

Numerically reliable identification of complex systems

Citation for published version (APA): Voorhoeve, R. J., Oomen, T. A. E., & Steinbuch, M. (2014). *Numerically reliable identification of complex systems.* Poster session presented at 23rd Workshop of the European Research Network on System Identification (ERNSI 2014), September 21-24, 2014, Ostend, Belgium, Ostend, Belgium.

Document license: CC BY

Document status and date: Published: 01/09/2014

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

ASML

Numerically reliable identification of complex systems

Model

15

Iteration number

20

Robbert Voorhoeve Tom Oomen **Maarten Steinbuch** r.j.voorhoeve@tue.nl

Control Systems Technology Dept. of Mechanical Engineering

TUe Technische Universiteit Eindhoven University of Technology

Frequency domain identification

Ingredients for parametric identification:

- Data
- minimise cost Model structure
- Cost function

$$\mathcal{V}(\theta) = \left| \mathbf{W}(\xi) \left(\mathbf{P}_0(\xi) - \hat{\mathbf{P}}(\xi, \theta) \right) \right|_2^2, \qquad \hat{\mathbf{P}}(\xi, \theta) = \frac{n(\xi, \theta)}{d(\xi, \theta)}$$

Numerical aspects Conditioning:

- SK: $\kappa(A)$
- $\bigvee: \kappa(C^T A) \approx \kappa(A)^2$
- $\kappa(A)$ is very high (beyond 10^{16}) \Rightarrow inaccurate solution
- partial solutions frequency scaling and scaling of columns of A
 - use orthonormal/rational bases [2]: OBF, FLBF, ...

 $\left(\begin{array}{c} \theta \end{array} \right)$ 10

• full solution: (bi-)orthonormal basis

Benchmarking and comparison of multiple methods

Methods

Rational bases:

• Frequency localising basis [3]:

$$\phi_{\mathsf{FL},p} = \frac{|a_p|}{s+a_p} \prod_{l=1}^{p-1} \left(\frac{s}{s+a_l}\right)$$

• band-pass filters: approxi- $_{\frac{\alpha}{2}^{10}}$ mate orthogonality

• Vector fitting [4]

- **Open issues:**
- poles ϕ_{FL} cancelled by iterative SK/IV reweighting

convergence properties VF

Proposed solutions:

- SK-FLBF using pole relocation [4]
- IV-Vector fitting

Data dependent bases:

- scalar Forsythe polynomials:[5] data dependent inner product
- orthonormal block-polynomials [6] \rightarrow optimal conditioning SK
- bi-orthonormal block-polynomials \rightarrow optimal contioning IV **bi-bilinear form.** [7] $\langle \phi_i, \psi_j \rangle = \sum_{k=1}^m \psi_j(\xi_k)^H \underline{W}_{2,(k,k)}^H \overline{W}_{1,(k,k)} \phi_i(\xi_k)$

10

10

Experimental results

Figure 1: Frequency response measurements and identified models

Table 1: Average conditioning

	$\kappa_{\sf SK}$	$\kappa_{\rm IV}$
Orth	1.000	1.000
FLBF	$4.8\cdot10^4$	$1.1\cdot10^{10}$
VF	$9.2 \cdot 10^3$	$3.6\cdot10^8$
Mon	$2.8\cdot 10^{22}$	$1.0\cdot 10^{72}$
Mon _{sc}	510	$7.0\cdot 10^6$

Table 2: Convergence

	$V(\theta^{\star})$	
SK	$5.6 \cdot 10^1$	
IV	$2.8\cdot 10^1$	

Bi-orthonormal basis is promising \rightarrow optimal conditioning.

Ongoing research

- theoretical properties of bi-orthonormal basis
- efficient computation of bi-orthonormal basis
- implementation in a MIMO toolbox

References

- [1] R. Blom and P. Van den Hof. Multivariable frequency domain identification using IV-based linear regression. CDC, 2010.
- [2] B. Ninness and H. Hialmarsson, Model structure and numerical properties of normal equations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2001.
- [3] M. Gilson, J.S. Welsh, and H. Garnier. Frequency-domain instrumental variable based method for wide band system identification. ACC, 2013.
- [4] B. Gustavsen and A. Semlyen. Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Del., 1999.
- [5] Y. Rolain, R. Pintelon, K.Q. Xu, and H. Vold. Best conditioned parametric identification of transfer function models in the frequency domain. IEEE TAC, 1995.
- [6] A. Bultheel, M. van Barel, Y. Rolain, and R. Pintelon, Numerically robust transfer function modeling from noisy frequency domain data. IEEE TAC, 2005.
- R. van Herpen, T. Oomen, and O. Bosgra, Bi-orthonormal polynomial basis func-[7] tions for improved frequency-domain system identification. CDC, 2012.

Acknowledgments

Robbert van Herpen is gratefully acknowledged for his contributions. This research is supported by NWO/STW VENI grant 13073, ASML research and the TUE Impulse program

/department of mechanical engineering

/control systems technology

