
Journal of Artificial Intelligence Research 46 (2013) 687-716 Submitted 12/12; published 04/13

NuMVC: An Efficient Local Search Algorithm

for Minimum Vertex Cover

Shaowei Cai SHAOWEICAI.CS@GMAIL.COM

Key Laboratory of High Confidence Software Technologies

Peking University, Beijing, China

Kaile Su K.SU@GRIFFITH.EDU.AU

Institute for Integrated and Intelligent Systems

Griffith University, Brisbane, Australia

Chuan Luo CHUANLUOSABER@GMAIL.COM

Key Laboratory of High Confidence Software Technologies

Peking University, Beijing, China

Abdul Sattar A.SATTAR@GRIFFITH.EDU.AU

Institute for Integrated and Intelligent Systems

Griffith University, Brisbane, Australia

Abstract

The Minimum Vertex Cover (MVC) problem is a prominent NP-hard combinatorial

optimization problem of great importance in both theory and application. Local search has proved

successful for this problem. However, there are two main drawbacks in state-of-the-art MVC local

search algorithms. First, they select a pair of vertices to exchange simultaneously, which is time-

consuming. Secondly, although using edge weighting techniques to diversify the search, these

algorithms lack mechanisms for decreasing the weights. To address these issues, we propose two

new strategies: two-stage exchange and edge weighting with forgetting. The two-stage exchange

strategy selects two vertices to exchange separately and performs the exchange in two stages. The

strategy of edge weighting with forgetting not only increases weights of uncovered edges, but also

decreases some weights for each edge periodically. These two strategies are used in designing a

new MVC local search algorithm, which is referred to as NuMVC.

We conduct extensive experimental studies on the standard benchmarks, namely DIMACS

and BHOSLIB. The experiment comparing NuMVC with state-of-the-art heuristic algorithms

show that NuMVC is at least competitive with the nearest competitor namely PLS on the

DIMACS benchmark, and clearly dominates all competitors on the BHOSLIB benchmark. Also,

experimental results indicate that NuMVC finds an optimal solution much faster than the current

best exact algorithm for Maximum Clique on random instances as well as some structured ones.

Moreover, we study the effectiveness of the two strategies and the run-time behaviour through

experimental analysis.

1. Introduction

The Minimum Vertex Cover (MVC) problem consists of, given an undirected graph G = (V,E),
finding the minimum sized vertex cover, where a vertex cover is a subset S ⊆ V such that every

edge in G has at least one endpoint in S. MVC is an important combinatorial optimization problem

with many real-world applications, such as network security, scheduling, VLSI design and industrial

machine assignment. It is equivalent to two other well-known combinatorial optimization problems:

the Maximum Independent Set (MIS) problem and the Maximum Clique (MC) problem, which

c©2013 AI Access Foundation. All rights reserved.

CAI, SU, LUO & SATTAR

have a wide range of applications in areas such as information retrieval, experimental design, signal

transmission, computer vision, and also bioinformatics problems such as aligning DNA and protein

sequences (Johnson & Trick, 1996). Indeed, these three problems can be seen as three different

forms of the same problem, from the viewpoint of practical algorithms. Algorithms for MVC

can be directly used to solve the MIS and MC problems. Due to their great importance in theory

and applications, these three problems have been widely investigated for the last several decades

(Carraghan & Pardalos, 1990; Evans, 1998; Pullan & Hoos, 2006; Richter, Helmert, & Gretton,

2007; Cai, Su, & Chen, 2010; Li & Quan, 2010b; Cai, Su, & Sattar, 2011).

Theoretical analyses indicate that these three problems MVC, MIS, and MC are computationally

hard. They are all NP-hard and the associated decision problems are NP-complete (Garey &

Johnson, 1979). Moreover, they are hard to solve approximately. It is NP-hard to approximate

MVC within any factor smaller than 1.3606 (Dinur & Safra, 2005), although one can achieve an

approximation ratio of 2− o(1) (Halperin, 2002; Karakostas, 2005). Besides the inapproximability

of MVC, Håstad shows that both MIS and MC are not approximable within |V |1−ǫ for any ǫ > 0,

unless NP=ZPP1 (Håstad, 1999, 2001). Recently, this conclusion has been enhanced that MC is

not approximable within |V |1−ǫ for any ǫ > 0 unless NP=P (Zuckerman, 2006), derived from a

derandomization of Håstad’s result. Moreover, the currently best polynomial-time approximation

algorithm for MC is only guaranteed to find a clique within a factor of O(n(loglogn)2/(logn)3) of

optimum (Feige, 2004).

The algorithms to solve MVC (MIS, MC) fall into two types: exact algorithms and heuristic

algorithms. Exact methods which mainly include branch-and-bound algorithms (Carraghan &

Pardalos, 1990; Fahle, 2002; Östergård, 2002; Régin, 2003; Tomita & Kameda, 2009; Li &

Quan, 2010b, 2010a), guarantee the optimality of the solutions they find, but may fail to give a

solution within reasonable time for large instances. Heuristic algorithms, which mainly include local

search algorithms, cannot guarantee the optimality of their solutions, but they can find optimal or

satisfactory near-optimal solutions for large and hard instances within reasonable time. Therefore,

it is appealing to use local search algorithms to solve large and hard MVC (MC, MIS) instances.

Early heuristic methods for Maximum Clique have been designed as initial responses to the

Second DIMACS Implementation Challenge (Johnson & Trick, 1996), where Maximum Clique is

one of the three challenge problems. After that, a huge amount of effort was devoted to designing

local search algorithms for MVC, MC and MIS problems (Aggarwal, Orlin, & Tai, 1997; Battiti &

Protasi, 2001; Busygin, Butenko, & Pardalos, 2002; Shyu, Yin, & Lin, 2004; Barbosa & Campos,

2004; Pullan, 2006; Richter et al., 2007; Andrade, Resende, & Werneck, 2008; Cai et al., 2010,

2011). A review of heuristic algorithms for these three problems can be found in a recent paper on

MVC local search (Cai et al., 2011).

This work is devoted to a more efficient local search algorithm for MVC. Typically, local search

algorithms for MVC solve the problem by iteratively solving the k-vertex cover problem. To solve

the k-vertex cover problem, they maintain a current candidate solution of size k, and exchange

two vertices iteratively until it becomes a vertex cover. However, we observe two drawbacks in

state-of-the-art MVC local search algorithms. First, they select a pair of vertices for exchanging

simultaneously according to some heuristic (Richter et al., 2007; Cai et al., 2010, 2011), which is

rather time-consuming, as will be explained in Section 3. The second drawback is about the edge

weighting techniques. The basic concept of edge weighting is to increase weights of uncovered

1. ZPP is the class of problems that can be solved in expected polynomial time by a probabilistic algorithm with zero

error probability.

688

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

edges to diversify the search. Previous MVC local search algorithms utilize different edge weighting

schemes. For example, COVER (Richter et al., 2007) increases weights of uncovered edges at each

step, while EWLS (Cai et al., 2010) and EWCC (Cai et al., 2011) increase weights of uncovered

edges only when reaching local optima. However, all these algorithms do not have a mechanism to

decrease the weights. We believe this is deficient because the weighting decisions made too long

ago may mislead the search.

To address these two issues in MVC local search algorithms, this paper proposes two new

strategies, namely two-stage exchange and edge weighting with forgetting. The two-stage exchange

strategy decomposes the exchanging procedure into two stages, i.e., the removing stage and the

adding stage, and performs them separately. It first selects a vertex and removes it from the current

candidate solution, and then selects a vertex in a random uncovered edge and adds it. The two-

stage exchange strategy yields an efficient two-pass move operator for MVC local search, in which

the first pass is a linear-time search for the vertex-to-remove, while the second pass is a linear-

time search for the vertex-to-add. This is in contrast to the standard quadratic, all-at-once move

operator. Moreover, the two-stage exchange strategy renders the algorithm more flexible in that

we can employ different heuristics in different stages. Indeed, the NuMVC algorithm utilizes a

highly greedy heuristic for the removing stage, while for the adding stage, it makes good use of a

diversifying heuristic within a framework similar to focused random walk (Papadimitriou, 1991).

The second strategy we propose is edge weighting with forgetting. It increases weights of

uncovered edges by one at each step. Moreover, when the averaged edge weight achieves a

threshold, it reduces weights of all edges by multiplying a constant factor ρ (0 < ρ < 1) to forget

the earlier weighting decisions. To the best of our knowledge, this is the first time a forgetting

mechanism is introduced into local search algorithms for MVC.

The two strategies are combined to design a new local search algorithm called NuMVC. We

carry out a detailed experimental study to investigate the performance of NuMVC, and compare

it with PLS (Pullan, 2006), COVER (Richter et al., 2007) and EWCC (Cai et al., 2011), which

are leading heuristic algorithms for MVC (MC, MIS). Experimental results show that NuMVC

competes well with other solvers on the DIMACS benchmark, and shows a dramatic improvement

over existing results on the whole BHOSLIB benchmark. These parts of work have been published

in an early version of this paper (Cai, Su, & Sattar, 2012).

In this paper, we additionally carry out more experimental analyses and provides further

insights about the two strategies in NuMVC. We compare NuMVC with the exact algorithm

MaxCLQdyn+EFL+SCR (Li & Quan, 2010a), which is the best exact Maximum Clique algorithm

we found in the literature. Experimental results indicate that NuMVC finds an optimal solution

much faster than the exact algorithm on random instances as well as some structured ones. More

importantly, we conduct experimental investigations to study the run-time behaviour of NuMVC

and the effectiveness of the two new strategies in NuMVC.

The remainder of this paper is organized as follows. In the next section, we introduce some

definitions and notations used in this paper. We then present the two strategies: two-stage exchange

and edge weighting with forgetting. In Section 5, we describe the NuMVC algorithm. Section 6

presents the experimental study of NuMVC and comparative results to other algorithms, including

heuristic and exact algorithms. This is followed by more detailed investigations about the run-time

behaviour of NuMVC and the effectiveness of the two new strategies in Section 7. Finally, we

conclude the paper by summarizing the main contributions and some future directions.

689

CAI, SU, LUO & SATTAR

2. Preliminaries

An undirected graph G = (V,E) consists of a vertex set V and an edge set E ⊆ V × V , where

each edge is a 2-element subset of V . For an edge e = {u, v}, we say that vertices u and v are the

endpoints of edge e. Two vertices are neighbors if and only if they both belong to some common

edge. We denote N(v) = {u ∈ V |{u, v} ∈ E}, the set of neighbors of a vertex v.

For an undirected graph G = (V,E), an independent set is a subset of V with pairwise non-

adjacent elements and a clique is a subset of V with pairwise adjacent elements. The maximum
independent set and maximum clique problems are to find the maximum sized independent set

and clique in a graph, respectively.

We note that these three problems MVC, MIS and MC can be seen as three different forms of

the same problem, from the viewpoint of experimental algorithms. A vertex set S is an independent

set of G if and only if V \S is a vertex cover of G; a vertex set K is a clique of G if and only if V \K
is a vertex cover of the complementary graph G. To find the maximum independent set of a graph

G, one can find the minimum vertex cover Cmin for G and return V \Cmin. Similarly, to find the

maximum clique of a graph G, one can find the minimum vertex cover C ′
min for the complementary

graph G, and return V \C ′
min.

Given an undirected graph G = (V,E), a candidate solution for MVC is a subset of vertices.

An edge e ∈ E is covered by a candidate solution X if at least one endpoint of e belongs to

X . During the search procedure, NuMVC always maintains a current candidate solution. For

convenience, in the rest of this paper, we use C to denote the current candidate solution. The state
of a vertex v is denoted by sv ∈ {1, 0}, such that sv = 1 means v ∈ C, and sv = 0 means v /∈ C.

The step to a neighboring candidate solution consists of exchanging two vertices: a vertex u ∈ C is

removed from C, and a vertex v /∈ C is put into C. The age of a vertex is the number of steps since

its state was last changed.

As with most state-of-the-art MVC local search algorithms, NuMVC utilizes an edge weighting

scheme. For edge weighting local search, we follow the definitions and notations in EWCC (Cai

et al., 2011). An edge weighted undirected graph is an undirected graph G = (V,E) combined with

a weighting function w so that each edge e ∈ E is associated with a non-negative integer number

w(e) as its weight. We use w to denote the mean value of all edge weights.

Let w be a weighting function for G. For a candidate solution X , we set the cost of X as

cost(G,X) =
∑

e∈E and e is not covered by X

w(e)

which indicates the total weight of edges uncovered by X . We take cost(G,X) as the evaluation
function, and NuMVC prefers candidate solutions with lower costs.

For a vertex v ∈ V ,

dscore(v) = cost(G,C)− cost(G,C ′)

where C ′ = C\{v} if v ∈ C, and C ′ = C ∪ {v} otherwise, measuring the benefit of changing the

state of vertex v. Obviously, for a vertex v ∈ C, we have dscore(v) ≤ 0, and the greater dscore
indicates the less loss of covered edges by removing it out of C. For a vertex v /∈ C, we have

dscore(v) ≥ 0, and the higher dscore indicates the greater increment of covered edges by adding

it into C.

690

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

3. Two-Stage Exchange

In this section, we introduce the two-stage exchange strategy, which is adopted by the NuMVC

algorithm to exchange a pair of vertices.

As with most state-of-the-art MVC local search algorithms, NuMVC is an iterated k-vertex

cover algorithm. When finding a k-vertex cover, NuMVC removes one vertex from the current

candidate solution C and goes on to search for a (k − 1)-vertex cover. In this sense, the core of

NuMVC is a k-vertex cover algorithm — given a positive integer number k, searching for a k-sized

vertex cover. To find a k-vertex cover, NuMVC begins with a candidate solution C of size k, and

exchanges two vertices iteratively until C becomes a vertex cover.

Most local search algorithms for MVC select a pair of vertices to exchange simultaneously

according to a certain heuristic. For example, COVER selects a pair of vertices that maximize

gain(u, v) (Richter et al., 2007), while EWLS (Cai et al., 2010) and EWCC (Cai et al., 2011) select

a random pair of vertices with score(u, v) > 0. This strategy of selecting two vertices to exchange

simultaneously leads to a quadratic neighborhood for candidate solutions. Moreover, the evaluation

of a pair of vertices not only depends on the evaluations (such as dscore) of the two vertices, but also

involves the relationship between the two vertices, like “do they belong to a same edge”. Therefore,

it is rather time-consuming to evaluate all candidate pairs of vertices.

In contrast to earlier MVC local search algorithms, NuMVC selects the two vertices for

exchanging separately and exchanges the two selected vertices in two stages. In each iteration,

NuMVC first selects a vertex u ∈ C with the highest dscore and removes it. After that, NuMVC

selects a uniformly random uncovered edge e, and chooses one endpoint v of e with the higher

dscore under some restrictions and adds it into C. Note that this two-stage exchange strategy

resembles in some respect the min-conflicts hill-climbing heuristic for CSP (Minton, Johnston,

Philips, & Laird, 1992), which shows surprisingly good performance for the N-queens problem.

Selecting the two vertices for exchanging separately may in some cases miss some greedier

vertex pairs which consist of two neighboring vertices. However, as is usual in local search

algorithms, there is a trade-off between the accuracy of heuristics and the complexity per step.

Let R and A denote the set of candidate vertices for removing and adding separately. The time

complexity per step for selecting the exchanging vertex pair simultaneously is |R| · |A|; while the

complexity per step for selecting the two vertices separately, as in NuMVC, is only |R| + |A|. It

is worthy to note that, as heuristics in a local search algorithm are often based on intuition and

experience rather than on theoretically or empirically derived principles and insights, we cannot say

for certain that being less greedy is not a good thing (Hoos & Stützle, 2004). On the other hand, a

lower time complexity is always desirable.

4. Edge Weighting with Forgetting

In this section, we present a new edge weighting technique called edge weighting with forgetting,

which plays an important role in NuMVC.

The proposed strategy of edge weighting with forgetting works as follows. Each edge is

associated with a positive integer number as its weight, and each edge weight is initialized as one.

Then in each iteration, edge weights of the uncovered edges are increased by one. Moreover, when

the average weight achieves a threshold, all edge weights are reduced to forget the earlier weighting

decisions using the formula w(e) := ⌊ρ · w(e)⌋, where ρ is a constant factor between 0 and 1.

691

CAI, SU, LUO & SATTAR

Note that edge weighting techniques in MVC local search, including the one in this work,

fall in the more general penalty idea for optimization problems, which dates back to Morris ’s

breakout method (Morris, 1993) and has been widely used in local search algorithms for constraint

optimization problems such as SAT (Yugami, Ohta, & Hara, 1994; Wu & Wah, 2000; Schuurmans,

Southey, & Holte, 2001; Hutter, Tompkins, & Hoos, 2002). Our results therefore provide further

evidence for the effectiveness and general applicability of this algorithmic technique.

Edge weighting techniques have been successfully used to improve MVC local search

algorithms. For example, COVER (Richter et al., 2007) updates edge weights at each step, while

EWLS (Cai et al., 2010) and EWCC (Cai et al., 2011) update edge weights only when reaching local

optima. However, all previous edge weighting techniques do not have a mechanism to decrease the

weights, which limits their effectiveness. The strategy of edge weighting with forgetting in this

work introduces a forgetting mechanism to reduce edge weights periodically, which contributes

considerably to the NuMVC algorithm.

The intuition behind the forgetting mechanism is that the weighting decisions made too long ago

are no longer helpful and may mislead the search, and hence should be considered less important

than the recent ones. For example, consider two edges e1 and e2 with w(e1) = 1000 and w(e2) =
100 at some step. We use ∆w(e) to denote the increase of w(e). According to the evaluation

function, in the next period of time, the algorithm is likely to cover e1 more frequently than e2, and

we may assume that during this period ∆w(e1) = 50 and ∆w(e2) = 500, which makes w(e1) =
1000 + 50 = 1050 and w(e2) = 100 + 500 = 600. Without a forgetting mechanism, the algorithm

would still prefer e1 to e2 to be covered in the future search. This is not reasonable, as during this

period e2 is covered in much fewer steps than e1 is. Thus, e2 should take priority to be covered for

the sake of diversification. Now let us consider the case with the forgetting mechanism (assuming

ρ = 0.3 which is the setting in our experiments). Suppose w(e1) = 1000 and w(e2) = 100
when the algorithm performs the forgetting. The forgetting mechanism reduces the edge weights as

w(e1) = 1000×0.3 = 300 and w(e2) = 100×0.3 = 30. After a period of time, with ∆w(e1) = 50
and ∆w(e2) = 500, we have w(e1) = 300 + 50 = 350 and w(e2) = 30 + 500 = 530. In this case,

the algorithm prefers to cover e2 rather than cover e1 in the future search, as we expect.

Although being inspired by smoothing techniques in clause weighting local search algorithms

for SAT, the forgetting mechanism in NuMVC differs from those smoothing techniques in SAT

local search algorithms. According to the way that clause weights are smoothed, there are three

main smoothing techniques in clause weighting local search algorithms for SAT to the best of our

knowledge: the first is to pull all clause weights to their mean value using the formula wi :=
ρ · wi + (1 − ρ) · w, as in ESG (Schuurmans et al., 2001), SAPS (Hutter et al., 2002) and Swcca

(Cai & Su, 2012); the second is to subtract one from all clause weights which are greater than

one, as in DLM (Wu & Wah, 2000) and PAWS (Thornton, Pham, Bain, & Jr., 2004); and the last

is employed in DDWF (Ishtaiwi, Thornton, Sattar, & Pham, 2005), which transfers weights from

neighbouring satisfied clauses to unsatisfied ones. It is obvious that the forgetting mechanism in

NuMVC is different from all these smoothing techniques.

Recently, a forgetting mechanism was proposed for vertex weighting technique in the significant

MC local search algorithm DLS-MC (Pullan & Hoos, 2006), which is an important sub-algorithm in

PLS (Pullan, 2006) and CLS (Pullan, Mascia, & Brunato, 2011). The DLS-MC algorithm employs

a vertex weighting scheme which increases the weights of vertices (by one) not in the current clique

when reaching a local optimum, and periodically decreases weights (by one) for all vertices that

currently have a penalty. Specifically, it utilizes a parameter pd (penalty delay) to specify the

692

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

number of penalty increase iterations that must occur before the algorithm performs a forgetting

operation. However, Pullan and Hoos also observed that DLS-MC is very sensitive to the pd
parameter, and the optimal value of pd varies considerably among different instances. Indeed,

the performance of DLS-MC in is given by optimizing the pd parameter. In contrast, the forgetting

mechanism in NuMVC is much less sensitive to its parameters (as will be shown in Section 7.4),

and thus is more robust.

We also notice that the formula used in the forgetting mechanism in NuMVC has been adopted

in long-term frequency-based learning mechanisms for tabu search (Taillard, 1994). However, in

Taillar’s algorithm, the parameter ρ (using the term in this work) is always greater than one, and the

formula is used for penalizing a move rather than forgetting the penalties.

5. The NuMVC Algorithm

In this section, we present the NuMVC algorithm, which utilizes the strategies of two-stage

exchange and edge weighting with forgetting.

Algorithm 1: NuMVC

NuMVC (G,cutoff)1

Input: graph G = (V,E), the cutoff time

Output: vertex cover of G
begin2

initialize edge weights and dscores of vertices;3

initialize the confChange array as an all-1 array;4

construct C greedily until it is a vertex cover;5

C∗ := C;6

while elapsed time < cutoff do7

if there is no uncovered edge then8

C∗ := C;9

remove a vertex with the highest dscore from C;10

continue;11

choose a vertex u ∈ C with the highest dscore, breaking ties in favor of the oldest12

one;

C := C\{u}, confChange(u) := 0 and confChange(z) := 1 for each z ∈ N(u);13

choose an uncovered edge e randomly;14

choose a vertex v ∈ e such that confChange(v) = 1 with higher dscore, breaking ties15

in favor of the older one;

C := C ∪ {v}, confChange(z) := 1 for each z ∈ N(v);16

w(e) := w(e) + 1 for each uncovered edge e;17

if w ≥ γ then w(e) := ⌊ρ · w(e)⌋ for each edge e;18

return C∗;19

end20

For better understanding the algorithm, we first describe a strategy called configuration checking

(CC), which is used in NuMVC. The CC strategy (Cai et al., 2011) was proposed for handling the

693

CAI, SU, LUO & SATTAR

cycling problem in local search, i.e., revisiting a candidate solution that has been visited recently

(Michiels, Aarts, & Korst, 2007). This strategy has been successfully applied in local search

algorithms for MVC (Cai et al., 2011) as well as SAT (Cai & Su, 2011, 2012).

The CC strategy in NuMVC works as follows: For a vertex v /∈ C, if all its neighboring vertices

never change their states since the last time v was removed from C, then v should not be added

back to C. The CC strategy can be seen as a prohibition mechanism, which shares the same spirit

but differs from the well-known prohibition mechanism called tabu (Glover, 1989).

An implementation of the CC strategy is to maintain a Boolean array confChange for vertices.

During the search procedure, those vertices which have a confChange value of 0 are forbidden to

add into C. The confChange array is initialized as an all-1 array. After that, when a vertex v is

removed from C, confChange(v) is reset to 0, and when a vertex v changes its state, for each

z ∈ N(v), confChange(z) is set to 1.

We outline the NuMVC algorithm in Algorithm 1, as described below. In the beginning, all edge

weights are initialized as 1, and dscores of vertices are computed accordingly; confChange(v) is

initialized as 1 for each vertex v; then the current candidate solution C is constructed by iteratively

adding the vertex with the highest dscore (ties are broken randomly), until it becomes a vertex

cover. Finally, the best solution C∗ is initialized as C.

After the initialization, the loop (lines 7-18) is executed until a given cutoff time is reached.

During the search procedure, once there is no uncovered edge, which means C is a vertex cover,

NuMVC updates the best solution C∗ as C (line 9). Then it removes one vertex with the highest

dscore from C (line 10), breaking ties randomly, so that it can go on to search for a vertex cover

of size |C| = |C∗| − 1. We note that, in C, the vertex with the highest dscore has the minimum

absolute value of dscore since all these dscores are negative.

In each iteration of the loop, NuMVC swaps two vertices according to the strategy of two-stage

exchange (lines 12-16). Specifically, it first selects a vertex u ∈ C with the highest dscore to

remove, breaking ties in favor of the oldest one. After removing u, NuMVC chooses an uncovered

edge e uniformly at random, and selects one of e’s endpoints to add into C as follows: If there is

only one endpoint whose confChange is 1, then that vertex is selected; if the confChange values

of both endpoints are 1, then NuMVC selects the vertex with the higher dscore, breaking ties in

favor of the older one. The exchange is finished by adding the selected vertex into C. Along with

exchanging the two selected vertices, the confChange array is updated accordingly.

At the end of each iteration, NuMVC updates the edge weights (lines 17-18). First, weights of

all uncovered edges are increased by one. Moreover, NuMVC utilizes the forgetting mechanism to

decrease the weights periodically. In detail, if the averaged weight of all edges achieves a threshold

γ, then all edge weights are multiplied by a constant factor ρ (0 < ρ < 1) and rounded down to an

integer as edge weights are defined as integers in NuMVC. The forgetting mechanism forgets the

earlier weighting decision to some extent, as these past effects are generally no longer helpful and

may mislead the search.

We conclude this section by the following observation, which guarantees the executability of

line 15.

Proposition 1. For an uncovered edge e, there is at least one endpoint v of edge e such that

confChange(v) = 1.

Proof: Let us consider an arbitrary uncovered edge e = {v1, v2}. The proof includes two cases.

(a) There is at least one of v1 and v2 which never changes its state after initialization. Without

694

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

loss of generality, we assume v1 is such a vertex. In the initialization, confChange(v1) is set to

1. After that, only removing v1 from C (which corresponds to v’s state sv changing to 0 from

1) can make confChange(v1) be 0, but v1 never changes its state after initialization, so we have

confChange(v1)= 1.

(b) Both v1 and v2 change their states after initialization. As e is uncovered, we have v1 /∈ C and

v2 /∈ C. Without loss of generality, we assume the last removing of v1 happens before the last

removing of v2. The last time v1 is removed, v2 ∈ C holds. Afterwards, v2 is removed, which

means v2 changes its state, so confChange(v1) is set to 1 as v1 ∈ N(v2).

6. Empirical Results

In this section, we present a detailed experimental study to evaluate the performance of NuMVC

on standard benchmarks in the literature, i.e., the DIMACS and BHOSLIB benchmarks. We first

introduce the DIMACS and BHOSLIB benchmarks, and describe some preliminaries about the

experiments. Then, we divide the experiments into three parts. The purpose of the first part is to

demonstrate the performance of NuMVC in detail. The second is to compare NuMVC with state-of-

the-art heuristic algorithms. Finally, the last part is to compare NuMVC with state-of-the-art exact

algorithms.

6.1 The Benchmarks

Having a good set of benchmarks is fundamental to demonstrate the effectiveness of new solvers.

We use the two standard benchmarks in MVC (MIS, MC) research, the DIMACS benchmark and

the BHOSLIB benchmark. The DIMACS benchmark includes instances from industry and those

generated by various models, while the BHOSLIB instances are random ones of high difficulty.

6.1.1 DIMACS BENCHMARK

The DIMACS benchmark is taken from the Second DIMACS Implementation Challenge for the

Maximum Clique problem (1992-1993)2. Thirty seven graphs were selected by the organizers for

a summary to indicate the effectiveness of algorithms, comprising the Second DIMACS Challenge

Test Problems. These instances were generated from real world problems such as coding theory,

fault diagnosis, Keller’s conjecture and the Steiner Triple Problem, etc, and random graphs in

various models, such as the brock and p hat families. These instances range in size from less

than 50 vertices and 1,000 edges to greater than 4,000 vertices and 5,000,000 edges. Although being

proposed two decades ago, the DIMACS benchmark remains the most popular benchmark and has

been widely used for evaluating heuristic algorithms for MVC (Richter et al., 2007; Pullan, 2009;

Cai et al., 2011; Gajurel & Bielefeld, 2012), MIS (Andrade et al., 2008; Pullan, 2009) and MC

algorithms (Pullan, 2006; Katayama, Sadamatsu, & Narihisa, 2007; Grosso, Locatelli, & Pullan,

2008; Pullan et al., 2011; Wu, Hao, & Glover, 2012). In particular, the DIMACS benchmark has

been used for evaluating COVER and EWCC. It is convenient for us to use this benchmark also

to conduct experiments comparing NuMVC with COVER and EWCC. Note that as the DIMACS

graphs were originally designed for the Maximum Clique problem, MVC algorithms are tested on

their complementary graphs.

2. ftp://dimacs.rutgers.edu/pub/challenges

695

CAI, SU, LUO & SATTAR

6.1.2 BHOSLIB BENCHMARK

The BHOSLIB3 (Benchmarks with Hidden Optimum Solutions) instances were generated randomly

in the phase transition area according to the model RB (Xu, Boussemart, Hemery, & Lecoutre,

2005). Generally, those phase-transition instances generated by model RB have been proved to

be hard both theoretically (Xu & Li, 2006) and practically (Xu & Li, 2000; Xu, Boussemart,

Hemery, & Lecoutre, 2007). The SAT version of the BHOSLIB benchmark is extensively used

in the SAT competitions4. Nevertheless, SAT solvers are much weaker than MVC solvers on these

problems, which remains justifiable when referring to the results of SAT Competition 2011 on this

benchmark. The BHOSLIB benchmark is famous for its hardness and influential enough to be

strongly recommended by the MVC (MC, MIS) community (Grosso et al., 2008; Cai et al., 2011).

It has been widely used in the recent literature as a reference point for new local search solvers to

MVC, MC and MIS5. Besides these 40 instances, there is a large instance frb100-40 with 4,000

vertices and 572,774 edges, which is designed for challenging MVC (MC, MIS) algorithms.

The BHOSLIB benchmark was designed for MC, MVC and MIS, and all the graphs in this

benchmark are expressed in two formats, i.e., the clq format and the mis format. For a BHOSLIB

instance, the graph in clq format and the one in mis format are complementary to each other. MC

algorithms are tested on the graphs in clq format, while MVC and MIS algorithms are tested on

those in mis format.

6.2 Experiment Preliminaries

Before we discuss the experimental results, let us introduce some preliminary information about our

experiments.

NuMVC is implemented in C++. The codes of both NuMVC and EWCC are publicly available

on the first author’s homepage6. The codes of COVER are downloaded online7, and those of PLS

are kindly provided by its authors. All the four solvers are compiled by g++ with the ’-O2’ option.

All experiments are carried out on a machine with a 3 GHz Intel Core 2 Duo CPU E8400 and 4GB

RAM under Linux. To execute the DIMACS machine benchmarks8, this machine requires 0.19

CPU seconds for r300.5, 1.12 CPU seconds for r400.5 and 4.24 CPU seconds for r500.5.

For NuMVC, we set γ = 0.5|V | and ρ = 0.3 for all runs, except for the challenging instance

frb100-40, where γ = 5000 and ρ = 0.3. Note that there are also parameters in other state-of-

the-art MVC (MC, MIS) algorithms, such as DLS-MC (Pullan & Hoos, 2006) and EWLS (Cai et al.,

2010). Moreover, the parameters in DLS-MC and EWLS vary considerably on different instances.

For each instance, each algorithm is performed 100 independent runs with different random seeds,

where each run is terminated upon reaching a given cutoff time. The cutoff time is set to 2000

seconds for all instances except for the challenging instance frb100-40, for which the cutoff

time is set to 4000 seconds due to its significant hardness.

For NuMVC, we report the following information for each instance:

• The optimal (or minimum known) vertex cover size (V C∗).

3. http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htm

4. http://www.satcompetition.org

5. http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/list-graph-papers.htm

6. http://www.shaoweicai.net/research.html

7. http://www.informatik.uni-freiburg.de/˜srichter/

8. ftp://dimacs.rutgers.edu/pub/dsj/clique/

696

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

• The number of successful runs (“suc”). A run is said successful if a solution of size V C∗ is

found.

• The “VC size” which shows the min (average, max) vertex cover size found by NuMVC in

100 runs.

• The averaged run time over all 100 runs (“time”). The run time of a successful run is the

time to find the V C∗ solution, and that of a failed run is considered to be the cutoff time. For

instances where NuMVC does not achieve a 100% success rate, we also report the averaged

run time over only successful runs (“suc time”). The run time is measured in CPU seconds.

• The inter-quartile range (IQR) of the run time for 100 runs. The IQR is the difference between

the 75th percentile and the 25th percentile of a sample. IQR is one of the most famous robust

measures in data analysis (Hoaglin, Mosteller, & Tukey, 2000), and has been recommended

as a measurement of closeness of the sampling distribution by the community of experimental

algorithms (Bartz-Beielstein, Chiarandini, Paquete, & Preuss, 2010).

• The number of steps averaged over all 100 runs (“steps”). The steps of a successful run is

those needed to find the V C∗ solution, while the steps of a failed run are those executed

before the running is cut off. For instances where NuMVC does not achieve a 100% success

rate, we also report the averaged steps over only successful runs (“suc steps”).

If there are no successful runs for an instance, the “time” and “steps” columns are marked with

“n/a”. When the success rate of a solver on an instance is less than 75%, the 75th percentile of the

run time sample is just the cutoff time and does not represent the real 75th percentile. In this case,

we do not report the IQR, and instead we mark with “n/a” on the corresponding column. Actually,

if the success rate of a solver on a certain instance is less than 75%, the solver should be considered

not robust on that instance given the cutoff time.

6.3 Performance of NuMVC

In this section, we report a detailed performance of NuMVC on the two benchmarks.

6.3.1 PERFORMANCE OF NUMVC ON DIMACS BENCHMARK

The performance results of NuMVC on the DIMACS benchmark are displayed in Table 1. NuMVC

finds optimal (or best known) solutions for 35 out of 37 DIMACS instances. Note that the 2 failed

instances are both brock graphs. Furthermore, among the 35 successful instances, NuMVC does

so consistently (i.e., in all 100 runs) for 32 instances, 24 of which are solved within 1 second.

Overall, the NuMVC algorithm exhibits excellent performance on the DIMACS benchmark except

for the brock graphs. Remark that the brock graphs are artificially designed to defeat greedy

heuristics by explicitly incorporating low-degree vertices into the optimal vertex cover. Indeed,

most algorithms preferring higher-degree vertices such as GRASP, RLS, k-opt, COVER and EWCC

also failed in these graphs.

6.3.2 PERFORMANCE OF NUMVC ON BHOSLIB BENCHMARK

In Table 2, we illustrate the performance of NuMVC on the BHOSLIB benchmark. NuMVC

successfully solves all BHOSLIB instances in terms of finding an optimal solution, and the size

697

CAI, SU, LUO & SATTAR

Graph NuMVC

Instance Vertices V C∗ suc VC size time(suc time) steps(suc steps)

brock200 2 200 188∗ 100 188 0.126 137610

brock200 4 200 183∗ 100 183 1.259 1705766

brock400 2 400 371∗ 96 371(371.16,375) 572.390(512.906) 645631471(585032783)

brock400 4 400 367∗ 100 367 4.981 6322882

brock800 2 800 776∗ 0 779 n/a n/a

brock800 4 800 774∗ 0 779 n/a n/a

C125.9 125 91∗ 100 91 < 0.001 136

C250.9 250 206∗ 100 206 < 0.001 3256

C500.9 500 443∗ 100 443 0.128 133595

C1000.9 1000 932 100 932 2.020 1154155

C2000.5 2000 1984 100 1984 2.935 231778

C2000.9 2000 1920 1 1920(1921.29,1922) 1994.561(1393.303) 777848959(564895994)

C4000.5 4000 3982 100 3982 252.807 7802785

DSJC500.5 500 487∗ 100 487 0.012 3800

DSJC1000.5 1000 985∗ 100 985 0.615 134796

gen200 p0.9 44 200 156∗ 100 156 < 0.001 1695

gen200 p0.9 55 200 145∗ 100 145 < 0.001 69

gen400 p0.9 55 400 345∗ 100 345 0.035 38398

gen400 p0.9 65 400 335∗ 100 335 < 0.001 1522

gen400 p0.9 75 400 325∗ 100 325 < 0.001 203

hamming8-4 256 240∗ 100 240 < 0.001 1

hamming10-4 1024 984∗ 100 984 0.062 23853

keller4 171 160∗ 100 160 < 0.001 42

keller5 776 749∗ 100 749 0.038 15269

keller6 3361 3302 100 3302 2.51 384026

MANN a27 378 252∗ 100 252 < 0.001 6651

MANN a45 1035 690∗ 100 690 86.362 90642150

MANN a81 3321 2221 27 2221(2221.94,2223) 1657.880(732.897) 571607432(251509010)

p hat300-1 300 292∗ 100 292 0.003 100

p hat300-2 300 275∗ 100 275 < 0.001 98

p hat300-3 300 264∗ 100 264 0.001 1863

p hat700-1 700 689∗ 100 689 0.011 1248

p hat700-2 700 656∗ 100 656 0.006 1103

p hat700-3 700 638∗ 100 638 0.008 2868

p hat1500-1 1500 1488∗ 100 1488 3.751 445830

p hat1500-2 1500 1435∗ 100 1435 0.071 5280

p hat1500-3 1500 1406 100 1406 0.060 10668

Table 1: NuMVC performance results, averaged over 100 independent runs, for the DIMACS

benchmark instances. The VC∗ column marked with an asterisk means that the minimum

known vertex cover size has been proved optimal.

698

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

of the worst solution it finds never exceeds V C∗ + 1. NuMVC finds optimal solutions with 100%

success rate for 33 out of these 40 instances, and the averaged success rate over the remaining 7

instances is 82.57%. These results are dramatically better than existing results in the literature on

this benchmark. Also, NuMVC finds a sub-optimal solution of size V C∗ + 1 for all BSHOSLIB

instances very quickly, always in less than 30 seconds. This indicates NuMVC can be used to

approximate the MVC problem efficiently even under very limited time.

Besides the 40 BHOSLIB instances in Table 2, there is a challenging instance frb100-40,

which has a hidden minimum vertex cover of size 3900. The designer of the BHOSLIB benchmark

conjectured that this instance will not be solved on a PC in less than a day within the next two

decades9. The latest record for this challenging instance is a 3902-sized vertex cover found by

EWLS, and also EWCC.

We run NuMVC 100 independent trials within 4000 seconds on frb100-40, with γ = 5000
and ρ = 0.3 (this parameter setting yields the best performance among all combinations from

γ = 2000, 3000, ..., 6000 and ρ = 0.1, 0.2, ..., 0.5). Among these 100 runs, 4 runs find a 3902-sized

solution with the averaged time of 2955 seconds, and 93 runs find a 3903-sized solution (including

3902-sized) with the averaged time of 1473 seconds. Also, it is interesting to note that NuMVC

can locate a rather good approximate solution for this hard instance very quickly: the size of vertex

covers that NuMVC finds within 100 seconds is between 3903 and 3905.

Generally, finding a (k+1)-vertex cover is much easier than a k-vertex cover. Hence, for

NuMVC, as well as most other MVC local search algorithms which also solve the MVC problem

by solving the k-vertex cover problem iteratively, the majority of running time is used in finding

the best vertex cover C∗ (of the run), and in trying, without success, to find a vertex cover of size

(|C∗| − 1).

6.4 Comparison with Other Heuristic Algorithms

In the recent literature there are five leading heuristic algorithms for MVC (MC, MIS), including

three MVC algorithms COVER (Richter et al., 2007), EWLS (Cai et al., 2010) and EWCC (Cai

et al., 2011), and two MC algorithms DLS-MC (Pullan & Hoos, 2006) and PLS (Pullan, 2006).

Note that EWCC and PLS are the improved versions of EWLS and DLS-MC respectively, and show

better performance over their original versions on DIMACS and BHOSLIB benchmarks. Therefore,

we compare NuMVC only with PLS, COVER and EWCC.

When comparing NuMVC with other heuristic algorithms, we report V C∗, “suc”, “time” as well

as IQR. The averaged run time over only successful runs (“suc time”) cannot indicate comparative

performance of algorithms correctly unless the evaluated algorithms have close success rates, and

can be calculated by
“time”∗100−cutoff∗(100−“suc”)

“suc” , so we do not report these statistics. The results

in bold indicate the best performance for an instance.

6.4.1 COMPARATIVE RESULTS ON DIMACS BENCHMARK

The comparative results on the DIMACS benchmark are shown in Table 3. Most DIMACS instances

are so easy that they can be solved by all solvers with 100% success rate within 2 seconds, and thus

are not reported in the table. Actually, the fact that the DIMACS benchmark has been reduced to 11

useful instances really emphasizes the need to make a new benchmark.

9. http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htm

699

CAI, SU, LUO & SATTAR

Graph NuMVC

Instance Vertices V C
∗ suc VC size time (suc time) steps (suc steps)

frb30-15-1 450 420 100 420 0.045 37963

frb30-15-2 450 420 100 420 0.053 44632

frb30-15-3 450 420 100 420 0.191 173708

frb30-15-4 450 420 100 420 0.049 41189

frb30-15-5 450 420 100 420 0.118 105468

frb35-17-1 595 560 100 560 0.515 386287

frb35-17-2 595 560 100 560 0.447 334255

frb35-17-3 595 560 100 560 0.178 129279

frb35-17-4 595 560 100 560 0.563 422638

frb35-17-5 595 560 100 560 0.298 218800

frb40-19-1 760 720 100 720 0.242 208115

frb40-19-2 760 720 100 720 4.083 3679770

frb40-19-3 760 720 100 720 1.076 959874

frb40-19-4 760 720 100 720 2.757 2473081

frb40-19-5 760 720 100 720 10.141 9142719

frb45-21-1 945 900 100 900 2.708 2029588

frb45-21-2 945 900 100 900 4.727 3605881

frb45-21-3 945 900 100 900 13.777 10447444

frb45-21-4 945 900 100 900 3.973 3000680

frb45-21-5 945 900 100 900 10.661 8059236

frb50-23-1 1150 1100 100 1100 38.143 24628019

frb50-23-2 1150 1100 100 1100 176.589 113569606

frb50-23-3 1150 1100 95 1100(1100.05,1101) 606.165(532.805) 386342329(343518242)

frb50-23-4 1150 1100 100 1100 7.89 5092072

frb50-23-5 1150 1100 100 1100 19.529 12690957

frb53-24-1 1272 1219 86 1219(1219.14,1220) 895.006(715.123) 514619149(416394360)

frb53-24-2 1272 1219 100 1219 205.352 117980833

frb53-24-3 1272 1219 100 1219 51.227 29376406

frb53-24-4 1272 1219 100 1219 266.871 152982736

frb53-24-5 1272 1219 100 1219 39.893 22817023

frb56-25-1 1400 1344 100 1344 470.682 259903023

frb56-25-2 1400 1344 97 1344(1344.03,1345) 658.961(617.485) 350048132(326853745)

frb56-25-3 1400 1344 100 1344 121.298 67043078

frb56-25-4 1400 1344 100 1344 49.446 26030031

frb56-25-5 1400 1344 100 1344 26.761 14109165

frb59-26-1 1534 1475 88 1475(1475.12,1476) 843.304(687.845) 440874471(350993718)

frb59-26-2 1534 1475 38 1475(1475.62,1476) 1677.801(1160.020) 875964146(592010913)

frb59-26-3 1534 1475 96 1475(1475.04,1476) 644.831(580.032) 325417225(295226277)

frb59-26-4 1534 1475 79 1475(1475.21,1476) 1004.550(741.208) 517521634(375976753)

frb59-26-5 1534 1475 100 1475 61.907 31682895

Table 2: NuMVC performance results, averaged over 100 independent runs, for the BHOSLIB

benchmark instances. All these BHOSLIB instances have a hidden optimal vertex cover,

whose size is shown in the VC∗ column.

As indicated in Table 3, NuMVC outperforms COVER and EWCC on all instances, and is

competitive with and complementary to PLS. For the eight hard instances on which at least one

solver fails to achieve a 100% success rate, PLS dominates on the brock graphs while NuMVC

dominates on the others, including the two putatively hardest instances C2000.9 and MANN a81

(Richter et al., 2007; Grosso et al., 2008; Cai et al., 2011), as well as keller6 and MANN a45.

700

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

Graph PLS COVER EWCC NuMVC

Instance V C
∗ suc time (IQR) suc time (IQR) suc time (IQR) suc time (IQR)

brock400 2 371∗ 100 0.15 (0.16) 3 1947 (n/a) 20 1778 (n/a) 96 572 (646)

brock400 4 367∗ 100 0.03 (0.03) 82 960 (988) 100 25.38 (25.96) 100 4.98 (6.14)

brock800 2 776∗ 100 3.89 (3.88) 0 n/a 0 n/a 0 n/a

brock800 4 774∗ 100 1.31 (1.52) 0 n/a 0 n/a 0 n/a

C2000.9 1920 0 n/a 0 n/a 0 n/a 1 1994 (n/a)

C4000.5 3982 100 67 (59) 100 658 (290) 100 739 (903) 100 252 (97)

gen400 p0.9 55 345∗ 100 15.17 (17) 100 0.35 (0.1) 100 0.05 (0.04) 100 0.03 (0.01)

keller6 3302 92 559 (515) 100 68 (6) 100 3.76 (3.57) 100 2.51 (0.76)

MANN a45 690∗ 1 1990 (n/a) 94 714 (774) 88 763 (766) 100 86 (95)

MANN a81 2221 0 n/a 1 1995 (n/a) 1 1986 (n/a) 27 1657 (n/a)

p hat1500-1 1488∗ 100 2.36 (3.07) 100 18.10 (17.23) 100 9.79 (9.77) 100 3.75 (3.19)

Table 3: Comparison of NuMVC with other state-of-the-art heuristic algorithms on the DIMACS

benchmark. The VC∗ column marked with an asterisk means that the minimum known

vertex cover size has been proved optimal.

For C2000.9, only NuMVC finds a 1920-sized solution, and it also finds a 1921-sized solution in

70 runs, while this number is 31, 6 and 32 for PLS, COVER, and EWCC respectively. Note that

PLS performs well on the brock family because it comprises three sub-algorithms, one of which

favors the lower degree vertices.

Table 3 indicates that C2000.9 and MANN a81 remain very difficult for modern algorithms,

as none of the algorithms can solve them with a good success rate in reasonable time. On the other

hand, other instances can be solved quickly (in less than 100 seconds) by at least one algorithm, PLS

or NuMVC, with a low IQR value (always less than 100), which indicates quite stable performance.

6.4.2 COMPARATIVE RESULTS ON BHOSLIB BENCHMARK

In Table 4, we present comparative results on the BHOSLIB benchmark. For concentrating on the

considerable gaps in comparisons, we do not report the results on the two groups of small instances

(frb30 and frb35), which can be solved within several seconds by all solvers.

The results in Table 4 illustrate that NuMVC significantly outperforms the other algorithms

on all BHOSLIB instances, in terms of both success rate and averaged run time, which are also

demonstrated in Figure 1. We take a further look at the comparison between NuMVC and EWCC,

as EWCC performs obviously better than PLS and COVER on this benchmark. NuMVC solves 33

instances out of 40 with 100% success rate, 4 more instances than EWCC does. For those instances

solved by both algorithms with 100% success rate, the overall averaged run time is 25 seconds

for NuMVC and 74 seconds for EWCC. For other instances, the averaged success rate is 90% for

NuMVC, compared to 50% for EWCC.

The excellent performance of NuMVC is further underlined by the large gaps between NuMVC

and the other solvers on the hard instances. For example, on the instances where all solvers fail

to find an optimal solution with 100% success rate, NuMVC achieves an overall averaged success

rate of 82.57%, dramatically better than those of PLS, COVER and EWCC, which are 0.85%,

17.43% and 35.71% respectively. Obviously, the experimental results show that NuMVC delivers

701

CAI, SU, LUO & SATTAR

Graph PLS COVER EWCC NuMVC

Instance V C
∗ suc time (IQR) suc time (IQR) suc time (IQR) suc time (IQR)

frb40-19-1 720 100 10.42 (10.38) 100 1.58 (0.55) 100 0.55 (0.48) 100 0.24 (0.18)

frb40-19-2 720 100 85.25 (72.75) 100 17.18 (16.09) 100 11.30 (14.21) 100 4.08 (3.77)

frb40-19-3 720 100 9.06 (10.21) 100 5.06 (4) 100 2.97 (2.35) 100 1.07 (1.03)

frb40-19-4 720 100 77.39 (90.56) 100 11.79 (8.67) 100 13.79 (16.05) 100 2.76 (2.83)

frb40-19-5 720 95 496 (529.25) 100 124 (131) 100 41.71 (39.08) 100 10.14 (10.54)

frb45-21-1 900 100 52.31 (55.5) 100 14.34 (12.8) 100 9.07 (9.3) 100 2.71 (2.6)

frb45-21-2 900 100 170 (202.2) 100 38 (35.4) 100 15 (14.1) 100 5 (5.1)

frb45-21-3 900 21 1737 (n/a) 100 110 (121) 100 56 (70.4) 100 14 (11.9)

frb45-21-4 900 100 111 (130) 100 21 (18) 100 15 (12.5) 100 4 (4.3)

frb45-21-5 900 100 261 (300) 100 105 (103) 100 42 (40.1) 100 11 (10.9)

frb50-23-1 1100 30 1658 (640) 100 268 (305) 100 124 (135) 100 38 (46)

frb50-23-2 1100 3 1956 (n/a) 48 1325 (n/a) 82 905 (1379) 100 177 (149)

frb50-23-3 1100 2 1989 (n/a) 39 1486 (n/a) 56 1348 (n/a) 95 606 (788)

frb50-23-4 1100 100 93 (80) 100 33 (25) 100 24 (27) 100 8 (7)

frb50-23-5 1100 79 967 (1305) 100 168 (246) 100 85 (97) 100 19 (19)

frb53-24-1 1219 1 1982 (n/a) 17 1796 (n/a) 30 1696 (n/a) 86 895 (1099)

frb53-24-2 1219 6 1959 (n/a) 50 1279 (n/a) 81 1006 (1270) 100 205 (200)

frb53-24-3 1219 20 1771 (n/a) 99 273 (223) 100 117 (136) 100 51 (48)

frb53-24-4 1219 21 1782 (n/a) 48 1428 (n/a) 81 900 (1480) 100 266 (311)

frb53-24-5 1219 10 1955 (n/a) 95 423 (315) 100 125 (115) 100 40 (44)

frb56-25-1 1344 1 1993 (n/a) 24 1698 (n/a) 56 1268 (n/a) 100 470 (466)

frb56-25-2 1344 0 n/a 17 1598 (n/a) 52 1387 (n/a) 97 659 (780)

frb56-25-3 1344 0 n/a 97 537 (692) 100 285 (250) 100 121 (118)

frb56-25-4 1344 11 1915 (n/a) 93 476 (460) 100 183 (188) 100 50 (49)

frb56-25-5 1344 27 1719 (n/a) 100 168 (128) 100 80 (81) 100 27 (23)

frb59-26-1 1475 0 n/a 16 1607 (n/a) 21 1778 (n/a) 88 843 (849)

frb59-26-2 1475 0 n/a 9 1881 (n/a) 7 1930 (n/a) 37 1677 (n/a)

frb59-26-3 1475 3 1978 (n/a) 21 1768 (n/a) 64 1294 (n/a) 96 636 (788)

frb59-26-4 1475 0 n/a 3 1980 (n/a) 20 1745 (n/a) 79 1004 (1391)

frb59-26-5 1475 30 1708 (420) 98 431 (476) 100 174 (182) 100 62 (70)

Table 4: Comparison of NuMVC with other state-of-the-art local search algorithms on the

BHOSLIB benchmark. All these BHOSLIB instances have a hidden optimal vertex cover,

whose size is shown in the VC∗ column.

702

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

the best performance for this hard random benchmark, vastly improving the existing performance

results. We also observe that, NuMVC always has the minimum IQR value for all instances, which

indicates that apart from its efficiency, the robustness of NuMVC is also better than other solvers.

760(frb40) 945(frb45) 1150(frb50)1272(frb53) 1400(frb56) 1534(frb59)
0

10

20

30

40

50

60

70

80

90

100

number of vertices in graph

av
er

ag
e

su
cc

es
s

ra
te

PLS
COVER
EWCC
NuMVC

760(frb40) 945(frb45) 1150(frb50)1272(frb53) 1400(frb56) 1534(frb59)
0

200

400

600

800

1000

1200

1400

1600

1800

2000

number of vertices in graph
av

er
ag

e
ru

n
tim

e
(s

)

PLS
COVER
EWCC
NuMVC

Figure 1: Comparison of NuMVC and other local search algorithms on the BHOSLIB benchmark

in terms of success rate (left) and averaged run time (right)

We also compare NuMVC with COVER and EWCC on the challenging instance frb100-40.

Given the failure of PLS on large BHOSLIB instances, we do not run PLS on this instance.

The comparative results on frb100-40 are shown in Table 5, which indicates that NuMVC

significantly outperforms COVER and EWCC on this challenging instance.

Finally, we would like to remark that the performance of NuMVC on the BHOSLIB benchmark

is better than a four-core version of CLS (Pullan et al., 2011), even if we do not divide the run time

of NuMVC by 4 (the number of cores utilized by CLS). If we consider the machine speed ratio and

divide the run time of NuMVC by 4, then NuMVC would be dramatically better than CLS on the

BHOSLIB benchmark.

Size COVER EWCC NuMVC

of VC suc avg suc time suc avg suc time suc avg suc time

3902 0 n/a 1 2586 4 2955

≤ 3903 33 2768 79 2025 93 1473

Table 5: Comparative results on the frb100-40 challenging instance. Each solver is executed

100 times on this instance with a timeout of 4000 seconds.

6.5 Comparison with Exact Algorithms

In this section, we compare NuMVC with a state-of-the-art exact Maximum Clique algorithm.

Generally, exact algorithms and heuristic algorithms are somewhat complementary in their

applications. Usually, exact algorithms find solutions for structured instances faster while heuristic

algorithms are faster on random ones.

703

CAI, SU, LUO & SATTAR

Compared to MVC and MIS, many more exact algorithms are designed for the Maximum Clique

problem (Carraghan & Pardalos, 1990; Fahle, 2002; Östergård, 2002; Régin, 2003; Tomita &

Kameda, 2009; Li & Quan, 2010b, 2010a). The recent branch-and-bound MC algorithm MaxCLQ

(Li & Quan, 2010b) which utilizes MaxSAT inference technologies (Li, Manyà, & Planes, 2007)

to improve upper bounds shows considerable progress. Experimental results of MaxCLQ (Li &

Quan, 2010b) on some random graphs and DIMACS instances indicate that MaxCLQ significantly

outperforms previous exact MC algorithms. The MaxCLQ algorithm is further improved using two

strategies called Extended Failed Literal Detection and Soft Clause Relaxation, resulting in a better

algorithm denoted by MaxCLQdyn+EFL+SCR (Li & Quan, 2010a). Due to the great success of

MaxCLQdyn+EFL+SCR, we compare our algorithm only with MaxCLQdyn+EFL+SCR.

We compare NuMVC with MaxCLQdyn+EFL+SCR on the DIMACS benchmark instances.

The results of MaxCLQdyn+EFL+SCR are taken from the previous work (Li & Quan, 2010a).

MaxCLQdyn+EFL+SCR is not evaluated on the BHOSLIB benchmark which is much harder and

requires more effective technologies for exact algorithms (Li & Quan, 2010a).

The run time results of MaxCLQdyn+EFL+SCR are obtained on a 3.33 GHz Intel Core 2 Duo

CPU with linux and 4 Gb memory, which required 0.172 seconds for r300.5, 1.016 seconds for

r400.5 and 3.872 seconds for r500.5 to execute the DIMACS machine benchmarks (Li & Quan,

2010a). The corresponding run time for our machine is 0.19, 1.12 and 4.24 seconds. So, we multiply

the reported run time of MaxCLQdyn+EFL+SCR by 1.098 (=(4.24/3.872+1.12/1.016)/2=1.098, the

average of the two largest ratios). This normalization is based on the methodology established in

the Second DIMACS Implementation Challenge for Cliques, Coloring, and Satisfiability, and is

widely used for comparing different MaxClique algorithms (Pullan & Hoos, 2006; Pullan, 2006; Li

& Quan, 2010b, 2010a).

Graph NuMVC MaxCLQdyn+EFL Graph NuMVC MaxCLQdyn+EFL

Instance V C
∗ suc time +SCR time Instance V C

∗ suc time +SCR time

brock400 2 371 96 572.39 125.06 p hat300-3 264 100 0.001 1.31

brock400 3 369 100 8.25 251.44 p hat700-2 656 100 0.006 3.27

brock400 4 367 100 4.98 119.24 p hat700-3 638 100 0.008 1141.92

brock800 2 776 0 n/a 5138.10 p hat1000-2 954 100 0.019 108.94

brock800 3 775 0 n/a 3298.39 p hat1000-3 932 100 0.032 113860.40

brock800 4 774 0 n/a 2391.44 p hat1500-1 1488 100 3.75 3.10

keller5 749 100 0.04 6884.46 p hat1500-2 1435 100 0.071 866.51

MANN a27 252 100 <0.001 0.17 sanr200 0.9 158 100 <0.001 5.20

MANN a45 690 100 86.86 21.169 sanr400 0.7 379 100 0.008 97.72

Table 6: Comparison of NuMVC with the state-of-the-art exact MaxClique algorithm MaxCLQ-

dyn+EFL+SCR for the DIMACS benchmark.

In Table 6, we present the performance of NuMVC and MaxCLQdyn+EFL+SCR on the

DIMACS instances. The results indicate that NuMVC finds an optimal solution much faster

than MaxCLQdyn+EFL+SCR on random instances such as the p hat and sanr instances. We

believe that similar results would hold for other hard random benchmarks like BHOSLIB ones, as

MaxCLQdyn+EFL+SCR is not evaluated on these instances due to their high hardness (Li & Quan,

2010a), while NuMVC performs very well on them.

For structured instances, we note that MaxCLQdyn+EFL+SCR is mainly evaluated on the

brock instances where NuMVC performs worst, but not on the open DIMACS instances such

704

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

as MANN a81, johnson32-2-4 and keller6, which remain very difficult to solve by exact

algorithms (Li & Quan, 2010a). Although MaxCLQdyn+EFL+SCR overall performs better,

NuMVC also finds an optimal solution significantly faster than MaxCLQdyn+EFL+SCR on some

structured instances, such as the two brock instances and keller5.

Finally, we would like to note that although heuristic solvers can find optimal solutions fast, they

are unable to prove the optimality of the solutions they find. On the other hand, the run time of an

exact algorithm is spent not only on finding an optimal solution but also on proving its optimality.

In this sense, heuristic and exact algorithms cannot be compared in a fair way. Nevertheless, our

experiments suggest that heuristic approaches are appealing for solving large instances in reasonable

short time.

7. Discussions

In this section, we first explore the run-time distribution of NuMVC on some representative

instances, and then investigate the effectiveness of the two-stage exchange strategy and the

forgetting mechanism in NuMVC. Finally, we analyze the performance of NuMVC with different

settings to its two parameters for the forgetting mechanism, which shows that NuMVC is not

sensitive to the parameters.

7.1 Run-time Distributions of NuMVC

In this subsection, we conduct an empirical study to gain deeper insights of the run-time behavior of

NuMVC. More specifically, we study the run-time distribution of NuMVC on several representative

instances. For the purpose of comparison, we also report the run-time distribution of EWCC, which

is the best competing MVC local search solver.

Consider a randomized algorithm solving a given optimization problem instance, and halting

as soon as an optimal solution is found. The run time of the algorithm can be viewed as a

random variable, which is fully described by its distribution, commonly referred to as the run-time

distribution (RTD) in the literature about algorithm performance modeling (Hoos & Stützle, 2004;

Bartz-Beielstein et al., 2010). The methodology of studying the run-time behavior of algorithms

based on RTDs has been widely used in empirical analysis of heuristic algorithms (Hoos & Stützle,

1999; Finkelstein, Markovitch, & Rivlin, 2003; Watson, Whitley, & Howe, 2005; Pullan & Hoos,

2006). We also follow the same methodology in our study here.

For studying typical run-time behaviour, we choose instances where NuMVC reaches an optimal

solution in all 100 runs, and are of appropriate difficulty. For the DIMACS benchmark, we select

brock400 4 and MANN a45, both of which are of reasonable size and hardness. Also, these two

instances represent two typical instance classes for NuMVC, as NuMVC has poor performance on

the brock instances, while it dominates other heuristic algorithms on the MANN instances. For

the BHOSLIB benchmark, frb56-25-5 and frb59-26-5 are selected. These are appropriate

instances for studying the run-time behavior of NuMVC, since they are neither too easy that can be

solved in a short time nor too difficult to reach a 100% success rate.

The empirical RTD graphs of NuMVC and EWCC are shown in Figure 2 (the RTD for each

instance is based on 100 independent runs that all reach a respective optimal solution). According to

the graphs, NuMVC shows a large variability in run time. Further investigation indicates that these

RTDs are quite well approximated by exponential distributions, labeled ed[m](x) = 1 − 2−x/m,

where m is the median of the distribution. To test the goodness of the approximations, we use a

705

CAI, SU, LUO & SATTAR

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

run−time [CPU sec]

P
(s

ol
ve

)
Empirical RTD of NuMVC and EWCC on brock400_4

RTD for NuMVC
ed[3.6]
RTD for EWCC
ed[12]

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

run−time [CPU sec]

P
(s

ol
ve

)

Empirical RTD of NuMVC and EWCC on MANN_a45

RTD for NuMVC
ed[59]
RTD for EWCC
ed[532]

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

run−time [CPU sec]

P
(s

ol
ve

)

Empirical RTD of NuMVC and EWCC on frb56−25−5

RTD for NuMVC
ed[19]
RTD for EWCC
ed[53]

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

run−time [CPU sec]

P
(s

ol
ve

)

Empirical RTD of NuMVC and EWCC on frb59−26−5

RTD for NuMVC
ed[45]
RTD for EWCC
ed[116]

Figure 2: Run-time distributions (RTDs) of NuMVC and EWCC applied to two DIMACS instances

(top) and two BHOSLIB instances (bottom); these empirical RTDs are well approximated

by exponential distributions, labeled ed[m](x) = 1− 2−x/m in the plots.

Kolmogorov-Smirnov test, which fails to reject the null hypothesis that the sampled run time

stems from the exponential distributions shown in the figures at a standard confidence level of

α = 0.05 with p-values between 0.19 and 0.88. For EWCC, the Kolmogorov-Smirnov test

shows its RTDs on MANN a45 and the two BHOSLIB instances are also exponential distributions,

while its RTD on brock400 4 is not from an exponential distribution.

The observation of exponential RTDs of NuMVC is consistent with similar results for other

high performance SLS algorithms, e.g., for MaxClique (Pullan & Hoos, 2006), for SAT (Hoos &

Stützle, 1999), for MAXSAT (Smyth, Hoos, & Stützle, 2003), and for scheduling problems (Watson

et al., 2005). By the arguments (Hoos & Stützle, 1999; Hoos & Stützle, 2004) made for stochastic

local search algorithms characterized by an exponential RTD, we conclude that, for NuMVC, the

probability of finding an optimal solution within a fixed amount of time (or steps) does not depend

on the run time in the past. Consequently, it is very robust w.r.t. the cutoff time and thus, the restart

706

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

time. Therefore, performing multiple independent runs of NuMVC in parallel will result in close-

to-optimal parallelization speedup. Similar observations were made for most of the other DIMACS

instances and BHOSLIB instances.

Of practical interest is also the RTD analysis for NuMVC on difficult instances for which all

algorithms in our experiments fail to achieve a high success rate (i.e., 40%). The RTDs in these

cases would show where the algorithm stagnates and suggest an a-posteriori restart time for the

algorithm. For this purpose, we select MANN a81 and frb59-26-2 for analysis. The RTDs of

NuMVC on these two instances are illustrated in Figure 3. Interestingly, from these RTDs we do not

observe any obvious stagnation, which again confirms that NuMVC is robust w.r.t. the cutoff time

and thus the restart time. Therefore, by increasing the cutoff time, we can expect a higher success

rate of the algorithm on these difficult instances.

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

run−time [CPU sec]

P
(s

ol
ve

)

Empirical RTD of NuMVC on MANN_a81 and frb59−26−2

RTD of NuMVC on MANN_a81

RTD of NuMVC on frb59−26−2

Figure 3: Run-time distributions (RTDs) of NuMVC on MANN a81 and frb59-26-2 instances,

for which NuMVC finds an optimal (or best known) solution in less than half runs.

7.2 Effectiveness of Two-Stage Exchange

To study the effectiveness of the two-stage exchange strategy, we compare NuMVC with its

alternative algorithm NuMVC0 which selects two vertices for exchanging simultaneously. In each

step, NuMVC0 first chooses an uncovered edge e uniformly at random, and then evaluates each pair

of vertices u and v where u is in the current candidate solution and v is one endpoint of e such

that confChange(v) = 1. For evaluating the benefit (i.e., the decrement of the cost function)

of exchanging a vertex pair u and v, NuMVC0 first checks whether they are neighbors. If u
and v are neighbors, the benefit is dscore(u) + dscore(v) + w(e{u, v}); otherwise, the benefit

is dscore(u) + dscore(v). NuMVC0 selects the vertex pair with the greatest benefit to exchange.

In the NuMVC (and also NuMVC0) algorithm, there are only two candidate vertices to add to

the current candidate solution C (i.e., the endpoints of the selected uncovered edge). Hence, in

the worst case, NuMVC performs 2 + |C| evaluations, while NuMVC0 has to evaluate 2 × |C|
pairs of vertices. Moreover, NuMVC only needs to check the dscore of a vertex in each (vertex)

707

CAI, SU, LUO & SATTAR

evaluation, while NuMVC0 performs a vertex-pair evaluation which involves a pair of vertices and

their relationship, and thus is more time-consuming. Based on the above analysis, we conjecture

that the complexity per step of NuMVC is at least 2 times lower than that of NuMVC0. Also, as we

have mentioned in Section 3, the two-stage exchange strategy is less greedy than the one selecting

two vertices for exchanging simultaneously, as NuMVC0 does.

The investigation is carried out on 4 DIMACS instances from different families as well as

12 BHOSLIB instances. For the DIMACS benchmark, we select brock400 2, C4000.5,

MANN a45, and p hat 1500-1. These instances have different characteristics, as described

below (Pullan et al., 2011). Note that the following conclusions on DIMACS instances are for

the complementary DIMACS graphs.

• The DIMACS brock instances have minimum vertex covers that consist of medium to lower

degree vertices, and are designed to defeat greedy heuristics.

• The DIMACS C and p hat 1500-1 instances have minimum vertex covers that consist of

higher degree vertices and can be effectively solved by greedy heuristics.

• The DIMACS MANN instances have a large proportion of plateaus in the instance search-

space, and thus greedy heuristics are unsuitable to solve them.

• The BHOSLIB instances have minimum vertex covers consisting of vertices whose

distribution of vertex degree closely matches that for the complete graph. These are difficult

instances for both greedy and diversification heuristics.

Graph NuMVC NuMVC0

Instance V C∗ suc time steps #steps/sec (105) suc time steps #steps/sec (105)

brock400 2 371 96 572 645631471 11.3 19 1861 837844749 4.5

C4000.5 3982 100 252 7802785 0.3 100 607 6343304 0.1

MANN a45 690 100 86 90642150 10.5 100 564 186350533 3.3

p hat 1500-1 1488 100 3.75 445830 1.2 100 13.24 381762 0.3

frb50-23-1 1100 100 38 24628019 6.5 100 88 18125042 2.1

frb50-23-2 1100 100 177 113569606 6.4 100 499 104841043 2.1

frb50-23-3 1100 95 606 386342329 6.4 63 1312 262559614 2.0

frb53-24-1 1219 86 895 514619149 5.7 45 1595 286396840 1.8

frb53-24-2 1219 100 205 117980833 5.8 100 557 105863802 1.9

frb53-24-3 1219 100 51 29376406 5.8 100 106 19685358 1.9

frb56-25-1 1344 100 470 259903023 5.5 72 1088 184323492 1.7

frb56-25-2 1344 97 659 350048132 5.3 52 1499 254973016 1.7

frb56-25-3 1344 100 121 67043078 5.5 100 253 43062419 1.7

frb59-26-1 1475 88 843 440874471 5.2 45 1572 251520339 1.6

frb59-26-2 1475 37 1677 875964146 5.2 21 1853 315425608 1.7

frb59-26-3 1475 96 636 325417225 5.1 69 1545 247273810 1.6

Table 7: Comparative performance of NuMVC and NuMVC0 which selects two vertices for

exchanging simultaneously. The results are based on 100 independent runs for each solver

on each instance.

The comparative results of NuMVC and NuMVC0 are presented in Table 7. The results show

that NuMVC significantly outperforms NuMVC0 in terms of averaged run time, primarily due to

its much lower complexity per step. In each second, NuMVC performs 3-4 times more steps than

708

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

NuMVC0, which supports our conjecture that the complexity per step of NuMVC is more than 2

times lower than that of NuMVC0.

Now we turn our attention to comparing NuMVC and NuMVC0 in terms of step performance,

which is independent from the complexity per step. For brock and MANN graphs which are difficult

for greedy heuristics, NuMVC has a significantly better step performance than NuMVC0. On the

other hand, for greedy-friendly graphs such as C4000.5 and p hat 1500-1, NuMVC needs

more steps to converge to an optimal solution than NuMVC0 does. These observations support our

argument that the two-stage exchange strategy is less greedy than the one that selects two vertices

for exchanging simultaneously, as NuMVC0 does.

We also observe that the step performance of NuMVC0 is better than that of NuMVC on

BHOSLIB instances. For instance, on those BHOSLIB instances where both algorithms have a

100% success rate, NuMVC needs about 1.2 times more steps than NuMVC0 to find an optimal

solution. This is what we do not expect and cannot yet explain. Nevertheless, as NuMVC makes

rather rapid modifications to a solution, a little degrade in step performance does not hurt.

Graph PLS COVER EWCC NuMVC

Instance #steps/sec #steps/sec #steps/sec #steps/sec

C4000.5 85,318 8,699 11,927 30,963

MANN a45 1,546,625 279,514 578,656 1,053,978

p hat 1500-1 170,511 19,473 34,111 118,888

frb53-24-5 841,346 128,971 219,038 570,425

frb56-25-5 801,282 116,618 199,441 522,561

frb59-26-5 706,436 108,534 189,536 511,014

Table 8: Complexity per step on selected instances

To further demonstrate the low complexity per step of NuMVC, we compare the number

of search steps per second between NuMVC and other state-of-the-art heuristic solvers on

representative instances. As indicated in Table 8, NuMVC executes many more steps in each second

than the other two MVC local search solvers COVER and EWCC do. For the instances in Table

8, each second NuMVC executes 4-6 times more steps than COVER, and 3-4 times more steps

than EWCC. This indicates that the two-stage exchange strategy can significantly accelerate MVC

local search algorithms. Although PLS performs more steps per second than NuMVC, it is an MC

local search algorithm whose search scheme is essentially different from those of MVC local search

algorithms.

7.3 Effectiveness of the Forgetting Mechanism

To study the effectiveness of the forgetting mechanism in NuMVC, we compare NuMVC with its

two alternative algorithms NuMVC1 and NuMVC2, which are obtained from NuMVC by modifying

the edge weighting scheme as below.

• NuMVC1 works in the same way as NuMVC, except for not using the forgetting mechanism,

that is, deleting line 18 from Algorithm 1.

• NuMVC2 adopts the forgetting mechanism used in DLS-MC (Pullan & Hoos, 2006) for the

weighting scheme. More specifically, NuMVC2 increases all weights of uncovered edges by

709

CAI, SU, LUO & SATTAR

one at the end of each step, and performs a forgetting operation every pd steps by decreasing

weights by one for all edges whose weights are greater than one. Note that pd is an instance-

dependent parameter.

The experiments were carried out with some representative instances from both benchmarks.

For the DIMACS benchmark, we select brock400 2, C4000.5, keller6, and MANN a45,

which are from different classes and of appropriate difficulty. For the BHOSLIB benchmark, we

select three instances for each of the three largest-sized instance groups respectively.

Graph NuMVC NuMVC1 NuMVC2

Instance Vertices V C∗ suc time suc time pd (102) suc time

brock400 2 400 371 96 572 22 1781 15 100 21

C4000.5 4000 3982 100 252 100 270 60 100 327

keller6 3361 3302 100 2.51 100 2.95 750 100 4.26

MANN a45 1035 690 100 86 65 1187 8 100 113

frb53-24-1 1272 1219 86 895 60 925 100 78 901

frb53-24-2 1272 1219 100 205 100 243 100 100 201

frb53-24-3 1272 1219 100 51 100 49 100 100 52

frb56-25-1 1400 1344 100 470 85 914 130 91 595

frb56-25-2 1400 1344 97 659 63 1209 130 81 739

frb56-25-3 1400 1344 100 121 100 111 130 100 117

frb59-26-1 1534 1475 88 843 64 1229 150 85 907

frb59-26-2 1534 1475 37 1677 21 1894 150 45 1439

frb59-26-3 1534 1475 96 636 83 997 150 97 652

Table 9: Comparative performance of NuMVC and its two alternatives NuMVC1 and NuMVC2.

Each algorithm is performed 100 times on each instance.

An apparent observation from Table 9 is that the two algorithms with a forgetting mechanisms

(i.e., NuMVC and NuMVC2) outperform NuMVC1 on almost all instances. Particularly, due to

the missing of a forgetting mechanism, NuMVC1 performs significantly worse than the other two

algorithms on brock and MANN graphs. On the other hand, Table 9 demonstrates that NuMVC and

NuMVC2 exhibit competitive performance on the BHOSLIB benchmark, and dominate on different

types of DIMACS instances. More specifically, NuMVC outperforms NuMVC2 on C4000.5,

keller6 and MANN a45, but performs significantly worse than NuMVC2 on brock400 2. In

order to find out the genuine performance of NuMVC2 on brock instances, we test NuMVC2 on

the larger brock800 2 and brock800 4 instances. The results show that these two large brock

instances are substantially more difficult than the two brock400 instances, and NuMVC2 also fails

to solve neither of them.

Although NuMVC2 shows competitive performance with NuMVC, its performance is given by

optimizing the pd parameter for each instance. Moreover, as with DLS-MC (Pullan & Hoos, 2006),

NuMVC2 is considerably sensitive to the pd parameter. For example, our experiments show that on

the frb53-24 instances, NuMVC2 performs quite well with pd = 10000, but it fails to find an

optimal solution when pd is set to be a value less than 7000. Comparatively, NuMVC with the same

710

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

parameter setting performs quite well on all types of instances but the brock family. Actually, we

will show in the next section that NuMVC is not sensitive to its parameters.

It is also interesting to compare NuMVC with its alternatives which replace the forgetting

mechanism with the smoothing techniques similar to those in local search for SAT. Indeed, earlier

versions of NuMVC did use the smoothing techniques similar to those in SAT local search, and

they did not have good performance compared with NuMVC. It would be interesting to find out the

reasons for the success of the forgetting mechanism and the failure of those smoothing techniques

in MVC edge weighting local search algorithms such as NuMVC.

7.4 Parameters for the Forgetting Mechanism

brock400 2 MANN a45 C4000.5 frb53-24-1 frb53-24-2 frb56-25-1 frb56-25-2

(0.3|V |, 0.1) 100% (382) 100% (153) 100% (262) 80% (904) 100% (348) 100% (338) 80% (997)

(0.3|V |, 0.2) 100% (361) 100% (164) 100% (265) 85% (918) 100% (279) 90% (671) 70% (1197)

(0.3|V |, 0.3) 100% (362) 100% (131) 100% (272) 70% (1058) 100% (156) 95% (826) 85% (819)

(0.3|V |, 0.4) 95% (490) 100% (208) 100% (270) 80% (995) 100% (191) 100% (602) 100% (885)

(0.3|V |, 0.5) 90% (507) 100% (90) 100% (268) 65% (1316) 100% (431) 100% (490) 95% (922)

(0.4|V |, 0.1) 100% (261) 100% (133) 100% (250) 80% (899) 100% (158) 90% (464) 70% (1601)

(0.4|V |, 0.2) 90% (736) 100% (207) 100% (245) 80% (860) 100% (443) 85% (611) 80% (851)

(0.4|V |, 0.3) 100% (402) 100% (176) 100% (258) 75% (1047) 100% (260) 90% (976) 90% (1055)

(0.4|V |, 0.4) 95% (375) 100% (169) 100% (253) 70% (1009) 100% (394) 90% (885) 85% (1019)

(0.4|V |, 0.5) 90% (612) 100% (190) 100% (264) 65% (1059) 100% (137) 95% (428) 100% (851)

(0.5|V |, 0.1) 100% (523) 100% (107) 100% (262) 70% (1007) 100% (416) 90% (714) 75% (1064)

(0.5|V |, 0.2) 85% (950) 100% (69) 100% (259) 75% (1061) 100% (482) 95% (706) 70% (1228)

(0.5|V |, 0.3) 96% (572) 100% (86) 100% (252) 86% (850) 100% (205) 100% (470) 97% (625)

(0.5|V |, 0.4) 90% (499) 100% (169) 100% (251) 70% (931) 100% (219) 90% (632) 80% (1027)

(0.5|V |, 0.5) 90% (968) 100% (148) 100% (249) 90% (805) 100% (361) 85% (933) 85% (983)

(0.6|V |, 0.1) 100% (527) 100% (203) 100% (255) 70% (1109) 100% (267) 100% (828) 90% (878)

(0.6|V |, 0.2) 80% (713) 100% (172) 100% (279) 75% (944) 100% (254) 90% (704) 70% (1306)

(0.6|V |, 0.3) 75% (976) 100% (92) 100% (272) 70% (1130) 100% (298) 90% (689) 75% (862)

(0.6|V |, 0.4) 100% (710) 100% (142) 100% (276) 75% (907) 100% (170) 100% (592) 85% (1028)

(0.6|V |, 0.5) 85% (742) 100% (125) 100% (288) 80% (947) 100% (192) 100% (647) 80% (1109)

(0.7|V |, 0.1) 100% (410) 100% (87) 100% (273) 65% (1186) 100% (358) 75% (1014) 75% (934)

(0.7|V |, 0.2) 95% (781) 100% (128) 100% (284) 70% (1035) 100% (220) 80% (713) 90% (510)

(0.7|V |, 0.3) 90% (826) 100% (125) 100% (266) 75% (916) 100% (206) 80% (878) 80% (971)

(0.7|V |, 0.4) 75% (1219) 100% (101) 100% (272) 85% (700) 100% (338) 100% (536) 85% (769)

(0.7|V |, 0.5) 90% (707) 100% (92) 100% (280) 70% (1085) 100% (352) 90% (736) 70% (1044)

Table 10: Comparative performance of NuMVC with various parameter combinations (γ, ρ) for

the forgetting mechanism. For each instance, NuMVC is performed 20 times with each

parameter combination, except for the one adopted in this work (0.5|V |, 0.3), where the

results are based on 100 runs. For keller6, NuMVC performs almost the same with

various parameters, having the same success rate (100%) and tiny difference of averaged

run time (less than 1 second), and thus the results are not reported in the table.

711

CAI, SU, LUO & SATTAR

The NuMVC algorithm has two parameters γ and ρ, which specify the forgetting mechanism.

Specifically, when the averaged weight of all edges achieves a threshold γ, all edge weights are

multiplied by a constant factor ρ (0 < ρ < 1). In this subsection, we investigate how NuMVC

performs with different settings to these two parameters. The investigation is carried out on both

DIMACS and BHOSLIB benchmarks. For the DIMACS benchmark, we select the four instances

used in the preceding subsection for the same reasons. For the BHOSLIB benchmark, we select

frb53-24-1, frb53-24-2, frb56-25-1 and frb56-25-2, which are of different sizes

and appropriate hardness.

Table 10 presents the performance of NuMVC with various parameter combinations of γ and

ρ on the representative instances. As we can see from Table 10, the parameter combination

(0.5|V |, 0.3) yields relatively good performance for all instances, and exhibits a better robustness

over the instances than other parameter combinations do.

On the other hand, we observe that NuMVC with various parameter combinations performs

comparably on these tested instances. For example, for all parameter settings, NuMVC achieves

a success rate of 100% for keller6, MANN a45, C4000.5 as well as frb53-24-1, and

the averaged run time difference on these instances is not so significant. For other instances, the

difference of success rate never exceeds 25% between any two parameter settings. This observation

indicates that NuMVC seems not sensitive to the two parameters. Actually, as we have mentioned

before, NuMVC exhibits very good performance for both DIMACS and BHOSLIB benchmarks

with a fixed parameter setting. This is an advantage compared to other forgetting mechanisms

such as the one used in DLS-MC (Pullan & Hoos, 2006), which is sensitive to its parameter. For

algorithms that are sensitive to their parameters, considerable parameter tuning is required in order

to get a good performance for a certain instance, which usually costs much more time than solving

the instance.

8. Conclusions and Future Work

In this paper, we presented two new local search strategies for the minimum vertex cover (MVC)

problem, namely two-stage exchange and edge weighting with forgetting. The two-stage exchange

strategy yields an efficient two-pass move operator for MVC local search algorithms, which

significantly reduces the time complexity per step. The forgetting mechanism enhances the

edge weighting scheme by decreasing weights when the averaged weight reaches a threshold,

to periodically forget earlier weighting decisions. Based on these two strategies, we designed

a slight, yet effective MVC local search algorithm called NuMVC. The NuMVC algorithm was

evaluated against the best known heuristic algorithms for MVC (MC, MIS) on standard benchmarks,

i.e., the DIMACS and BHOSLIB benchmarks. The experimental results show that NuMVC is

largely competitive on the DIMACS benchmark and dramatically outperforms other state-of-the-art

heuristic algorithms on all BHOSLIB instances.

Furthermore, we showed that NuMVC is characterized by exponential RTDs, which means it is

robust w.r.t. the cutoff parameters and the restart time, and hence has close-to-optimal parallelization

speedup. We also performed further investigations to provide further insights into the two new

strategies and their effectiveness. Finally, we conducted an experiment to study the performance of

NuMVC with different parameter settings, and the results indicate that NuMVC is not sensitive to

its parameters.

712

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

The two-stage exchange strategy not only has a lower time complexity per step, but also has

the flexibility to allow us to employ specific heuristics in different stages. An interesting research

direction is thus to apply this idea to other combinatorial problems whose essential tasks are also to

seek for an optimal subset with some fixed cardinality.

Acknowledgments

This work is supported by 973 Program 2010CB328103, ARC Future Fellowship FT0991785,

National Natural Science Foundation of China (61073033, 61003056 and 60903054), and

Fundamental Research Funds for the Central Universities of China (21612414). We would like

to thank the editor and anonymous reviewers for their valuable comments on earlier versions of this

paper. We would also like to thank Yanyan Xu for proofreading this paper.

References

Aggarwal, C., Orlin, J., & Tai, R. (1997). Optimized crossover for the independent set problem.

Operations Research, 45, 226–234.

Andrade, D. V., Resende, M. G. C., & Werneck, R. F. F. (2008). Fast local search for the maximum

independent set problem. In Workshop on Experimental Algorithms, pp. 220–234.

Barbosa, V. C., & Campos, L. C. D. (2004). A novel evolutionary formulation of the maximum

independent set problem. J. Comb. Optim., 8(4), 419–437.

Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.). (2010). Experimental

Methods for the Analysis of Optimization Algorithms. Springer, Berlin, Heidelberg, New

York.

Battiti, R., & Protasi, M. (2001). Reactive local search for the maximum clique problem.

Algorithmica, 29(4), 610–637.

Busygin, S., Butenko, S., & Pardalos, P. M. (2002). A heuristic for the maximum independent set

problem based on optimization of a quadratic over a sphere. J. Comb. Optim., 6(3), 287–297.

Cai, S., & Su, K. (2011). Local search with configuration checking for SAT. In Proc. of ICTAI-11,

pp. 59–66.

Cai, S., & Su, K. (2012). Configuration checking with aspiration in local search for SAT. In Proc.

of AAAI-12, pp. 434–440.

Cai, S., Su, K., & Chen, Q. (2010). EWLS: A new local search for minimum vertex cover. In Proc.

of AAAI-10, pp. 45–50.

Cai, S., Su, K., & Sattar, A. (2011). Local search with edge weighting and configuration checking

heuristics for minimum vertex cover. Artif. Intell., 175(9-10), 1672–1696.

Cai, S., Su, K., & Sattar, A. (2012). Two new local search strategies for minimum vertex cover. In

Proc. of AAAI-12, pp. 441–447.

Carraghan, R., & Pardalos, P. (1990). An exact algorithm for the maximum clique problem.

Operations Research Letters, 9(6), 375–382.

713

CAI, SU, LUO & SATTAR

Dinur, I., & Safra, S. (2005). On the hardness of approximating minimum vertex cover. Annals of

Mathematics, 162(2), 439–486.

Evans, I. (1998). An evolutionary heuristic for the minimum vertex cover problem. In Proceedings

of the Seventh International Conference on Evolutionary Programming(EP), pp. 377–386.

Fahle, T. (2002). Simple and fast: Improving a branch-and-bound algorithm for maximum clique.

In Proc. of European Symposium on Algorithms (ESA)-02, pp. 485–498.

Feige, U. (2004). Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math.,

18(2), 219–225.

Finkelstein, L., Markovitch, S., & Rivlin, E. (2003). Optimal schedules for parallelizing anytime

algorithms: The case of shared resources. J. Artif. Intell. Res. (JAIR), 19, 73–138.

Gajurel, S., & Bielefeld, R. (2012). A fast near optimal vertex cover algorithm (novca).

International Journal of Experimental Algorithms (IJEA), 3, 9–18.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, San Francisco, CA, USA.

Glover, F. (1989). Tabu search – part i. ORSA Journal on Computing, 1(3), 190–206.

Grosso, A., Locatelli, M., & Pullan, W. J. (2008). Simple ingredients leading to very efficient

heuristics for the maximum clique problem. J. Heuristics, 14(6), 587–612.

Halperin, E. (2002). Improved approximation algorithms for the vertex cover problem in graphs

and hypergraphs. SIAM Journal on Computing, 31(5), 1508–1623.

Håstad, J. (1999). Clique is hard to approximate within n1−ǫ. Acta Math, 182, 105–142.

Håstad, J. (2001). Some optimal inapproximability results. J. ACM, 48(4), 798–859.

Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (Eds.). (2000). Understanding Robust and Exploratory

Data Analysis. Wiley Classics Library, Wiley, New York, NY.

Hoos, H., & Stützle, T. (2004). Stochastic Local Search: Foundations and Applications. Morgan

Kaufmann, San Francisco, CA, USA.

Hoos, H. H., & Stützle, T. (1999). Towards a characterisation of the behaviour of stochastic local

search algorithms for SAT. Artif. Intell., 112(1-2), 213–232.

Hutter, F., Tompkins, D. A. D., & Hoos, H. H. (2002). Scaling and probabilistic smoothing: Efficient

dynamic local search for SAT. In Proc. of CP-02, pp. 233–248.

Ishtaiwi, A., Thornton, J., Sattar, A., & Pham, D. N. (2005). Neighbourhood clause weight

redistribution in local search for SAT. In Proc. of CP-05, pp. 772–776.

Johnson, D. S., & Trick, M. (Eds.). (1996). Cliques, Coloring, and Satisfiability: Second DIMACS

Implementation Challenge, 1993, Vol. 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, Providence, RI, USA.

Karakostas, G. (2005). A better approximation ratio for the vertex cover problem. In Proc. of

ICALP-05, pp. 1043–1050.

Katayama, K., Sadamatsu, M., & Narihisa, H. (2007). Iterated k-opt local search for the maximum

clique problem. In Proc. of EvoCOP-07, pp. 84–95.

714

NUMVC: AN EFFICIENT LOCAL SEARCH ALGORITHM FOR MINIMUM VERTEX COVER

Li, C. M., Manyà, F., & Planes, J. (2007). New inference rules for max-sat. J. Artif. Intell. Res.

(JAIR), 30, 321–359.

Li, C. M., & Quan, Z. (2010a). Combining graph structure exploitation and propositional reasoning

for the maximum clique problem. In Proc. of ICTAI-10, pp. 344–351.

Li, C. M., & Quan, Z. (2010b). An efficient branch-and-bound algorithm based on maxsat for the

maximum clique problem. In Proc. of AAAI-10, pp. 128–133.

Michiels, W., Aarts, E. H. L., & Korst, J. H. M. (2007). Theoretical aspects of local search. Springer.

Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing conflicts: A heuristic

repair method for constraint satisfaction and scheduling problems. Artif. Intell., 58(1-3), 161–

205.

Morris, P. (1993). The breakout method for escaping from local minima. In Proc. of AAAI-93, pp.

40–45.

Östergård, P. R. J. (2002). A fast algorithm for the maximum clique problem. Discrete Applied

Mathematics, 120(1-3), 197–207.

Papadimitriou, C. H. (1991). On selecting a satisfying truth assignment. In Proc. of FOCS-91, pp.

163–169.

Pullan, W. (2006). Phased local search for the maximum clique problem. J. Comb. Optim., 12(3),

303–323.

Pullan, W. (2009). Optimisation of unweighted/weighted maximum independent sets and minimum

vertex covers. Discrete Optimization, 6, 214–219.

Pullan, W., & Hoos, H. H. (2006). Dynamic local search for the maximum clique problem. J. Artif.

Intell. Res. (JAIR), 25, 159–185.

Pullan, W., Mascia, F., & Brunato, M. (2011). Cooperating local search for the maximum clique

problem. J. Heuristics, 17(2), 181–199.

Régin, J. C. (2003). Using constraint programming to solve the maximum clique problem. In Proc.

of CP-03, pp. 634–648.

Richter, S., Helmert, M., & Gretton, C. (2007). A stochastic local search approach to vertex cover.

In Proc. of KI-07, pp. 412–426.

Schuurmans, D., Southey, F., & Holte, R. C. (2001). The exponentiated subgradient algorithm for

heuristic boolean programming. In Proc. of IJCAI-01, pp. 334–341.

Shyu, S. J., Yin, P., & Lin, B. M. T. (2004). An ant colony optimization algorithm for the minimum

weight vertex cover problem. Annals of OR, 131(1-4), 283–304.

Smyth, K., Hoos, H. H., & Stützle, T. (2003). Iterated robust tabu search for max-sat. In Proc. of

Canadian Conference on AI-03, pp. 129–144.

Taillard, É. D. (1994). Parallel taboo search techniques for the job shop scheduling problem.

INFORMS Journal on Computing, 6(2), 108–117.

Thornton, J., Pham, D. N., Bain, S., & Jr., V. F. (2004). Additive versus multiplicative clause

weighting for SAT. In Proc. of AAAI-04, pp. 191–196.

715

CAI, SU, LUO & SATTAR

Tomita, E., & Kameda, T. (2009). An efficient branch-and-bound algorithm for finding a maximum

clique with computational experiments. J. Global Optimization, 44(2), 311.

Watson, J.-P., Whitley, L. D., & Howe, A. E. (2005). Linking search space structure, run-time

dynamics, and problem difficulty: A step toward demystifying tabu search. J. Artif. Intell.

Res. (JAIR), 24, 221–261.

Wu, Q., Hao, J.-K., & Glover, F. (2012). Multi-neighborhood tabu search for the maximum weight

clique problem. Annals of OR, 196(1), 611–634.

Wu, Z., & Wah, B. W. (2000). An efficient global-search strategy in discrete lagrangian methods

for solving hard satisfiability problems. In Proc. of AAAI/IAAI-00, pp. 310–315.

Xu, K., Boussemart, F., Hemery, F., & Lecoutre, C. (2005). A simple model to generate hard

satisfiable instances. In Proc. of IJCAI-05, pp. 337–342.

Xu, K., Boussemart, F., Hemery, F., & Lecoutre, C. (2007). Random constraint satisfaction: Easy

generation of hard (satisfiable) instances. Artif. Intell., 171(8-9), 514–534.

Xu, K., & Li, W. (2000). Exact phase transitions in random constraint satisfaction problems. J.

Artif. Intell. Res. (JAIR), 12, 93–103.

Xu, K., & Li, W. (2006). Many hard examples in exact phase transitions. Theoretical Computer

Science, 355, 291–302.

Yugami, N., Ohta, Y., & Hara, H. (1994). Improving repair-based constraint satisfaction methods

by value propagation. In AAAI, pp. 344–349.

Zuckerman, D. (2006). Linear degree extractors and the inapproximability of max clique and

chromatic number. In Proc. of STOC-06, pp. 681–690.

716

