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We conduct a comparative study to evaluate several lattice Boltzmann (LB) models for solving the near

incompressible Navier-Stokes equations, including the lattice Boltzmann equation with the multiple-relaxation-

time (MRT), the two-relaxation-time (TRT), the single-relaxation-time (SRT) collision models, and the entropic

lattice Boltzmann equation (ELBE). The lid-driven square cavity flow in two dimensions is used as a benchmark

test. Our results demonstrate that the ELBE does not improve the numerical stability of the SRT or the lattice

Bhatnagar-Gross-Krook (LBGK) model. Our results also show that the MRT and TRT LB models are superior

to the ELBE and LBGK models in terms of accuracy, stability, and computational efficiency and that the ELBE

scheme is the most inferior among the LB models tested in this study, thus is unfit for carrying out numerical

simulations in practice. Our study suggests that, to optimize the accuracy, stability, and efficiency in the MRT

model, it requires at least three independently adjustable relaxation rates: one for the shear viscosity ν (or the

Reynolds number Re), one for the bulk viscosity ζ , and one to satisfy the criterion imposed by the Dirichlet

boundary conditions which are realized by the bounce-back-type boundary conditions.

DOI: 10.1103/PhysRevE.83.056710 PACS number(s): 47.11.−j, 47.15.−x, 47.45.Ab

I. INTRODUCTION

The lattice Boltzmann equation (LBE) has been used

to solve a wide range of of problems in computational

fluid dynamics (CFD) (cf. reviews [1,2] and references

therein). There are several variations of the LBE, including

the lattice Bhatnagar-Gross-Krook (LBGK) model or single-

relaxation-time (SRT) model, the entropic model [3,4], and the

two-relaxation-time (TRT) [5–7] and multiple-relaxation-time

(MRT) [8–11] models. All these LB models can be derived

from the linearized Boltzmann equation [12,13], and the

difference between them resides in their collision terms.

The LBGK model is the simplest in appearance and thus is

also the most popular one. However, the LBGK model has

several inherent deficiencies including numerical instability

and inaccurate boundary locations [14,15]. The entropic LBE

(ELBE) is intended to overcome the numerical instability of the

LBGK model [3,4]. The MRT-LB model is the most general

form derived from the linearized collision model within the

theoretical framework of the LBE and kinetic theory—it

includes all possible degrees of freedom to optimize the LBE,

and it has been shown to be superior over the SRT models

in terms of accuracy, stability, and computational efficiency

[10,15,16]. The TRT model allows only two most important

relaxation rates in the LBE; it retains some advantages of

the MRT model in terms of accuracy and stability, while

maintaining the simplicity of implementation and hence the

computational efficiency.

*Corresponding author: lluo@odu.edu;http://www.lions.odu.edu/
˜lluo; FAX: +1 (757) 683-3885.

†wliao@odu.edu
‡ypeng@odu.edu
§zhangwei@stu.xjtu.edu.cn

While the aforementioned LB models have existed for quite

some time, there has never been a comprehensive comparative

evaluation to quantitatively assess the efficacy of these LB

models for solving problems in CFD. In this work, we intend

to compare the LBGK, ELBE, MRT, and TRT models in terms

of their accuracy, stability, and computational efficiency for

solving the incompressible Navier-Stokes equations in two

dimensions (2D). We use the lid-driven square cavity flow in

2D as a benchmark test.

The remainder of the paper is organized as follows.

Section II provides a succinct introduction of the LB models

including the MRT, TRT, LBGK, and ELBE models; it also

includes a brief discussion of the bounce-back (BB) boundary

conditions (BCs). Section III presents the results of this

study. We first briefly describe the benchmark test problem:

the lid-driven square cavity flow in 2D. The LB results

are compared with data obtained by using a pseudospectral

method with multigrid and singularity subtraction technique

[17,18]. We investigate the abilities of the LB schemes to

compute the gross features of the flow, the flow fields near the

boundary, the convergence behavior, the numerical stability,

and computational efficiency. Our results expose the inherent

deficiencies of the ELBE and LBGK schemes in terms of

accuracy, stability, and efficiency. Finally, Sec. IV concludes

the paper.

II. LATTICE BOLTZMANN EQUATION

A. Lattice Boltzmann models

The LBE is a discrete system that evolves on a

d-dimensional lattice xi ∈ δxZ
d and in discrete time tn ∈

δtN0 := δt {0, 1, . . .}. The LBE is derived from the kinetic

theory and resembles the discrete velocity model of the

Boltzmann equation in some aspects [19]. The discrete

velocity set of the LBE, V := {ci |i = 0, 1, . . . , b}, usually is
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symmetric, that is, V = −V , and has a zero velocity c0 = 0.

The total number of discrete velocities in V is q = (1 + b),

including one zero velocity and b nonzero ones. An LB model

with q velocities in d-dimensional space is usually denoted as a

DdQq model. In this work, we use the D2Q9 model on a square

lattice, of which the discrete velocity set {ci |i = 0, 1, . . . , 8}
is

ci =

⎧

⎪

⎨

⎪

⎩

(0, 0), i = 0,

(±1, 0)c, (0, ± 1)c, i = 1 – 4,

(±1, ± 1)c, i = 5 – 8,

(1)

where c := δx/δt .

In general, the LBE can be concisely written as the

following:

f(xi + cδt ,tn + δt ) − f(xi,tn) = �(f), (2)

where the bold-font symbols represent q-dimensional (col-

umn) vectors

f(xi + cδt ,tn + δt ) =: [f0(xi,tn + δt ),

. . . , fb(xi + cbδt ,tn + δt )]
†,

f(xi,tn) =: [f0(xi,tn), f1(xi,tn), . . . , fb(xi,tn)]†,

�(f) = [�0(xi,tn),�1(xi,tn), . . . , �b(xi,tn)]†,

† denotes the transpose operation, fi(xj , tn) is the distribution

function corresponding to the discrete velocity ci , and �i is

the change in fi due to collisions.

For the purpose of solving the incompressible Navier-

Stokes equations, most collision models in the LBE (2) are

based on the linearized collision operator. This study focuses

on the following LB models: the MRT [8–11], the TRT [5–7],

the SRT or the LBGK [20], and the entropic LB [3]. We first

discuss the MRT model, of which the collision model can be

written as

� = −M
−1 ·Ŝ·[m − m(eq)], (3)

where m and m(eq) represent the velocity moments of the

distribution functions f and their equilibria, respectively,

m = [m0(xi,tn),m1(xi,tn), . . . , mb(xi,tn)]†,

m(eq) = [m
(eq)

0 (xi,tn),m
(eq)

1 (xi,tn), . . . , m
(eq)

b (xi,tn)]†,

M is a q × q matrix which linearly transforms the distribution

functions f ∈ V ≡ R
q to the velocity moments m ∈ M ≡ R

q ,

m = M · f, f = M
−1 · m, (4)

and Ŝ is a non-negative q × q diagonal relaxation matrix

[8–11].

The LB method was created as an alternative CFD solver—

it is not intended as a solver for the Boltzmann equation.

The quantities of interest to macroscopic hydrodynamics,

such as the density ρ, the flow momentum ρu, and the total

energy ρE, as well as their fluxes, are (velocity) moments

of the single-particle mass distribution function f (x, ξ , t) in

the phase space Ŵ := (x, ξ ), which satisfies the Boltzmann

equation, and it is therefore natural to deal with equations

of moments (cf., e.g., [21]). The MRT-LBE is formulated

in the spirit and tradition of kinetic method in this regard:

The collision process is approximated as linear relaxations in

the space of moments, and the relaxation rates are directly

related to transport coefficients, while the transport process is

independently executed in velocity space. The MRT-LBE is

not only theoretically elegant, but practically advantageous, as

we demonstrate through this study.

Corresponding to the nine discrete velocities of the D2Q9

LB model, {ci |i = 0, 1, . . . , 8}, there are nine velocity mo-

ments {mi |i = 0, 1, . . . , 8}. The labeling (or the ordering) of

these moments is arbitrary and we will use the convention

given by Lallemand and Luo [9], that is, m0 = δρ, m1 = e,

m2 = ε, m3 = jx , m4 = qx , m5 = jy , m6 = qy , m7 = pxx ,

and m8 = pxy . The conserved moments in the system are

the density ρ = ρ0 + δρ, where ρ0 = 1 and δρ are the mean

density and the density fluctuation, respectively, the flow

momentum j = (jx, jy) = ρ0u, where u = (u, v) is the flow

velocity. (Because energy is not a conserved quantity in the

LB models considered in the present, thus these LB models

are athermal.) The physical significance of the other six

nonconserved moments can be found in the literature [8–11].

The equilibria of the conserved moments are themselves, and

the equilibria of the nonconserved moments are given below:

e(eq) = −2δρ +
3

ρ0

(

j 2
x + j 2

y

)

, (5a)

ε(eq) = δρ −
3

ρ0

(

j 2
x + j 2

y

)

, (5b)

(

q(eq)
x , q(eq)

y

)

= −(jx, jy), (5c)

p(eq)
xx =

1

ρ0

(

j 2
x − j 2

y

)

, p(eq)
xy =

1

ρ0

jxjy . (5d)

By considering only δρ in various parts of the equilibria

pertaining to the mass conservation, the effects of the round-off

error can be reduced [22,23], especially when |δρ| ≪ 1.

Since the density fluctuation δρ and the flow velocity u

are decoupled, the above model approximates incompressible

flows [22]. With ordering of the discrete velocities {ci} and

the moments {mi} given above, the transformation matrix M

is [8–11]

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(6)

Note that rows 4 and 6 uniquely define the ordering (or

labeling) of the discrete velocities {ci}. Correspondingly, the

diagonal matrix of non-negative relaxation rates 0 < si < 2 is

given by

S = diag(0, se, sε, 0, sq , 0, sq ,sν, sν). (7)

With the equilibria given by Eqs. (5), the first-order
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nonequilibrium parts of the nonconserved moments are

p(1)
xx = −

2

3sν

(∂xjx − ∂yjy), (8a)

p(1)
xy = −

1

3sν

(∂yjx − ∂xjy), (8b)

e(1) = −
2

se

(∂xjx + ∂yjy), (8c)

ε(1) =
2

sε

(∂xjx + ∂yjy), (8d)

q(1)
x,y = 0. (8e)

The speed of sound in a quiescent media for the D2Q9

model is

cs =
1

√
3

c, (9)

and the shear viscosity ν and the bulk viscosity ζ are

ν =
1

3

(

1

sν

−
1

2

)

cδx, (10a)

ζ =
1

3

(

1

se

−
1

2

)

cδx, (10b)

where sν is the relaxation rate for the moments pxx and

pxy , which are related to the off-diagonal elements of the

stress tensor, and se is the relaxation rate for the moment e,

which is related to the diagonal elements of the stress tensor.

The dissipation for (longitudinal) sound waves or density

fluctuations in the system is (ν + ζ )/2.

If we set the relaxation rates for the even-order noncon-

served moments (i.e., e, ε, pxx , and pxy) to s+ = 1/τ and

those for the odd-order ones (i.e., qx and qy) to [14,24,25]

sq = 8
(2 − sν)

(8 − sν)
= 8

(2τ − 1)

(8τ − 1)
=

16ν

8ν + 1
, (11)

then the MRT model becomes the TRT model [5–7]. If we

set all relaxation rates {si} equal to 1/τ , then the MRT

model reduces to the LBGK model with SRT, of which the

equilibrium distribution functions are

f
(eq)

i = wi

[

δρ + ρ0

{

ci · u

c2
s

+
1

2

(

(ci · u)2

c4
s

−
u · u

c2
s

)}]

,

(12)

where w0 = 4/9 for ‖c0‖ = 0, w1,2,3,4 = 1/9 for ‖c1,2,3,4‖ =
c, w5,6,7,8 = 1/36 for ‖c5,6,7,8‖ =

√
2c, and cs = c/

√
3. The

collision model in the LBGK equation is

�i = −
1

τ

[

fi − f
(eq)

i

]

. (13)

The ELBE proposed by Ansumali et al. [3] has the BGK

collision term with the following equilibria:

f
(eq)

i = wiρ

2
∏

α=1

(2 − Sα)

(

2uα + cSα

c − uα

)ciα/c

, (14a)

Sα :=

√

1 +
(

uα

cs

)2

, (14b)

where Greek subscript α denotes the Cartesian coordinates

{x, y} or {1, 2} in 2D and ciα/c ∈ {−1, 0, + 1}. The above

equilibria can also be rewritten as [26]

f
(eq)

i = ρ

(

−
1

2

)

|cix |+|ciy |
c

[

c2
s

c2
(2Sx − 1) +

(

−
uxcix

c2

)

|cix |
c

]

×

[

c2
s

c2
(2Sy − 1) +

(

−
uyciy

c2

)

|ciy |
c

]

. (15)

For both the LBGK and ELBE models with one relaxation time

τ given above, the shear viscosity ν and the bulk viscosity ζ

are given by [9]

ν =
1

3

(

τ −
1

2

)

cδx, ζ = ν. (16)

The attenuation coefficient (or dissipation) for acoustic waves

(or the density fluctuation) in the system is ζ + ν/2 = ν for

the LBGK models. Consequently, the LBGK models are prone

to numerical instabilities when ν is small (or τ close to 1/2),

because there is no ν-independent mechanism to keep the

density fluctuation in check.

A few remarks regarding the ELBE model [3] described

above are in order here. First of all, the equilibrium moments

computed from the equilibrium distributions of Eqs. (14) or

(15) with c2
s = c2/3 are

e(eq) = 2ρ(Sx + Sy − 3), (17a)

ε(eq) = ρ(2Sx − 3)(2Sy − 3), (17b)

q(eq)
x,y = ρ(2Sy,x − 3)

ux,y

c
, (17c)

p(eq)
xx =

2

3
ρ (Sx − Sy), (17d)

p(eq)
xy = ρuxuy . (17e)

Thus, except p
(eq)
xy and the terms involving δρ · u, which are

neglected by the incompressibility approximation [22], one

difference between the ELBE and MRT-LBE is the O(u3)

terms in the odd-order equilibrium moments, q
(eq)
x and q

(eq)
y ,

which affect the Galilean invariance of the model [9], while

the difference in the even-order equilibrium moments, e(eq),

ε(eq), and p
(eq)
xx , is of the terms of the order O(u4).

Second, based on our experience and understanding of

the LBE, it is unclear theoretically how the ELBE with a

constant relaxation parameter τ can improve the numerical

stability of the LBGK scheme, as it has been advocated [3,4].

Furthermore, if the equilibria of Eqs. (14a) are replaced by their

low-order Taylor expansions in u, as suggested in [26], then

it can be shown rigorously that the equilibria of polynomial

form cannot admit an H theorem [27,28] and the ELBE is no

longer entropic. In this study we numerically demonstrate that

the ELBE model does not improve the numerical stability of

the LBGK model in any way, contrary to previous claims [3,4].

We would also like to comment on the general character-

istics of the LBE. First of all, the relevant physical quantities

of the LBE are the conserved quantities; that is, the density

ρ and the momentum ρu for the athermal LB models. The

056710-3
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pressure p and the velocity u are derived or indirect quantities.

The conserved quantities, ρ and ρu, obtained with the LBE

can only approximate p and u, which are the solutions of

the incompressible Navier-Stokes equations [29]. Since the

density ρ is an intrinsic variable of the LBE, the compress-

ibility associated with the density fluctuation is inherent in

the LBE. Thus, the second point is that all LB schemes are

intrinsically compressible in the sense that the density is an

essential variable and the velocity field is never divergence

free. The so-called “incompressible” LB schemes (e.g., [22])

can only alter the compressibility effect quantitatively, but can

never eliminate it entirely. Theoretically, the incompressible

Navier-Stokes equations can be derived directly from the

Boltzmann equation in the diffusive scaling limit δ2
x/δt = 1

(cf. [29,30] and references therein), and the exponential tail of

the Maxwellian equilibrium when ‖ξ‖ → ∞ is indispensable

in this derivation. With a set of finite discrete velocities

{ci |i = 0, 1, . . . , b}, the LBE cannot possibly satisfy the

Poisson equation exactly, which requires the pressure to

propagate throughout the system instantaneously, that is, with

a propagating speed of infinity. Thus, the LBE is intrinsically

compressible and can only approximate the incompressible

Navier-Stokes equations. The pressure p in the LBE is coupled

to the density ρ through a simple equation of state p = c2
s ρ for

ideal gases, and in this way the LBE is related to the artificial

compressibility method [31,32].

It is also worth noting that the only important distinction be-

tween the so-called “incompressible” and the “compressible”

LB schemes lies in the acoustics of the system. The speed of

the sound waves in the incompressible LB schemes is incorrect

(cf. Eq. (48) and relevant discussions in [9]),

Cs = V cos φ ±
√

c2
s + V 2 cos2 φ

= V cos φ ± cs

√

1 + Ma2 cos2 φ,

where Ma = V/cs , V = ‖V‖, V is the constant streaming

velocity of the media, and φ is the angle between V and the

wave vector k of the acoustic waves [9]. In order to have a

correct speed of acoustic waves, Cs = V cos φ ± cs , one must

use the compressible LB schemes, that is, replacing ρ0 by

ρ in the equilibria of Eqs. (5) and (12). Since we are only

concerned with steady-state calculations in this study, while

the incompressible approximation can improve computational

efficiency a little by avoiding the divisions by ρ in computing

the equilibria and possibly reduce the compressibility effect

[22], its defect in the acoustic propagation will not affect the

results negatively.

B. The bounce-back boundary conditions

The BB BCs in the LBE are used to realize the Dirichlet

BCs. The BB BCs are easily to implement: When colliding

with an impenetrable wall with a velocity uw, the particle

simply reverses its momentum normal to the wall and gains an

additional momentum due to the wall velocity uw, that is,

fı̄(xb, t + δt ) = fi(xb, t) − 2ρ0wi

ci · uw

c2
s

, (18)

where fı̄ and fi correspond to the discrete velocity cı̄

and ci , respectively, and fi(xb, t) in the right-hand side of

Eq. (18) is the postcollision distribution function; cı̄ = −ci ;

the component of ci normal to the wall is pointing outward

from fluid domain to the wall; xb is a fluid node adjacent to a

wall boundary; and uw is the wall velocity at the point where

the particle of the velocity ci collides with the wall.

The BB BCs are implemented as follows. Beyond the

boundary, an extra (ghost) layer of nodes is used to store the

distribution functions fi , which move out of the flow domain in

the advection step.The collisions between these particles and

the wall are accomplished by reversing themselves to fı̄ and

gaining the amount of momentum −2ρ0wi ci · uw/c2
s ; they are

then copied to the fluids nodes where they came from through

the advection.

The BB BCs have been studied in detail and are well

understood [14,24,25]. The analytic solutions for the LBE

with the BB BCs can be obtained for simple flows, such as the

Poiseuille and Couette flows [24,25,33,34]. For the Poiseuille

flow driven by a constant body force G = ‖∇p‖ and with

its walls parallel to lattice lines, the actual channel width H

observed in the simulations is given by [14,24,25]

H 2 = H 2
1/2 + 4
2 − 1, (19a)


 =
4

3

(

1

sν

−
1

2

) (

1

sq

−
1

2

)

, (19b)

where H1/2 := Nδx and N is the number of fluid nodes across

the channel. That is, only when the relationship between sq

and sν of Eq. (11) is satisfied, 
 = 1/2 and H = H1/2; the

no-slip BCs at the channel walls are indeed satisfied at the

δx/2 beyond the last fluid nodes; and the maximum velocity

at the channel center line is Umax = GH 2/8ν. If H 	= H1/2,

then the LB solution is inconsistent with the incompressible

Navier-Stokes solution we desire.

For the ELBE and the LBGK schemes with only one

relaxation parameter τ , Eq. (19b) becomes


 =
4

3

(

τ −
1

2

)2

= 12ν2.

Therefore, 
 = 1/2 if and only if ν = 1/(2
√

6) (or τ = 1/2 +√
6/4 ≈ 1.1123). In the interval 1/2 < τ � 1/2 +

√
6/4, we

have −1 < (4
2 − 1) � 0 or 0 < 
 � 1/2. Consequently,

the error of the inaccurate boundary location is within one

lattice spacing δx . This explains why the LBGK simulations

of flows of high Reynolds number with τ < 1 have relatively

small errors at the boundary. Since this error at the boundary

is quadratic in ν (or τ ), it becomes considerable or even

intolerable when τ ≫ 1, which is the case for the Stokes or

creeping flows and is practiced in simulations of flow through

porous media [14,15]. This error of the LBGK schemes with

the BB-type BCs is ostentatiously manifested in simulations of

flow through porous media with very low Reynolds numbers—

the permeability obtained by the LBGK schemes is viscosity

dependent, which is unphysical [14,15].

Due to the intuitive nature of the BB BCs, it is often

mistakenly assumed that, in the ELBE and LBGK schemes, the

imposed Dirichlet BCs are indeed satisfied either right on the

last fluid nodes adjacent to boundary or one half or one full grid

spacing beyond them. This forms the basis of the misguided

idea that the nonzero velocity in the vicinity of the last
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fluid nodes can mimic the Knudsen layer in rarefied flows

(e.g., [35–37]). However, a close examination shows that the

ELBE or LBGK schemes with the BB-type BCs are inadequate

to model the Knudsen layer for the following reasons. The

first is that, theoretically, the LBE is a truncated model valid

for the Navier-Stokes equations and is incapable of modeling

higher-order moments of the distribution function [38–41].

The second is that the velocity near the boundary depends on

the grid resolution N ; thus, the solution with fixed Re, Ma, and

Kn does not converge as N increases [41]. A more detailed

discussion of this point is deferred to Sec. III C.

III. RESULTS AND DISCUSSIONS

A. Lid-driven square cavity flow in two dimensions

We use the lid-driven square cavity flow in 2D as a test case

to compare the lattice Boltzmann models. The 2D lid-driven

flow prescribed by the 2D incompressible Navier-Stokes

equation on a square domain � := (x, y) ∈ [0, L] × [0, L] =
[0, 1] × [0, 1] is

∂t u + u · ∇u = −∇p + ν∇2u, ∇ · u = 0 ,
(20)

u(x, 1) = (U, 0), u(x, 0) = u(0, y) = u(1, y) = 0 ,

where u(x, t) and p(x, t) are the velocity and the pressure

field, respectively, and U is the sliding velocity of the top wall.

The Reynolds number of the flow is defined by the sliding

velocity U , the dimension L of the cavity, and the viscosity ν,

that is, Re = UL/ν.

The 2D lid-driven square cavity flow has been studied

extensively and employed by many as a benchmark test (cf.,

e.g., [17,18,42–45]). While the geometry of the flow domain is

simple, the flow exhibits complicated features. Small vortices

developed at the corners and other locations can be difficult

to capture numerically for they are weak and small. The flow

becomes unsteady when the Reynolds number is beyond a

certain critical value and eventually becomes turbulent. In this

work we will restrict ourselves to the steady states of the

flow with Re = 100, 400, and 1000. The criterion for reaching

steady state in the LB simulations is given by
∑

i ‖u(xi, tn + 1000δt ) − u(xi, tn)‖2
∑

i ‖u(xi, tn)‖2

< 10−12, (21)

where ‖u‖2 denotes the L2 norm of u. We compare the

LB simulations with the results obtained by using an ex-

plicit Chebyshev pseudospectral (PS) multigrid (MG) method

(cf. [18] and references therein) together with a singularity

subtraction technique (cf. [17] and references therein) to deal

with the corner singularities. With the singularity subtraction

technique, PS-MG methods can yield very accurate results

effectively and efficiently [17,18].

For the LB simulations, the viscosity in the units of δx and

δt is determined by

ν =
UL

Re
, (22)

where U = 0.1c unless otherwise stated and L = Nxδx .

Therefore,

τ =
1

sν

= 3ν +
1

2
=

3UNδx

Re
+

1

2
. (23)

For the MRT and TRT models, Eq. (11) is used to determine the

value of sq , which is the relaxation rate for the heat fluxes qx

and qy . The other two relaxation rates, se for the energy mode

and sε for the energy square mode, are set to 1.64 and 1.54,

respectively [9]. We use the BB BCs in the LB simulations.

The nodes on the top two corners belong to the moving lid in

the LB simulations.

The value of U = 0.1c is not chosen entirely arbitrarily—

it is a compromise between accuracy and computational

efficiency. The value of U cannot be too large or the LB code

becomes unstable. Also the compressibility error in the LBE is

of O(U 2) [29,43]; therefore, U should be as small as possible

for the sake of accuracy. As a practical rule, one should restrict

‖u(x, t)‖ < 0.2 throughout the entire flow domain and for all

time so that flow is nominally incompressible. On the other

hand, larger U also means better computational efficiency,

because the number of iterations to reach steady state, Nt , is

proportional to the hydrodynamic diffusive time scale in the

system, that is, Nt ∝ N2/ν = ReN/U = csReN/Ma. Thus,

the number of iterations Nt and the computational time are

inversely proportional to U with both the mesh resolution

N and the Reynolds number Re fixed. One can also see

that increasing U effectively increases the Courant-Friedrichs-

Lewy (CFL) number, thus decreases the computational time

as a consequence.1

In PS methods, both the stream function ψ and the vorticity

ω can be obtained analytically from the velocity u. In the

LBE, ψ is computed by using Simpson’s rule for numerical

integration:

ψ(xi+1, yj ) = ψ(xi−1, yj ) −
δx

6
[v(xi−1, yj )

+ 4v(xi, yj ) + v(xi+1, yj )], (24)

where ψ(x = 0, y) = 0, and the vorticity ω are computed from

u by using the following finite difference formulas:

∂xu(xi, yj ) ≈ u(xi+1, yj ) − u(xi−1, yj )

−
1

4
[u(xi+1, yj+1) − u(xi−1, yj+1)

−u(xi−1, yj−1) + u(xi+1, yj−1)], (25a)

∂yu(xi, yj ) ≈ u(xi, yj+1) − u(xi, yj−1)

−
1

4
[u(xi+1, yj+1) + u(xi−1, yj+1)

−u(xi−1, yj−1) − u(xi+1, yj−1)]. (25b)

Note that the above formulas used to compute ψ and ω are

valid only in the interior of the flow domain {(xi, yj )|2 � i �
(Nx − 1), 2 � j � (Ny − 1)}. For the fluid nodes next to the

1The CFL condition requires that U < 
x/
t , where U is the

characteristic velocity of the flow, and 
x and 
t are the grid spacing

and the time step size, respectively, both of which are free parameters

to be chosen. For the LBE, the incompressibility condition requires

that U/cs < Ma∗, where Ma∗ ≈ 0.3 is the approximate upper bound

of the Mach number, that is, U < (Ma∗/
√

3)δx/δt . Therefore, the

Mach number limit in the LBE can be seen in the way similar to

the CFL condition. However, it is important to stress that the CFL

condition and the Mach number limit are not equivalent.
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boundary or on the boundary nodes, special consideration must

be given because the distance between the last fluid nodes and

the boundary is only δx/2 as opposed to δx (cf. the discussion

in Sec. II B). For the fluid nodes next to the left boundary

x = 0, that is, ∀ (x1, yj ) 1 � j = N , the following formula is

used:

∂xu(x1, yj ) ≈
1

3
[u(x2, yj ) + 3u(x1, yj ) − 4u(x0, yj )], (26)

where (x0, yj ) denotes a node on the left wall x = 0. Note that

the velocity u is specified by the BCs at the boundaries; thus,

the above formula can be simplified to

∂xu(x1, yj ) ≈
1

3
[u(x2, yj ) + 3u(x1, yj )],

because u(x = 0, y) = 0. Similar formulas can be devised for

the right, top, and bottom boundaries. On the boundary, we

use Tom’s formula to compute the vorticity:

ω(x0, yj ) = 2v(x1, yj ), (27a)

ω(xi, y0) = 2u(xi, y1), (27b)

ω(xN+1, yj ) = −2v(xN , yj ). (27c)

ω(xi, yN+1) = 2[U − u(xi, yN )]. (27d)

At the four corners, we simply compute the vorticity as the

following:

ω(x0, y0) = ω(xN+1, y0) = 0, (28a)

ω(x0, yN+1) = ω(xN+1, yN+1) = 2U. (28b)

B. General flow features

We first compare the pressure p(x, y), the stream function

ψ(x, y), and vorticity ω(x, y) obtained by the PS and LB

methods. We found that, in many cases, the results obtained

by the MRT-LB and TRT-LB schemes are very close to

each other; so are those obtained by the LBGK and ELBE

schemes. Therefore, we only show the MRT-LB and ELBE

results unless otherwise stated. For the PS method [18], the

number of collocation points in each dimension is N = 96,

and the mesh size for the LB simulations presented in this

section is Nx × Ny = 1292 unless otherwise stated. In LB

simulations, we always use an odd number of grid points in

each dimension to reduce the oscillations due to the spurious

conserved quantities [46,47].

In Fig. 1, we show p, ψ , and ω with Re = 100 (τ = 0.887

and 1/sq ≈ 0.984 496 125) obtained by the PS method and

the MRT-LB and ELBE schemes. The fields of p, ψ , and ω

are normalized by U 2, UL, and U/L, respectively, where U is

the sliding velocity of the top boundary and L = Nxδx = Nx is

the dimension of the cavity in the lattice units of δx = δt = 1.

The flow fields obtained by the MRT-LB and ELBE schemes

are very close to the PS-MG results in terms of vorticity

locations and general features of p, ψ , and ω.

When the Reynolds number Re is increased to Re =
400 (τ = 0.596 75 and 1/sq ≈ 2.437 984 495), as shown in

Fig. 2, the pressure field p and the vorticity field ω obtained

by using the ELBE scheme start to oscillate in the upper-left

corner, while those obtained by the MRT-LB and TRT-LB

schemes remain close to the PS results without oscillations.

The oscillations in the ELBE simulations are, in part, due to

the fact that there is insufficient dissipation to the higher-order

moments in the model. This is evident because the results

obtained by using the TRT-LB scheme do not exhibit any

oscillation; that is, a larger dissipation to the heat flux modes

(qx, qy) is sufficient to prevent the oscillation.

When the Reynolds number Re is further increased to Re =
1000 (τ = 0.5387 and 1/sq ≈ 5.344 961 24), as shown in

Fig. 3, the oscillations in both the pressure field p and

the vorticity field ω obtained by using the ELBE scheme

become quite severe, for lack of sufficient dissipation to the

higher-order moments, while the results obtained by both the

MRT-LB and the TRT-LB schemes remain free of oscillations

and close to the PS solutions.

We observe that the general features in the vorticity fields

obtained by both the TRT-LB and the MRT-LB schemes agree

with the PS results better than the pressure field p does.

This is expected because the pressure field p in the LBE

is not solved as accurately as the velocity field u [29]. To

make a closer examination of the oscillations in p and ω

observed in the ELBE and LBGK schemes, we also carry

out simulations at Re = 1000 with a larger mesh size of

N2 = 2572 (τ = 0.5771). In Fig. 4 we show the pressure

field p and the vorticity field ω in the small area at the upper

left corner (x, y) ∈ [0, 0.1] × [0.9, 1.0] where the ELBE and

LBGK simulations oscillate severely. Because the results of the

ELBE and LBGK schemes are so similar to each other, only

the results obtained by using the ELBE scheme are shown

in Fig. 4. We found that the ELBE scheme does not reduce

the oscillations in the simulation; consequently, it does not

improve the numerical stability of the LBGK scheme, which

are discussed further later. The results obtained by the TRT-LB

and MRT-LB schemes are very close to each other and much

closer to the PS results (which are not shown in the figure,

but are discussed later). We note that the LB schemes are only

first-order accurate for the pressure field p [29]. Thus, the

pressure field obtained by using the LB schemes is expected

to be significantly different from the PS solution. We also note

that the vorticity field obtained by using the ELBE and LBGK

schemes is less oscillatory than the pressure fields.

We compile in Tables I and II, respectively, the positions

of the primary and two secondary vortices, as well as the

intensities of the pressure p, the stream function ψ , and the

vorticity ω at the vortex centers, which are determined by

the locations of local extrema of the stream function ψ . In

these tables, we also include the data obtained by using the PS

methods [17,18]. For the data obtained by a PS method [18],

the flow fields are interpolated to a very fine, equispaced mesh

with the grid spacing of 10−6L, and the vortex centers and

their intensities are found on the fine mesh. In the Tables I

and II, blank entries indicate the results obtained by using the

LB methods which have at least six significant digits identical

to that obtained by using the MRT-LBE with the same mesh

size. For example, in Table I, in the case of Re = 100 with

N = 513, the results obtained by using the TRT-LBE agree

with that obtained by the MRT-LBE in at least six significant

digits; thus, the entries corresponding to the TRT-LB results

are left blank in the table. Note that for the LB results, the

vortex centers are determined by finding extrema of the stream

function ψ on grid points; thus, the error in the vortex centers

is of the order O(1/N ).
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FIG. 1. Re = 100. From left to right: contours of pressure p, stream function ψ , and vorticity ω. From top: the PS-MG method (N = 96)

and the MRT-LB and ELBE schemes (Nx × Ny = 1292). Solid and dashed lines denote contours of positive and negative values, respectively.

Clearly, the positions of the primary and secondary vortex

centers obtained by the LB schemes are identical in most

cases, and the difference is only one grid spacing δx = 1/N

at most. The LB results for the vortex positions also agree

with those obtained by using PS-MG methods [17,18]. The

intensities of p, ψ , and ω at the vortex centers obtained by

using different methods agree well with each other for the

given mesh resolution. For the primary vortex, the intensities

of both the stream function ψ and the vorticity ω at the vortex

center have agreement of three significant digits, while the

pressure p obtained by using the LB schemes only achieves

one or two digits agreement with the PS-MG data, and the

discrepancy in p clearly grows as Re increases. The errors in

the LB results are consistent with the density fluctuation in

the system, which is a measure of the compressibility effect

in the system. The values of ω, ψ , and p at the primary

vortex center are of the order O(1), O(10−1), and O(10−2),

respectively. With U = 0.1c and Ma = 0.1/
√

3 ≈ 0.1732, the

compressibility effect is of the order O(Ma2) = O(10−3),

which is not negligible when compared with the intensity of

p at the vortex centers. A more quantitative discussion of the

compressibility effect will be deferred to Sec. III D.

The sizes of the secondary vortices are much smaller than

that of the primary one, and the intensities of p, ψ , and ω

at the secondary vortex centers are significantly weaker than

those at the primary vortex center, especially at low Reynolds

numbers. For example, with Re = 100, at the center of the

secondary vortex at the lower-right corner, the intensities of

p, ψ , and ω are weaker than their counterparts at the primary

vortex center by a factor about 4, 104, and 102, respectively, and

the vortex at the lower-left corner is even smaller and weaker.

Nevertheless, the LB simulations are able to quantitatively

capture the general flow features.

With Re = 1000, a tertiary vortex appears at the

lower-right corner, which can be accurately captured

by the PS method with at least five significant digits
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FIG. 2. Re = 400. Similar to Fig. 1.

(cf. Table 14 in [17]). Both the MRT-LB and the TRT-

LB schemes can capture the tertiary vortex with a resolu-

tion of N = 129, but not the ELBE and LBGK schemes.

However, with a higher resolution of N = 257, all the

LB schemes can capture the tertiary vortex, as shown in

Fig. 5. We note that the stream function ψ obtained by using

the PS-MG method [18] exhibits high-frequency oscillations

near the right wall, which affects the results of the tertiary

vortex. We tabulate the results for the tertiary vortex in

Table III. The values of p, ψ , and ω of the PS-MG method [18]

given in Table III are estimated by using data probing tool

of Tecplot, which is used to generate the contour plots of

Fig. 5. We note that the stream function ψ at the tertiary vortex

center is extremely weak—it is of the order O(10−8). With the

resolution of N2 = 2572, the intensities of ψ at the tertiary

vortex center obtained by both the MRT-LB and the TRT-LB

schemes are about 20% weaker than the very accurate value

obtained by using a PS-MG method [17], while the result of

the ELBE scheme is weaker than the PS-MG result by a factor

of about 5. It is remarkable that the LB schemes can capture the

tertiary vortex at all, in spite of its minuscule extent and weak

intensities.

C. Flow fields near the boundary

In the previous section, we show that all LB schemes can

capture general flow features of the flow, such as locations

and intensities of primary and secondary vortices. We observe

that the pressure fields near the top sliding lid obtained with

the TRT-LB and MRT-LB schemes differ from each other,

indicating the effects of the relaxation rates se and sε on the

pressure field p. This is conceivable because se directly affects

the dissipation of the acoustics (pressure waves) in the system,

while sε affects it indirectly through a higher-order moment ε.

There are only two adjustable relaxation rates in the MRT-

LB scheme: se and sε; the other two relaxation rates, sν and sq ,
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FIG. 3. Re = 1,000. Similar to Fig. 1.

are fixed by the Reynolds number Re [cf. Eq. (23)] and the BCs

[cf. Eq. (11)], respectively. We fix se = sv = 1/τ and vary sε in

the following test. In addition to the case of sε = 1.54, which

is the value used throughout this study unless otherwise stated,

we also use sε = 1.9. In Fig. 6 we show the contour plot of the

pressure field p and the vorticity field ω at the upper-left corner

(x, y) ∈ [0, 0.3] × [0.7, 1.0] obtained by using the MRT-LBE

with the resolution of N2 = 1292 and two different values of

the relaxation rate se = 1.64 and se = sv , and compared them

with the TRT-LB and PS-MG results [18]. Bear in mind that

in the TRT-LB scheme, se = sε = sν . Because the MRT-LB

results for sε = 1.54 and 1.9 are very close to each other, only

the case of sε = 1.54 is shown in Fig. 6. Clearly, the relaxation

rate se has no observable effect on the vorticity ω, but it affects

the pressure p significantly. With se = 1.64, the contours of the

pressure p near the top wall all exhibit a kink, which disappears

with se = sv and with the TRT setting (se = sε = sν). Our tests

indicate that the pressure p is affected significantly by se and

very little by sε.

To further investigate the pressure field near the wall, we

show in Fig. 7 the pressure field near the top and the left walls

at the fluid nodes adjacent to the boundary, for the case of

Re = 1000. The fluid nodes adjacent to the top driving lid and

the left wall are located at y = δx(1 − 1/2N ) and x = δx/2N ,

respectively; we assume that the no-slip BCs are satisfied

at the line δx/2 beyond the last fluid nodes, as discussed in

Sec. II B. It can be seen clearly that, when N = 65, the pressure

field p obtained by using the MRT-LBE with se = 1.64 has a

kink near the top-left corner, where the velocity field is singular

mathematically, while the pressure obtained with the TRT-LBE

does not exhibit the kink. The kink may indicate that, with

the particular choice of se = 1.64, the pressure field obtained

by using the MRT-LBE oscillates near the top wall with a

very short wavelength of about two grid spacings; and the
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TABLE I. The center location (x, y), pressure p, stream function ψ , and vorticity ω of the primary vortex.

N (x, y) p ψ ω

Re = 100

PS 96 (0.615 753, 0.737290) −0.077 912 93 −0.103 521 3 −3.168 830

65 (0.623 077, 0.746154) −0.077 359 −0.103 303 −3.260 493

129 (0.616 279, 0.740 310) −0.077 366 −0.103 483 −3.182 492

MRT 257 (0.616 732, 0.737 354) −0.077 146 −0.103 514 −3.175 132

513 (0.615 010, 0.737 817) −0.077 238 −0.103 519 −3.162 855

65 −0.077 354 −0.103 300 −3.260 376

129 −0.077 364 −0.103 482 −3.182 455

TRT 257 −0.077 145 −3.175 125

513

65 −0.077 528 −0.103 383 −3.273 133

129 −0.077 305 −0.103 442 −3.189 044

ELBE 257 −0.077 029 −0.103 444 −3.180 179

513 −0.077 112 −0.103 444 −3.167 593

65 (0.607 692, 0.730 769) −0.076 922 −0.103 434 −3.096 890

129 −0.077 379 −0.103 490 −3.182 824

LBGK 257 −0.077 106 −0.103 494 −3.174 138

513 −0.077 187 −0.103 493 −3.161 545

Re = 400

PS 96 (0.554 100 3, 0.605 413 4) −0.078 063 43 −0.113 9895 −2.292 390

65 (0.561 538, 0.607 692) −0.076 940 −0.113 061 −2.286 839

129 (0.554 264, 0.608 527) −0.077 554 −0.113 838 −2.295 671

MRT 257 (0.554 475, 0.605 058) −0.077 635 −0.113 958 −2.295 325

513 (0.554 581, 0.605 263) −0.077 642 −0.113 983 −2.294 973

65 −0.077 077 −0.113 144 −2.288 611

129 −0.077 558 −0.113 841 −2.295 716

TRT 257 −2.295 318

513 −0.077 641 −2.294 971

65 −0.078 043 −0.114 145 −2.309 413

129 −0.077 920 −0.114 031 −2.305 663

ELBE 257 −0.077 847 −0.114 000 −2.303 388

513 −0.077 822 −0.113 994 −2.302 593

65 −0.077 889 −0.114 159 −2.302 237

129 −0.077 742 −0.114 022 −2.298 109

LBGK 257 −0.077 669 −0.113 991 −2.295 796

513 −0.077 644 −0.113 985 −2.295 001

Re = 1000

PS1 160 (0.5318, 0.5652) — −0.118 9366 −2.067 753

PS 96 (0.530 781 8, 0.565 232 5) −0.081 441 73 −0.118 959 58 −2.068 611 8

65 (0.530 769, 0.561 538) −0.070 758 −0.115 683 −2.031 164

129 (0.531 008, 0.562 016) −0.073 607 −0.118 406 −2.063 210

MRT 257 (0.531 128, 0.562 257) −0.074 010 −0.118 843 −2.067 339

513 (0.531 189, 0.566 277) −0.074 069 −0.118 919 −2.067 664

65 −0.071 975 −0.116 587 −2.047 911

129 −0.073 711 −0.118 486 −2.064 605

TRT 257 −0.074 014 −0.118 846 −2.067 397

513 −2.067 661

129 −0.074 672 −0.119 253 −2.081 538

ELBE 257 −0.074 461 −0.119 117 −2.077 452

513 −0.074 422 −0.119 098 −2.076 384

129 −0.074 361 −0.119 115 −2.073 356

LBGK 257 −0.074 134 −0.118 964 −2.069 077

513 −0.074 092 −0.118 942 −2.067 992
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TABLE II. The location (x, y), pressure p, stream function ψ , and vorticity ω of the secondary vortices.

N Lower-left secondary vortex Lower-right secondary vortex

Re = 100

(x, y) p × 102 ψ × 106 ω × 102 (x, y) p × 102 ψ × 105 ω × 102

PS 96 (0.033 586, 0.034 560) 1.590 806 1.702 429 1.198 286 (0.943 043, 0.062 727) 1.935 636 1.273 8424 3.279 431

65 (0.038 462, 0.038 462) 1.6287 1.463 627 1.7232 (0.946 154, 0.069 231) 2.0320 1.226 275 3.4998

129 (0.034 884, 0.034 884) 1.6424 1.787 060 1.4701 (0.941 860, 0.065 891) 2.0545 1.252 207 3.8814

MRT 257 (0.036 965, 0.033 074) 1.6433 1.781 289 1.5448 (0.943 580, 0.064 202) 2.0585 1.269 040 3.6066

513 (0.034 113, 0.034 113) 1.6470 1.793 627 1.4478 (0.942 495, 0.061 404) 2.0632 1.271 244 3.4830

65 1.462 137 1.7231 2.0318 1.225 926 3.4999

129 1.786 233 1.4700 2.0544 1.252 060 3.8813

TRT 257 1.781 069 1.269 009

513 1.793 598 1.271 239

65 (0.023 077, 0.038 462) 1.6508 1.037 024 0.4740 2.0366 1.110 408 3.4176

129 1.6405 1.750 346 1.4632 2.0451 1.251 772 3.8433

ELBE 257 1.6372 1.854 699 1.5466 2.0458 1.292 095 3.5831

513 (0.034 113, 0.036 062) 1.6411 1.894 922 1.5839 (0.942 495, 0.063 353) 2.0477 1.300 282 3.6342

65 (0.023 077, 0.038 462) 1.6540 1.040 556 0.4753 2.0469 1.103 691 3.4493

129 1.6435 1.756 372 1.4675 2.0553 1.245 085 3.8778

LBGK 257 1.6402 1.861 059 1.5512 2.0560 1.287 105 3.6159

513 (0.034 113, 0.036 062) 1.6441 1.901 394 1.5886 (0.942 495, 0.063 353) 2.0579 1.295 183 3.6673

Re = 400

(x, y) p × 102 ψ × 105 ω × 102 (x, y) p × 102 ψ × 104 ω × 10

PS 96 (0.0507 581, 0.0473 733) 3.561 592 1.411 438 6.095 086 (0.8854 916, 0.1223 319) 2.868 448 6.445 330 4.498 006

65 (0.053 846, 0.038 462) 3.547 8 1.276 588 3.717 3 (0.884 615, 0.130 769) 2.867 6 6.380 941 4.808 69

129 (0.050 388, 0.050 388) 3.610 7 1.409 211 6.150 6 (0.887 597, 0.127 907) 2.928 6 6.434 737 4.636 41

MRT 257 (0.048 638, 0.048 638) 3.621 4 1.425 964 5.638 0 (0.885 214, 0.122 568) 2.954 1 6.441 301 4.529 44

513 (0.051 657, 0.047 758) 3.621 8 1.431 790 6.022 8 (0.885 965, 0.121 832) 2.957 2 6.444 459 4.451 15

65 3.554 7 1.280 803 3.714 0 2.867 9 6.415 618 4.796 49

129 3.610 9 1.409 436 6.150 7 2.928 7 6.435 241 4.636 39

TRT 257 3.621 3 1.425 921 5.638 0 2.954 0 6.441 246 4.529 41

513 1.431775 6.0227 6.444 444 4.451 14

65 3.630 4 0.898 6897 3.615 4 2.928 4 6.121 705 4.784 54

129 3.625 0 1.315 058 6.088 0 2.923 3 6.409 993 4.564 71

ELBE 257 3.623 0 1.394 593 5.589 7 2.936 0 6.459 935 4.45056

513 3.620 6 1.412 064 5.972 9 (0.884 016, 0.121 832) 2.939 2 6.473 385 4.490 90

65 3.633 8 0.911 727 5 3.644 8 2.950 7 6.079 209 4.870 65

129 3.626 6 1.333 206 6.139 3 2.944 2 6.377 187 4.646 69

LBGK 257 3.6244 1.412 786 5.635 9 2.957 0 6.430 523 4.531 12

513 3.622 0 1.430 911 6.022 6 2.957 4 6.443 752 4.451 23

Re = 1000

(x, y) p × 102 ψ × 104 ω × 10 (x, y) p × 102 ψ × 103 ω

PS1 160 (0.0833, 0.0781) — 2.334 528 3.255 861 (0.8640, 0.1118) — 1.729 717 1.109 789

PS 96 (0.083 276, 0.078 090) 3.846 69 2.334 089 3.544 582 (0.864 045, 0.111 815) 2.815 128 1.730 292 1.110 800

65 (0.084 615, 0.069 231) 4.2328 2.039 721 2.644 40 (0.869 231, 0.115 385) 3.3005 1.702 777 0.993 187

129 (0.081 395, 0.081 395) 4.4558 2.278 163 3.584 90 (0.864 341, 0.112 403) 3.5013 1.730 337 1.086 797

MRT 257 (0.083 658, 0.079 767) 4.4860 2.320 909 3.655 99 (0.861 868, 0.110 895) 3.5468 1.729 997 1.124 101

513 (0.082 846, 0.078947) 4.4915 2.331 772 3.55657 (0.864 522, 0.112086) 3.5500 1.729 537 1.103 888

65 4.3129 2.069 050 2.66191 (0.853 846, 0.100 000) 3.3656 1.688 924 0.984 722

129 4.4626 2.282 009 3.587 87 3.5043 1.731 326 1.085 883

TRT 257 4.4862 2.321 087 3.656 14 3.5469 1.730 064 1.124 103

513 4.4914 2.331 765 3.556 56 1.729 533 1.103 887

129 4.5203 2.212 502 3.581 11 3.5382 1.705 555 1.074 814

ELBE 257 4.5064 2.268 905 3.635 86 3.5396 1.718 036 1.104 222

513 4.5044 2.284222 3.53476 3.5367 1.720 601 1.111 817

129 4.5106 2.260 153 3.605 05 3.5573 1.713 561 1.096 735

LBGK 257 4.4954 2.316 249 3.659 19 3.5577 1.725 431 1.126 455

513 4.4932 2.330 706 3.557 06 3.5522 1.728 455 1.104 395
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FIG. 4. The pressure field p (two figures on the left) and the vorticity field ω (two figures on the right) at the upper left corner (x, y) ∈
[0, 0.1] × [0.9, 1.0], Re = 1000. From left to right: p obtained using the PS method (N = 96) and the ELBE scheme (N2 = 2572) and ω

obtained using the PS method and the ELBE scheme.

oscillations quickly attenuate. We observe that, with the choice

of se = sv and sε = 1.54 (or 1.9), the kink in the pressure

field near the top wall disappears completely. Note that, for

Re = 1000, both the ELBE and LBGK schemes diverge with

the resolution N = 65. For N = 129 and 257, the pressure

field obtained with the ELBE exhibits strong oscillations near

the top-left corner, and the magnitude of the oscillations is

reduced as N increases while the Reynolds number is fixed.

This is understandable because with Re fixed, the value of τ

increases linearly as N increases, and so do the viscosity ν

and the dissipation to the density fluctuations in the system, as

indicated by Eq. (23).

We also study the velocity field u and its gradient ∇u near

the walls. In Fig. 8 we show the gradient of the tangential

velocity u along the transverse direction, ∂yu(x, y), and the

transverse velocity v(x, y) for Re = 1000 at the fluid nodes

adjacent to the driving lid, that is, y = (1 − 1/2N ), for N =
65, 129, and 257. Instead of showing u(x, y) near the top wall,

we choose to show ∂yu(x, y) for it illustrates more clearly

the differences between the results obtained by using different

methods. The tangential velocity near the top wall, u, has a

very sharp gradient in the y direction near the top corners,

which are captured by the MRT-LB and TRT-LB schemes,

and as the resolution N increases, the velocity fields obtained

by the MRT-LB and TRT-LB schemes agree with the PS-MG

result better and better. The velocity field obtained by using the

ELBE oscillates severely near the wall. Similar to the pressure

field, oscillations are weakened as N increases.

In Fig. 9 we show ∂v(x, y)/∂x and u(x, y) near the left wall

at x = δx/2N for N = 65, 129, and 257. Similar to the results

shown in Fig. 8, the velocity field u obtained by using the

ELBE scheme exhibits oscillations near the top-left corner,

while the velocity field obtained by using the MRT-LB and

TRT-LB schemes does not show any oscillation.

It should be emphasized that, for the ELBE and LBGK

schemes with one relaxation time and the BB-type of BCs,

it is impossible to achieve converging results as the mesh is

refined because of inaccurate BCs. The inaccurate BCs can

lead to severe adverse effects (cf., e.g., [48]). To substantiate

this point, we compute the positions where the no-slip

BCs are satisfied in the simulations in the middle one-third

sections of the left (L), bottom (B), and right (R) walls;

that is, we compute the distance δ between the last fluid

nodes to the locations where u = 0, which is derived from

Eq. (19b):

δ =
1

2
+

√

H 2
1/2 + 4
2 − 1 − H1/2. (29)

For the Poiseuille flow, 
 = 1/2; thus, δ = δx/2 exactly. We

use a parabola to fit the velocity tangential to a wall with three

points adjacent to the boundary and on the grid line normal to

the wall. The least-square fitted parabola is then extrapolated to

find the position where the tangential velocity is equal to zero.

We observe that in the middle one-third section of the walls,

the tangential velocity is at least two orders of magnitude larger

than the transverse velocity. In the ideal situation, that is, the

+

+ +

+

FIG. 5. (Color online) The stream function ψ at the lower-right corner (x, y) ∈ [0.98, 1] × [0, 0.02], Re = 1000. From left to right: PS-MG

method (N = 96) [18], MRT-LBE, TRT-LBE, and ELBE (N = 257). The tertiary vortex is clearly seen. The straight horizontal and vertical

lines are the grid lines. The symbol “+” marks the approximated position of the tertiary vortex center.
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FIG. 6. The pressure field p (top) and the vorticity field ω (bottom) at the upper-left corner (x, y) ∈ [0, 0.3] × [0.7, 1.0], Re = 1000. From

left to right: the PS-MG method (N = 96) [18], the MRT-LBE with se = 1.64 and se = sv , and the TRT-LBE (N = 129).

Poiseuille flow, δ = δx/2. We fix the mesh size N2 = 652 and

1292 and vary the value of the viscosity ν (or the relaxation

parameter τ ). The results are summarized in Table IV.

In Table IV we present the mean value δ̄, the maximum

value δM, and the minimum value δm, of δ along the left

(L), bottom (B), and right (R) walls. Clearly, the value of δ

computed by using the MRT-LB and TRT-LB schemes varies

very little—at the worst scenario the value of δ deviates from

δx/2 less than 6%. In contrast, the value of δ obtained by

using the ELBE and LBGK schemes can be greater than 3.7δx ,

which is more than three grid spacings away from the assumed

boundary location.

To further illustrate the inaccuracy of the ELBE and LBGK

schemes with the BB BCs, we use the following formula [34]

to fit the tangential velocity along center lines of the cavity,

ui =
4U∗

N2
∗

i(N∗ − i) + Us, (30a)

Us =
2U∗

3N2
∗

[(2τ − 1)(4τ − 3) − 3N∗] , (30b)

TABLE III. The center location (x, y), pressure p, stream function

ψ , and vorticity ω of the tertiary vortex at the lower-right corner.

N (x, y) p × 102 ψ × 108 ω × 103

PS1 160 (0.992 32, 0.007 65) — −5.03944 —

PS 96 (0.989 13, 0.005 34) 2.84 −6.00 8.91

129 (0.996 12, 0.003 87) 3.51 −0.976 0.674

MRT 257 (0.994 16, 0.009 72) 3.55 −4.03 4.84

129 (0.996 12, 0.003 87) 3.52 −0.781 0.606

TRT 257 (0.994 16, 0.009 72) 3.56 −4.07 4.91

ELBE 257 (0.994 16, 0.005 83) 3.55 −0.937 0.535

where U∗ and N∗ are the effective maximum velocity and

channel width, respectively, which are to be determined by the

least-square fitting. For the MRT-LB and TRT-LB schemes,

the corresponding formula is

ui =
4U∗

N2
∗

(i − 1/2)(N∗ + 1/2 − i). (31)

We use a small mesh of size N2 = 332 and τ = 3.0, which

means very small Reynolds number. The tangential velocities

along the horizontal center line (y = 1/2) near the left wall

(x = 0) and along the vertical center line (x = 1/2) near the

bottom wall (y = 0) are fitted with Eqs. (30a) and (31). The

results are shown in Fig. 10.

The results shown in Fig. 10 indicate that, when the flow

is laminar, the tangential velocity near the wall is accurately

represented by a parabola when the transverse velocity is small

enough, that is, when the location is sufficiently away from the

corners so the nonlinear term u·∇u is sufficiently small. The

result also suggests that, with U and Re fixed, the velocity

field obtained by using the ELBE or LBGK scheme with the

BB BCs will not converge when the resolution N increases.

This is because τ increases linearly with N [cf. Eq. (23)], and

for the SRT collision models with the BB BCs, 
 = 12ν2 =
12(NU/Re)2 [cf. Eq. (19b)]; therefore, the location where

u = 0 is satisfied will move further and further away from the

last fluid nodes as N increases.

To further substantiate this point, we compute the τ

dependence of the slip velocity Us on the boundary node at the

center of the bottom wall by using the ELBE scheme with

N = 33. For a given value of τ , we can fit the velocity

tangential to the wall with a parabola which includes two

parameters, the effective maximum velocity U∗ and the

effective channel width N∗, as the results shown in Fig. 10.
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FIG. 7. (Color online) The pressure field near the top (top row) and the left (bottom row) walls, Re = 1000.

The velocity profile is then extrapolated to the boundary node

to obtain the effective slip velocity Us, which is compared

with the value of Us computed from Eq. (30b). As shown in

Fig. 11, clearly, the τ dependence of Us/U∗ in the cavity flow

is well predicted by Eq. (30b), which is exact for the Poiseuille

flow. Therefore, to achieve convergence by using the SRT-LB

schemes, that is, the ELBE and LBGK schemes, with the BB

BCs, one must maintain a constant ν with a fixed Re in order

to control the error due to inaccurate BCs, which means the

product UN must be kept as a constant so U must decrease

as 1/N when the resolution N increases. Consequently, the

number of iterations for the SRT-LB schemes to attain steady

state would grow as ReN2, as opposed to ReN/U for the

MRT-LB schemes with U kept as a constant.
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FIG. 8. (Color online) The velocity field u = (u, v) at the last fluid nodes located at y = 1 − 1/2N and adjacent to the top wall, Re = 1000.

∂u(x, y)/∂y (top row) and v(x, y)/U (bottom row) at (from left to right) y = 129/130, y = 257/258, and y = 513/514.
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FIG. 9. (Color online) The velocity field at the last fluid nodes located at x = 1/2N and adjacent to the left wall, Re = 1000. (Top row)

∂v(x, y)/∂x and (bottom row) u(x, y) at (from left to right) x = 1/130, x = 1/258, and x = 1/514.

Our results shown in Table IV and Figs. 10 and 11

unequivocally demonstrate that the so-called slip velocity Us

obtained by using the ELBE and LBGK schemes is merely

a numerical artifact of these models due to their inaccurate

BCs. The slip velocity obtained by using any scheme based

on the SRT model, such as the ELBE and LBGK ones, cannot

converge as N increases with fixed Re, Ma, and Kn; hence, it is

N dependent. In fact, for most ELBE and LBGK simulations

of flow through a microchannel [35–37,49], the resolution

N is indeed used as a fitting parameter, and such results are

erroneous and flawed, as pointed out previously [38,39,41,50].

On the other hand, the MRT-LBE is free of the inherent defects

of the SRT model and is capable of reproducing convergent

results [41].

D. Accuracy and convergence

We now study the convergence behavior of the LB schemes.

For the Reynolds number Re = 100, 400, and 1000, the mesh

resolutions, N2, used for the LB simulations are 652, 1292,

2572, and 5132. We first compute the total energy E and the

total enstrophy Z of the system:

E =
1
2

∫

�
‖u(x)‖2 dx
∫

�
dx

=
1
2

∑

i ‖u(xi)‖2

N2
, (32a)

Z =
1
2

∫

�
ω2(x) dx

∫

�
dx

=
1
2

∑

i ω
2(xi)

N2
, (32b)

where � is the entire flow domain, and both the velocity u

and the vorticity ω have been properly normalized by U and

L/U , respectively. We also compute the L2-normed error for

the velocity field, uN (xi), obtained by using an LB scheme

with a given mesh resolution N2,

E2(uN ) :=
∑

i ‖uN (xi) − u∗(xi)‖2
∑

i ‖u∗(xi)‖2

, (33)

where u∗(xi) denotes the reference field. Two reference fields

are used: the LB solution obtained with the largest mesh

resolution of N = 513 and the PS-MG solution with N = 96.
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FIG. 10. (Color online) The tangential ve-

locities near the bottom wall (left) and the right

wall (right), N 2 = 333 and τ = 3.0. The symbols

are data obtained in simulations, and the dash-

dotted and solid lines correspond to Eqs. (30a)

and (31), respectively. The straight dashed lines

mark the assumed locations of the bottom wall

x = 0 and the right wall y = 1.
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TABLE IV. The distance (δ) of the last fluid node to the boundary wall, where u = 0. L, B, and R indicate the left, bottom, and right wall,

respectively. δ̄, δM, and δm denote the averaged, maximum, and minimum values of δ in the middle one-third of a wall, respectively.

τ = 0.55 τ = 1.0 τ = 3.0 τ = 5.0

δ̄ δM δm δ̄ δM δm δ̄ δM δm δ̄ δM δm

N 2 = 652

L 0.5039 0.5076 0.4979 0.4993 0.4996 0.4985 0.4986 0.4989 0.4980 0.4985 0.4989 0.4977

MRT B 0.5047 0.5084 0.4985 0.5023 0.5026 0.5017 0.5021 0.5024 0.5016 0.5021 0.5024 0.5016

R 0.4774 0.4789 0.4719 0.4970 0.4974 0.4964 0.4982 0.4984 0.4979 0.4984 0.4987 0.4980

L 0.5035 0.5063 0.4985 0.4992 0.4996 0.4983 0.4983 0.4986 0.4975 0.4982 0.4985 0.4973

TRT B 0.5043 0.5075 0.4988 0.5025 0.5028 0.5019 0.5024 0.5027 0.5020 0.5024 0.5027 0.5019

R 0.4810 0.4824 0.4742 0.4966 0.4970 0.4960 0.4979 0.4981 0.4976 0.4980 0.4982 0.4976

L 0.4838 0.5035 0.4783 0.5024 0.5030 0.5007 0.8748 1.1081 0.7056 2.6185 3.7490 1.9473

ELBE B 0.4983 0.5152 0.4934 0.5052 0.5057 0.5040 0.7535 0.7683 0.7243 1.3025 1.3169 1.2678

R 0.5070 0.5585 0.4745 0.4985 0.5004 0.4966 0.8928 1.1051 0.7356 2.7151 3.6252 2.1112

L 0.4838 0.5034 0.4783 0.5024 0.5030 0.5007 0.8748 1.1086 0.7053 2.6174 3.7351 1.9495

LBGK B 0.4979 0.5138 0.4932 0.5051 0.5058 0.5042 0.7537 0.7685 0.7246 1.3027 1.3171 1.2682

R 0.5069 0.5580 0.4745 0.4984 0.5004 0.4965 0.8923 1.1045 0.7353 2.7225 3.6500 2.1121

N 2 = 1292

L 0.5010 0.5039 0.4975 0.5000 0.5001 0.4996 0.4996 0.4998 0.4993 0.4996 0.4997 0.4993

MRT B 0.5015 0.5043 0.4973 0.5006 0.5010 0.5001 0.5006 0.5008 0.5002 0.5006 0.5009 0.5003

R 0.4896 0.4919 0.4617 0.4988 0.4990 0.4983 0.4994 0.4995 0.4991 0.4995 0.4996 0.4992

L 0.5009 0.5033 0.4980 0.5000 0.5002 0.4996 0.4996 0.4997 0.4993 0.4995 0.4997 0.4993

TRT B 0.5014 0.5036 0.4977 0.5007 0.5010 0.5003 0.5007 0.5010 0.5003 0.5006 0.5009 0.5004

R 0.4909 0.4933 0.4642 0.4987 0.4990 0.4981 0.4993 0.4994 0.4991 0.4994 0.4995 0.4992

L 0.4886 0.4984 0.4848 0.5018 0.5021 0.5011 0.6369 0.6981 0.5754 1.0796 1.4689 0.8005

ELBE B 0.4982 0.5113 0.4922 0.5020 0.5025 0.5014 0.6366 0.6466 0.6140 0.9287 0.9546 0.8688

R 0.5387 0.8978 0.4899 0.4986 0.5003 0.4968 0.6115 0.6911 0.5439 1.0715 1.4629 0.7890

L 0.4886 0.4985 0.4848 0.5019 0.5021 0.5012 0.6367 0.6978 0.5754 1.0794 1.4690 0.8003

LBGK B 0.4979 0.5114 0.4919 0.5020 0.5025 0.5014 0.6367 0.6468 0.6138 0.9290 0.9549 0.8694

R 0.5385 0.9117 0.4898 0.4987 0.5003 0.4971 0.6112 0.6907 0.5435 1.0709 1.4626 0.7884

When the PS-MG solution is used as the reference solution,

it is interpolated to the equispaced mesh of size N2 used in

the LB simulations. The above formula can also be applied

to the vorticity and pressure fields. We can also estimate the

convergence speed α as the following:

α ≈
ln [E2(uM )/E2(uN )]

ln(N/M)
, (34)

τ
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FIG. 11. (Color online) The τ dependence of the tangential

velocity Us at the boundary node at the center of the bottom wall.

N 2 = 332. The symbols and the solid line are data obtained by using

the ELBE scheme and Eqs. (30a), respectively.

where E2(uM ) and E2(uN ) are the errors with the resolution

M and N , respectively. In what follows, we use the errors with

two largest meshes to compute α.

When computing the total energy E and the total enstrophy

Z, the integrations of u·u/2 and ω2/2 are carried out over the

entire flow domain � or only the fluid nodes, that is, excluding

the boundary ∂�. When the boundary ∂� is included in the

integration, the integrand is weighted with a factor of 1/2 and

1/4 at ∂� and the four concerns, respectively, because the

boundary is only δx/2 away from the nearest fluid nodes. The

Clenshaw-Curtis quadrature formula for integration is used to

compute E and Z from the flow field obtained by using PS-MG

method [18].

In Table V we present the total energy E integrated over

� and �\∂�. Several observations can be made. First of

all, the value of E computed on the entire flow domain �

decreases monotonically as N increases, while the value of

E computed on fluid nodes alone, that is, on �\∂�, increases

monotonically, hence providing the upper and lower bounds of

E, respectively. The lower and upper bounds obtained by the

LB schemes with N = 513 have two or three significant digits

agreeing with the PS-MG values, and the lower bounds are

generally closer to the PS-MG values. This clearly indicates

that the BCs have considerable influence on the value of E.

Second, the lower and upper bounds of E converge differently.

The convergence speed for the upper bounds is about 1.0,

independent of the LB scheme, as shown by the left panel of
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TABLE V. The total energy E on the entire flow domain � or only the interior, that is, the flow domain excluding the boundary �\∂�. The

case of N = 96 is obtained by using the PS-MG method and the Clenshaw-Curtis quadrature formula for integration [18].

E on � E on �\∂�

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.035 838 0.035 837 0.035 968 0.036 017 0.034 173 0.034 171 0.034 311 0.034 363

129 0.035 223 0.035 222 0.035 185 0.035 234 0.034 371 0.034 370 0.034 332 0.034 383

257 0.034 855 0.034 855 0.034 770 0.034 820 0.034 424 0.034 424 0.034 337 0.034 388

513 0.034 655 0.034 655 0.034 556 0.034 606 0.034 438 0.034 438 0.034 338 0.034 389

96 0.0344435487

Re = 400

65 0.041 307 0.041 357 0.042 193 0.042 239 0.039 983 0.040 036 0.040 925 0.040 974

129 0.041 299 0.041 301 0.041 444 0.041 474 0.040 637 0.040 639 0.040 786 0.040 817

257 0.041 108 0.041 107 0.041 111 0.041 140 0.040 774 0.040 773 0.040 778 0.040 807

513 0.040 972 0.040 972 0.040 945 0.040 974 0.040 804 0.040 804 0.040 778 0.040 806

96 0.0408141964

Re = 1000

65 0.043 148 0.043 708 — — 0.041 939 0.042 534 — —

129 0.044 602 0.044 656 0.045 221 0.045 181 0.044 043 0.044 099 0.044 681 0.044 641

257 0.044 704 0.044 707 0.044 861 0.044 809 0.044 426 0.044 429 0.044 586 0.044 533

513 0.044 638 0.044 638 0.044 711 0.044 658 0.044 499 0.044 499 0.044 573 0.044 519

96 0.044 528 639 9

Fig. 12. However, the convergence speed for the lower bounds

is scheme dependent. For the MRT-LB and TRT-LB schemes,

the convergence speed is about 2.0; and the ELBE and LBGK

schemes cease to converge when N � 129, as shown by the

right panel of Fig. 12. This clearly indicates the importance

of the BCs and demonstrates the superiority of the MRT-LB

and TRT-LB schemes over the ELBE and LBGK schemes.

The inaccuracy of the BCs in the ELBE and LBGK schemes

severely degrades the quality of the velocity field, as shown

in the previous section, which, in turn, negatively affects the

quality of integral quantities in the system, such as E. A similar

observation has made previously (cf., e.g., [48]).

In Table VI we present the values of the total enstrophy Z

computed over the entire fluid domain � or only on the fluid

nodes �\∂�, similar to the total energy E in Table V. Because

the vorticity ω = ∇ × u is singular on the top corners, we

should not expect ω computed with finite-difference to

converge as N increases. Indeed, Z does not seem to converge

when it is computed with the boundary value, while Z obtained

by integrating over the fluid nodes alone appears to converge

to the corresponding values obtained by using the PS-MG

method with the convergence speed approximately equal

to 1.0.

In Table VII we show the L2-normed errors for the velocity

field u, the vorticity field ω, and the pressure field p, with the

reference fields obtained by a particular LB scheme with the

largest mesh size N2 = 5132. This is a consistency test to see

if the solution of each LB scheme converges when mesh is

refined. It should be pointed out that the grid points on two

different meshes are not perfectly laying on top of each other

because the boundary is only δx/2 away from the fluid nodes

adjacent to the boundary. This introduces a systematic error

when it is assumed that the grid points on two meshes are

perfectly aligned with each other. The alternative would be

to interpolate data in one mesh to the grid points of the other

mesh. This would introduce the error due to interpolations. We

use the former approach, that is, assuming the grid points on

two meshes are aligned with each other, because it is simpler.

N
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FIG. 12. (Color online) The convergence

behaviors of the upper and lower bounds of the

total energy E in Table V. Re = 400.
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TABLE VI. The total enstrophy Z on the entire flow � or only the interior fluid nodes �\∂�. The case of N = 96 is obtained by using the

PS-MG method [18].

Z on � Z on �\∂�

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 13.871 481 13.873 742 13.454 383 13.446 956 9.269 805 9.274 383 9.241 040 9.251 079

129 15.482 982 15.488 585 15.427 444 15.397 035 10.750 270 10.760 709 10.739 797 10.745 891

257 17.029 284 17.037 512 17.887 833 17.814 132 12.230 504 12.244 964 12.430 537 12.422 978

513 18.530 581 18.540 718 21.699 074 21.544 143 13.700 707 13.717 798 14.644 868 14.603 368

96 17.477 303 683 7

Re = 400

65 17.742368 17.736531 16.868321 16.886885 11.825388 11.821156 12.095108 12.129003

129 19.037842 19.036509 18.393694 18.395769 13.470404 13.467743 13.525332 13.558239

257 20.300225 20.302552 19.875573 19.842928 15.017366 15.021890 14.965177 14.991985

513 21.604582 21.610247 21.598736 21.511861 16.510269 16.520684 16.491830 16.504690

96 20.2966851756

Re = 1000

65 23.821075 23.685784 — — 15.291749 15.293886 — —

129 24.687357 24.670743 23.508602 23.543192 17.348414 17.344816 17.595882 17.656577

257 25.466743 25.464046 24.721660 24.728690 19.089853 19.085165 19.169924 19.227861

513 26.384755 26.385888 25.887249 25.846128 20.662131 20.664337 20.606352 20.654849

96 24.4937074969

The data in Table VII show that the convergence speed α for

the velocity u and the vorticity ω is approximately 1.5 and

1.0, respectively, independent of the Reynolds number Re. As

for the pressure p, the convergence speed depends not only

on the Reynolds number Re, but also on the scheme. For

the MRT-LB and TRT-LB schemes, the convergence speed

for p increases from about 1.0 at Re = 100 to about 1.5 at

Re = 1000. For the ELBE and LBGK schemes, the trend is the

opposite: The convergence speed decreases from about 1.5 at

Re = 100 to about 1.0 at Re = 1000. Given the singular nature

of the flow, the convergence speeds for u, ω, and p observed

here are those of a second-order scheme and consistent with the

theory [29].

In Table VIII we show the L2-normed errors by using the

PS-MG solutions with N = 96 [18] as the reference fields in

Eq. (33). The errors are computed over the entire flow domain

�, that is, including the boundary ∂�. We note that the errors

between the LB and PS-MG solutions are smaller in general

than those in Table VII, except some isolated cases: the velocity

field u computed by using the ELBE scheme at Re = 400 and

1000 and the pressure field at Re = 1000. This suggests that

the systematic error due to mismatched grid points in the LB

TABLE VII. Convergence of the LB simulations. The reference fields in Eq. (33) are obtained by using the LB schemes with the largest

mesh size N 2 = 5132. For Re = 1000, both the ELBE and LBGK schemes are unstable when N = 65. The rows denoted with “α” are the

convergence speed.

E2(u) E2(ω) E2(p)

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.086 320 0.086 237 0.075 633 0.075 838 0.813 140 0.813 394 0.806 760 0.810 152 0.823 758 0.834 287 0.585 283 0.585 244

129 0.038 947 0.038 782 0.033 147 0.033 222 0.595 578 0.595 863 0.602 381 0.605 486 0.622 870 0.638 575 0.347 275 0.347 390

257 0.013 212 0.013 132 0.011 064 0.011 084 0.294 511 0.298 272 0.330 958 0.330 293 0.300 127 0.314 486 0.132 029 0.132 087

α 1.55 1.56 1.58 1.58 1.01 0.99 0.86 0.87 1.05 1.02 1.39 1.39

Re = 400

65 0.100 600 0.100 410 0.088 230 0.088 508 0.797 194 0.798 397 0.796 002 0.799 037 0.663 377 0.684 981 0.594 142 0.593 535

129 0.043 847 0.043 818 0.040 090 0.040 255 0.571 285 0.572 026 0.568 732 0.572 676 0.407 075 0.426 939 0.345 349 0.345 294

257 0.014 651 0.014 628 0.013 630 0.013 693 0.275 600 0.278 278 0.277 395 0.277 874 0.160 402 0.170 074 0.124 284 0.124 413

α 1.58 1.58 1.55 1.55 1.05 1.03 1.03 1.04 1.34 1.32 1.47 1.47

Re = 1000

65 0.124 179 0.121 146 — — 0.782 128 0.783 456 — — 0.457 776 0.470 430 — —

129 0.051 978 0.051 735 0.046 169 0.046 380 0.544 739 0.546 456 0.565 525 0.568 647 0.230 639 0.238 365 0.338 832 0.340 169

257 0.017 065 0.017 048 0.016 146 0.016 222 0.256 228 0.257 526 0.280 737 0.284 390 0.081 443 0.084 864 0.153 368 0.153 689

α 1.60 1.60 1.51 1.51 1.08 1.08 1.01 0.99 1.50 1.48 1.14 1.14
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TABLE VIII. Convergence of the LB simulations. The reference fields in Eq. (33) are obtained by using the PS-MG method with N = 96

collocation points in each dimension [18]. The PS-MG solutions are interpolated to the equispaced meshes used in the LB simulations. For

the convergence speed α, “—” indicates the error not convergent, and “0” indicates very small α.

E2(u) E2(ω) E2(p)

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.009 656 0.009 596 0.013 264 0.012 407 0.404 343 0.403 632 0.405 224 0.411 644 0.139 478 0.132 741 0.130 186 0.130 833

129 0.004 881 0.004 762 0.006 520 0.004 521 0.349 975 0.348 526 0.341 324 0.348 427 0.142 614 0.126 274 0.108 636 0.107 584

257 0.002 627 0.002 536 0.007 008 0.005 103 0.312 173 0.310 392 0.309 956 0.318 039 0.139 070 0.118 188 0.210 484 0.209 649

513 0.001 230 0.001 159 0.008 170 0.006 575 0.278 520 0.276 377 0.317 375 0.325 069 0.133 328 0.110 153 0.294 257 0.293 612

α 1.09 1.12 — — 0.16 0.16 — — 0.06 0.10 — —

Re = 400

65 0.014 338 0.013 976 0.032 697 0.032 139 0.537 835 0.538 175 0.577 239 0.582 646 0.059 236 0.064 428 0.552 563 0.557 939

129 0.005 045 0.005 046 0.011 319 0.010 116 0.434 750 0.435 049 0.450 761 0.456 535 0.060 323 0.064 410 0.215 502 0.217 022

257 0.002 425 0.002 412 0.005 523 0.003 001 0.358 009 0.357 551 0.356 791 0.362 463 0.065 658 0.063 101 0.063 333 0.063 627

513 0.001 103 0.001 076 0.004 624 0.001 022 0.299 231 0.298 099 0.292 251 0.297 964 0.067 925 0.061 149 0.054 081 0.053 463

α 1.13 1.16 0.25 0.28 0.25 0.26 0.28 0.28 — 0.045 0.22 0.25

Re = 1000

65 0.034 915 0.029 041 — — 0.646 958 0.638 229 — — 0.185 030 0.163 602 — —

129 0.008 008 0.007 549 0.018 693 0.017 704 0.521 715 0.521 236 0.550 802 0.555 590 0.160 785 0.159 536 0.364 401 0.367 965

257 0.002 737 0.002 726 0.007 693 0.005 767 0.416 626 0.416 986 0.433 239 0.438 302 0.158 460 0.158 936 0.206 599 0.207 348

513 0.001 111 0.001 108 0.005 084 0.001 694 0.333 622 0.333 426 0.335 350 0.340 138 0.158 451 0.158 393 0.162 416 0.162 488

α 1.30 1.29 0.59 1.53 0.32 0.32 0.36 0.36 0 0.0049 0.34 0.35

grid refinement may not be negligible. The convergence speed

α for the velocity field obtained by using the MRT-LB and

TRT-LB schemes weakly depends on the Reynolds number Re:

It varies between 1.09 at Re = 100 and 1.30 at Re = 1000. In

contrast, the convergence speed of the velocity field obtained

by using the ELBE and LBGK schemes has a much stronger

dependence on Re. For both the ELBE and LBGK schemes,

at Re = 100 the velocity field fails to converge. At Re = 400

and 1000, the ELBE scheme converges very slowly, while

the LBGK scheme converges with a speed of about 1.5 or

better. However, we can expect the convergence behavior of

the ELBE and LBGK schemes to deteriorate as the mesh size

N becomes sufficiently large that τ > 1, due to their inaccurate

BCs.

The vorticity field obtained by the LB schemes converges

very slowly to the ps-mg solution, While the pressure field

does not seem to converge at all. In absence of a body force,

the vorticity ω in compressible flows satisfies the following

equation:

∂tω + u·∇ω = ω·∇u − ω∇ ·u +
1

ρ2
∇p × ∇p

+∇ ×
(

1

ρ
∇ · σ

)

, (35)

where σ is the stress tensor including the bulk viscosity ζ . For

incompressible flows, ∇ · u = 0, the density ρ is a constant,

and the pressure p satisfies the Poisson equation. Since the

LBE does not solve the Poisson equation accurately [29,51],

the compressibility effect can affect ω through all the terms

involving u, p, and σ in Eq. (35), because the velocity field

u has a non-negligible dilatational component. It appears that

the compressibility effect in the LB solution severely degrades

the accuracy of the vorticity field in this case. We will quantify

the compressibility effect later.

To further investigate the convergence behavior of the LB

schemes, we compute the differences between the flow fields

obtained by the LB schemes and the PS-MG method in the

middle portion of the interior flow domain, which excludes

(N − 1)/32 grids around the boundary; this reduces the total

number of grid points by about N2 × 31/256 ≈ N2/8. As

shown in Table IX, the errors in the interior are significantly

smaller than their counterparts on the entire flow domain �

except the following cases: the velocity field computed by

using the ELBE scheme at Re = 400 and 1000, the vorticity

field by the ELBE and LBGK schemes at Re = 100, and

the pressure field by all LB schemes at Re = 1000. The

convergence speed is also changed. Compared to the errors on

the entire flow domain �, the convergence speed of the velocity

field by using the MRT-LB and TRT-LB schemes has decreases

slightly to about 0.65 (from ca. 1.1), and has increases to about

1.68 and 1.81 (from ca. 1.13 and 1.30) at Re = 400 and 1000,

respectively. The convergence speed obtained by using the

ELBE scheme decreases to about 0.07 and 0.12 (from ca.

0.25 and 0.60) at Re = 400 and 1000, respectively, while that

obtained by using the LBGK scheme decreases slightly to

about 1.36 and 1.6 (from ca. 1.55 and 1.75).

The the convergence speed of ω on the interior flow domain

is considerably better than that on the entire flow domain.

It is particularly interesting to note that in many cases the

convergence speed of the vorticity field ω in the interior flow

domain is consistently better than that of the velocity field

u, as evidently shown in Table IX. For the MRT-LB and

TRT-LB schemes, the convergence speed of ω is better than

1.9 in all cases, as opposed to between 0.16 and 0.32 on the

entire flow domain. The ability of the MRT-LBE to accurately

compute vorticity field has also been observed in simulations
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TABLE IX. Convergence of the LB simulations, same as in Table VIII. The errors are computed over the interior flow domain by cutting

away (N − 1)/32 grid points along the boundary. For the convergence speed α, “—” indicates the error not convergent, and “0” indicates very

small α.

E2(u) E2(ω) E2(p)

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.003 252 0.003 191 0.005 719 0.004 002 0.035 406 0.037 472 0.082 058 0.083 648 0.014 485 0.014 595 0.062 072 0.062 115

129 0.000 779 0.000 767 0.003 543 0.000 608 0.011 840 0.012 174 0.014 103 0.013 633 0.011 412 0.011 346 0.011 463 0.011 121

257 0.000 238 0.000 238 0.003 459 0.000 874 0.003 290 0.003 324 0.007 181 0.001 070 0.010 858 0.010 839 0.012 035 0.011 690

513 0.000 152 0.000 152 0.003 462 0.001 010 0.000 868 0.000 869 0.008 341 0.003 268 0.010 733 0.010 728 0.012 277 0.011 936

α 0.65 0.65 — — 1.92 1.93 — — 0.0016 0.0014 — —

Re = 400

65 0.012 047 0.011 806 0.018 762 0.017 260 0.061 100 0.055 325 0.294 266 0.297 101 0.040 048 0.038 949 0.366 186 0.368 029

129 0.002 522 0.002 508 0.005 850 0.001 903 0.016 072 0.015 879 0.040 473 0.039 531 0.035 796 0.035 834 0.046 303 0.045 871

257 0.000 577 0.000 580 0.004 789 0.000 434 0.004 224 0.004 235 0.010 929 0.005 740 0.035 835 0.035 792 0.036 286 0.035 842

513 0.000 180 0.000 181 0.004 563 0.000 169 0.001 107 0.001 107 0.008 579 0.001 189 0.035 868 0.035 850 0.036 271 0.035 855

α 1.68 1.68 0.0069 1.36 1.93 1.93 0.34 2.27 — — 0 —

Re = 1000

65 0.034 225 0.028 946 — — 0.114 977 0.103 268 — — 0.191 773 0.186 110 — —

129 0.006 475 0.006 042 0.007 961 0.004 135 0.028 005 0.026 225 0.133 858 0.134 461 0.178 741 0.178 870 0.210 671 0.210 918

257 0.001 408 0.001 388 0.005 462 0.000 653 0.006 668 0.006 636 0.016 632 0.009 163 0.178 174 0.178 190 0.178 190 0.178 197

513 0.000 401 0.000 402 0.005 028 0.000 215 0.001 722 0.001 722 0.012 118 0.001 900 0.178 148 0.178 144 0.178 118 0.178 141

α 1.81 1.78 0.11 1.60 1.95 1.94 0.45 2.26 0 0 0 0

of turbulence in three dimensions [16]. For the LBGK scheme,

the convergence speed of ω is better than 2.2 at Re = 400 and

1000. As for the ELBE scheme, the convergence speed of ω is

only 0.34 and 0.45 at Re = 400 and 1000, respectively. As for

the pressure field p, the convergence speed remains the same

as on the entire flow domain; the pressure field does not appear

to converge to the PS-MG solution.

The data in Table IX reveal some interesting observations.

First, the error in the LB simulations concentrates mostly in

the boundary region. In the case of the cavity flow, the corner

singularities may be the main cause of the problem. Secondly,

with carefully tuned equilibria, the MRT-LBE can solve both

the velocity field u and vorticity field ω with a convergence

speed about 2 in regions where the flow is smooth. This

can be explained as the following. According to Noether’s

theorem, which states that any differentiable symmetry of the

action of a physical system has a corresponding conservation

law, the conservation laws of the linear and angular momenta

correspond to Galilean and rotational invariance, respectively.

The LBE preserves both invariances up to second order in the

wave vector k [9] and consequently the conservation laws of

the linear and angular momenta to the same order of accuracy.

Although this does not constitute a rigorous proof, it helps

explain the phenomenon.

With Ma = 0.1 ×
√

3 ≈ 0.1732, the rms density fluctu-

ation
√

〈δρ2〉 in the system is of the order O(10−3) (cf.

Table X related discussion later). Given the fact that the

pressure field p obtained by using the LB schemes has a

significant compressibility component proportional to Ma2,

it is expected that the pressure p is most sensitive to the

error due to the compressibility effect in the LBE. The data in

Table IX attest again the crucial role that the BCs play in the

LB simulations. Clearly, the MRT-LB and TRT-LB schemes

are far more accurate than the ELBE and LBGK schemes in

terms of the convergence speed and the magnitude of errors in

u and ω, and the ELBE scheme is the most inferior in all these

measures.

To quantify the compressibility effect, we compute the rms

density fluctuation
√

〈(δρ)2〉 and the rms velocity divergence
√

〈(∇ ·u)2〉 in the system

√

〈(δρ)2〉 =
[
∑

i(δρ)2(xi)

NxNy

]1/2

, (36a)

√

〈(∇ ·u)2〉 =
[
∑

i(∇ ·u)2(xi)

NxNy

]1/2

, (36b)

where xi are fluid nodes. The results of
√

〈(δρ)2〉 and
√

〈(∇ ·u)2〉 are tabulated in Table X.

Several observations can be made. First of all, for all

LB schemes, with a fixed the Mach number Ma, the rms

density fluctuation
√

〈(δρ)2〉 is nearly independent of the

mesh resolution N and decreases as the Reynolds number Re

increases. The rms density fluctuation is approximately equal

to 3.0 × 10−3, 1.6 × 10−3, and 1.3 × 10−3 at Re = 100, 400,

and 1000, respectively.

Second, for the MRT-LB and TRT-LB schemes, the rms

velocity divergence
√

〈(∇ ·u)2〉 does not seem to depend on

either N or Re. As for the ELBE and LBGK schemes, the rms

velocity divergence decreases as N increases and increases as

Re increases. Since in the ELBE and LBGK schemes the bulk

viscosity ζ = ν/2, as Re increases with a fixed N , ζ decreases,

and so similarly do the decay rates of all other nonconserved

modes, leading to weaker dissipation to all nonconserved
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TABLE X. The dependence of the rms density fluctuation
√

〈(δρ)2〉 and the rms velocity divergence
√

〈(∇ ·u)2〉 on the Reynolds number

Re and the mesh size N .

rms density fluctuation rms velocity divergence

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.002 569 0.002 574 0.002 850 0.002 855 0.305 216 0.302 737 0.360 637 0.361 507

129 0.002 753 0.002 764 0.002 789 0.002 793 0.305 982 0.299 739 0.309 758 0.310 092

257 0.002 926 0.002 940 0.002 803 0.002 806 0.309 262 0.298 951 0.241 936 0.239 084

513 0.003 091 0.003 105 0.002 822 0.002 826 0.313 143 0.298 658 0.191 387 0.181 124

Re = 400

65 0.001 533 0.001 530 0.001 898 0.001 905 0.321 806 0.329 121 0.530 087 0.528 835

129 0.001 564 0.001 563 0.001 670 0.001 672 0.310 099 0.311 752 0.426 615 0.428 021

257 0.001 586 0.001 587 0.001 618 0.001 619 0.305 285 0.302 858 0.359 677 0.362 329

513 0.001 607 0.001 608 0.001 610 0.001 611 0.305 859 0.299 648 0.308 708 0.310 513

Re = 1,000

65 0.001 321 0.001 329 — — 0.345 939 0.359 265 — —

129 0.001 368 0.001 368 0.001 491 0.001 491 0.325 027 0.334 810 0.567 532 0.567 025

257 0.001 379 0.001 379 0.001 413 0.001 411 0.313 045 0.316 334 0.456 678 0.458 426

513 0.001 384 0.001 384 0.001 396 0.001 394 0.305 985 0.304 804 0.375 882 0.379 374

modes, including the modes related to the compressibility

term ∇ρζ∇ ·u in the Navier-Stokes equation. In the case of

increasing N with a fixed Re, ζ and all the other decay rates

increase, resulting in stronger dissipation to the modes related

to the compressibility effect. This explains the dependence

of the rms velocity divergence on N and Re for the ELBE

and LBGK schemes. It is interesting to note that the bulk

viscosity ζ in the MRT-LBE is fixed, while in the TRT-LBE

it is identical to that in the LBGK scheme, and yet, the rms

density fluctuation and the rms velocity divergence behave

almost identically for the MRT-LB and TRT-LB schemes. This

indicates that the dissipation of the “heat fluxes” q, determined

by sq , and the BCs play a crucial role here. This is certainly

more complicated than the case without boundary [23] and

suggests that the TRT-LBE is a much better approach than the

ELBE with a tunable bulk viscosity [26].

Finally, since the rms density fluctuation and the rms veloc-

ity divergence are the direct measures of the compressibility

effect, which is proportional to O(Ma2), and the pressure field

is most direly affected by the compressibility effect through

the simple equation of state in the LBE, p = c2
s ρ, to improve

the accuracy of the pressure field p, the Mach number must be

decreased, as observed previously (cf. [23,43]).

TABLE XI. The values of the relaxation rates used in the stability

test shown in Fig. 13.

Relaxation rates

Model se sε sq

MRT 1.64 1.54 8(2τ − 1)/(8τ − 1)

MRT1 1.64 1.54 1.9

MRT2 1.8 1.54 1.9

MRT3 1.64 1.8 1.9

MRT4 1/τ 1.9 8(2τ − 1)/(8τ − 1)

TRT 1/τ 1/τ 8(2τ − 1)/(8τ − 1)

E. Stability and computational efficiency

To compare the numerical stability of the LB schemes, we

conduct the following test. With a small mesh size N2 = 172

and a given value of the viscosity ν, we search the maximum

lid velocity U such that the simulation does not diverge with

1000 iterations. For the MRT-LBE, in addition to sν = 1/τ ,

there are three adjustable relaxation rates: sq , se, and sǫ . To

accurately realize the no-slip BCs through the BB BCs, sq

must be a fixed function of sν [cf. Eq. (11)]. However, to

demonstrate the effect of sq on the numerical stability of the

MRT-LBE, we also vary sq independently in the test. Table XI

lists the values of relaxation rates used in the test.

In Fig. 13 we show the result of the stability test. Clearly, the

ELBE and LBGK schemes are shown to be the most inferior

in this test, and there is no observable difference between

the ELBE and the LBGK schemes in terms of stability. It is

evident that the ELBE scheme does not improve numerical

stability of the LBGK scheme. The TRT-LB scheme is more

1/τ

U

1.9 1.92 1.94 1.96 1.98

0

0.5

MRT

MRT1

MRT2

MRT3

MRT4

TRT

ELBE

LBGK

FIG. 13. (Color online) The stability characteristics of various

LBE models. N2 = 172. The test is deemed stable if it does not

diverge within 1000 iterations.
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TABLE XII. The number of iterations Nt and CPU time TCPU (seconds) for different LB schemes to attain the steady state with different

values of the Reynolds number Re. N2 = 1292. The numbers in parentheses are the ratio RT of the CPU times of the TRT, MRT, and ELBE

schemes vs. that of the LBGK scheme. “—” indicates the simulation does not converge.

1000 1500 1800 2000

Re Nt TCPU RT Nt TCPU RT Nt TCPU RT Nt TCPU

LBGK 413 000 194.12 (1) 645 000 296.11 (1) 785 000 354.63 (1) —

TRT 413 000 217.77 (1.12) 643 000 338.75 (1.14) 782 000 413.48 (1.17) 874 000 460.34

MRT 413 000 235.96 (1.22) 645 000 366.74 (1.24) 785 000 443.76 (1.25) 878 000 498.29

ELBE 415 000 491.39 (2.53) 648 000 766.60 (2.59) 790 000 930.06 (2.62) —

stable than both the ELBE and the LBGK schemes. By far, the

MRT-LBE is the most stable scheme. However, as the viscosity

ν decreases, the stability of the MRT-LB scheme deteriorates

considerably. As sν = 1/τ approaches to 2, sq(sν) approaches

0, and the relaxation time of the modes qx and qy becomes

longer and longer, so that qx and qy become quasiconserved

modes eventually when sq is sufficiently small. This apparently

affects the stability of the MRT-LBE when sν = 1/τ is close

to 2. If sq is fixed at 1.9 or so while other relaxation rates

are unchanged (corresponding to MRT1 in Table XI and

Fig. 13), then the stability of the MRT-LBE is improved when

sν = 1/τ � 1.965, but degraded when sν = 1/τ � 1.965, as

shown in Fig. 13. If we use sq = 1.9 and increase se from 1.64

to 1.8 (the case MRT2 in Fig. 13), the stability is weaker than

the case of MRT1.

We note that the numerical stability of the LBE can be

affected by factors other than the relaxation rates. For example,

the stability would be different if one uses the “compressible”

version of the LBGK model of which the equilibria are [52]

f
(eq)

i = wi ρ

[

1 +
ci · u

c2
s

+
1

2

{

(ci · u)2

c4
s

−
u · u

c2
s

}]

. (37)

We do not use the compressible LB model because we would

like to minimize the compressibility effect, because we are

only interested in simulating incompressible flows. Another

factor may be the mean density ρ0. In our implementation,

we set ρ0 = 1 so the LBE can approximate the Poisson

equation obeyed by the pressure [51]. In addition, to reduce

the effects due to round-off error we only consider the density

fluctuation δρ in the mass conservation [22,23], as indicated

in the equilibria defined by Eqs. (5) and (12). With a value of

ρ0 > 1 [52], the effect of the round-off error is enhanced, but

the relative density fluctuation δρ/ρ0 is reduced; hence, the

stability might be improved.

We should also emphasize that the numerical stability must

be discussed in connection with accuracy and computational

efficiency. That is, one must not pursue stability at the expense

of accuracy and efficiency, and especially accuracy. To opti-

mize the computational efficiency, U should be maximized,

for a larger U effectively leads to a larger CFL number, as

discussed previously in Sec. III A. However, the truncation

error due to u3 terms grows as U increases [9], which can be

eliminated only with a larger discrete velocity set, for example,

D2Q21 model [53]. With these considerations in mind, one

should use the maximal value of U without compromising

accuracy. With U properly chosen, the issue of optimizing the

stability becomes minimizing the viscosity ν. However, one

should not relentlessly push the lower limit of ν; otherwise,

the results of direct numerical simulations become dubious if

the grid Reynolds number Re∗ := Uδx/ν becomes too large.

Thus, one must strike a balance between accuracy, efficiency,

and stability, and in that order.

To compare the computational speed of different LB

schemes, we use a mesh of size N2 = 1292 with the Reynolds

numbers Re = 1000, 1500, 1800, and 2000. All the compu-

tations are carried out on an Intel Xeon (x86-64) processor

with two dual cores of 2.992 GHz and 8 GB RAM. The codes

are written in C and compiled with the Intel compiler ICPC.

Table XII provides the number of iterations (Nt ) and the

CPU times (TCPU) for the LB schemes to attain a steady

state according to the criterion of Eq. (21), and the ratios

(RT) between the CPU times of the MRT, TRT, and ELBE

schemes versus the LBGK scheme, of which the CPU time is

the shortest. Clearly, we can see in Table XII that the number

of iterations to reach steady state Nt ∝ NRe/U . The results

also show that, while the TRT-LB and MRT-LB schemes are

about 15% and 25% slower than the LBGK scheme in terms of

CPU time, respectively, the ELBE scheme is about 2.5 times

slower. We also note that with the mesh size of N2 = 1292,

both the ELBE and the LBGK do not converge for Re = 2000.

IV. CONCLUSIONS AND DISCUSSION

In this work we conduct a comparative study of several

lattice Boltzmann schemes including the MRT-LB, TRT-LB,

ELBE, and LBGK D2Q9 models, in terms of accuracy, numer-

ical stability, and computational efficiency. As a benchmark

test, we use the lid-driven square cavity flow in 2D with the

Reynolds numbers Re = 100, 400, and 1000, for which the

flow is steady and laminar. We compare the LB solutions

with the solutions obtained by using the PS-MG method with

singularity subtraction technique [18]. The evidence shows

that the MRT-LB and TRT-LB schemes are superior over the

ELBE and LBGK schemes in terms of accuracy, stability, and

computational efficiency.

We made the following observations through this study.

First, all the LB schemes are capable of capturing the gross

hydrodynamic features of the flow. We compare the contours

of the pressure field p, the stream function ψ , and the vorticity

field ω computed by using the LB schemes with those by using

the PS-MG method [18] and find that they agree well with each

other. The LB schemes can reproduce quantitatively accurate

results, such as the locations and intensities of the primary,

secondary, and even tertiary vortices. Both the MRT-LB and
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the TRT-LB schemes can capture the tertiary vortex at Re =
1000 with a mesh of size N2 = 1292, while both the ELBE

and LBGK schemes require a finer mesh of size N2 = 2572 to

observe the tertiary vortex.

Second, we observe that one major source of errors in

the LB simulations comes from BCs, and this problem is

particularly severe for the ELBE and LBGK schemes coupled

with the BB BCs. The problem is twofold: With the relaxation

parameter τ close to 1/2, flow fields near no-slip boundaries

oscillate severely with high frequencies, and with τ ≫ 1,

the boundary locations move away from supposed positions

considerably and are τ dependent. Both these defects can be

overcome by using the MRT models.

Third, all the LB schemes (MRT, TRT, ELBE, and LBGK)

exhibit a self-consistent convergence behavior of a second-

order scheme, as expected [29]. The solutions of the velocity

u, the vorticity ω, and the pressure p obtained by using a

particular LB scheme converge to unique limiting states as

the resolution N increases with expected convergence speed.

However, the LB solutions of u, ω, and p do not necessarily

converge to the corresponding solutions of the PS method [18].

When compared with the PS solution of the velocity field u

on the entire flow domain, both the MRT-LB and TRT-LB

schemes are shown to be only marginally of second-order

convergence, so is the LBGK scheme at Re = 1000, while the

ELBE scheme is only of first-order. However, when compared

with the PS solution of the velocity field u in the interior

flow domain, the MRT-LB, TRT-LB, and LBGK schemes are

clearly of second-order convergence, and the ELBE scheme

is only of first-order convergence, except for the case of

Re = 100. At Re = 100, both the MRT-LB and the TRT-LB

schemes are of first-order convergence, while neither the ELBE

scheme nor the LBGK scheme converges at all. In particular,

it is interesting to note that the vorticity field obtained by

using the MRT-LB and TRT-LB schemes, and the LBGK

scheme in some cases, is of second-order convergence, and

the convergence speed is consistently better than that of the

velocity field, while the convergence speed for the ELBE is

only of first-order. In most cases, the pressure field p obtained

by the LB schemes either converges very slowly or does not

converge at all to the PS solution.

Fourth, we note that the ELBE scheme does not in any

way improve the stability of the LBGK scheme, while its

computational cost is almost tripled. In terms of accuracy,

the ELBE scheme is even inferior to the LBGK scheme.

One reason that the ELBE cannot improve the stability

is that, when τ is approaching 1/2, the ELBE does not

have sufficient dissipation to damp density fluctuations in

the system [9], and the interactions of the acoustic waves

generated by density fluctuations can instigate numerical

instabilities. To overcome this shortcoming of the ELBE

scheme, an adjustable bulk viscosity can be introduced [26].

This approach basically adopts the MRT technique, but only

half-heartily, while clinging to all other deficiencies inherent

to the ELBE/SRT methodology. We do not test the ELBE

with a variable relaxation time [52,54], which is supposed to

guarantee numerical stability, because it is computationally

inefficient and unphysical with a viscosity depending on space

and time; a stable but inaccurate, unphysical, and inefficient

scheme is simply not a viable one.

Fifth, in terms of CPU time the LBGK scheme is only

about 25% and 15% faster than the MRT and TRT schemes,

respectively. However, given the inherent deficiencies in the

LBGK scheme, this insignificant saving in CPU time is beside

the point, because the LBGK scheme with the BB BCs

cannot yield convergent results as the mesh size N increases.

Furthermore, for most LB algorithms which are light in floating

point operations (FLOPs), the computational speed is limited

by memory bandwidth and cache size; thus, the difference

in the computational speed due to insignificantly different

number of FLOPs will diminish. Thus, 25% difference in CPU

time is not a valid justification to promote the LBGK scheme.

Finally, we would like to discuss the choice of the relaxation

rates {si} in the MRT-LBE. Often, critics of the MRT

methodology complain about its “complexity,” and one aspect

of the complexity is that it appears that there are no analytic

guidelines to determine the relaxation rates. These criticisms

are not entirely valid. First of all, the MRT collision model

is a linear one, of which the LBGK model is a special case,

and it is well understood in kinetic theory and there exists

a vast literature on the subject (cf., e.g., [21] and references

therein).

Within the context of the LBE, certain guidelines do

exist. In kinetic theory, hydrodynamic time scales of the

conserved modes are vastly separated from those of kinetic

(nonconserved) modes, that is, time scales of kinetic (non-

conserved) modes are much shorter than the hydrodynamic

ones. This vast separation of time scales is not satisfied in

the LBE for it has very limited number of modes which are

closely coupled together through relative simple algebraic

relationships defined by the LBE (2), so the range of these

relaxation rates is rather limited, and the dynamics of kinetic

modes in the LBE has severe effects on BCs and numerical

stability. It is difficult to determine, analytically and a priori,

optimal relaxation rates in terms of both accuracy and stability.

This is especially true for 3D models with a large number of

discrete velocities (or the moments).

While it is relatively easy to obtain relaxation rates for

optimal linear stability [9], it is not so for nonlinear stability.

It is also not easy to analytically determine the effects of

relaxation rates on the BCs in general (cf. [14]). However,

one can still determine the relaxation rates which can be used

to yield reasonable accuracy and stability. In this regard, the

TRT-LBE is the simplest alternative which improves both

accuracy and numerical stability. The point to emphasize is

that the MRT formalism allows improvements by adjusting

the relaxation rates, which is not possible for the models with

SRT. We note that a thorough and detailed investigation of the

effects of the relaxation rates on the accuracy and stability is

beyond the scope of this work and should be a subject of future

studies.

The results of this study demonstrate that there are at least

three relaxation rates, sν , sq , and se, which have significant

effects on accuracy and numerical stability of the MRT-LBE.

Therefore, to optimize accuracy and numerical stability, it is

necessary to have three adjustable degrees of freedom in the

MRT-LBE provided by sν , sq , and se, which determine the

value of the shear viscosity ν (or the Reynolds number Re), the

accurate locations of the Dirichlet BCs, and the bulk viscosity ζ

[cf. Eq. (10b)]. If numerical stability is not a consideration, one
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should use the TRT-LBE [5–7]; that is, the odd-order moments

are relaxed by the rate sq(sν) (cf., e.g., Eq. (11) and [14,55]

and references therein), while the even-order moments are

relaxed with the rate sν . With three adjustable relaxation rates,

the MRT-LBE provides minimal degrees of freedom required

by accuracy and stability, and can enhance the computational

efficiency ultimately.

In summary, our conclusion is that, while it may be

theoretically interesting, the ELBE scheme is so inferior to

the MRT scheme in terms of accuracy, numerical stability,

and computational efficiency that it must not be used as a

practical scheme for numerical simulations. We also note that

one important and challenging issue in the LBE is to improve

accuracy of the pressure field p. In this regard, investigation of

the artificial compressibility method [31,32] may offer some

new insights.
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