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NUPR1 is a critical repressor of ferroptosis
Jiao Liu1,12, Xinxin Song2,12, Feimei Kuang1, Qiuhong Zhang3, Yangchun Xie4, Rui Kang2,

Guido Kroemer 5,6,7,8,9,10,11✉ & Daolin Tang 1,2✉

Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging

disease-modulatory mechanism. Transcription factors play multiple roles in ferroptosis,

although the key regulator for ferroptosis in iron metabolism remains elusive. Using Nano-

String technology, we identify NUPR1, a stress-inducible transcription factor, as a driver of

ferroptosis resistance. Mechanistically, NUPR1-mediated LCN2 expression blocks ferroptotic

cell death through diminishing iron accumulation and subsequent oxidative damage. Con-

sequently, LCN2 depletion mimics NUPR1 deficiency with respect to ferroptosis induction,

whereas transfection-enforced re-expression of LCN2 restores resistance to ferroptosis in

NUPR1-deficient cells. Pharmacological or genetic blockade of the NUPR1-LCN2 pathway

(using NUPR1 shRNA, LCN2 shRNA, pancreas-specific Lcn2 conditional knockout mice, or the

small molecule ZZW-115) increases the activity of the ferroptosis inducer erastin and wor-

sens pancreatitis, in suitable mouse models. These findings suggest a link between NUPR1-

regulated iron metabolism and ferroptosis susceptibility.
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C
ell death is a fundamental physiological process to main-
tain homeostasis through the removal of supernumerary,
unnecessary, or dysfunctional cells, while pathological

death can lead to disease. Unlike accidental cell death, regulated
cell death follows multiple subroutines, each of which exhibits
distinct molecular cascades and regulatory pathways1,2. In recent
years, an increasing level of interest has been manifested with
regard to ferroptosis, a non-apoptotic-regulated cell death3,4,
which plays a possible pathogenic role in cancer, neurodegen-
eration, and organ dysfunction5–7. The induction of ferroptosis
has been shown to rely on iron accumulation, which facilitates
oxidative damage through either the production of highly reactive
hydroxyl free radicals in the Fenton reaction or the activation of
iron-containing enzymes, such as lipoxygenase8. Ferroptotic
cells exhibit a necrosis-like morphology and damage-associated
molecular patterns (DAMPs) released from ferroptotic cells may
function as extracellular inflammatory mediators to contribute to
tissue injury9.

Ferroptosis is regulated at multiple levels, including at the level
of transcription factors that may modulate the resistance of
malignant cells to anticancer drugs10. Such transcription factors
do not only participate in rapid responses to ferroptotic stimuli,
but also modulate the long-term outcome of ferroptosis in a
context-dependent manner11. For example, nuclear factor, ery-
throid 2-like 2 (NFE2L2/NRF2) serves as a master antioxidant
transcription factor for blocking ferroptosis12–14, whereas the
tumor suppressor TP53 plays a dual role in ferroptosis,
depending on the tumor type15–17. Although many advances have
recently been achieved in the comprehension of antioxidant
responses and membrane repair mechanisms18, the key tran-
scription factor responsible for controlling iron-dependent fer-
roptosis has been elusive.

Here, we report that the stress response gene, nuclear protein 1,
transcriptional regulator (NUPR1) transactivates the gene
encoding lipocalin 2 (LCN2) to diminish iron-induced oxidative
damage and to induce ferroptosis resistance. Pharmacological or
genetic blockade of the NUPR1–LCN2 pathway may enhance the
anticancer activity of ferroptosis activator and pathologic
inflammation in vitro and in vivo.

Results
NUPR1 acts as a repressor of ferroptosis. A number of small-
molecule compounds, including erastin and RSL3, are regularly
used to induce ferroptosis and are considered as ‘classical’
inducers of this regulated cell death subroutine10. To identify
regulators of ferroptosis, we first evaluated the impact of erastin
on the expression of 770 tumor-associated genes in two human
pancreatic ductal adenocarcinoma (PDAC) cell lines (PANC1
and BxPC3) using NanoString, a digital technology based on
direct multiplexed measurement of nucleic acids through fluor-
escent barcodes19. NUPR1 was identified as one of the top-five
erastin-induced genes in both PANC1 and BxPC3 cells (Fig. 1a,
b). Quantitative polymerase chain reaction (qPCR) confirmed
that both erastin and RSL3 induced the upregulation of NUPR1
mRNA in four human PDAC cell lines (PANC1, BxPC3, Mia-
PaCa2, and CFPAC1), primary human PDAC cells (which we will
refer to as “pHsPDAC”), as well as mouse PDAC cell lines
(mPDAC) from Pdx1-Cre;K-RasG12D/+ mice (Supplementary
Fig. 1a). Western blot further confirmed the upregulation of
NUPR1 protein expression in PANC1, pHsPDAC, and mPDAC
cells in response to erastin or RSL3 (Supplementary Fig. 1b).
Endoplasmic reticulum (ER) stress is strongly induced in the
context of ferroptosis20. Notably, the knockdown of activating
transcription factor 4 (ATF4), a key transcription factor involved
in ER stress with anti-ferroptosis activity21,22, blocked erastin-

induced or RSL3-induced NUPR1 mRNA expression in
PANC1 cells (Supplementary Fig. 1c, d). These findings indicate
that ATF4 facilitates the upregulation of NUPR1 in ferroptosis.

To determine whether NUPR1 is a regulator of ferroptosis, we
measured cell viability in wild-type (WT) and Nupr1−/− mPDAC
cells. Nupr1 deletion increased erastin-induced or RSL3-induced
growth inhibition (Fig. 1c) and lipid reactive oxygen species
(ROS) formation (Fig. 1d) in mPDAC cells, and this effect could
be completely reverted by ferroptosis inhibitors (e.g., ferrostatin-1
or liproxstatin-1), but not by inhibitors of apoptosis (e.g., Z-
VAD-FMK) or necroptosis (e.g., necrosulfonamide). We con-
firmed these observations in human NUPR1-knockdown PDAC
cell lines, including PANC1 and MiaPaCa2 cells (Supplementary
Fig. 2). The increased ferroptosis sensitivity was reversed by
re-expression of Nupr1 cDNA in Nupr1−/−mPDAC cells (Fig. 1d,
e). Collectively, these findings demonstrate that NUPR1 is a
negative regulator of ferroptosis.

NUPR1 inhibits iron-dependent oxidative damage in ferrop-
tosis. Iron exists in two oxidation states (ferrous [Fe2] or ferric
[Fe3+]), while Fe2+ accumulation is an early signal to initiate
ferroptosis8. Our biochemical analyses revealed that Nupr1−/−

mPDAC cells contained higher intracellular Fe2+ levels compared
to Nupr1+/+ cells in response to erastin or RSL3 (Fig. 2a). The
increased oxidative stress caused by iron overload may induce
ferroptosis through targeting membrane lipids or DNA23,24.
Consequently, the depletion of Nupr1 increased erastin-induced
or RSL3-induced lipid peroxidation and oxidative DNA damage
in mPDAC cells as measured by quantifying malondialdehyde
(MDA) or 8-hydroxy-2-deoxy guanosine (8-OHdG), respectively
(Fig. 2b, c). As expected, the release of high-mobility group box 1
(HMGB1), a typical DAMP involved in oxidative stress and cell
death response9, was increased in Nupr1−/− mPDAC cells fol-
lowing treatment with erastin or RSL3 (Fig. 2d).

Conversely, the iron chelator deferoxamine (DFO) or the
antioxidant N-acetylcysteine (NAC) blocked erastin-induced or
RSL3-induced cell death in Nupr1−/− mPDAC cells (Fig. 2e), an
effect that was associated with decreased production or release of
MDA, 8-OHdG, or HMGB1 (Fig. 2b–d). Similarly to Nupr1−/−

mPDAC cells, NUPR1-knockdown PANC1 cells exhibited
increased MDA, 8-OHdG, and HMGB1 release during ferroptotic
cell death, which could be reversed by the addition of DFO or
NAC (Supplementary Fig. 3). Of note, the shRNA-mediated
knockdown of six-transmembrane epithelial antigen of the
prostate 3 (Steap3), an enzyme responsible for converting Fe3+

to Fe2+, blocked erastin-induced or RSL3-induced cell death and
HMGB1 release in Nupr1−/− mPDAC cells (Fig. 2f–h). Together,
these findings indicate that NUPR1 blocks ferroptosis through the
inhibition of iron-dependent oxidative damage.

LCN2 acts as an effector gene of NUPR1 in blocking ferrop-
tosis. The levels of intracellular iron are determined by its uptake,
storage, release, and metabolism25. In brief, after uptake by
transferrin receptor (TFRC, also known as TFR1), Fe3+ is
reduced to Fe2+ by STEAP3 and then released from the endo-
some to the cytoplasm by solute carrier family 11 member 2
(SLC11A2, also known as DMT1). Ferritin, including ferritin light
chain (FTL) and ferritin heavy chain 1 (FTH1), functions as a
major iron storage protein. Finally, the release of Fe2+ into the
extracellular space requires iron transporters, such as solute
carrier family 40 member 1 (SLC40A1, also known as ferro-
portin-1) and yet another ion transporter, LCN2. Among the key
genes for iron metabolism (e.g., Lcn2, Tfrc, Steap3, Slc11a2, Ftl,
Fth1, and Slc40a1), erastin-induced or RSL3-induced the upre-
gulation of Lcn2 was completely blocked in Nupr1−/− mPDAC
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cells (Fig. 3a). Consistent with the mRNA assay, erastin-induced
or RSL3-induced protein expression of LCN2 was abolished in
Nupr1−/− mPDAC cells (Fig. 3b). Luciferase reporter gene
(Fig. 3c) and chromatin immunoprecipitation (Fig. 3d) assays
further revealed that Lcn2 is a direct target gene of NUPR1 in
mPDAC cells during ferroptosis. As expected, the knockdown of
ATF4 by shRNA suppressed LCN2 mRNA expression in
PANC1 cells following erastin or RSL3 treatment (Supplementary
Fig. 1e). However, overexpression of ATF4 failed to induce Lcn2

upregulation in Nupr1−/− mPDAC cells following erastin or
RSL3 treatment (Supplementary Fig. 1f, g). These findings con-
firm that ATF4-dependent NUPR1 expression is required for
subsequent LCN2 expression during ferroptosis.

We next examined whether the genetic silence of LCN2 has a
pro-ferroptotic phenotype similar to that of Nupr1-deficient cells.
Indeed, shRNA-based Lcn2/LCN2 suppression increased Fe2+

accumulation, oxidative damage (MDA and 8-OHdG), HMGB1
release and cell death in mPDAC (Fig. 3e–j) or PANC1
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Fig. 1 NUPR1 acts as a repressor of ferroptosis. a A NanoString technology-based screening of differentially expressed tumor-associated genes in PANC1

and BxPC3 cells following treatment with erastin (10 µM) for 24 h. b Top 5 upregulated genes. c, d Nupr1+/+ and Nupr1−/− mPDAC cells were treated with

erastin or RSL3 in the absence or presence of ferrostatin-1 (1 µM), liproxstatin-1 (1 µM), Z-VAD-FMK (10 µM), or necrosulfonamide (1 μM) for 24 h, and

then cell viability (c) and lipid ROS (d) was measured (n= 3 well/group, two-way ANOVA with Tukey’s multiple comparisons test on all pairwise

combinations). e qPCR analysis of NUPR1 expression in indicated mPDAC cells (n= 3 well/group, one-way ANOVA with Tukey’s multiple comparisons

test on all pairwise combinations). f Cell viability of indicated mPDAC cells following treatment with erastin or RSL3 for 24 h (n= 3 well/group, two-way

ANOVA with Tukey’s multiple comparisons test on all pairwise combinations). Data in d–f are presented as mean ± SD. The results in c–f are

representative of those from 2 to 3 independent experiments with three technical replicates each. The results in a are representative of those from one

independent experiment with three technical replicates each.
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(Supplementary Fig. 4) cells following treatment with erastin or
RSL3, which was reversed by DFO or the ferroptosis inhibitor
liproxstatin-1. These findings indicate that LCN2 plays a similar
role as NUPR1 in the inhibition of ferroptosis.

To determine whether the downregulation of LCN2 is essential
for the induction of ferroptosis, we re-expressed Lcn2 in Nupr1−/−

mPDAC cells by transfecting the Lnc2 gene (Fig. 4a). The
transfection enforced expression of Lcn2 restored ferroptosis
resistance in Nupr1−/− mPDAC cells, which was associated
with decreased Fe2+ accumulation, oxidative damage (MDA
and 8-OHdG), HMGB1 release, and cell death (Fig. 4b–f). Thus,
our findings demonstrated that NUPR1 blocks ferroptotic cell
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Fig. 2 NUPR1 inhibits iron-dependent oxidative damage in ferroptosis. a Fe2+ levels in indicated mPDAC cells following treatment with erastin or RSL3
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comparisons test on all pairwise combinations). f qPCR analysis of Steap3 mRNA in indicated mPDAC cells (n= 3 well/group, two-way ANOVA with

Tukey’s multiple comparisons test on all pairwise combinations). g, h Indicated mPDAC cells were treated with erastin (10 µM) or RSL3 (1 µM) or vehicle
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death through inducing the expression of the iron transporter
LNC2.

The NUPR1–LCN2 pathway limits the anticancer activity of
IKE in vivo. We next sought to determine whether the inhibition
of the NUPR1–LCN2 pathway can enhance the in vivo anticancer
activity of imidazole ketone erastin (IKE), a metabolically stable
analog of erastin26. Consistent with our in vitro observations,
NUPR1-knockdown (NUPR1KD) or LCN2-knockdown (LCN21KD)

PANC1 cells were more sensitive to IKE-induced tumor suppres-
sion compared to control groups in vivo, in a model in which
immunodeficient mice were bearing human PDAC cells (Fig. 5a).
The inhibition of the NUPR1–LCN2 pathway conferred therapy
sensitivity that was associated with increased intratumoral Fe2+

(Fig. 5b) or MDA levels (Fig. 5c), mRNA expression of
prostaglandin-endoperoxide synthase 2 (PTGS2, an inducible
enzyme associated with inflammation and cell death events,
including ferroptosis27) (Fig. 5d) and circulating HMGB1 protein
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Fig. 3 LCN2 acts as an effector gene of NUPR1 in blocking ferroptosis. a Heatmap of relative mRNA levels of iron metabolism-associated genes in

Nupr1+/+ and Nupr1−/− mPDAC cells following treatment with erastin (10 µM) or RSL3 (1 µM) for 24 h. b, c Analysis of LCN2 protein expression and Lcn2
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test). d Binding of NUPR1 to Lcn2 promoter was analyzed using ChIP-qPCR in indicated mPDAC cells following treatment with erastin (10 µM) or RSL3

(1 µM) for 24 h (n= 3 well/group, one-tailed t test). e qPCR analysis of Lcn2 mRNA in indicated mPDAC cells following treatment with erastin (10 µM) or

RSL3 (1 µM) for 24 h (n= 3 well/group, one-tailed t test). f Fe2+ levels in indicated mPDAC cells following treatment with erastin or RSL3 for 24 h (n= 3
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(10 µM) or RSL3 (1 µM) in the absence or presence of DFO (100 µM) or liproxstatin-1 (1 µM) for 24 h, and then intracellular MDA (g), intracellular 8-OHdG
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pairwise combinations). Data in b–j are presented as mean ± SD. The results in a–j are representative of those from 2 to 3 independent experiments with

three technical replicates each.
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(Fig. 5e), all of which were inhibited by the ferroptosis inhibitor
liproxstatin-1. In contrast, the apoptosis inhibitor Z-VAD-FMK or
the necroptosis inhibitor necrosulfonamide had no effects on the
increased anticancer activity of IKE in NUPR1KD or LCN21KD

PANC1 cells (Supplementary Fig. 5). ZZW-115, a potent NUPR1
inhibitor28, also increased the anticancer activity of IKE in PANC1 or
MIAPaCa2 xenograft mouse models (Fig. 5f). These animal studies
support the contention that the NUPR1–LCN2 pathway limits the
anticancer activity of IKE. The synergistic effect on cell death by
ZZW-115 and erastin or RSL3 was diminished in Nupr1−/− cells, but
not in Nupr1+/+ cells (Fig. 5g), indicating that ZZW-115 bound
NUPR1 possesses dominant negative activity or, in other words, the
inhibition of NUPR1 is more effective than the loss of NUPR1.

LCN2 prevents pancreatitis. Excess iron is stored in multiple
organs, including the pancreas, which may cause tissue injury and
inflammation under pathologic conditions29. We further exam-
ined the effects of Lcn2 depletion-mediated iron accumulation on
L-arginine-induced acute pancreatitis in mice, a widely used
experimental model that can cause pancreatic oxidative injury,
sterile inflammation, and extensive necrosis30. We generated
pancreas-specific Lcn2-knockout mice (Pdx1-Cre;Lcn2flox/flox,
termed Lcn2Pan−/− mice) by crossing Lcn2flox/flox and Pdx1-Cre
mice. Western blot confirmed the expression of LCN2 was
diminished in the pancreas (but not in the liver) from Lcn2Pan−/−

mice, but not from control Lcn2flox/flox mice (Fig. 6a). Lcn2Pan−/−

mice were more sensitive to L-arginine-induced acute pancreatitis,

a b

C
e

ll
 v

ia
b

il
it

y
 (

%
)

Erastin (µM) RSL3 (µM)

d

M
D

A
 (

n
M

)

e

8
-O

H
d

G
 

(n
g

/m
g

 D
N

A
)

H
M

G
B

1
 (

n
g

/m
l)

f

c

F
e

2
+
 (

n
M

)

Nupr1+/+

Nupr1-/-

Nupr1-/-+Lcn2 cDNA

L
c

n
2
 m

R
N

A
 (

A
U

)
p<0.0001

p<0.0001
p<0.0001

p<0.0001

0
2
.5 5

7
.5 1

0

0

50

100

150

p
=
0
.0
0
0
2

p
=
0
.0
2
7
9

p
=
0
.0
2
1
8

p
<
0
.0
0
0
1

p
=
0
.0
0
1
1

p
<
0
.0
0
0
1

p
<
0
.0
1 p
<
0
.0
0
0
1

C
e

ll
 v

ia
b

il
it

y
 (

%
)

p
=
0
.2
5
8
5

p
=
0
.0
1
1
3

p
=
0
.0
0
0
2

p
<
0
.0
0
0
1

p
=
0
.0
1
2
4

p
<
0
.0
3
7
8

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

0

0
.1
2
5

0
.2
5

0
.5 1

0

50

100

150

Nupr1+/+ Nupr1-/- Nupr1-/-+Lcn2 cDNA

p
=
0
.0
0
0
3

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

C
tr
l

E
ra

st
in

R
S
L3

0

5

10

15

20

p
=
0
.0
0
0
6

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

C
tr
l

E
ra

st
in

R
S
L3

0

1

2

3

4

C
tr
l

E
ra

st
in

R
S
L3

0

2

4

6

8

10

C
tr
l

E
ra

st
in

R
S
L3

0

5

10

15

20

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

Nupr1+/+

Nupr1-/-

Nupr1-/-+Lcn2 cDNA

Nupr1+/+

Nupr1-/-

Nupr1-/-+Lcn2 cDNA

Nupr1+/+

Nupr1-/-

Nupr1-/-+Lcn2 cDNA

Nupr1+/+

Nupr1-/-

Nupr1-/-+Lcn2 cDNA

E
ra

st
in

R
S
L3

0.0

0.5

1.0

1.5

2.0
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hence exhibiting increased mortality (Fig. 6b), aggravated pan-
creatic histological damage (Fig. 6c), and elevated serum amylase
(a diagnostic biomarker of acute pancreatitis) (Fig. 6d), pancreatic
myeloperoxidase (MPO, a marker of neutrophil recruitment)
(Fig. 6e), serum HMGB1 (Fig. 6f), pancreatic MDA (Fig. 6g), and
Ptgs2 mRNA (Fig. 6h). This phenotype of Lcn2 depletion-
mediated acute pancreatitis could be prevented by treatment with
the ferroptosis inhibitor liproxstatin-1 or the iron chelator DFO
(Fig. 6b–h). Collectively, these studies suggest that LCN2 exerts a
protective effect on acute pancreatitis potentially through the
inhibition of ferroptotic response.

Prognostic significance of the NUPR1–LCN2 pathway in
human PDAC. Previous animal studies indicate that NUPR1 and
LCN2 may play an oncogene-like role in PDAC31,32. To test this
possibility, we carried out bioinformatics analyses using a publicly
available gene expression dataset: the Cancer Genome Atlas
(TCGA). LCN2 (but not NUPR1) mRNA expression was upre-
gulated in the PDAC tumor group compared to the normal group
(Fig. 7a). An overall survival assay revealed that a low expression
of NUPR1 or LCN2 was correlated with increased survival of
PDAC patients (Fig. 7b). These analyses indicate that activation
of the NUPR1–LCN2 pathway may contribute to the develop-
ment of human PDAC.

Discussion
There is a clear role for transcription factors in human health and
disease, highlighting the importance of continued efforts for
understanding gene expression modulation in physiological and
pathological processes, including cell death33. In this study, we
demonstrated that NUPR1 is critical for activating a transcrip-
tional program that may block ferroptotic cell death or tissue

injury through the upregulation of LCN2 expression (Fig. 7c),
providing a potential strategy for the treatment of ferroptosis-
related diseases.

NUPR1 is a member of AT hook-containing chromosomal
DNA-binding proteins that was first identified and cloned in a
study of pancreatitis-induced tissue injury34. Like other archi-
tectural chromatin-binding proteins, NUPR1 participates in a
wide range of DNA-relevant events, such as gene transcription,
DNA repair, and chromosome recombination35–39. NUPR1 is
also a multifunctional stress-inducible protein that is produced in
response to diverse environmental stresses, including oxidative
damage and the unfolded protein response40–45. ATF4, a
repressor of ferroptosis in PDAC cells22, has been shown to
regulate NUPR1 expression in response to various stresses,
including ER stress46. We found that ATF4 is required for
NUPR1 expression in response to ferroptosis activators. NUPR1
regulates cellular processes mainly by activating its target
genes40,47. Our current study establishes an inhibitory role for
NUPR1 in regulating ferroptosis through directly upregulating
LCN2 expression. We found that the depletion of NUPR1 or
LCN2 had a similar pro-ferroptotic phenotype in human or
mouse PDACs, whereas re-expression of LCN2 reversed the
exaggerated ferroptosis observed in Nupr1−/− cells. Combined
with other studies on models of apoptosis31,48, necroptosis28,44

and autophagy-dependent cell death41,49,50, the present study
suggests that the activation of NUPR1 may play a universal
cytoprotective role. Since ATF4 has been shown to promote the
expression of solute carrier family 7 member 11 (SLC7A11, a
component of the antiporter system xc− that inhibits ferroptosis
by importing the amino acid cystine for glutathione production in
cells)21, it is necessary to investigate whether NUPR1 is also
involved in ATF4-mediated SLC7A11 expression in the future.

Fig. 7 Prognostic significance of the NUPR1–LCN2 pathway in human PDAC. a Upregulation of LCN2 (but not NUPR1) gene expression within the tumor

from PDAC patients compared to normal controls using datasets from the Cancer Genome Atlas (TCGA) (one-tailed t test). The data are presented as

box-and-whisker plots. Boxes represent the median and the 25th and 75th percentiles. ns: not significant. n is number of cases. b Kaplan–Meier survival

analysis of NUPR1 and LCN2 gene expression in PDAC patients using TCGA datasets (one-sided Log-rank [Mantel–Cox] test). n is number of cases.

c Schematic representation of the role of NUPR1 in the regulation of ferroptosis in human PDAC cells.
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Our studies reveal a role for NUPR1 in preventing intracellular
iron accumulation in response to ferroptosis activators. Ferrop-
tosis is generally recognized as an iron-dependent oxidative death,
which can be suppressed by iron chelators, the depletion of the
iron uptake receptor TFRC or the overexpression of the iron
storage protein ferritin8. Given that depletion of NUPR1 increased
iron accumulation induced by classical ferroptosis activators
(erastin or RSL3), the expression levels of core iron metabolism-
associated genes were measured in WT and Nupr1−/− cells. Such
analyses led to the conclusion that Lcn2, but none of the other iron
metabolism-relevant genes, functions as a direct downstream
target gene regulated by NUPR1. Although the function of LCN2
in iron metabolism is still unclear, it has been suggested to be
involved in the extrusion of iron from the intracellular to the
extracellular compartment51–53. Blocking NUPR1-dependent
LCN2 expression significantly increased intracellular iron con-
centrations and subsequent oxidative damage, including lipid
peroxidation and DNA damage. These observations established a
NUPR1-dependent LCN2-regulatory pathway for ferroptosis
(Fig. 7c).

While the function of mitochondria in ferroptosis is context-
dependent3,54,55, mitochondria are widely recognized as a major
source of iron-induced ROS56. Mitochondria also utilize iron for
the synthesis of heme and iron sulfur, which can form a feedback
to amplify or diminish ferroptosis57,58. In view of previously
established links between the downregulation of NUPR1
expression and the increased mitochondria-dependent apoptosis
in some types of cells31,48, it is possible that NUPR1
downregulation-mediated iron accumulation functions as a
common upstream signal to trigger mitochondrial dysfunction,
thus compromising cellular survival and fitness by negatively
affecting aerobic glycolysis, oxidative phosphorylation, and fatty
acid synthesis44,54,59–62.

Our findings highlight a potential functional role of the
NUPR1–LCN2 pathway in the regulation of ferroptosis-related
tumor therapy. While the deletion of Nupr1 in mice prevents
mutated Kras-induced tumorigenesis31,63, we found that the
pharmacological or genetic inhibition of the NUPR1–LCN2
pathway enhanced anticancer activity of ferroptosis activators in
PDAC cells in vitro or in preclinical mouse models. Ferroptosis
seems to play a dual role in tumor biology, which is context-
dependent. On the one hand, ferroptosis activators can kill cancer
cells or active antitumor immunity to suppress tumor growth64–66.
On the other hand, ferroptosis-mediated inflammatory response
may promote tumor growth through the release of DAMPs67,68.
Further exploration of the cellular and functional relevance of
ferroptosis in the tumor microenvironment would be important to
develop better anticancer therapeutic strategies.

We addressed a potential pathologic link between ferroptosis
and pancreatitis using Lcn2Pan−/− mice, knowing that excessive
ferroptosis can compromise the function of entire organs
including the kidney, liver, brain, heart, and pancreas7. Compared
to WT mice, Lcn2Pan−/− mice exhibited increased sensitivity to
experimental pancreatitis-mediated animal death. In contrast, the
inhibition of ferroptosis by liproxstatin-1 or by using the iron
chelator DFO protected against pancreatic injury, lipid perox-
idation, HMGB1 release, and PTGS2 expression, leading to pro-
longed animal survival in Lcn2Pan−/− mice. In addition to
PTGS2, transferrin receptor (TFRC) and acyl-CoA synthetase
long chain family member 4 (ACSL4) have also been used to
monitor ferroptotic response under different conditions59,69.
However, the specific quantitative markers of ferroptotic death
in vivo have not yet been determined. Given that LCN2 plays a
wide role in preventing infection and sterile inflammation in
various animal models51–53, LCN2-mediated ferroptosis resis-
tance may be a common mechanism driving cell protection and

reducing morbidity and mortality, a possibility that awaits further
investigation in future studies.

In summary, our studies reveal a potential negative role for
NUPR1 in ferroptosis. The crosstalk between gene transcription
and iron metabolism may have broad implications for modulat-
ing ferroptosis in pathologic conditions.

Methods
Reagents. Erastin (S7242), ferrostatin-1 (S7243), liproxstatin-1 (S7699), RSL3
(S8155), IKE (S8877), DFO (S5742), NAC (S5804), Z-VAD-FMK (S7023), and
necrosulfonamide (S8251) were purchased from Selleck Chemicals. L-arginine
(A5131) was purchased from Sigma-Aldrich. ZZW-115 (PC-36152) was purchased
from ProbeChem. The antibody to ACTB (3700; RRID:AB_2242334; 1:1000) was
obtained from Cell Signaling Technology. The antibody to LCN2 (ab63929; RRID:
AB_1140965; 1:500) was obtained from Abcam. The antibody to NUPR1
(SAB2109172 [RRID:AB_2868575; 1:500] or sc-23283 [RRID:AB_2157971; 1:100])
was obtained from Sigma-Aldrich or Santa Cruz Biotechnology.

Cell culture. The PANC1 (CRL-1469) and MIAPaCa2 (CRL-1420) cell lines were
obtained from the American Type Culture Collection. PHsPDAC cells were a gift
from Yangchun Xie and they were generated from patient tumor specimens70,71.
WT and Nupr1−/− mPDAC cells were generated from Nupr1+/+;Pdx1-cre;LSL-
KrasG12D or Nupr1−/−;Pdx1-cre;LSL-KrasG12D mice, respectively, which was a gift
from Juan Iovanna (Centre de Recherche en Cancérologie de Marseille, INSERM,
France). WT and Nupr1−/− mPDAC were used at <10 passages. These cells were
cultured in Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific,
11995073) supplemented with 10% heat-inactivated fetal bovine serum (Thermo
Fisher Scientific, A3840001) and 1% penicillin and streptomycin (Thermo Fisher
Scientific, 15070-063) at 37 °C, 95% humidity, and 5% CO2. Cell line identity was
validated by short tandem repeat profiling, and routine mycoplasma testing was
negative for contamination.

Cell viability assay. Cell viability was assayed by a CCK8 kit (Dojindo Labora-
tories, CK04). In brief, cells were seeded into 96-well plates and incubated with the
indicated treatments. Subsequently, 100 μl of fresh medium was added to cells
containing 10 μl of CCK-8 solutions and incubated for 2 h (37°C, 5% CO2).
Absorbance at 450 nm was measured using a microplate reader (Cytation 5 Cell
Imaging Multi-Mode Reader). In addition, a Countess II FL Automated Cell
Counter (Thermo Fisher Scientific) was used to assay the percentages of dead cells
after cell staining with 0.4% trypan blue solution (Thermo Fisher Scientific,
T10282).

RNAi and gene transfection. Mouse Nupr1-cDNA (EX-Mm07534-M02) or Lcn2-
cDNA (EX-Mm03601-M02) or or Atf4-cDNA (EX-Mm20335-M02) were pur-
chased from GeneCopoeia. Human NUPR1-shRNA (sequence: CCGGGGAT-
GAATCTGACCTCTATAGCTCGAGCTATAGAGGTCAGATTCATCCTTTT
TG), human LCN2-shRNA (sequence: CCGGGCTGGGCAACATTAAGAGTTAC
TCGAGTAACTCTTAATGTTGCCCAGCTTTTTG), human ATF4-shRNA-1
(sequence: CCGGGCCTAGGTCTCTTAGATGATTCTCGAGAATCATCTAAGA
GACCTAGGCTTTTT), human ATF4-shRNA-2 (sequence: CCGGGTTGGTCA
GTCCCTCCAACAACTCGAGTTGTTGGAGGGACTGACCAACTTTTT),
mouse Lcn2-shRNA (sequence: CCGGCCAGGACTCAACTCAGAACTTCTCGA
GAAGTTCTGAGTTGAGTCCTGGTTTTTG), mouse Steap3-shRNA-1
(sequence: CCGGACAGCGAGGTGATGATATATGCTCGAGCATATATCATC
ACCTCGCTGTTTTTTG), and mouse Steap3-shRNA-2 (sequence: CCGGCGC
TCCCGTCCATTGCTAATTCTCGAGAATTAGCAATGGACGGGAGCGTTTT
TG) were obtained from Sigma-Aldrich. Transfection with shRNA or cDNA was
performed with Lipofectamine 3000 (Invitrogen, L3000-015) according to the
manufacturer’s instructions.

NanoString nCounter analysis. Total RNA from tumors was extracted using the
RNeasy Plus Mini Kit (QIAGEN, 74136) and hybridized with the NanoString
nCounter Human PanCancer Pathways Panel Code Set (NanoString) with 770
genes from 13 cancer-associated canonical pathways, including MAPK, STAT,
PI3K, RAS, cell cycle, apoptosis, Hedgehog, Wnt, DNA damage control, tran-
scriptional regulation, chromatin modification, and TGF-β19. Briefly, 100 ng of
scaled RNA was hybridized with biotin-labeled capture probes and fluorescently
labeled reporter probes for 18 h at 65 °C. Subsequently, the strip tubes were placed
into the nCounter Prep Station for automated sample purification and subsequent
reporter capture. Each sample was scanned for 600 FOV on the nCounter Digital
Analyzer. NanoString results were produced from RCC files using nSolver Analysis
Software 3.0.

qPCR analysis. Total RNA was extracted and purified from cultured cells or tissues
using the RNeasy Plus Mini Kit (QIAGEN, 74136) according to the manufacturer’s
instructions. The RNA was quantified by determining absorbance at 260 nm. One
microgram of total RNA from each sample was reverse-transcribed into cDNA
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using the iScript cDNA synthesis kit (Bio-Rad, 170-8891) in a volume of 20 μl;
cDNA from cell samples was amplified. The qPCR was performed using SsoFast
EvaGreen Supermix (Bio-Rad, 172-5204) on the C1000 Touch Thermocycler
CFX96 Real-Time System (Bio-Rad) according to the manufacturer’s protocol.
Analysis was performed using Bio-Rad CFX Manager software 3.1 (Bio-Rad). The
specific primers were listed in Supplementary Table 1. The gene expression was
calculated via the 2−ΔΔCt method and normalized to 18SRNA/18srna72. The rela-
tive concentrations of mRNA were expressed in arbitrary units based on the
untreated group, which was assigned a value of 1.

Western blot. Cells were lysed in 1× cell lysis buffer (Cell Signaling Technology,
9803) containing protease inhibitor (ROCHE, 11836153001) on ice for 10 min.
After centrifugation at 14,000 × g for 15 min at 4 °C, the supernatants were col-
lected and quantified using BCA assay (Thermo Fisher Scientific, 23225). The 30 μg
of each sample was resolved on 4–12% Criterion XT Bis–Tris gels (Bio-Rad,
3450124) in XT MES running buffer (Bio-Rad, 1610789) and transferred to PVDF
membranes (Bio-Rad, 1620233) using the Trans-Blot Turbo Transfer Pack and
System (Bio-Rad)73. After blocking by TBST containing 5% skim milk for 1 h, the
membrane was incubated overnight at 4 °C with various primary antibodies
(1:200–1:1000). After incubation with peroxidase-conjugated secondary antibodies
(goat anti-rabbit IgG secondary antibody [Cell Signaling Technology, 7074, RRID:
AB_2099233, 1:1000]; horse anti-mouse IgG secondary antibody [Cell Signaling
Technology, 7076, RRID:AB_330924, 1:1000]; rabbit anti-goat IgG secondary
antibody [Abcam, ab6741, RRID:AB_955424, 1:1000]) for 1 h at room temperature,
the signals were visualized using enhanced chemiluminescence (Thermo Fisher
Scientific, 34095). We collected protein from each cell line in three biologically
independent samples and mixed them together for western blot analysis, and
repeated twice. The relative intensities of the bands of western blots from three
regions were automatically analyzed and normalized to a loading control using the
ChemiDoc Touch Imaging System Version 1.2 (Bio-Rad). Source data of images of
western blot bands are provided as a Source Data file.

Biochemical assay. Commercially available enzyme-linked immunosorbant assay
(ELISA) kits were used to measure the concentrations or activity of HMGB1 (Shino
Test Corporation, ST51011), amylase (BioVision, K711), MPO (BioVision, K744),
iron (Abcam, ab83366), MDA (Abcam, ab118970), and 8-OHdG (Cell Biolabs,
STA-320) in indicated samples according to the manufacturer’s instructions. Data
were normalized to protein or DNA concentration. In addition, C11-BODIPY
probe (Thermo Fisher Scientific, D3861) was used to detect lipid ROS in cells.

Secrete-pair luminescence and ChIP assay. Dual-reporter promoter clones or
controls were transfected into two cell lines in duplicates. Indicated WT and
Nupr1−/− cells were transfected with pEZX-PG04-Lcn2 promoter Gaussia luci-
ferase/secreted alkaline phosphatase (GeneCopoeia, MPRM39850-PG04). After 48
h, these cells were treated with erastin (10 µM) or RSL3 (1 µM) at indicated times.
The Lcn2 promoter luciferase activity was measured with a Secrete-Pair Dual
Luminescence Assay Kit (GeneCopoeia, SPDA-D010) in accordance with the
manufacturer’s guidelines. The chromatin immunoprecipitation (ChIP) assay was
performed using the Pierce Magnetic ChIP Kit (Thermo Scientific, 26157). This kit
contained reagents to lyse cells and extract and solubilize the crosslinked com-
plexes. The complexes were then incubated with anti-NUPR1 antibody (Santa Cruz
Biotechnology, sc-23283) and isolated using Pierce Protein A/G Magnetic Beads.
After reversing crosslinks and digesting protein, the resulting DNA fragments were
purified. One-twentieth of the immunoprecipitated DNA was used in qPCR. The
results were shown as a percentage of input.

Animal model. We conducted all animal care and experiments in accordance with
the Association for Assessment and Accreditation of Laboratory Animal Care
guidelines and with approval from our Institutional Animal Care and Use Com-
mittee (Guangzhou Medical University [#2019075] and UT Southwestern Medical
Center [#102605]). All mice were housed under a 12-h light–dark diurnal cycle
with controlled temperature (20–25 °C) and relative humidity (40–60%). Food and
water were available ad libitum. Experiments were carried out under pathogen-free
conditions and the health status of mouse lines was routinely checked by veterinary
staff. No wild animals were used in the study. Experiments were carried out with
randomly chosen littermates of the same sex and matched by age and body weight.
Animals were sacrificed at the indicated time by CO2 asphyxia, and blood samples
and tissue were collected.

To generate murine subcutaneous tumors, 5 × 106 PANC1 or MIAPaCa2 cells
in 100 μl PBS was injected subcutaneously to the right of the dorsal midline in 6–8-
week-old athymic nude female mice. Once the tumors reached around 80 mm3 at
day 7, mice were randomly allocated into groups and then treated with IKE
(40 mg/kg, i.p., once every other day) in the absence or presence of Z-VAD-FMK
(10 mg/kg, i.p., once every other day) or necrosulfonamide (10 mg/kg, i.p., once
every other day) or liproxstatin-1 (10 mg/kg, i.p., once every other day) or ZZW-
115 or liproxstatin-1 (5 mg/kg, i.p., once every other day) starting at day 7 for
2 weeks. Tumors were measured twice weekly and volumes were calculated using
the formula length × width2 × π/6.

Pancreatic-specific Lcn2-knockout mice were generated by crossing floxed Lcn2
(Lcn2flox/flox) and Pdx1-Cre transgenic mice. Lcn2flox/flox mice were a gift from Bin
Gao (National Institutes of Health, USA). Pdx1-Cre mice (014647) were purchased
from the Jackson Laboratory. All mice were C57BL/6 background. For L-arginine-
induced pancreatitis, a sterile solution of L-arginine monohydrochloride (8%) was
prepared in normal saline and the pH was adjusted to 7.0. Mice received two
hourly intraperitoneal (i.p.) injections of L-arginine (4 g/kg), while controls were
administered saline i.p.74. In addition, pretreatment with liproxstatin-1 (10 mg/kg)
or DFO (100 mg/kg) for 1 h was used in pancreatitis models.

Bioinformatics analysis. GEPIA (http://gepia.cancer-pku.cn/index.html)75, an
interactive web server for analyzing the TCGA data, was used to separate the
TCGA cohorts into groups with high/low expression of selected genes, which were
then used for the prognostic signature validation based on the best cut-off values.
The best expression cut-off refers the fragments per kilobase of exon model per
million reads mapped (FPKM) value that yields maximal difference with regard to
survival between the two groups at the lowest log-rank P-value.

Statistical analysis. Data are presented as mean ± SD except where otherwise
indicated. GraphPad Prism 8.4.3 was used to collect and analyze data. Unpaired
Student’s t tests were used to compare the means of two groups. A one-way (for
one independent variable) or two-way (for two independent variables) analysis of
variance (ANOVA) with Tukey’s multiple comparisons test was used for com-
parison among the different groups on all pairwise combinations. Log-rank test
was used to compare differences in mortality rates between groups. A two-tailed P
value of <0.05 was considered statistically significant. The exact value of n within
the figures and replicates is indicated in the figure legends. We did not exclude
samples or animals. No statistical methods were used to predetermine sample sizes,
but our sample sizes are similar to those generally employed in the field26,76.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All the other data supporting the findings of this study are available within the article and its

supplementary information files and from the corresponding author upon reasonable request.

GEPIA (http://gepia.cancer-pku.cn/index.html)75 was used to analyze the TCGA data of

NURP1 (Ensembl ID: ENSG00000176046 [https://www.ncbi.nlm.nih.gov/gene/26471]) or

LCN2 (Ensembl ID: ENSG00000148346 [https://www.ncbi.nlm.nih.gov/gene/3934])

gene. Source data are provided with this paper.
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