are only finitely maximal parabolic subgroupof G that containQ.
The ensuing map

G/o— [] G/n
OCP;
is an embedding. Given any dominant charagtef Q, there are dominant charactegsof

P; such thaf [; x; on Q coincides withy. Therefore, it is enough to check the condition in
Definition 2.2 only for maximal parabolic subgroups.
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Let E be a holomorphic vector bundle of ranlover M with \" E = Oy. SoE defines
a holomorphic principal Stz, C)-bundle overM. The principal Slgz, C)-bundle defined by
E will be denoted byEs; .

PROPOSITION 2.3. The vector bundle E is numerically flat if and only if the principal
SL(n, C)-bundle Es| isnumerically flat.

PrROOF Assume thaEg is numerically flat. LetP C SL(n, C) be the parabolic sub-
group that fixes a given lingy c C”. Let x be the character a? defined by its action oiirg.
So the quotienEs, /P is P(E) andOp(g)(—1) is the line bundle associated 40 Therefore,
from the definition of numerically flathess @fs; we conclude that the vector bundieis
numerically effective. Sinc& is numerically effective ang\" E = Oy, we conclude thak
is numerically flat (see [DPS, p. 311, Definition 1.17], [DPS, p. 307, Proposition 1.14(iii)]).
Now assume thak is numerically flat. Maximal parabolic subgroups of(BLC) are
those that preserve some subspad@’bfThe quotient is a Grassmannian. Le{&rk) be the
Grassmann bundle ovéf consisting of alk dimensional subspaces in the fibergofwhere
k € [1,n — 1]. The condition thaf is numerically effective implies that the vector bundle
/\k E is also numerically effective [DPS, p. 30Froposition 1.14(ii)]. The line bundles over
Gr(E, k) corresponding to the dominant characters are the nonnegative powers of the line
bundle over G(E, k) defined by the determinant of the tautological vector bundle of kank
Since the determinant of the rakkautological vector bundle over G, k) is the pullback
of Op( .k gy (—1) using the Plicker embedding, the numerically effectivene:;{skoE implies
that the dual of the determinant of the tautological vector bundle ovgr &) is numerically
effective. O

Proposition 2.3 justifies Definition 2.2.

Let V be a finite-dimensional complez-module. For anyG-bundle Eg, the quotient
Eg x9 V := (Eg x V)/G for the twisted diagonal action is a vector bundle, which is called
the associated vector bundle.

The following theorem, which is proved using a basic result due to C. Mourougane, is
similar in spirit to the characterization of semistaldlébundles in terms of the semistability
of the associated vector bundles (see [RS, Theorem 3], [AB, Proposition 2.10]).

THEOREM 2.4. Let Eg beanumerically flat G-bundle over M. For any finite dimen-
sional complex G-module V the associated vector bundle Eg x© V is numerically flat.

PROOF SinceV is a direct sum of irreducibl&-modules, and a direct sum of nu-
merically flat vector bundles is again numerically flat, it suffices to prove the theorem for
irreducibleG-modules. So assuniéto be irreducible.

From the Borel-Weil-Bott theorem we know that there is a parabolic subgroah
G and an anti-dominant character (inverse of a dominant charggtef) P such that the
associated line bundlé, = G x? C overG/P is ample, and the induced representation of
G onHOG/P, L,) coincides with the5-moduleV (cf. [Bo]).
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Let p : Eg/P — M be the natural projection. The above form of the Borel-Weil-Bott
theorem immediately implies that the associated line buhglle- Eg x” C over Eg/P has
the property that

(2.1) p«Ly = Eg x° V.

rel

that the anti-canonical bund!ég/lp overG/ P corresponds to an anti-dominant character (as
Kg7p is ample)f of P, thatis,K;, is the line bundle associated fo So the characte {
of P is anti-dominant.

The line bundleL , ; = Eg xP C over Eg/ P associated to the charactef is clearly
Ly ® K. If Eg is numerically flat, we know from the definition thay ® K 4" is numeri-
cally effective. Since the restriction éf, ® Krgll to any fiber of the projectiop is an ample
line bundle, the direct image

LetK ! = Kgg/,g ® p* K be the relative anti-canonical line bundle o¥&f/P. Note

Px(Krel @ Ly ® Kr;ll) = paly

is numerically effective (cf. [Mo, p. 895, Théoréeme 2]). This theorem of [Mo] says that if
is a numerically effective line bundle ov&i; / P whose restriction to any fiber ¢f is ample,
then the directimage. (Kre/® L) is a numerically effective vector bundle ovdr. The above
assertion is obtained by settidig= L, ® K.

Finally using the isomorphism in (2.1) we conclude that the associated vector bundle
Eg x© V is numerically effective ifEg is numerically flat. SinceG does not have any
nontrivial character (as it is semisimple) we ha\(g’p Eg x%V = ©Oy. Therefore, it follows

that ad E¢) is numerically flat ifEg is so. O

Let g denote the Lie algebra @, on whichG acts by conjugation. Sinag is semisim-
ple, the kernel of the homomorphism

(2.2) p: G — SL(g)

is a finite group. For a principal-bundleE, the associated adjoint bundiz; x ¢ g will be
denoted by aE ).

For a parabolic subgroup of G, let R,(P) denote theunipotent radical of P. So
R, (P) is the (unique) maximal connected unipotent normal subgroup.ofrhe quotient
L(P) := P/R,(P) is called the_evi factor of P. The groupL(P) is reductive. (See [Bor].)

THEOREM 2.5. Let V beasin Theorem 2.4 such that the kernel of the homomorphism
G — SL(V) isafinitegroup. A G-bundle E¢ isnumerically flat if and only if the associated
vector bundle Eg xY V is numerically flat. In particular, Eg is numerically flat if and only
if ad(Eg) isnumerically flat.

PROOF. If E¢ is numerically flat, then Theorem 2.4 implies that the vector bundle
Eg x% V is numerically flat.
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Let Es (v) be the principal SLV)-bundle overM obtained by extending the structure
group of Eg using the homomorphism

(2.3) 7:G — SL(V)

defined by the action af on V.

For any maximal parabolic subgroupof G and any dominant charactgrof P, there is
a parabolic subgrou@ (not necessarily maximal) of $) and a dominant charactgf of Q
such that (P) = t(G)N Q andt*x’ = x" for somen > 1. To prove this first note that since
P is maximal parabolic the group of charactersPois isomorphic t&Z. If 7(P) = 7(G)N Q,
thenG/P embeds into SV)/ Q. Since the pullback of a numerically effective line bundle
is numerically effective, we have*y’ = x" for somern > 1. So all we need to show is that
there is a parabolic subgrogpwith 7(G) N Q = ©(P).

Let N1 € SL(V) be the normalizer of the subgrougR, (P)), wherer is defined in
(2.3). LetRy C Nj be its unipotent radical. Inductively defidg 1 to be the normalizer of
Ry, and Ry41 to be the unipotent radical d¥x11. Both {N;};>1 and{R;};>1 are increasing
subgroups of SLV). Note that eaclv; is a proper subgroup of V), as it is a normalizer
of a nontrivial unipotent subgroup (the unipotent subgroup is nontrivial as the kernel of the
homomorphismG — SL(V) is finite). The limiting group, call itQ, of {N;};>1 has the
property that the normalizer of the unipotent radical(is Q itself. This implies thatQ
is a parabolic subgroup of $V). (The assumption that the kernel of the homomorphism
G — SL(V) is finite ensures thap is a proper subgroup of $V).) The parabolic groug®
clearly has the property thal N 7 (G) = t(P).

Consequently, we have an embeddingfef/ P in Es v/ Q, and the line bundle over
E¢ /P defined byx” coincides with the restriction of the line bundle ov&s v,/ Q defined
by x’. Therefore E¢ is numerically flat ifEs (v is so. O

REMARK 2.6, Let

o:G—H

be a homomorphism to a complex semisimple gréupUsingo the Lie algebrd of H is a

left G-module. Consider the princip@l-bundleEy := Eg x H obtained by extending the
structure group of usingo. Since that adjoint vector bundle @y ) is the one associated
to Eg for the G-moduleb, if Eg is numerically flat then Theorem 2.4 and Theorem 2.5
combine together to imply thad; is numerically flat.

3. Semistability and numerical flatness. Let F be a holomorphic vector bundle de-
fined on a dense open subgetc M such that the complemet \ U is a complex analytic
subset of (complex) codimension at least two. LetU < M be the inclusion map. The
condition on the codimension @f \ U implies that the direct image F is a coherent sheaf
on M. The degree of is defined as
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deq F) :=/ c1(tF)od™t,
M

whered = dim M andw is the fixed Kahler form o/

A principal G-bundle Eg over M is calledsemistable (respectively stable) if for any
reduction of structure groupp C Eg|y to any parabolic subgroup over an open subsét,
with codim(M \ U) > 2, and any nontrivial charactgrof P dominant with respect to some
Borel subgroup contained iR, the associated line bundle, = Ep x© C overU satisfies
the condition

degL,) <0

(respectively, ded.,) < 0) (see [Ra], [RS], [AB]).

Take P to be a maximal parabolic subgroup in the above definition: betthe inclusion
map ofU in M ando : U — E¢/P the section of the projectioBg/P — M defining the
reduction of structure group t8. The above the inequality can be replaced by the inequality

deg[*O*TreD 2 O

(respectively, de@.o*Trel) > 0), whereTig is the relative tangent bundle for the projection
Eg/P — M; see [Ra, Lemma 2.1] for a proof that the two formulations of the definition of
(semi)stability are equivalent.

THEOREM 3.1. Let Eg bea principal G-bundle over a Kéhler manifold M. If Eg is
numerically flat, then E¢ is semistable and all the (rational) characteristic classes of E¢ of
degree at least one vanish.

If Eg issemistable and all the (rational) characteristic classes of E of degree at least
one vanish, then Es isnumerically flat provided M is a projective manifold.

PROOF. Let Eg be a numerically flaG-bundle overM. Theorem 2.5 says that the
adjoint vector bundle a@ ;) is numerically flat. From [DPS, p. 311, Theorem 1.18] it follows
that adEg) is semistable. The semistability of @;) implies that theG-bundle E¢ is
semistable (cf. [AB, Proposition 2.10]).

Writing G as a product of simple groups we see that it is enough to prove that all the
higher characteristic classes (higher than degree zerbBy;ofanish assuming thai is sim-
ple. But forG simple, all the characteristic classesiy are contained in the characteristic
classes of the adjoint vector bundle(&d). As ad E¢) is numerically flat, all the higher
Chern classes (higher than degree zero) 6fgd vanish (cf. [DPS, p. 311, Corollary 1.19]).
Consequently, all the characteristic classeg gfof positive degree vanish.

Now assume that/ is a projective manifold and&¢ a semistable principal-bundle
over M such that all the characteristic classe#gf of positive degree vanish.

The semistability of£ implies that the vector bundle &) is semistable (cf. [RS,
Theorem 3], [AB, Proposition 2.10]). Since all the characteristic classé&;06f positive
degree vanish, it follows immediately thatad(Eg)) = O for alli > 1.
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Since adE) is semistable with vanishing Chern classes, Theorem 2 of [Si, p. 39] says
that there is a filtration

(3.1) O=FCFLCFC---CFr1C F,=adEg)

of ad(Eg) by holomorphic subbundles such that each quotient vector bundlg _1, i €
[1, k], is a stable vector bundles with (F;/F;_1) = O for all j > 1. To deduce this from
[Si, p. 39, Theorem 2] simply set the Higgs field to be zero in [Si, Theorem 2]; we need the
assumption that/ is projective to be able to use this result of Simpson.

Now a theorem due to Donaldson [Do] and Uhlenbeck-Yau [UY] says Bhaf;_1
admits a unitary flat connection. Consequently, the vector buRdIE; _; is numerically flat
by [DPS, p. 311, Theorem 1.18]. Since an extension of a numerically flat vector bundle by a
numerically flat vector bundle is again numerically flat by [DPS, p. 308, Proposition 1.15(ii)],
using (3.1) it follows immediately that &) is numerically flat. Now Theorem 2.5 says
that theG-bundleEg is numerically flat. O

Let Ep be a holomorphic principaP-bundle over the compact Kéhler manifold
equipped with a holomorphic flat connecti®) where P is a parabolic subgroup @ . Let
Erwpy =Ep x? L(P) be the corresponding principal P)-bundle, wherd.(P) is the Levi
factor (defined prior to Theorem 2.5); hePeacts onL(P) on the left using the projection
of P to L(P). The connectiorV on Ep induces a connection”*) on E p), which is flat
holomorphic asv is so.

PrRoPOSITION 3.2. A holomorphic G-bundle E¢ over a compact Kéhler manifold M
isnumerically flat if and only if there is a parabolic subgroup P C G, a reduction of struc-
ture group Ep C Eg, and a flat holomorphic connection V on the P-bundle Ep such that
the monodromy of the connection V(P on E; (p) is contained in some maximal compact
subgroup of L(P).

PROOF. Let Ep C E¢ be a reduction of structure group to a parabolic subgrBup
andV a flat holomorphic connection oAp with the above property. There is a parabolic
subgroupQ C SL(g), whereg is the Lie algebra o7, such that for the adjoint representation
p (defined in (2.2)) we have(P) = p(G) N Q. The construction o is given in the proof
of Theorem 2.5.

LetEg = Ep x” 0 be the principalp-bundle obtained by extending the structure group
of Ep usingp. Note that the adjoint vector bundle@};) is the vector bundle associated (by
the standard action) to the §l)-bundle obtained by extending the structure groupEgf
usingp. The Q-bundleE is a reduction of structure group 10 of ad(Eg), asE is the
extension of structure group @fp usingp. So the reductiotE o defines a filtration

(3.2 O=VocCcViCcVoC---CVi1C Vy=adEg)

of the vector bundle a& ) by holomorphic subbundles.
Let V€ denote the flat holomorphic connection B defined by the connectiov on
Ep. SoV2 preserves the filtration in (3.2). Consequenti? induces a flat holomorphic
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connection on each subsequent quotiéntV;_ in (3.2). The corresponding connection on
the graded vector bund@ﬁ-‘=l V;/ Vi1 coincides with the one induced by the connection
VL) on E;(p). Indeed, the homomorphism: P — Q (in (2.2)) induces a homomorphism
L(P) — L(Q) of the Levi quotients. Using this induced homomorphism i{&)-bundle
Er(py gives aL(Q)-bundleE ) (by extension of structure group). The vector bundle asso-
ciated toE (o) for the action ofL (Q) on the graded vector space (for the filtratiorgdhat O
preserves) is identified Wit@f‘=l Vi/Vi—1. So a connection 0B (p) gives a connection on
@*_, Vi/ Vi_1 by inducing a connection 0B (o). Clearly, the connection of_, Vi/ Vi_1
obtained fromV € (constructed as above) coincides with the one giveR by,

Since the monodromy of the flat connectigh (") is contained in some maximal com-
pact subgroup of.(P) it follows immediately that the connection 8f)/ V;_1 preserves some
Hermitian structure orv;/ V;_1. In other words, eacly;/ V;_1 admits a unitary flat connec-
tion. This implies that adE ) is numerically flat by [DPS, p. 311, Theorem 1.18]. Conse-
quently, by Theorem 2.5 th@-bundle E¢ is numerically flat.

To prove the converse, lgig be a numerically flaG-bundle overM. So adEg) is
numerically flat (Theorem 2.5). Now [DPS, p. 311, Theorem 1.18] says tti&t;adadmits
a filtration by holomorphic subbundles such that each successive quotient is a stable vector
bundle with vanishing Chern classes of every positive degree.

Let

(3.3 O=WoCcWiCWoC:---C Wi_1 C W =adEg)

be the filtration of the vector bundle @f;) defined by socle. In other word#; / W;_1 is the
(unique) maximal polystable subsheaf of degree zero (the socle) B;adW;_1 (see [AB,
p. 211, Lemma 2.5] for properties of the socle).

Since adE ;) admits a filtration by holomorphic subbundles such that each successive
quotient is a stable vector bundle with vanishing higher Chern classes, it follows immediately
that each subshed¥; in (3.3) is a subbundle of &d ). Furthermore, for the same reason
cj(W;/W;—1) =0foralli, j > 1. (If F is a subbundle of degree zero of a polystable vector
bundleE with ¢;(E) =0forall j > 1, thenc;(F) =0=c;(E/F) forall j > 1.)

From the above properties of @;) it follows that it has a natural flat holomorphic con-
nectionV that preserves the filtration in (3.3), and the connection on each successive quotient
W;/W;_1 induced byV is unitary flat (cf. [Si, p. 40, Corollary 3.10]). The construction of
the connectiorV in [Si] needs the base manifold to be projective. But this assumption is only
needed to conclude that the vector bundlends a filtration by subbundles such that each
successive quotient is stable of degree zero, that is, to have [Si, p. 39, Theorem 2] valid for
the vector bundle. But using the assumption th&tEagd is numerically flat we already have
such a filtration in (3.3).

LetV c Endad(Eg)) be the subbundle that preserves the filtration in (3.3). So for any
pointx € M and any endomorphisifi € Endad(Eg),) we haveT e V, if and only if
T((W)x) € (W), foralli > 1. The Lie algebra structure of the fibers of &d) define a
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homomorphism of vector bundles
t:adEg) — Endad Eg)).

SinceG is semisimple, its Lie algebgahas trivial center. Hence the above homomorphism
is pointwise injective.
Consider the intersectioi N t(ad(Eg)) inside Endad(Eg)). For eachx € M, this
intersection defines a parabolic subalgebra a@fad,. Since the normalizer (insidg) of
a parabolic subgrou®® C G is P itself, the subalgebra bundlé N r(adEg)) defines a
reduction of structure groupp C Eg to a parabolic subgroup such that adEp) = V N
7(ad(Eg)) (see the construction of this reduction in the last paragraph of p. 341 in [ABI]).
Using the Killing form ong, the vector bundle ad& ;) gets identified with atEg)*.
Indeed, since the Killing form i&;-invariant, it defines a nondegenerate symmetric bilinear
formon adEg). Consider the vector bundl¢ := /\2 ad(Eg). The Lie algebra structure on
the fibers of adE ) gives a nowhere vanishing section

s € HO(M, W)

using the identification of d& ) with its dual. LetL; C W be the trivial line subbundle
generated by.

The canonical flat connectioi on ad E) constructed in [Si] induces a flat connection
V onW. SinceL; is a trivial line subbundle ofV, the connectiorV preserved.,, and the
induced connection oii; is the trivial connection, that is, it has trivial monodromy; this
property ofV follows immediately from the general properties of the connection constructed
in [Si].

Consequently, the connectidhon ad E¢) is compatible with the Lie algebra structure
of the fibers. The following lemma shows that the connecWoinduces a connection on the
G-bundleEg.

LEMMA 3.3. Let Ej; be a smooth principal G-bundle over a smooth manifold M,
where G isa semisimple linear algebraic group defined over C. Let V’ be a connection on the
adjoint vector bundle ad(E ;) such that

[Vy(s), 11+ s, Vi (D] = V, (s, 1)

for all locally defined sections s, ¢ of ad(E ;) and all locally defined vector field on M’. (The
Lie algebra structure of the fibers of ad(E;) gives a smooth section of the vector bundle
adE;) ® adE;)* ® ad E;)*; the above condition on V’ is equivalent to the condition that
this section is flat with respect to the connection on adE;) ® ad(E;)* ® ad(E;)* induced
by V'.) Then there is a unique connection V" on the principal G-bundle E; such that V' is
obtained from V" by extension of structure group.

PrROOF. Let EéL(g) be the smooth principal Qlg)-bundle over’ defined by adEy;).

SinceEéL(g) is obtained by extending the structure grougef using the adjoint representa-

tion of G, a connection oI, induces a connection dﬁél_(g). Since the kernel of the adjoint
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representation o& is finite, there can be at most one connectionAjninducing a given
connection orEéL(g).
Let V; be the smooth one-form oEi’GL(g) defining the connectioR’. Let

p:E;— EE;L(Q)
be the natural map. We will show thatV is a connection o ;. Let
pG : G — GL(g)

be the adjoint representation 6f The kernel ofog coincides with the centeZ (G) C G.
Hence the image(E;) is a principalG/Z(G)-bundle overM’. Furthermoreog(G) is a
connected component of the subgroup @utc GL(g). Therefore, the condition

[V (s), 1]+ [s, V()] = V. ([s, t])

in the lemma means that the pullbagkV on E;, is a g-valued one-form. Consequently,
p*V, defines a connection oAy;. It is easy to see that this connection Bf defined by
p*V; induces the connectiovi’ on EéL(g). ]

Continuing with the proof of the proposition, I&° be the connection 0B obtained
from the connectiolV on ad E¢) using Lemma 3.3. Sinc¥ is flat holomorphic, it follows
immediately that the connection® on Eg is also flat holomorphic.

Finally, sinceV preserves the filtration in (3.3), and@¥p) = V N t(adEg)), the
connectionv® on Eg induces a connection oBp. In other words, the connectiovi® is
the extension of a connection on tiebundle Ep. This connection orEp clearly has the
property stated in the proposition. m]
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