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Abstract The development of NURBS-Enhanced Finite El-
ement Method (NEFEM) is revisited. This technique allows
a seamless integration of the CAD boundary representation
of the domain and the finite element method (FEM). The im-
portance of the geometrical model in finite element simula-
tions is addressed and the benefits and potential of NEFEM
are discussed and compared with respect to other curved fi-
nite element techniques.

1 Introduction

This paper revisits the state of the art of an efficient method-
ology to integrate the NURBS boundary representation of
the domain into a standard finite element framework: the so-
called NURBS-enhanced finite element method (NEFEM).

Non-uniform rational B-splines (NURBS, see [72]) are
nowadays widely used for geometric description in Com-
puter Aided Design (CAD). Other popular options for geo-
metric description in CAD are polynomial B-splines (a par-
ticular case of NURBS) and subdivision surfaces. This fact
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has motivated the development of novel numerical tech-
niques considering CAD descriptions of the computational
domain.

NURBS-Enhanced Finite Element Method uses NURBS
to accurately describe the boundary of the computational do-
main and the solution is approximated using polynomials
defined with Cartesian coordinates, directly in the physical
space. From a practical point of view, NEFEM considers ef-
ficient strategies for numerical integration on elements af-
fected by curved boundaries. It is worth remarking that at
elements not intersecting the boundary classical finite ele-
ments (FEs) are used, preserving the efficiency of the finite
element method (FEM).

NEFEM was first presented for 2D domains in [79],
showing the advantages in front of classical isoparamet-
ric FEs using both continuous and discontinuous Galerkin
formulations for the numerical solution of some test prob-
lems. It is important to remark that all the ideas presented
in [79] are valid not only when the boundary of the domain
is parametrized by NURBS, but for any piecewise bound-
ary parametrization. The discussion is centered on NURBS
boundary parametrization because they are the most ex-
tended technology in CAD. In [81] NEFEM was shown to
be a powerful tool for solving compressible flow problems
governed by the Euler equations of gas dynamics.

Several high-order FE methodologies for the treatment
of curved boundaries are discussed and compared in [83],
including isoparametric FEM, Cartesian FEM, p-FEM and
NEFEM. Numerical examples show that NEFEM is not
only more accurate than FE methods with an approximate
boundary representation, but also outperforms p-FEM with
an exact boundary representation, showing the advantages
of combining Cartesian approximation with exact boundary
representation.
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In [82] the extension of NEFEM to 3D domains is pre-
sented. Although conceptually easy, the extension of NE-
FEM to 3D requires attention to several geometric aspects.
The advantages of NEFEM in front of other curved FE tech-
niques are discussed and illustrated using numerical exam-
ples.

This paper is organized as follows. In Sect. 2 a review
of FE techniques for curved boundaries with a historical
perspective is presented. An introductory overview of Non-
Uniform Rational B-Splines is given in Sect. 3. Section 4
is devoted to review NEFEM. The core concept is first de-
scribed and technical details regarding the polynomial ap-
proximation and the numerical integration in curved ele-
ments is presented. Optimal a priori error estimates for NE-
FEM are recalled and, finally, some implementation details
are summarized in order to facilitate the adoption of NE-
FEM by the FE community. In Sect. 5 a critical comparison
between FE techniques used in domains with curved bound-
aries is presented, with particular emphasis in two issues: the
exact boundary representation of the domain and the consis-
tency of the approximation. The numerical examples pre-
sented in Sect. 6 range from second-order elliptic problems
to more complex problems involving the numerical solution
of Euler and Maxwell’s equations. The application of NE-
FEM in continuous and discontinuous Galerkin frameworks
is illustrated. In the numerical examples NEFEM is shown
as a powerful strategy to efficiently treat curved boundaries
and to avoid excessive mesh refinement when complex ge-
ometric objects are considered. Finally, Sect. 7 summarizes
the main conclusions and Sect. 8 discusses some areas of
future research.

2 Historical Perspective

The origin of the finite element method (FEM) is mainly
attributed to pioneer works in the field of airplane structural
analysis, see [19, 105] for an overview of the early history of
the FEM. The need of curved elements to improve the qual-
ity of the shape discretization soon arose and the first ap-
proach introduced to efficiently deal with curved boundaries
were the so-called isoparametric elements, see [35, 104]. In
these works the authors pointed out that in a practical set-
ting, mesh refinement is governed by the need to accurately
represent curved geometric objects, and the use of curved
elements was proposed in order to retain accurate boundary
descriptions without performing excessive mesh refinement.
The key idea of isoparametric elements was to employ the
same polynomial functions to approximate the solution and
to define the mapping between the reference element and
the physical element, hence the term isoparametric. This ap-
proach was rapidly adopted for solid mechanics applications
due to its straightforward implementation and its relatively
good performance.

During the 1970s, there was an increasing interest in the
development and analysis of curved finite elements, see [17,
38, 39, 77, 94, 107–109]. The technique presented in [107,
109] is recognized to be the first FEM considering an ex-
act boundary representation. Triangular elements with one
curved edge were introduced, and the isoparametric map-
ping was modified to map a reference element into the tri-
angular element with an exact boundary description. A sim-
ilar approach was developed in [77], also using triangular
elements with one curved side corresponding to the exact
boundary. Alternatives to the standard polynomial approxi-
mation of the solution were also proposed within the context
of curved FEs with an exact boundary representation, see for
instance the rational basis in [94, 95]. Nevertheless, all these
FE techniques with exact boundary representation were not
considered a practical tool, but a mathematical idealization,
due to the impossibility to extend the ideas to 3D domains.

The necessity of accurate geometric descriptions in the
automotive industry was the origin of the so-called blend-

ing mappings proposed in [38]. This mappings represented
an inflection point in the development of general proce-
dures to exactly treat curved boundaries as they were the
core concept of a new and successful family of elements
called transfinite elements, see [39]. The key idea was to
introduce blending functions to define a mapping between a
reference square and a subdomain with the boundary given
by four parametric curves. The problem of geometric inac-
curacies associated to the isoparametric transformation are
removed by blending mappings, and higher degrees of inter-
polation can be successfully employed. Therefore, blending
mappings were naturally adopted in the so-called p-version
of the FEM (p-FEM), see [4] and a recent review in [87].
In this approach the mesh remain fixed (usually containing
large elements) and the degree of the approximations is in-
creased in order to properly capture the solution. Therefore,
an accurate geometric description is crucial in this context.

During the 1980s a great effort was dedicated to the
study of approximation spaces that guarantee optimal con-
vergence of the finite element method in the presence of
curved boundaries, see for instance [12, 14, 32, 61, 96].

Despite the early introduction of curved FE techniques
for solid mechanics applications, in the 1980s and 1990s the
geometric description was an important handicap for com-
putational fluid dynamics (CFD). In particular, linear ap-
proximation of curved walls in numerical solutions of Eu-
ler equations of gas dynamics was identified as the origin
of spurious entropy production near curved boundaries. In a
finite volume (FV) context, see [7], the problem was identi-
fied in [8, 27]. In [99] a local approximation of the curvature
is used in order to enhance the imposition of the wall bound-
ary condition on curved boundaries, resulting in a dramatic
reduction of the entropy production. More recently, in the
so-called spectral volume method, see [100], the accurate



treatment of curved boundaries has been identified as a crit-
ical issue. In [98] the spectral volume method is extended
to the two-dimensional Euler equations with curved bound-
aries and in [44] the authors implement the ideas of [55] to
enhance the accuracy of the approximation in the presence
of curved walls. In a discontinuous Galerkin (DG) context,
see [20], the same problematic when solving Euler equations
was identified in [9]. In [93] a detailed study of this prob-
lem is presented to conclude that accurate results can only
be obtained taking into account the curvature of the bound-
ary. More recently, in [55] a new methodology is presented
for the computation of the fluxes across curved boundaries
but, unfortunately, the proposed method is not conservative.
In [34], the advantages of using high-order isoparametric
elements for the numerical solution of inviscid compress-
ible flow problems are also illustrated. Using ultra-coarse
meshes and high-order approximations the authors show the
benefits of curved elements. In fact, this work evidences the
necessity of better than isoparametric boundary representa-
tion when coarse meshes are considered because the C 0 con-
tinuity of the curved boundary between elements is shown to
have an important impact in quantities of interest such as the
pressure coefficient over an airfoil profile. More recently, in
[37] a different mapping is proposed based on the boundary
representation with Bézier curves. Imposing C 1 continuity
of the approximated boundary an important improvement is
obtained compared to standard isoparametric mappings. It
is worth recalling that the necessity of curved elements and
a C 1 continuity approximation of the boundary in fluid me-
chanics applications was very early pointed out as a key is-
sue for obtaining accurate solution without excessive mesh
refinement, see for instance [68].

Accurate geometric descriptions are also relevant in other
areas of fluid mechanics such as the numerical solution of
the Navier-Stokes equations, see for instance [57, 62], but
the importance of the geometrical model is not exclusive of
fluid mechanics. Maxwell’s equations are also very sensi-
tive to an accurate geometric description. In [103] the error
induced by isoparametric approximations of curvilinear ge-
ometries is studied. By solving the 3D Maxwell’s equations
in a sphere, the authors show that an exact description of the
geometry reduces the error in one order of magnitude com-
pared to isoparametric elements. Similar conclusions are de-
rived in [64] for linear elasticity problems. They conclude
that sizable errors are present in the numerical solution when
the order of the geometric approximation is lower than the
order of the functional interpolation. The relevance of an ac-
curate geometric model for some applications in solid me-
chanics is also illustrated in [69], where the use of B-splines
is proposed for the geometric representation of the interface
in frictionless contact problems.

Curved FE were developed during the 1970s and 1980s
without regarding the emerging Computer Aided Design

(CAD) industry. The great impact of CAD technology in the
FE community arrived in the 1980s. In fact, researchers on
the field of shape optimization were the first to promote the
so-called marriage of CAD and FE. In a shape optimiza-
tion process, the integration of CAD into the analysis stage
is crucial to avoid the geometric approximation inherent in
a mesh. In [75] transfinite elements were implemented us-
ing NURBS for the geometric description. Obviously, the
rational nature of NURBS leads to rational function maps
between the reference element and the element in the phys-
ical space. Note however that the solution is approximated
using polynomials. Some inaccuracies associated to the lack
of satisfaction of the isoparametric concept are mentioned
in [75], but not further explained. To obtain an isoparamet-
ric approach, the exact boundary representation was aban-
doned, and a simplification of the geometry with polynomial
B-Splines was proposed. Thus, some of the advantages of
NURBS, such as exact representation of conics, were lost.

Over the 1990s, other authors focused their attention on
integrating NURBS technology into FE codes. For instance,
in [29] an element geometric mapping also based on blend-
ing functions with NURBS is proposed. More recently, in
[67], p-FEM with NURBS for the boundary representation
is applied to plane elasticity problems. The inaccuracies pre-
viously mentioned in [75] are also reported, and the lack of
satisfaction of the isoparametric concept is alleviated by a
rational enrichment of the polynomial basis used to approx-
imate the solution.

The relevance of an accurate geometry description also
motivated, in the late 1990s, a new family of FE-like tech-
niques based on CAD, which is still today object of inten-
sive research: isogeometric methods. The key idea is to use
the same CAD representation for both geometrical design
and analysis. Thus, contrary to classical FE methodologies,
the whole domain is treated as a CAD entity, not only the
boundary of the domain. Moreover, classical polynomial ap-
proximations of the solution are abandoned and the solution
is approximated with the same basis used in the CAD envi-
ronment. The first application is again encountered on shape
optimization, using B-Splines for the geometrical descrip-
tion and for the mechanical analysis, see [53]. In the 2000s,
more advanced CAD technology have been applied follow-
ing the same rationale. In [18] subdivision surfaces are used
for thin shell analysis and relevant advantages are found due
to the sensitivity of shells to an inaccurate geometric rep-
resentation. More recently, NURBS have been used to de-
velop isogeometric methods, see for instance [49, 51]. In
[51] the application of a NURBS isogeometric method to
shape optimization processes is presented. Finally, in [49] a
more general framework known as isogeometric analysis is
proposed. This approach is not only focused on the accurate
representation of the geometry, but also in the possibilities
of NURBS as a basis for the approximation. See more recent
advances in [25].



3 Non-uniform Rational B-Splines (NURBS)

This section provides a brief introduction to NURBS curves
and surfaces. Core concepts used in the following sections
are introduced and the reader is referred to [72, 74] for a
complete presentation.

3.1 NURBS Curves

A qth-degree NURBS curve is a piecewise rational function
defined in parametric form as

C(λ) =

(ncp
∑

i=0

νiBiC
q

i (λ)

) / (ncp
∑

i=0

νiC
q

i (λ)

)

, 0 ≤ λ ≤ 1,

where {B i} are the coordinates of the ncp+1 control points

(forming the control polygon), {νi} are the control weights,
and {C

q

i (λ)} are the normalized B-spline basis functions of
degree q , which are defined recursively by

C0
i (λ) =

{

1 if λ ∈ [λi,λi+1[,

0 elsewhere,

Ck
i (λ) =

λ − λi

λi+k − λi

Ck−1
i (λ) +

λi+k+1 − λ

λi+k+1 − λi+1
Ck−1

i+1 (λ),

for k = 1 . . . q , where λi , for i = 0, . . . ,nk, are the knots or
breakpoints, which are assumed ordered 0 ≤ λi ≤ λi+1 ≤ 1.
They form the so-called knot vector

Λ = {0, . . . ,0
︸ ︷︷ ︸

q+1

,λq+1, . . . ,λnk−q−1,1, . . . ,1
︸ ︷︷ ︸

q+1

},

which uniquely describes the B-spline basis functions. The
multiplicity of a knot, when it is larger than one, determines
the decrease in the number of continuous derivatives. The
number of control points, ncp + 1, and knots, nk + 1, are
related to the degree of the parametrization, q , by the rela-
tion nk = ncp + q + 1, see [72] for more details. Figure 1
shows the B-spline basis functions for the knot vector

Λ = {0,0,0,0.2,0.4,0.6,0.8,0.8,1,1,1}. (1)

Note that NURBS are piecewise rational functions, whose
definition changes at knots. An example of a NURBS curve
is represented in Fig. 2 with the corresponding control poly-
gon. The image of the breakpoints or knots by the NURBS
are depicted in order to stress the discontinuous nature of
the parametrization. In practice CAD manipulators work
with trimmed NURBS, which are defined as the initial
parametrization restricted to a subspace of the parametric
space. Figure 3 shows the NURBS curve of Fig. 2 trimmed
to the subinterval [0.05,0.75].

Fig. 1 B-spline basis functions for the knot vector (1)

Fig. 2 NURBS curve (solid line), control points (denoted by ◦), con-
trol polygon (dashed line) and breakpoints (denoted by ! )

Fig. 3 Trimmed NURBS curve with λ ∈ [0.05,0.75] (solid line), con-
trol points (denoted by ◦), control polygon (dashed line) and break-
points (denoted by ! )

3.2 NURBS surfaces

A NURBS surface of degree q in λ and degree l in κ , is a
piecewise rational function defined in parametric form as

S(λ,κ) =

(nλ
cp

∑

i=0

nκ
cp

∑

j=0

νijBijS
q,l
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)

/(nλ
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q,l
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, 0 ≤ λ,κ ≤ 1,

where {B ij } are the coordinates of the (nλ
cp + 1)(nκ

cp + 1)

control points (defining the control net), {νij } are the control

weights, and {S
q,l

i,j (λ,κ)} are the 2D B-spline basis functions
of degree q in λ and l in κ . Each 2D B-Spline basis function
is defined as a tensor product of 1D basis functions, that
is

S
q,l

i,j (λ,κ) := C
q

i (λ)Cl
j (κ). (2)

Figure 4 shows two 2D B-spline basis functions for knot
vectors



Fig. 4 Example of 2D B-spline
basis functions

Fig. 5 (a) Parametric space,
(b) NURBS surface with knot
lines, and (c) control net

Fig. 6 (a) Parametric space
trimmed by the thick curve,
(b) trimmed NURBS surface
with knot lines and the thick

curve used to trim the initial
surface of Fig. 5, and (c) control
net

Λλ = {0,0,0,0.2,0.6,0.6,1,1,1},

Λκ = {0,0,0,0,0.4,1,1,1,1}.

Complete 1D basis are represented for each direction to il-

lustrate the construction of 2D basis functions as described

in (2).

Note that NURBS surfaces change their definition along

knot lines, that is when λ = λi , for i = 1, . . . ,nλ
k, or κ = κi ,

for i = 1, . . . ,nκ
k. An example of a NURBS surface is rep-

resented in Fig. 5 with the corresponding control net. Knot

lines are represented on the NURBS surface in order to

stress the discontinuous nature of the parametrization.

An example of a trimmed NURBS surface is represented

in Fig. 6, showing the NURBS surface of Fig. 5 trimmed

with the thick curve. In practical applications, it is also

common to deal with singular (or singularly parametrized)

NURBS surfaces. Such surfaces contain at least one singu-

lar point, defined as a point where a directional derivative is

zero. For these surfaces, knot lines typically converge to the
singular point, see an example in Fig. 7.

4 NURBS-Enhanced Finite Element Method (NEFEM)

This section introduces the fundamental ideas of NEFEM in
2D and 3D domains, see [79, 82] for further details. The core
concept is first described and the strategy to define curved
entities in NEFEM is detailed. Special attention is paid to
the design of efficient strategies in order to define high-order
approximations and to perform the numerical integration on
curved NEFEM elements. Optimal a priori error estimates
for h and p refinement are recalled, and implementation de-
tails are given in order to facilitate the adoption of NEFEM.

4.1 NEFEM Concept

Consider an open bounded domain Ω whose boundary ∂Ω ,
or a portion of it, is parametrized by NURBS curves in 2D



Fig. 7 (a) Parametric space,
(b) singular NURBS surface
with knot lines, and (c) control
net

Fig. 8 (a) Domain with part of
the boundary defined by curved
NURBS surfaces corresponding
to the NASA almond, (b) cut
through an unstructured
tetrahedral mesh with the
surface triangular mesh on the
almond, and (c) detail of the
mesh near the almond

or surfaces in 3D. In 2D every NURBS is assumed to be
parametrized by

C : [0,1] −→ C([0,1]) ⊆ ∂Ω ⊂ R
2.

Analogously, in 3D every NURBS is assumed to be parame-
trized by

S : [0,1]2 −→ S([0,1]2) ⊆ ∂Ω ⊂ R
3.

A regular partition of the domain Ω =
⋃

e Ωe in sim-
plices is assumed, such that Ωi ∩ Ωj = ∅, for i *= j . For
instance, Fig. 8 shows a 3D computational domain with part
of the boundary defined by NURBS surfaces correspond-
ing to the NASA almond [30], a useful geometry for bench-
marking electromagnetic scattering codes. A cut through an
unstructured tetrahedral mesh is also represented in Fig. 8,
including the surface triangular mesh on the almond.

As usual in FE mesh generation codes, it is assumed that
every curved boundary face belongs to a unique NURBS.
That is, one element face can not be defined by portions
of two, or more, different NURBS. Note however that the
piecewise definition of each NURBS is independent on
the mesh discretization. Thus, NURBS parametrization can
change its definition within one face, that is, FE edges do
not need to coincide with knot lines. Figure 9 shows the im-
age of the knot lines of the NASA almond surfaces and the
surface triangulation corresponding to the mesh represented
in Fig. 8. It can be observed that spatial discretization is
independent of the piecewise NURBS surface parametriza-
tion. It is worth remarking that allowing changes of NURBS

parametrization to be independent on the spatial discretiza-
tion means that special attention must to be paid to the nu-
merical integration over elements affected by the NURBS
boundary representation, see Sect. 4.4.2.

An element without any edge or face in contact with
NURBS boundaries has planar faces and it is defined and
treated as a standard FE. Therefore, in the vast majority of
the domain, interpolation and numerical integration are stan-
dard, preserving the computational efficiency of classical
FEM. Specifical numerical strategies for interpolation and
numerical integration are needed only for those elements af-
fected by NURBS boundaries.

4.2 Curved Elements

In NEFEM, curved elements are defined in terms of the
NURBS boundary representation of the domain. The formal
definition of curved faces and elements in a NEFEM mesh
is given in this section.

4.2.1 2D Elements

Let Γe be an edge on the NURBS boundary parametrized by
C , and x1,x2 ∈ ∂Ω the two vertices on the NURBS bound-
ary, see Fig. 10. The edge is defined by

Γe := C([λe
1,λ

e
2]),

where λe
1 and λe

2 are the parametric coordinates (in the para-
metric space of the NURBS) of the end points of Γe .

A curved triangular element with an edge on the NURBS
boundary is defined as a convex linear combination of the



Fig. 9 (a) Knot lines of the
NURBS surfaces defining the
NASA almond, (b) surface
triangulation, and (c) surface
triangulation and knot lines

Fig. 10 Parametrization of a curved triangular element with a edge on
the NURBS boundary

curved NURBS edge and the interior vertex. For instance,
element represented in Fig. 10 is parametrized by

ψ : R −→ Ωe

(λ,ϑ) +−→ ψ(λ,ϑ) := (1 − ϑ)C(λ) + ϑx3,
(3)

where R = [λe
1,λ

e
2] × [0,1] and x3 is the internal vertex of

Ωe, see Fig. 10.

4.2.2 3D Elements

Let Υe be a tetrahedral face on the NURBS boundary
parametrized by S , and x1,x2,x3 ∈ ∂Ω the three vertices
on the NURBS boundary, see Fig. 11. Assuming that the ver-
tices x1,x2,x3 do not correspond to singular points of the
NURBS parametrization, a straight-sided triangle Λe in the
parametric space of the NURBS is uniquely defined by the
parametric coordinates of the vertices, S

−1(x1), S
−1(x2)

and S
−1(x3). The curved face with a NURBS boundary rep-

resentation, Υe, is defined as the image of the straight-sided
triangle Λe by the NURBS parametrization S ,

Υe := S(Λe), (4)

as illustrated in Fig. 11.
Note that when the surface S is trimmed by a curve C in

the parametric space of the NURBS, the edges of the trian-
gle Λe must be replaced by trimmed NURBS curves. In such
cases Λe is a curved triangle in the parametric space of the
NURBS and curved edges of Λe are NURBS curves (used to
trim the original surface), see an example in Fig. 12. Finally,
assuming that one of the vertices of the tetrahedral face cor-
responds to a singular point of the NURBS parametrization,
Λe must be defined as a quadrilateral in the parametric space
of the NURBS, see an example in Fig. 13.

Interior curved faces with an edge on the NURBS bound-
ary are defined as a convex linear combination of the curved

edge and the interior face node. For instance, curved face
Υ E

e represented in Fig. 11 is parametrized by

Θx4 : [̺1,̺2] × [0,1] −→ Υ E
e

(̺,σ ) +−→ Θx4(̺,σ )

:= (1 − σ )θ(̺) + σx4,

(5)

where θ([̺1,̺2]) parametrizes the curved edge from ver-
tex x2 to vertex x3. Note that this approach to define inte-
rior curved faces ensures the same definition of an interior
curved face as seen from the two elements sharing this face.
Note also that other types of curved faces are present in real
meshes, such as faces with several edges over the NURBS
boundary. A systematic way of defining all possible curved
faces is presented in Sect. 4.4.2.

With this definition of curved faces, a curved tetrahe-
dral element with a face on the NURBS boundary is defined
by a convex linear combination of the curved NURBS face
and the interior vertex. For instance, element represented in
Fig. 11 is parametrized by

Ψ : Λe × [0,1] −→ Ωe

(λ,κ,ϑ) +−→ Ψ (λ,κ,ϑ)

:= (1 − ϑ)S(λ,κ) + ϑx4,

(6)

where x4 denotes the interior vertex of Ωe. Similarly, an
element with an edge on the NURBS boundary corresponds
to a convex linear combination of one of its curved faces an
the opposite node, and can be parametrized by

Φ : [̺1,̺2] × [0,1]2 −→ Ωe

(̺,σ, τ ) +−→ Φ(̺,σ, τ )

:= (1 − τ )Θx3(̺,σ ) + τx4,

(7)

where x3 and x4 are the interior vertices of Ωe, see Fig. 14.
Note that the definition of Φ in (7) is independent on the
order of the interior vertices x3 and x4. That is, element Ωe

can be equivalently parametrized by

Φ(̺,σ, τ ) := (1 − τ )Θx4(̺,σ ) + τx3.

It is worth remarking that interior edges, (i.e., edges with
no more than one node over the NURBS boundary) are con-
sidered as straight edges. Note that this assumption allows



Fig. 11 Parametrization of a
curved tetrahedral element with
a face on the NURBS boundary,
showing a face Υe on the
NURBS boundary, and a face
Υ E

e with an edge on the
NURBS boundary, Υ E

e

Fig. 12 Curved tetrahedral face
on a trimmed NURBS
boundary. NURBS surface S is
trimmed by NURBS curve C ,
leading to a curved triangle Λe

in the parametric space

Fig. 13 Curved tetrahedral face
on a singular NURBS boundary
with a singular point, leading to
a quadrilateral Λe in the
parametric space

Fig. 14 Curved tetrahedral elements with an edge on the NURBS
boundary

to ensure that the elements affected by the NURBS bound-
ary representation of the domain are only elements with at
least one face or one edge over the NURBS boundary, and
therefore, the overhead introduced by NEFEM is restricted
to a very small portion of the total number of elements.

4.3 High-Order Approximation in Curved Elements

NEFEM considers nodal polynomial interpolation in each
element. To ensure reproducibility of polynomials in the
physical space, NEFEM defines the approximation directly
with Cartesian coordinates, x , that is

u(x) ≃ uh(x) =

nen∑

i=1

uiNi(x), (8)

where ui are nodal values, Ni are polynomial shape func-
tions (Lagrange polynomials) of order p in x , and nen is
the number of element nodes. Recall that in isoparametric
FEM or p-FEM the approximation is defined in a reference
element. However, contrary to NEFEM, the definition of the
polynomial basis for high-order curved elements does not
ensure reproducibility of polynomials in the physical space.

To make the computation of Lagrange polynomial basis
more systematic, for any degree and for any distribution of



Fig. 15 Equally-spaced nodal distribution for p = 5 (a) defined us-
ing the (imaginary) triangle with planar faces, and (b) adapted to the
curved geometry

nodes, the implementation proposed in [46, 84] is adapted
to define the approximation in Cartesian coordinates.

Given a nodal set with coordinates {xi}
nen
i=1, the Lagrange

polynomial basis {Ni(x)}
nen
i=1 can be expressed in terms of

the polynomial basis {Pi(x)}
nen
i=1 as

Ni(x) =

nen∑

j=1

[

V
−1

]

ji
Pj (x), (9)

where the multidimensional Vandermonde matrix is defined
as Vij := Pj (xi), for i, j = 1, . . . ,nen. Note that (9) holds
for any polynomial basis {Pi(x)}

nen
i=1. Here a polynomial

basis {Pi(x)}
nen
i=1 with the required degree and whose def-

inition is independent of the nodal coordinates is consid-
ered. In fact, the polynomial basis considered here is derived
from the Jacobi polynomials, see [33, 88], to ensure moder-
ate condition number for the Vandermonde matrix V , see
also [54].

Different options can be considered to define a nodal dis-
tribution in Ωe. Any nodal distribution, such as equally-
spaced nodal distributions, can be defined on the (imagi-
nary) element with planar edges/faces given by the vertices
of Ωe, or adapted to the NURBS geometry, see Figs. 15
and 16. It is worth remarking that, even if the nodes are
placed over an imaginary element with planar faces, the ap-
proximation is only defined on the interior of the curved el-
ement Ωe with the NURBS boundary representation.

The definition of a nodal distribution on the element with
planar faces, see Figs. 15(a) and 16(a), induces a marginal
extra efficiency, avoiding to define a specific nodal distri-
bution for each curved element. Adapting a nodal distribu-
tion to the NURBS geometry, see Figs. 15(b) and 16(b), al-
lows a seamless imposition of boundary conditions in strong
form, directly imposing the value of the solution at nodes
on the boundary. But, nodal distributions adapted to curved
boundaries do not represent any implementation advantage
if boundary conditions are imposed in weak form, as usual in
DG formulations. Note however the evolution of the condi-
tion number, shown in Fig. 17, for the element mass matrix

Fig. 16 Equally-spaced nodal distribution for p = 3 (a) defined using
the (imaginary) tetrahedral with planar faces, and (b) adapted to the
curved geometry

Fig. 17 Condition number of the mass matrix as a function of the
interpolation degree (p)

as a function of the polynomial degree of approximation, p.
Adapted distributions of nodes induce an important reduc-
tion on condition number.

For very high-order approximations, let say p > 5,
equally-spaced nodal distributions may lead to ill-condi-
tioned elemental matrices, even if adapted distributions are
considered. In this case, it is more convenient to use spe-
cial distributions of nodes in order to reduce the condition
number of the resulting element matrices, see for instance
the distributions proposed in [15, 16, 45, 63, 90, 101]. Fig-
ures 18 and 19 show Fekette nodal distribution in a triangle
and the distribution proposed in [45] in a tetrahedral ele-
ment. Adaptation of such distributions to the curved geom-
etry lead to an extra reduction in condition number of the
elemental matrices, see Fig. 17.

In the examples of Figs. 15, 16, 18 and 19, the use
of nodal distributions non-adapted to the NURBS bound-
ary implies that some nodes lie outside the region of inter-
est (i.e., the area/volume that defines the curved element).
Shape functions associated to those nodes contribute very



little to the elemental mass matrix deteriorating its condition
number, see for instance the shape functions associated to a
triangular with a degree of interpolation p = 3 for adapted
and non-adapted Fekette nodal distributions in Fig. 20. The
problem is far more evident as the degree of the approxima-
tion is increased because more nodes lie outside the region
of interest. Obviously, the condition number of elemental
matrices for non-adapted nodal distributions is highly de-
pendent on the geometry of the curved element. To illus-
trate that dependence, Fig. 21 shows the evolution of the

Fig. 18 Fekette nodal distribution for p = 5 (a) defined using the
(imaginary) triangle with planar faces, and (b) adapted to the curved
geometry

Fig. 19 Fekette nodal distribution for p = 3 (a) defined using the
(imaginary) tetrahedral with planar faces, and (b) adapted to the curved
geometry

condition number of the elemental mass matrix as a func-
tion of d/h where h is the characteristic element size and d

is the maximum distance between the curved boundary and
the straight line connecting the two vertex on the boundary.
It is worth remarking that the condition number for adapted
distributions does not deteriorate as the element is distorted.

4.4 Numerical Integration in Curved Elements

Weak form of the problem requires both integrations over
element edges/faces and in element interiors. Integrals in el-
ements not having an edge or face in contact with NURBS
boundaries are computed using standard procedures. For an
element Ωe affected by the NURBS boundary representa-
tion, design of specific quadratures is necessary. Special at-
tention must be paid to the definition of suitable quadratures
accounting for changes of NURBS parametrization within
an element face or edge.

This section present numerical integration on curved
edges/faces (line/surface integrals, usually related to the im-
plementation of natural boundary conditions or to flux eval-
uation over the face in a DG context) and in curved elements
(volume integrals).

4.4.1 2D Case

A line integral to be computed along a curved boundary edge
given by a trimmed NURBS, Γe = C([λe

1,λ
e
2]), can be writ-

ten as

∫

Γe

f dℓ =

∫ λe
2

λe
1

f
(

C(λ)
)

‖JC(λ)‖ dλ,

where f is a generic function (usually polynomial), and
‖JC‖ denotes the norm of the differential of the NURBS
parametrization C (which, in general, is not a polynomial).
As usual, a 1D numerical quadrature is used for the numeri-

Fig. 20 Polynomial basis
functions for a NEFEM curved
element with Fekette nodal
distributions and p = 3: (a) on
the straight-sided triangle given
by its vertices, and (b) adapted
to the exact geometry



cal computation of the integral, namely

∫

Γe

f dℓ ≈
nip
∑

i=1

f
(

C(λi)
)

‖JC(λi)‖ ωi, (10)

where λi and ωi are the coordinates and weights of the nip
integration points in [λe

1,λ
e
2].

Recall that a NURBS parametrization, C , is a piece-
wise rational function whose definition changes at the break-
points. Thus, an independent numerical quadrature must be
considered for each one of the intervals between breakpoints
in order to take into account the discontinuous nature of the
parametrization.

When a polynomial interpolation of degree p is con-
sidered in the NEFEM context, it is interesting to know
the minimum number of integration points needed to inte-
grate all the polynomials of degree less or equal to 2p with
a desired accuracy. Figure 22 shows the number of inte-
gration points needed to integrate all the polynomials of a
degree less or equal to 2p with an accuracy of 10−6 and
10−10 respectively along the trimmed NURBS describing a
quarter of a circle. The results using simple and compos-
ite Gauss-Legendre quadratures are displayed. For a NE-

Fig. 21 Condition number of the elemental mass matrix as a function
of d/h

FEM computation with polynomials of degree p = 5, simple
Gauss-Legendre quadratures provide an accuracy of 10−6 in
the boundary integrals using 10 integration points. Gauss-
Legendre composite quadratures with n= 4 require 5 subin-
tervals, i.e. 20 integration points, to obtain the same accu-
racy, and Gauss-Legendre composite quadratures with n= 8
require 2 subintervals, i.e. 16 points. For a NEFEM compu-
tation with polynomials of degree 10, an accuracy of 10−6

is attained with simple Gauss-Legendre quadratures with
15 integration points whereas composite Gauss-Legendre
quadratures with n = 4 require 28 integration points and
composite Gauss-Legendre quadratures with n = 8 require
24 integration points. If the desired accuracy is 10−10 the
number of integration points is only slightly increased for
simple quadratures whereas composite quadrature suffer
from a higher increase in computation cost. For instance,
for a NEFEM computation with polynomials of degree 10,
simple Gauss-Legendre quadrature require 19 points, com-
posite quadratures with n = 4 require 16 subintervals, i.e.
64 points, and composite quadratures with n = 8 require 4
subintervals, i.e. 32 points. Same conclusions are obtained
for the integration along other trimmed NURBS, see [80].

Although the faster convergence is obtained for high-
order simple quadratures, the use of composite rules is very
attractive, allowing to control the error in a straightforward
manner, see for instance [28]. Numerical experiments re-
veal that other popular quadrature rules such as trapezoidal
and Simpson composite rules or Romberg’s integration are
not competitive compared to Gauss-Legendre quadrature
rules.

NEFEM also requires to compute integrals in an element
Ωe with one edge Γe on the NURBS boundary, see Fig. 10.
Using the transformation in (3), element integrals are com-
puted as
∫

Ωe

f dΩ =

∫

R

f
(

ψ(λ,ϑ)
)

|Jψ (λ,ϑ)| dλ dϑ,

where |JΨ | is the determinant of the Jacobian of the trans-
formation ψ . The integral can be evaluated using 1D Gauss-

Fig. 22 Number of integration
points required to integrate all
the polynomials of degree of
equal to 2p with an accuracy of
(a) 10−6 and (b) 10−10 along
the trimmed NURBS describing
a quarter of a circle



Legendre quadratures in each direction as

∫

Ωe

f dΩ ≃
nip
∑

i=1

mip
∑

j=1

f (ξ ij )|Jψ (λi,ϑj )|ωi̟j , (11)

where nip and mip are the number of integration points
in λ and ϑ directions, respectively, ξ ij := ψ(λi,ϑj ), and

{λi,ωi}
nip

i=1 and {ϑj ,̟j }
mip

j=1 are the 1D quadrature points
and weights for [λe

1,λ
e
2] and [0,1] respectively.

Remark 1 When the transformation from the rectangle ψ is
considered, the integrals involved in the elemental matrices,
for a NEFEM solution with interpolation of degree p, can
be exactly computed for one of the parameters, ϑ , using a
Gauss-Legendre quadrature with p + 1 integration points.
The other dimension, λ, can be integrated using the same
quadrature considered for line integrals over NURBS.

Note that the rational definition of application ψ is only
due to the rational definition of the boundary. Thus, in
the particular case of a geometry given by a q-th degree
B-spline, i.e. a piecewise polynomial parametrization, the
elemental matrices can be exactly computed with Gauss-
Legendre quadratures with p+1 integration points for the ϑ

parameter, and q(p + 1) integration points for the NURBS
parameter λ.

4.4.2 3D Case

Curved faces on a NEFEM tetrahedral mesh can be clas-
sified in boundary faces or curved faces with at least one
edge on a NURBS boundary. To reduce casuistics in the
implementation (i.e., to avoid implementing a different
parametrization for each curved face), faces with several
edges on different NURBS boundaries are split in subfaces

with only one edge on a NURBS boundary. It is worth re-
marking that subdivisions are only applied to design a nu-
merical quadrature without a special treatment of each face
typology, no new degrees of freedom are introduced.

To illustrate the proposed strategy, let us consider a face
with two edges on different NURBS boundaries, see Fig. 23.
Curved face Υ E

e is split in three subfaces, which are defined
as a linear convex combination of the edges of Υ E

e and its
center of mass xF

C , see Fig. 23. After subdivision each sub-

face has at most one edge on a NURBS boundary. In the ex-
ample of Fig. 23, two subfaces have one edge on a NURBS
boundary (they are parametrized using application Θ in (5)),
and the third face, given by x2, x1 and xF

C , is planar.
With this splitting technique, it is only necessary to de-

scribe the strategy to perform the numerical integration on
curved boundary faces and curved faces with only one edge
on a NURBS boundary.

Fig. 23 Tetrahedral element with two edges on different NURBS
boundaries, and face splitting used for numerical integration (no new
degrees of freedom are introduced)

Fig. 24 Definition of a numerical quadrature on Λe for the numeri-
cal integration on a curved tetrahedral face with changes of NURBS
parametrization along discontinuous lines (knot lines): (a) triangle in
the parametric space and (b) detailed view of the composite quadrature

A surface integral on a curved boundary face Υe =

S(Λe), see Fig. 11, can be written as

∫

Υe

f dA =

∫

Λe

f
(

S(λ,κ)
)

‖JS(λ,κ)‖ dA, (12)

where f is a generic function (here a polynomial) and
‖JS(λ,κ)‖ denotes the norm of the differential of the
NURBS parametrization S (which, in general, is not a poly-
nomial). An efficient option to evaluate integral (12) is to
use a triangle quadrature [65, 85, 97] in Λe. Recall that the
spatial discretization is independent on the NURBS bound-
ary representation. Therefore, a boundary face can be in-
tersected by knot lines of the NURBS surface, see Fig. 9.
If changes of NURBS parametrization are present within
the parametric triangle Λe, a numerical quadrature must be
designed to account for the piecewise NURBS parametriza-
tion. For instance, a triangulation of Λe such that each sub-

triangle has no changes of NURBS parametrization can be
considered, with the associated composite quadrature (trian-
gle quadrature in each subtriangle), see Fig. 24.



An integral on a curved face Υ E
e with an edge on the

NURBS boundary, see Fig. 11, can be written as

∫

Υ E
e

f dA =

∫ ̺2

̺1

∫ 1

0
f

(

Θ(̺,σ )
)

‖JΘ (̺,σ )‖ dA, (13)

where f is a generic function and ‖JΘ (̺,σ )‖ denotes the
norm of the differential of mapping Θ , defined in (5), which
in general is not a polynomial. Numerical integration can
be performed using 1D Gauss-Legendre quadratures in each
direction. In fact, application Θ is linear in the second pa-
rameter, σ , and exact integration is feasible in this direction.
For a NEFEM solution with a degree of approximation p,
integral in (13) can be exactly computed for this direction,
using a Gauss-Legendre quadrature with p + 1 integration
points. Numerical integration for the first direction, given
by NURBS parameter ̺, presents the same difficulty as in-
tegration over a NURBS curve.

As usual, the evaluation of integral in (13) requires
taking into account the piecewise nature of the NURBS
parametrization, considering composite quadratures for ̺

direction.
The strategy to perform the element integrals follows the

same rationale. Elements with several faces and/or edges on

Fig. 25 Splitting used for numerical integration in an element with
two edges defined by different NURBS (no new degrees of freedom
are introduced)

different NURBS boundaries are split in subelements with
only one face or one edge on a NURBS boundary. Again,
it is worth remarking that subdivisions are only applied to
design a numerical quadrature without a special treatment
of each element typology, no new degrees of freedom are
introduced.

Two examples are presented to illustrate the proposed
strategy. First example considers a tetrahedral element with
two edges on different NURBS boundaries, see Fig. 23. To
design a numerical quadrature on Ωe, three subelements are
defined as a linear convex combination of the subfaces and
interior vertex of the element, x4, see Fig. 25. In this exam-
ple, two subelements have one edge on a NURBS bound-
ary and the third one has planar faces. Second example con-
siders an element Ωe with two faces on different NURBS
boundaries, as represented in Fig. 26. To perform numerical
integration in Ωe, the element is split in four subelements

using its center of mass, xE
C . Subelements are defined as a

linear convex combination of xE
C and original faces of Ωe,

having at most one face on a NURBS boundary.
By combination of these two subdivision strategies, any

element with several faces and/or edges on the NURBS
boundary can be split into elements with only one face or
one edge on the NURBS boundary. Thus, it is only neces-
sary to describe the strategy to perform the numerical inte-
gration on these two element typologies.

Volume integrals for an element with one face on a
NURBS boundary are performed using parametrization in
(6) as

∫

Ωe

f dV =

∫

Λe

∫ 1

0
f

(

Ψ (λ,κ,ϑ)
)

|JΨ (λ,κ,ϑ)| dV,

where f is a generic function (here a polynomial), and
|JΨ | denotes the determinant of the Jacobian of transfor-
mation Ψ . A numerical quadrature on Λe × [0,1] is easily
defined as a tensor product of a triangle quadrature in Λe

and a 1D Gauss-Legendre quadrature in [0,1], see Fig. 27.
In fact, exact integration is feasible in third parameter due to

Fig. 26 Splitting used for numerical integration in an element with two faces defined by different NURBS (no new degrees of freedom are
introduced)



Fig. 27 Transformation from Λe × [0,1] to Ωe to perform numerical
integration on an element with a face on the NURBS boundary

the linearity of Ψ with respect to ϑ . For a NEFEM solution
with a degree of approximation p, exact integration in this
direction is provided by a Gauss-Legendre quadrature with
p+2 integration points. To account for changes of NURBS
parametrization, only the quadrature in Λe is modified, see
Fig. 24.

Similarly, for an element with one edge on a NURBS
boundary, volume integrals are performed using parametriza-
tion in (7) as

∫

Ωe

f dV =

∫ ̺2

̺1

∫ 1

0

∫ 1

0
f

(

Φ(̺,σ, τ )
)

|JΦ(̺,σ, τ )| dV,

where |JΦ | is the determinant of the Jacobian of transfor-
mation Φ . Note that application Φ is linear in second and
third parameters, σ and τ . Therefore, integrals involved in
the elemental matrices, for a NEFEM solution with interpo-
lation of degree p, can be exactly computed for these direc-
tions using a Gauss-Legendre quadrature with p + 2 inte-
gration points. No exact integration is feasible in NURBS
parameter ̺, and composite quadratures must be considered
if changes of NURBS parametrization are present.

4.5 A Priori Error Estimates

Since NEFEM considers standard FE polynomial interpola-
tion, see Sect. 4.3, a priori error estimates have similar ex-
pressions to those of classical FE. For instance, the result for
the solution of second-order elliptic problems is recalled in
the following theorem.

Theorem 1 Let Th be a non-degenerate discretization in el-

ements (i.e. there is a positive constant β such that ̺e/he ≥
β , for all Ωe ∈ Th, where he and ̺e are the diameters of Ωe

and of the sphere inscribed in Ωe , respectively). Assuming

that all boundary conditions along curved boundaries are

imposed in weak form and no interior curved faces/edges

are present in the mesh, the following a priori estimate holds

‖u − uh‖E(Ω) ≤ Khp|u|Hp(Ω), (14)

where ‖·‖E(Ω) is the energy norm, u ∈ Hp+1(Ω) and uh

are the exact and the NEFEM solutions respectively, K is a

constant depending on β , h is the mesh size, and p is the

polynomial degree of interpolation.
Moreover, for p-refinement convergence the following es-

timate also holds,

‖u − uh‖E(Ω) ≤ C exp(−kN r), (15)

where C and k are positive constants, N is the number of

degrees of freedom, and r ! 1/nsd, with nsd the number of

spatial dimensions.

With NEFEM (as well as for FE in a domain with polyg-
onal boundaries) the spatial discretization does not intro-
duce geometric errors. Moreover, NEFEM uses polynomi-
als to approximate the solution in Cartesian coordinates, see
Sect. 4.3. Consequently, all a priori error estimates demon-
strated for FE in domains with polygonal boundaries can be
reproduced exactly for NEFEM, even in the presence of el-
ements far from having straight edges. The results for stan-
dard FE in domains with polygonal boundaries can be found
in [13, 52, 73] for h-refinement and in [3, 41, 86] for p-
refinement.

It is worth noting that contrary to NEFEM, the proof of
a priori error estimates for isoparametric FE in the presence
of curved boundaries requires special attention. This issue is
discussed in detail in Sect. 5.3.

Theorem 1 assumes that essential boundary conditions
are imposed in weak form, for instance with numerical
fluxes in a DG context, or with Nitsche’s method in a con-
tinuous formulation, see for instance [36, 70]. If Dirichlet
boundary conditions are imposed in strong form, an addi-
tional condition is required to keep optimal convergence
rates: optimal nodal distributions on every curved element
have to be considered, see Fig. 19(b). Theorem 1 also as-
sumes that no interior curved faces/edges are present in the
mesh. Again, this extra hypothesis is only needed if a con-
tinuous Galerkin approximation is considered and optimal
nodal distributions are required to keep optimal convergence
rates. This is formally stated in the next result.

Theorem 2 Under the assumptions of Theorem 1, the er-

ror bounds (14) and (15) hold for NEFEM in a continuous

Galerkin framework, if optimal nodal distributions on every

curved element along the Dirichlet boundary or with inte-

rior curved faces/edges are considered.

The requirement of Fekette nodal distributions is nec-
essary for an accurate interpolation of Dirichlet boundary
conditions on curved boundaries. Due to the use of polyno-
mial nodal basis in Cartesian coordinates, the errors in the
approximation of the prescribed value along the boundary
may deteriorate the convergence of the solution. This is the



case for NEFEM as well as for other approaches considering
Cartesian polynomial approximations. For instance, in [78]
optimal convergence rates are proven when nodes on the
boundary correspond to Lobatto points (i.e. Fekette points
in 1D).

4.6 Implementation

Introducing the NEFEM concept into an existing FE code
requires little effort. Note that the main difference of a NE-
FEM code with a standard FE code is at the level of the
computation of elemental matrices and vectors for curved
elements and faces (3D) or edges (2D). In fact, fortunately,
the usual routines for the computation of elemental matri-
ces and vectors for straight-sided elements can be directly
used, without any modification. The usual input of these
routines are the integration points and the shape functions
evaluated at these points. In the case of curved elements in-
tersecting the NURBS boundary, these inputs are computed
as described in previous sections. Thus, most of the routines
usual in a standard FE code (routines for assembly, compu-
tation of elemental matrices and vectors, etc.) can be directly
used.

The most crucial point in the implementation may be the
inclusion of the NURBS boundary information. The infor-
mation of all NURBS describing the boundary and the asso-
ciated NURBS information for each curved element have to
be stored.

In 2D, for every NURBS boundary the associated knot
vector and the control polygon are necessary. For each
curved edge on a NURBS boundary Γ e, the parametric co-
ordinates of the boundary nodes λe

1 and λe
2, and a pointer

to the corresponding NURBS curve C has to be stored, see
Fig. 10. In order to compute the parameters λe

1 and λe
2, a

NURBS projection algorithm can be easily implemented,
see for instance [66, 72]. It is worth noting that the effi-
ciency of the projection algorithm is not crucial because it is
performed once at the preprocessing stage.

In 3D, for every NURBS boundary the associated knot
vectors and the control net are necessary. For each curved
face on the NURBS boundary Υe, the parametric coordi-
nates of the boundary nodes (λe

1,κ
e
1), (λe

2,κ
e
2) and (λe

3,κ
e
3),

and a pointer to the corresponding NURBS surface S are
stored, see Fig. 11.

It is worth noting that for trimmed and singular surfaces
extra information must be stored. First, for each edge on the
NURBS boundary corresponding to a trimming curve, see
Fig. 12, the parametric coordinates of the edge vertices as-
sociated to the trimming curve and a pointer to that curve
has to be stored. Second, for each vertex corresponding to a
singular point of a NURBS surface two parametric coordi-
nates must be stored, see Fig. 13.

Fig. 28 Isoparametric mapping between the reference element I , with
local coordinates ξ , and an approximation of the physical subdomain
in Cartesian coordinates x , namely Ωh

e = ϕ(I )

Obviously, routines for the evaluation of NURBS and
their derivatives at a given parametric coordinates are nec-
essary. This routines can be easily obtained or implemented,
see [72] and reference therein.

5 Why NEFEM?

This section is devoted to recall and compare several
methodologies for the treatment of curved boundaries:
isoparametric FEM and Cartesian FEM, with an approxi-
mate description of the geometry, and p-FEM with an exact
boundary representation. To simplify the presentation, trian-
gular elements with one curved side are considered.

Let Ω ⊂ R
2 be an open bounded domain whose bound-

ary ∂Ω , or a portion of it, is curved. A regular partition of
the domain Ω =

⋃

e Ωe in triangular elements is assumed,
such that Ωi ∩ Ωj = ∅, for i *= j . It is important to remark
that, in the following, Ωe denotes the element with an exact
description of the curved boundary, also referred as physical

subdomain. This is not the case of classical isoparametric
FE, where the computational element, Ωh

e , corresponds to a
polynomial approximation of the curved boundary.

5.1 Approximated Boundary Representation

The standard FE technique used in the presence of curved
boundaries is isoparametric FEM, see [35, 104]. A nodal in-
terpolation of the solution, u, is considered in the reference
element I with local coordinates ξ = (ξ,η), see Fig. 28,

u(ξ) ≃ uh(ξ) =

nen∑

i=1

uiNi(ξ ), (16)

where ui are nodal values, Ni are polynomial shape func-
tions of order p in ξ , and nen is the number of element
nodes. The isoparametric transformation is used to relate lo-
cal and Cartesian coordinates

ϕ : I −→ Ωh
e

ξ +−→ ϕ(ξ) :=

nen∑

i=1

xiNi(ξ ),
(17)



where xi are the nodal coordinates of the computational el-
ement Ωh

e . Note that Ωh
e is a polynomial approximation of

the physical subdomain Ωe, in particular, of its boundary,
see Fig. 28. In fact, the term isoparametric stands for the
use of the same polynomial shape functions to define the
functional approximation uh, and to describe the geometry
of the computational element in Cartesian coordinates, see
(17).

Numerical integration in the computational element Ωh
e

(approximation of Ωe) is performed using the isoparametric
transformation given in (17), with a numerical quadrature in
the reference element I . For instance, a stiffness elemental
matrix coefficient is computed as

Ke
ij =

∫

Ωh
e

∇xNi

(

ξ(x)
)

· ∇xNi

(

ξ(x)
)

dΩ

=

∫

I

(

J
−1
ϕ ∇ξNi(ξ)

)

·

(

J
−1
ϕ ∇ξNj (ξ)

)

|J ϕ | dξ , (18)

where J ϕ is the Jacobian of the isoparametric transforma-
tion, see (17). For curved elements the isoparametric map-
ping is non-linear. Therefore, the inverse of the Jacobian,
J −1

ϕ , is not a polynomial function, and no exact integra-
tion is feasible with standard quadrature rules. In practice, a
symmetric triangle quadrature [97] on I , with a sufficiently
large number of integration points, is usually employed to
compute (18). In fact, a quadrature of order 2p − 1 provides
optimal convergence of the isoparametric FEM, see [106].

There are two sources of error in isoparametric FEM.
First, the isoparametric mapping in (17) introduces geomet-
ric errors, due to the approximation of the physical sub-
domain Ωe by the computational element Ωh

e . In fact, the
boundary of the computational domain ∂Ωh is a piecewise
polynomial approximation of the exact boundary ∂Ω , see
Fig. 28. Second, for high-order approximations on curved
elements, the definition of the polynomial interpolation in
(16) in local coordinates, ξ , implies a loss of consistency: a
polynomial interpolation of degree p > 1 in ξ does not cor-
respond to a polynomial interpolation of degree p in x . This
implies that the approximation is able to reproduce linear
functions but it is not able to reproduce higher order poly-
nomials in Cartesian coordinates. In other words, curved
isoparametric FEs pass the patch test but they fail to pass
the so-called higher order patch tests, see [106] for further
details.

Remark 2 Optimal convergence of isoparametric FEs is ob-
tained under some smoothness assumptions on the isopara-
metric mapping. In practice, a specific node placement of
interior nodes in curved elements of order p > 2 is manda-
tory to guarantee optimal rates of h and p convergence, see
[17, 61].

An alternative to ensure consistency of the approxima-
tion, and optimal convergence for any nodal distribution,
is the so-called Cartesian FEM. This approach defines the
polynomial basis for the approximation of the solution di-
rectly in the physical space, with Cartesian coordinates x .
Nevertheless, the isoparametric transformation in (28) and
the computational element Ωh

e , are still considered for inte-
gration purposes. For instance, a stiffness elemental matrix
coefficient is computed as

Ke
ij =

∫

Ωh
e

∇xNi(x) · ∇xNj (x) dΩ

=

∫

I

∇xNi

(

x(ξ)
)

· ∇xNj

(

x(ξ)
)

|J ϕ | dξ . (19)

The definition of the approximation with Cartesian coor-
dinates, x , ensures reproducibility of polynomials (i.e., con-
sistency of order p). Moreover, exact integration is feasible
because shape functions and their derivatives are polynomi-
als, not only with Cartesian coordinates x , but also with lo-
cal coordinates ξ . More precisely, for a degree of interpo-
lation p, Ni(x(ξ )) and ∇xNi(x(ξ )) are polynomials of de-
gree p and p − 1, respectively. Therefore, the function to
be integrated, f (ξ ) = ∇xNi(x(ξ )) · ∇xNj (x(ξ ))|J ϕ |, is a
polynomial of degree p(4p − 3) in ξ . The evaluation of in-
tegral in (19) can be exact with a triangle quadrature of order
p(4p − 3) on the reference element I .

It is worth noting that Cartesian approximation can be
considered with Lagrangian, Eulerian, arbitrary Lagrangian-
Eulerian or updated Lagrangian formulations. Obviously,
Cartesian approximation introduces an overhead with re-
spect to isoparametric FEs because it requires a specific def-
inition of the approximation for each curved element. When
the mesh is fixed, this overhead is restricted to elements af-
fected by the curved boundary description, usually a very
small portion of the total number of elements. For meshes
evolving with the simulation this overhead is repeated each
time step, and internal curved edges must be considered. It
is worth remarking that the extra cost introduced by Carte-
sian FEM is justified by the improved accuracy with respect
to isoparametric FEs. In addition, Cartesian approximation
allows to ensure optimal convergence with no dependence
on the node placement for curved elements, see Remark 2
and Sect. 5.3.

Although Cartesian FEM ensures reproducibility of poly-
nomials in the physical space, the numerical integration in
Cartesian FEM is still done in the (approximated) computa-
tional element Ωh

e . Thus, Cartesian FEM precludes the lack
consistency of isoparametric FEM, but it still suffers from
geometric error. This is not the case for p-FEM and NE-
FEM formulations.



Fig. 29 Exact mapping between the reference element I with local
coordinates ξ , and the physical subdomain Ωe with Cartesian coordi-
nates x

5.2 NURBS Boundary Representation

This section recalls the basics of p-FEM formulation con-
sidering an exact boundary representation, see [86, 87].

Nodal interpolation in p-FEM is defined in the refer-
ence element using local coordinates ξ , see (16), but an ex-
act mapping is employed between the reference element I

and the physical subdomain Ωe. For instance, assuming a
NURBS parametrization C(ξ) of the curved edge of Ωe, a
simple p-FEM mapping may be

φ : I −→ Ωe

ξ +−→ φ(ξ) :=
1 − ξ − η

1 − ξ
C(ξ) +

ξη

1 − ξ
x2 + ηx3,

(20)

where x1 = C(0) and x2 = C(1) are the vertices of Ωe

on the curved boundary, and x3 is the internal vertex, see
Fig. 29. Other options are possible in order to define an exact
mapping from I to Ωe, see for instance [71]. However, no
relevant differences, depending on the particular mapping φ,
are observed in the numerical tests discussed in Sect. 6.

In p-FEM, a stiffness elemental matrix coefficient is
computed as

Ke
ij =

∫

Ωe

∇xNi

(

ξ(x)
)

· ∇xNi

(

ξ(x)
)

dΩ

=

∫

I

(

J
−1
φ ∇ξNi(ξ)

)

·

(

J
−1
φ ∇ξNj (ξ)

)

|J φ | dξ ,

integrating over the physical subdomain Ωe, with an ex-
act description of the geometry. Note that, the inverse of
the Jacobian, J

−1
φ , is not a polynomial function and, as

for the isoparametric FEM, no exact integration is feasible
with standard quadrature rules. Nevertheless, under some
smoothness requirements on the parametrization C(ξ), the
same quadrature order used in the isoparametric FEM, that
is 2p − 1, guarantees optimal convergence for p-FEM, see
[6].

Note that p-FEM presents a major advantage, compared
to isoparametric or Cartesian FEM, which is the exact
boundary representation. Nevertheless, p-FEM still suffers
the same lack of consistency as isoparametric FEM, due to
the definition of the polynomial shape functions in the ref-
erence element I , with local coordinates ξ . This is not the
case for NEFEM, see Sect. 4.3.

Fig. 30 Triangle with a curved
edge containing changes of
NURBS parametrization
(marked with ")

NEFEM considers the polynomial approximation with
Cartesian coordinates x , ensuring reproducibility of poly-
nomials in the physical space for any order of approxima-
tion p. The exact description of the boundary is used to
perform the numerical integration on the physical subdo-
main Ωe. In NEFEM, a stiffness elemental matrix coeffi-
cient is computed as

Ke
ij =

∫

Ωe

∇xNi(x) · ∇xNj (x) dΩ

=

∫

R

∇xNi(x(λ)) · ∇xNj (x(λ))|Jψ | dλ,

using the transformation in (3).
It is worth recalling that NURBS are piecewise rational

functions defined in parametric form, see Sect. 3. Therefore,
numerical integration for p-FEM and NEFEM must be de-
signed to account for changes of NURBS definition along
the curved edge of the physical subdomain Ωe. This issue is
addressed in the next section.

5.2.1 Numerical Integration for p-FEM and NEFEM

This section discusses the numerical integration for p-FEM
and NEFEM when changes of NURBS parametrization are
considered inside the curved boundary edge of a physical
subdomain Ωe.

For illustration purposes the triangle with a curved edge
represented in Fig. 30 is considered first. The curved edge is
described with a piecewise parametrization C , whose def-
inition changes in two points on the curved edge, marked
with ". The parametric coordinates of these points are
called the breakpoints or knots of the NURBS parametriza-
tion, see Sect. 3.

In p-FEM, the piecewise definition of the boundary in-
duces a piecewise definition of the mapping φ, see (20).
Therefore, a specifically designed numerical quadrature
should be defined in the reference element I . For the trian-
gle represented in Fig. 30, with two changes of NURBS def-
inition, the reference element should be partitioned as rep-
resented in Fig. 31, where the discontinuous lines show the
changes of definition of the mapping φ. Note that these lines
originate at the breakpoints of the NURBS parametrization
in the ξ axis, and are extended inside the reference element.
A composite numerical quadrature on I should be defined
by using different numerical quadratures in each region.



Fig. 31 Numerical integration for 2D p-FEM: subdivision of the ref-
erence element I to design a numerical quadrature taking into account
changes of NURBS parametrization C(ξ) at points marked with "

Fig. 32 Numerical integration for 2D NEFEM: subdivision of the rect-
angle R = [λe

1,λ
e
2]× [0,1] to design a numerical quadrature taking into

account changes of NURBS parametrization C(λ) at points marked
with "

Fig. 33 Subdivisions to design a numerical quadrature taking into ac-
count changes of NURBS definition. (a) On the prism Λe × [0,1] for
3D NEFEM and (b) on the reference tetrahedral for 3D p-FEM

In NEFEM, changes of NURBS definition are easily ac-
commodated using application ψ , defined in (3). The piece-
wise definition of the boundary also induces a piecewise
definition of the element mapping ψ . The rectangle R is
subdivided using the breakpoints, as represented in Fig. 32,
and a numerical quadrature in R is defined only in terms of
1D quadratures. A composite 1D Gauss-Legendre quadra-
ture is used in parameter λ to take into account the discon-
tinuous nature of the NURBS parametrization. In the other
parameter, ϑ , exact integration is feasible, as discussed in
Sect. 4.4.1.

Changes of NURBS parametrization inside a curved face
are easily treated in 3D NEFEM, see Sect. 4.4.2. The para-
metric triangle Λe is subdivided according to the changes
of NURBS parametrization, and numerical quadratures are
defined in each subregion, see an example in the left plot of
Fig. 33.

In the 3D p-FEM context, the definition of a numerical
quadrature on the reference tetrahedral accounting changes

Table 1 Comparison of FE techniques used in domains with curved
boundaries

Exact geometry Consistency

Isoparametric FEM NO NO

Cartesian FEM NO YES

p-FEM YES NO

NEFEM YES YES

of NURBS parametrization is more complicated. The gener-
alization of the 2D strategy requires subdivision of the refer-
ence tetrahedral element to account for changes of NURBS
surface parametrization, see an example in the right plot of
Fig. 33. In general, different subregions are possible after
subdivision. Thus, a simple option to define a quadrature on
the reference element is to use further subdivision to obtain
only tetrahedral subregions. Then, a composite quadrature
may be defined on the reference element based on standard
tetrahedral quadratures. In fact, a usual practice to facilitate
the implementation of the 3D p-FEM is to consider a poly-
nomial approximation of the boundary. For instance, in [26]
a least-squares approximation of the exact boundary is con-
sidered in a p-FEM context. Although the polynomial ap-
proximation of the boundary can be selected to satisfy conti-
nuity requirements across element interfaces [64]. The exact
boundary representation is therefore lost in order to simplify
the computational implementation.

To conclude, the design of a numerical quadrature ac-
counting for changes of NURBS definition requires specific
strategies. For NEFEM, the complexity of the numerical in-
tegration in 3D domains is reduced to the design of a 2D
numerical quadrature on the parametric triangle Λe, and ex-
act integration is feasible in the third direction, see left plot
in Fig. 33. In contrast, the design of a numerical quadrature
in the 3D p-FEM requires careful attention. The reference
element must be partitioned and 3D composite quadratures
must be considered to define a suitable quadrature in the
reference element accounting for changes of NURBS def-
inition, see right plot in Fig. 33.

5.3 Critical Comparison

The main differences between all the FE techniques consid-
ered in this work are summarized in Table 1. On one hand,
the use of a non-linear mapping relating local and Cartesian
coordinates (mapping of (17) in the isoparametric FEM and
the exact mapping of (20) in the p-FEM) induces a loss of
consistency. That is, a polynomial interpolation of degree
p > 1 in local coordinates ξ , does not correspond to a poly-
nomial interpolation of degree p in Cartesian coordinates x .
On the other hand, the use of the isoparametric mapping to
perform the numerical integration (as done in the isopara-
metric FEM and in the Cartesian FEM) introduces geomet-
ric errors, i.e., the boundary of the computational domain,



∂Ωh, is a piecewise polynomial approximation of the exact
boundary, ∂Ω . The only method ensuring both consistency
of the approximation (for any p) and an exact boundary rep-
resentation of the domain is NEFEM, see Table 1.

It is worth mentioning that, from a computational point
of view, the definition of the polynomial basis in local coor-
dinates ξ , as done in the isoparametric FEM and in p-FEM,
induces a marginal extra efficiency. In this case the poly-
nomial basis is defined once in the reference element and
used to define the approximation in each curved element,
whereas a Cartesian approximation requires a specific defi-
nition of the polynomial basis for each curved element. The
use of the isoparametric transformation to perform the nu-
merical integration, as done in the isoparametric FEM and in
the Cartesian FEM, also induces another marginal extra ef-
ficiency. A numerical quadrature is defined in the reference
element I and used for each curved element. Whereas meth-
ods with an exact boundary representation require specific
strategies for curved elements. Nevertheless, it is important
to recall that this extra cost is restricted to elements affected
by the NURBS boundary representation, in most applica-
tions a very small portion of the total number of elements,
those in contact with non polynomial boundaries.

A priori error estimates for the FE methodologies con-
sidered in this work have similar expressions, with optimal
convergence in all cases. However, the hypotheses to obtain
these estimates are different, depending on the definition of
the approximation, in local or Cartesian coordinates, and on
the boundary representation, that is, approximated or exact.

The influence of the definition of the polynomial basis
in local or Cartesian coordinates is discussed first. When
the polynomial basis is defined with local coordinates ξ ,
the mapping relating local and Cartesian coordinates must
be smooth enough to guarantee optimal convergence. In
practice, for the isoparametric FEM specific nodal distri-
butions on curved elements are necessary to obtain opti-
mal convergence rates with p > 2, see Remark 2 and [17,
61]. For p-FEM, the NURBS parametrization of the curved
boundary must be smooth enough to guarantee the neces-
sary smoothness of the p-FEM mapping relating local and
Cartesian coordinates, see [3]. In contrast, when the poly-
nomial basis is defined with Cartesian coordinates x , the
derivation of a priori error estimates is very close to FE a

priori error estimates in polygonal domains, which can be
found in [13, 52]. For Cartesian FEM and NEFEM, no spe-
cific nodal distributions in curved elements are necessary to
achieve optimal convergence. Moreover, smooth variations
of the NURBS parametrization are not required to obtain
the optimal convergence rates with NEFEM, see Sect. 4.5.
Nevertheless, optimal a priori error estimates for FE meth-
ods with a Cartesian approximation require extra attention
if a standard (continuous) Galerkin formulation is consid-
ered. If a strong imposition of Dirichlet boundary conditions

is considered, or if curved internal edges/faces are present
in the mesh, optimal nodal distributions in curved elements
are necessary in order to guarantee optimal rates of conver-
gence, see Theorems 1 and 2 in Sect. 4.5. The key issue
is that test functions do not vanish over the curved bound-
ary, even if the test function is associated to a node that is
not located on the boundary. With specific nodal distribu-
tions, such as Fekette points, the error induced by this lack
of consistency is lower than the approximation error and the
optimal convergence is guaranteed. Obviously, this is not
the case for weakly imposed Dirichlet boundary conditions,
where optimal convergence is obtained irrespectively of the
node placement. Recall that in a DG framework boundary
conditions are usually imposed in a weak sense, and re-
cent studies also suggest advantages of imposing boundary
conditions weakly in a standard continuous Galerkin frame-
work, see [10].

The influence of the boundary representation in the con-
vergence properties of the approximation is discussed next.
For FE methods with an approximate boundary representa-
tion (isoparametric FEM and Cartesian FEM), optimal con-
vergence is provided under the assumption that geometric
errors are lower than the discretization error. The differ-
ence between the computational element Ωh

e and the phys-
ical subdomain Ωe must be bounded by γhp , where γ is a
constant, h is the characteristic mesh size and p is the in-
terpolation degree. Moreover, bounds of the Jacobian of the
isoparametric transformation and its first p derivatives are
also necessary, see [17].

Thus, a curved element with an approximated bound-
ary representation must verify two contradictory require-
ments. On one hand, the computational (polynomial) bound-
ary ∂Ωh has to be close enough to the exact boundary ∂Ω .
And, on the other hand, the discrepancy between the com-
putational element and the straight-sided element given by
its vertices must vanish fast enough, see [61].

6 Numerical Examples

In this section the application and performance of NEFEM
in the context of continuous and discontinuous Galerkin for-
mulations are illustrated using several 2D and 3D examples.

First, the solution of second-order elliptic problems us-
ing a standard continuous Galerkin (CG) formulation is pre-
sented. A priori error estimates recalled in Sect. 4.5 are veri-
fied for both h and p refinement. NEFEM is compared to the
methodologies for the treatment of curved boundaries dis-
cussed in Sect. 5, namely isoparametric and Cartesian FEM
with an approximated boundary representation and p-FEM
with a NURBS boundary representation. Finally, the issues
associated to Cartesian approximations in the context of CG
formulations are discussed.



Fig. 34 Coarse meshes for the second-order elliptic problem. Nested
remeshing is used for refinement

Secondly, the solution of inviscid compressible flow
problems is considered using a discontinuous Galerkin (DG)
formulation. The importance of the geometrical model in
this context is explored and the benefits of NEFEM are
shown.

Finally, NEFEM is applied to the numerical solution of
electromagnetic scattering problems using a DG formula-
tion. The advantages of NEFEM in this context are pre-
sented comparing the results to other curved FE techniques
and to other methodologies used by the computational elec-
tromagnetics (CEM) community. In addition, the possibili-
ties of NEFEM when the size of the geometrical model is
subsidiary to the geometric complexity are shown.

6.1 Second-Order Elliptic Problems

In this section the following model problem is considered






−4u + u = f in Ω

u = ud on Γd

∇u · n = gn on Γn

where Ω is the domain, Γ d ∪Γ n = ∂Ω and n is the outward
unit normal vector on ∂Ω .

First, a 2D domain Ω is considered (see two computa-
tional meshes with curved elements in Fig. 34). A Dirich-
let boundary condition, corresponding to the analytical so-
lution, is imposed in strong form in the polygonal part of the
boundary Γd , and a Neumann boundary condition, also cor-
responding to the analytical normal flux, is imposed in the
curved part of the boundary Γn. If desired, Dirichlet bound-
ary conditions could be imposed in a strong sense over the
curved boundary by considering Fekette nodal distributions
on curved boundary edges, see Theorem 2 in Sect. 4.5 and
the discussion in Sect. 5.3. The curved part of the bound-
ary is given by the usual quadratic NURBS that describes a
circle, see [72], trimmed to represent half a circle.

In order to illustrate both the relevance of an accurate
boundary representation of the domain and the issue of con-
sistency, a polynomial source term is considered first, such
that the analytical solution of the problem is a polynomial
function of degree 7, namely

u(x, y) = x5y2 + x3y4 + y7.

Fig. 35 Poisson problem with polynomial analytical solution:
p-convergence in the energy norm in the coarse mesh of Fig. 34

Figure 35 shows a p-convergence comparison in the
coarse mesh of Fig. 34. The energy error is represented as
a function of the square root of the number of degrees of
freedom (ndof) when the polynomial order of the approxi-
mation is uniformly increased, starting with p = 1. In NE-
FEM, the boundary of the domain is exactly represented
and the polynomial basis for the approximation is defined
in Cartesian coordinates. Therefore, with a polynomial ap-
proximation of degree p = 7 the solution provided by NE-
FEM is the exact solution (except from rounding errors).
With Cartesian FEs, the basis is also defined in Cartesian
coordinates, but the computational boundary is a piecewise
polynomial approximation of the circle. Thus, the difference
between NEFEM and Cartesian FEM is only due to geomet-
ric errors. Although isoparametric FE and the p-FEM show
the expected (exponential) convergence, the effect of a non-
consistent approximation is clearly observed. The function
to be approximated is a polynomial in Cartesian coordinates
u(x), but it is far from being a polynomial function in lo-
cal coordinates u(ξ (x)). In this example, errors introduced
by a non-consistent approximation are higher than geomet-
ric errors. Thus, isoparametric FEM and p-FEM provide the
same performance.

Next, the same second-order elliptic problem is solved
with a non-polynomial source term, such that the analytical
solution of the problem is

u(x, y) = x cos(y) + y sin(x).

Convergence under h-refinement is first explored. Fig-
ure 34 shows the first two computational meshes; nested
remeshing is used for refinement. The number of integration
points is sufficiently large in order to ensure that no errors
due to numerical integration are present. Energy error is de-
picted in Fig. 36 for a polynomial approximation of degree
p = 5 and p = 6. The optimal rate of h-convergence is ex-
hibited by every FE technique considered, but some differ-
ences in accuracy are observed. In this example the use of a



Fig. 36 Second-order elliptic
problem: h-convergence in the
energy norm

Fig. 37 Second-order elliptic
problem: h-convergence in the
L

2(Γn) norm

Cartesian approximation (Cartesian FEs and NEFEM) pro-

vides more accurate results than defining the approximation

with local coordinates. NEFEM always provides the most

accurate results due to the combined effect of the Carte-

sian approximation and exact boundary representation. With

p = 6, NEFEM is one order of magnitude more accurate

than Cartesian FEs and two orders of magnitude more ac-

curate than isoparametric FEs and p-FEM. In this exam-

ple, p-FEM does not represent an advantage with respect

to isoparametric FEs. The error induced by the geometric

approximation of the boundary is lower than the error in-

troduced by the definition of the polynomial basis in local
coordinates.

Figure 37 shows a similar analysis but related to the
Neumann boundary: h-convergence in the L2(Γn) norm is
compared for isoparametric FEM, Cartesian FEM, p-FEM
and NEFEM with a polynomial interpolation up to degree
p = 4. Optimal convergence rates, i.e. p + 1, are obtained
with isoparametric FEM, Cartesian FEM and p-FEM, but
it is very important to note that NEFEM exhibits a superior
rate of convergence, namely p + 2. In fact, almost identi-
cal results are obtained using NEFEM with a degree of ap-
proximation p and isoparametric FEM with a degree of ap-



Fig. 38 Second-order elliptic
problem: p-convergence in the
energy norm for the
computational meshes
represented in Fig. 34

Fig. 39 Second-order elliptic
problem: Energy norm of the
error as the number of
integration points (nip) along
the curved boundary edge is
increased. Coarse mesh of
Fig. 34

proximation p + 1, with a saving in the number of nodes
between 25% and 50%. Moreover, for the same mesh and
order of interpolation, NEFEM is between two and three
orders of magnitude more precise than the corresponding
isoparametric FE solution. Thus, this numerical example il-
lustrates the efficiency of NEFEM, in front of other FE tech-
niques, for the computation of quantities of interest at (or
near) curved boundaries. It is worth emphasizing that even
if the exact boundary representation is considered by means
of p-FEM the results are much less accurate than using NE-
FEM evidencing, once more, the importance of the geomet-
rical model in conjunction with the definition of the polyno-
mial basis in Cartesian coordinates.

As shown in the h-convergence study, NEFEM is ad-
vantageous for low and high-order approximations. Next,
convergence under p-refinement is explored and compared.
Figure 38 represents the evolution of the energy error as a
function of the square root of ndof. The polynomial degree
of the approximation is uniformly increased starting with
p = 1 and for the discretizations shown in Fig. 34. As the or-
der of the polynomial approximation is increased, NEFEM
offers the best performance. In fact, the desired error is at-
tained with the minimum ndof. Figure 38 shows that, for a
given accuracy and the coarsest mesh in Fig. 34, NEFEM al-
lows to reduce drastically the ndof. In particular, a reduction

of 40% compared to Cartesian FEM and up to 50% com-
pared to isoparametric FEM or p-FEM.

The influence of the number of integration points nip on
the accuracy is studied next. The coarsest mesh in Fig. 34
with a polynomial approximation of degree p = 6 and p = 8
is used. To study quadrature accuracy, Fig. 39 shows the
evolution of the energy error versus the number of Gauss
integration points for every curved boundary edge. When
the polynomial basis is defined in Cartesian coordinates
(Cartesian FEM and NEFEM), numerical integration re-
quires more integration points to reach its maximum accu-
racy, compared to the other methods. For a given degree of
interpolation, NEFEM is able to reach the same accuracy
of isoparametric FEs with only one extra integration point.
Moreover, with three or four integration points more than
isoparametric FEM, NEFEM reaches its maximum accu-
racy. For a degree of interpolation p = 8, NEFEM is four
orders of magnitude more precise than isoparametric FEM
and p-FEM, and three orders of magnitude more precise
than Cartesian FEM.

Comparing left and right plots in Fig. 39 it is important to
note that NEFEM with p = 6 and 9 Gauss integration points
along curved boundary edges achieves comparable accuracy
to isoparametric FEM with p = 8 and 9 Gauss integration
points. That means, that NEFEM is able to reach the same



Fig. 40 Second-order elliptic problem: Energy norm of the error vs
number of integration points (nip) for interior integrals as p increases
using the coarsest mesh in Fig. 34

Fig. 41 Coarse mesh of the
sphere with eight curved
tetrahedrons

accuracy than isoparametric FEs using the same number of
integration points for boundary integrals but with a lower
degree of approximation. Figure 40 shows the evolution of
the energy error versus the total number of integration points
for interior integrals as the degree of approximation p is in-
creased. For each point of this figure the minimum num-
ber of integration points to achieve maximum accuracy for
a given p is used. Due to the lower degree of approxima-
tion required by NEFEM, it achieves the same accuracy than
isoparametric FEM with an important reduction in the total
number of integration points. Therefore, although NEFEM
requires more computational effort per integration point due
to the Cartesian approximation and the NURBS boundary
representation, this comparison shows that NEFEM is com-
petitive because the required number of integration points
is substantially reduced to achieve a desired accuracy. Fig-
ure 40 also shows that Cartesian FEs are not competitive be-
cause the necessary number of integration points to achieve
a comparable accuracy is much greater than using NEFEM
or isoparametric FEM. Finally, note that the results using
p-FEM are not displayed because in this problem it behaves
as isoparametric FEM, see Fig. 39.

Next the behavior of NEFEM in 3D for the solution of the
second-order elliptic problem (6.1) is studied, where Ω is
a sphere of unit radius. The analytical solution is u(x, y) =

x cos(y)+y sin(z)+z cos(x), and the source term s is deter-
mined by analytical differentiation of u. Neumann boundary
conditions corresponding to the analytical normal flux are

Fig. 42 Second-order elliptic problem: surface plot of Cartesian FEM
and NEFEM solutions using quadratic and cubic approximations

imposed in ∂Ω . A coarse mesh with only eight curved tetra-
hedral elements is considered, see Fig. 41, and high-order
approximations are introduced to properly capture the solu-
tion.

Figure 42 shows Cartesian FEM and NEFEM solutions
with quadratic and cubic approximation. The piecewise
polynomial approximation of the curved boundary intro-
duced by isoparametric mapping is clearly observed. With
quadratic FEs, the maximum difference between exact and
approximated boundaries is 0.1037. For cubic approxima-
tion, geometric error is still important, 0.0268. Moreover,
the piecewise polynomial approximation of the boundary
induces a loss of regularity. Recall that the exact bound-
ary ∂Ω is a C∞ surface, whereas its piecewise isopara-
metric approximation ∂Ωh is only C 0 across boundary
edges, see Figs. 42(a) and (c). NEFEM exactly describes
the sphere boundary with one quadratic singular NURBS,
independently of the spatial discretization (i.e. the polyno-
mial degree of approximation), as represented in Figs. 42(b)
and (d).

Figure 43 shows a p-convergence comparison when the
polynomial order of approximation is uniformly increased
starting with p = 2 and for the discretization shown in
Fig. 41. Errors in maximum and energy norms are repre-
sented as a function of the cube root of ndof. For NE-
FEM, the expected (exponential) convergence for a problem
with a smooth solution is obtained, whereas a much slower
convergence is obtained for methods with an approximate
boundary representation. Note that Cartesian and isopara-
metric FEs offer the same performance if error is measured
in maximum norm. However, when error is measured in en-
ergy norm, Cartesian FEs perform slightly better. The defini-



Fig. 43 p-convergence
comparison for the second-order
elliptic problem. The
polynomial degree of the
approximation is uniformly
increased from p = 2 and the
error is measured (a) in the
maximum norm and (b) in the
energy norm

Fig. 44 Mesh of a sphere
showing some internal curved
faces

tion of the polynomial basis in Cartesian coordinates offers a
better approximation of derivatives compared to isoparamet-
ric FEs. Figure 43(a) also depicts maximum geometric error
(measured as the maximum distance between true boundary
∂Ω and its approximation ∂Ωh), revealing that geometric
error controls solution error if an approximated boundary
representation is considered (isoparametric FEM or Carte-
sian FEM).

This example stress the importance of geometrical model
in FE simulations and critical conclusions are derived.
In [86], p-FEM with an exact boundary description is
compared to high-order subparametric elements (with a
quadratic approximation of the boundary). Two dimensional
examples confirm the expected exponential convergence of
p-FEM, whereas subparametric approach leads to a sub-
optimal convergence rate. The 3D example shown in this
section shows a more dramatic situation because NEFEM
is compared to high-order isoparametric and Cartesian el-
ements. Therefore, this example demonstrate that a high-
order approximation of the geometry is not always suffi-
cient to achieve maximum performance for a given spatial
discretization.

In most situations, internal edges can be straight, but
there are a number of situations in which internal curved
edges are present in a computational mesh. For instance,
curved internal edges must be considered in a boundary
layer or in the presence of a curved material interface. More-
over, in 3D internal faces with an edge on the NURBS
boundary are curved even when internal edges are straight,

Fig. 45 Two triangular meshes with interior curved edges and Fekette
nodal distributions for a degree of approximation p = 8

see an example in Fig. 44. The use of Cartesian approxi-
mations in that situation requires special attention, see The-
orem 2 in Sect. 4.5 and the discussion in Sect. 5.3. In or-
der to illustrate this issue the second-order elliptic problem
(6.1) is solved in a 2D domain using elements with inter-
nal curved edges, see two computational meshes in Fig. 45.
Note that specific nodal distributions, such as Fekette nodes,
must be used in order to achieve optimal performance of the
Cartesian approximation. Figure 46 shows a p-convergence
comparison by using different nodal distributions in the dis-
cretizations shown in Fig. 45. The error in energy norm is
represented as a function of the square root of ndof. When
equally-spaced nodal distributions are employed, exponen-
tial convergence is not achieved. The accuracy is substan-
tially improved with Fekette nodal distributions adapted to
the exact geometry, showing the expected (exponential) con-
vergence.

A similar performance is observed in 3D simulations, see
an example in Fig. 47. The second-order elliptic problem
(6.1) is solved in a sphere with the computational mesh rep-
resented in Fig. 44. A detailed view of the numerical so-
lution reveals a small discontinuity of the solution across
curved boundary edges.



Fig. 46 p-convergence of the
error in the energy norm for
different nodal distributions on
the meshes of Fig. 45

Fig. 47 Solution of the Poisson problem in a sphere and detail of the
solution showing a small discontinuity across curved boundary edges

Remark 3 As usual, for any formulation using Cartesian ap-
proximation, the reader should be aware that the continuity
of the solution across internal curved faces is not guaran-
teed by imposing the continuity of the solution at face nodes.
Optimal nodal distributions on curved internal faces can be
used in order to guarantee optimal convergence or extra con-
straints must be imposed in order to guarantee continuity of
the solution across internal faces. This difficulty does not
appear if a DG framework because the continuity of the so-
lution is weakly imposed, with numerical fluxes.

6.2 Inviscid Compressible Flow

Euler equations of gas dynamics express the conservation
of mass, momentum and energy for a compressible, inviscid
and non-conducting fluid. The strong form of these conser-
vation laws, in the absence of external volume forces, can be
written in conservative form as

dU

dt
+

∂F k(U)

∂xk

= 0, (21)

where Einstein notation is assumed (that is repeated indices
are implicity summed over), U is the vector of conservation
variables and F k(U ) are the flux vectors for each spatial

dimension xk , that is

U =





ρ

ρv

ρE



 , F k(U) =





ρvk

ρvvk + ekp
(ρE + p)vk



 ,

where ρ is the density, ρv is the momentum, ρE is the total
energy per unit volume, ek is the unitary vector in the xk

direction, and p is the pressure, see [31] for more details.
An equation of state, relating the internal energy to pres-

sure and density, completes this system of nonlinear hyper-
bolic equations. For a perfect polytropic gas the equation of
state is

p = (γ − 1)ρ
(

E −
1

2
‖v‖2

)

,

where γ is the ratio of the specific heat coefficients (spe-
cific heat at constant pressure over specific heat at constant
volume), with value γ = 1.4 for air.

A usual quantity for postprocess of inviscid flow compu-
tations is the Mach number, defined as

M =
‖v‖
c

,

where c =
√

γ p/ρ is the speed of sound. For a more detailed
presentation of the Euler equations see for instance [2, 47,
58].

The importance of the geometrical model in the numer-
ical solution of Euler equations is crucial, see for instance
[8, 9, 23, 27, 34, 37, 55, 93, 98, 99] to name a few. In this
section NEFEM is presented as a powerful method for solv-
ing the Euler equations of gas dynamics in the presence of
curved boundaries.

All computations in this section are advanced in time un-
til the density residual is reduced to 10−10 in the L2(Ω)

norm by using a third-order TVD Runge-Kutta scheme, see
[21, 40]. The approximate Roe solver is considered for the
evaluation of the numerical flux, see for instance [91]. In
fact, the Roe flux provides more accurate results than the



Fig. 48 Inviscid subsonic flow around a circle: detail of O-meshes for
low-order computations

Lax-Friederichs one for low order approximations, but no
significant differences are observed for high-order approx-
imations. However, it is very important to remark that the
conclusions of the work derived from the comparison of NE-
FEM and FEM are exactly the same with a Lax-Friederichs
flux.

The first example considers the subsonic flow around a
circle at free-stream Mach number M∞ = 0.3. This example
is a classical test case for inviscid flow solvers because it al-
lows to quantify the numerical dissipation of a given scheme
in the presence of curved boundaries. As shown first in [9]
using a linear approximation for the geometry it is not possi-
ble to converge to the steady state solution, even if the mesh
is drastically refined near the circle. As it is commented in
[22], the singularities of the polygonal approximation of the
boundary generate entropy and the solution develops a non-
physical wake that makes impossible the convergence to the
correct solution.

To illustrate that problem and to show the possibilities of
NEFEM in this scenario, four O-meshes with 16×4, 32×8,
64 × 16, and 128 × 32 nodes (i.e. 128, 512, 2048 and 8192
elements respectively) are considered for low-order compu-
tations. A detailed view of these meshes near the circle is
represented in Fig. 48.

Figure 49 shows Mach number isolines for isoparamet-
ric FE with linear approximation. The results corroborate
the conclusions first published by Bassi and Rebay: even if
the mesh is highly refined near the circle, for instance us-
ing the fine mesh of Fig. 48 with 128 curved elements along

Fig. 49 Inviscid subsonic flow around a circle: Mach number isolines
with isoparametric FE and p = 1

Fig. 50 Inviscid subsonic flow around a circle: Mach number isolines
with NEFEM and p = 1

the circular boundary, a non-physical entropy production is
observed behind the wall.

Figure 50 shows Mach number isolines computed with
NEFEM using linear approximation. The results reveal a



Fig. 51 Inviscid subsonic flow
around a circle: (a) Pressure loss
distribution and (b) pressure
coefficient distribution, at the
upper mid of the circle for p = 1

Fig. 52 Inviscid subsonic flow around a circle: h-convergence of the
entropy error for isoparametric FEs and NEFEM (p = 1)

very good symmetry of the Mach number patterns, even if
coarse meshes are used. More important, NEFEM allows
convergence to the correct physical solution using the fine
mesh with a piecewise linear approximation of the solution.
The exact computation of the outward unit normal improves
the imposition of the solid wall boundary condition. This is-
sue and the exact representation of the boundary drastically
reduce the entropy production compared to isoparametric
FE.

In order to provide a more quantitative analysis, other
aerodynamic quantities for the evaluation of the accuracy
are used, namely the entropy error

ǫent =
p

p∞

(
ρ∞
ρ

)γ

− 1,

the pressure loss

ploss =
p

p∞

(

1 + 0.5(γ − 1)M2

1 + 0.5(γ − 1)M2
∞

) γ
γ−1

,

and the pressure coefficient

Cp =
p − p∞

0.5ρ∞v2
∞

,

where the subscript ∞ indicates free-stream values.
Figure 51 shows pressure loss and pressure coefficient

distributions on the upper mid of the circle. At the most
critical point, the stagnation point behind the circle, the
maximum pressure loss error with isoparametric FE in the
fine mesh is 1.8 × 10−2, whereas NEFEM maximum er-
ror is reduced more than one order of magnitude, namely
8.4 × 10−4. Moreover, in the fine mesh, the pressure coef-
ficient error at the stagnation point is 2.8 × 10−1 for stan-
dard FE and 4 × 10−3 for NEFEM, almost two orders of
magnitude more precise for the same number of degrees of
freedom.

Figure 52 represents h-convergence of the entropy error
on the upper part of the circle. Entropy production observ-
able in Fig. 49 deteriorates the h-convergence of standard
isoparametric FEs. In contrast, NEFEM exhibits the optimal
convergence rate for linear approximation.

The next example involves the subsonic flow over a
NACA0012 airfoil at free stream Mach number M∞ = 0.3
and angle of attack α = 0°. Four O-meshes with 16 × 4,
32×8, 64×16, and 128×32 nodes (i.e. 128, 512, 2048 and
8192 elements respectively) are considered for low-order
computations. A detailed view of these meshes near the air-
foil is represented in Fig. 53. To design such meshes, a con-
formal mapping is applied to previous meshes used for the
flow around a circle.

Figure 54 shows Mach number isolines for isoparamet-
ric FE with linear approximation. Again, the results illus-
trate the spurious entropy production caused by the polyg-
onal approximation of curved boundaries. Figure 55 shows
Mach number isolines computed with NEFEM using linear
approximation. The results show, once more, a remarkable
improvement due to the exact boundary representation. To
quantify accuracy, Fig. 56 compare the entropy production
and pressure loss in the upper part of the airfoil for isopara-
metric FE and NEFEM in the finest mesh if Fig. 53. With
isoparametric FE the L2 norm of the entropy error on the air-
foil profile is 1.3×10−3 in the finest mesh. The exact bound-
ary representation considered in NEFEM reduces the L2



Fig. 53 Inviscid subsonic flow around a NACA0012 airfoil: detail of
O-meshes for low-order computations

Fig. 54 Inviscid subsonic flow around a NACA0012 airfoil: Mach
number isolines with isoparametric FE and p = 1

norm of the entropy error on the airfoil profile to 4 × 10−4,
almost three times more accurate than isoparametric FEs. As
usual in subsonic inviscid flow simulation involving airfoils,
the most critical region is the leading edge, not only due to

Fig. 55 Inviscid subsonic flow around a NACA0012 airfoil: Mach
number isolines with NEFEM and p = 1

the high variations of the curvature of the airfoil but also
because under-resolved flow features are convected contam-
inating the solution around the whole profile.

The next example involves the subsonic flow over a bump
at free stream Mach number M∞ = 0.5 and it is used to
demonstrate the possibilities of NEFEM using ultra coarse
meshes and high-order approximations. Figure 57(a) shows
the computational mesh, with only two curved elements
and 22 straight-sided elements. Fekette nodal distributions
are represented corresponding to a degree of approxima-
tion p = 8 and the Mach number isolines are depicted in
Fig. 57(b). Figure 58 shows the convergence of the entropy
error as p is uniformly increased starting with p = 2 up to
p = 9, in the discretization shown in Fig. 57(a). As expected
for a problem with a smooth solution, optimal (exponential)
convergence is achieved, see Theorem 2 in Sect. 4.5. It is
worth remarking that using a degree of approximation p = 4
the entropy error is less than 10−4, with 360 degrees of free-
dom. For very high-order approximations, let say p = 8,
the entropy error is less than 10−5 and a perfect symmetric
Mach distribution pattern is obtained, see Fig. 57(b), with
1 080 degrees of freedom.

The flow around a circle is considered next, but now a
very coarse mesh is used and high-order approximations are
introduced in order to explore the necessity of exact bound-
ary representations in this context.

This problem has been extensively studied in the past and
many authors have advocated the use of isoparametric FEs



Fig. 56 Inviscid subsonic flow
around a NACA0012 airfoil:
(a) entropy error and
(b) pressure loss in the upper
part of the airfoil

Fig. 57 Inviscid subsonic flow over a bump: (a) Coarse mesh and
(b) NEFEM solution with p = 8

to reduce the entropy production near curved walls. A com-
parison between isoparametric curved FEs and subparamet-
ric FEs with linear approximation for the geometry is often
presented in order to illustrate the necessity of using curved
elements. That is, the polygonal approximation is main-
tained but the degree of the approximation is increased, see
[9, 34, 57] to name a few. The main problem of considering
subparametric formulations with only a linear approxima-
tion of the geometry is that the solution of a different prob-
lem is considered, that is the flow around a polygon rather
than the flow around a circle. In addition the corners of the
approximated boundary produce rarefaction waves that are
better resolved when the polynomial degree of the approx-
imation is increased, as pointed out in [55]. In order to il-
lustrate that issue, Fig. 59 shows the Mach number isolines
computed with a subparametric formulation. A mesh with
16 straight-sided elements around the circle is considered
and the degree of the approximation is p = 4. The rarefac-
tion waves can be observed in the detailed view near corners
of the polygonal boundary.

Fig. 58 Inviscid subsonic flow over a bump: p-convergence of the
entropy error with NEFEM

Fig. 59 Inviscid subsonic flow around a circle: subparametric FE so-
lution using straight-sided elements and high-order approximation of
the solution (p = 4)

This experiment shows that subparametric formulations
with a linear approximation of the geometry are not well
suited in this context but this does not imply that isopara-
metric FEs are the best alternative in the presence of curved
walls. In fact, it is worth remarking that when isoparamet-
ric FEs are considered, the boundary of the computational
domain is only a C 0 approximation of the true boundary.
Therefore, a small discontinuity of the outward unit normal
is introduced and some inaccuracies near curved walls can
still be observed.



Fig. 60 Inviscid subsonic flow
around a circle: coarse mesh and
Fekkete nodal distribution for
p = 6

Fig. 61 Inviscid subsonic flow around a circle: Mach number distri-
bution in the coarse mesh shown in Fig. 60 with isoparametric FE and
NEFEM and high-order approximations

In order to show the benefits of NEFEM, the coarse mesh
represented in Fig. 60 is considered and high-order isopara-
metric FE and NEFEM are compared. It is worth empha-
sizing that only four curved elements are considered to de-
scribe the circle, corresponding to 24 nodes over the curved
boundary for a degree of approximation p = 6. Figure 61
shows the Mach number isolines for isoparametric FEs and
NEFEM with a degree of approximation p = 6 and p = 7.
The solution with very high-order isoparametric FEs is not
completely symmetric with respect to the y axis, reflecting
a small entropy production behind the circle. It is worth re-
marking that for p = 6 the maximum difference between the
approximated boundary and the true circle is less than 10−4

and the asymmetry in the Mach number distribution is re-
markable. For p = 7 the maximum difference between the
approximated boundary and the true circle is almost 10−5

and a visually symmetric Mach number distribution is still

Fig. 62 Inviscid subsonic flow around a RAE2822 airfoil: coarse mesh
and Mach number isolines for NEFEM and p = 8

Fig. 63 Inviscid subsonic flow around a RAE2822 airfoil: lift coeffi-
cient convergence for increasing p in the mesh of Fig. 62(a)

not obtained. The discontinuity in the outward unite normal
in the stagnation point behind the circle, due to the piecewise
C 0 approximation of the circle with isoparametric FEs, has
a big impact in the entropy production, even with very high-
order isoparametric approximations. In contrast, it is worth
remarking the quality of the solution obtained with NEFEM
with a degree of approximation p = 6. The solution is per-
fectly symmetric with respect to the y axis showing that the
inaccuracies observed with isoparametric FEs are not due to
the coarse mesh considered in this example, but to geometric
inaccuracies.

The last example in this section involves the simula-
tion of the flow around a (non-symmetric) RAE2822 air-
foil at free-stream Mach number M∞ = 0.5 and angle of
attack α = 0◦. Figure 62 shows the computational mesh and
the Mach number distribution for p = 8. Despite the ultra
coarse mesh considered, with NEFEM and high-order ap-
proximations the complex flow features are well resolved.
To quantify the accuracy of high-order NEFEM computa-

tions, Fig. 63 shows the convergence of the lift coefficient
(CL) as the degree of the approximation is uniformly in-



creased starting with p = 2 in the coarse mesh shown in
Fig. 62(a). Recall that the lift coefficient is defined as

CL =
1

0.5ρ∞v2
∞L

∫

Γ

p(n2 cosα − n1 sinα)dΓ,

where L is the chord length of the airfoil and Γ is the curve
describing the airfoil.

It is worth noting that with p = 7 the estimated lift co-
efficient is CL = 0.2764 and with p = 8 is CL = 0.2769,
showing mesh convergence of this aerodynamic force to the
required engineering accuracy, that is less than one lift count
difference between the solution with p = 7 and p = 8, with
less than 12 000 degrees of freedom.

6.3 Electromagnetic Scattering

In this section a DG formulation is considered for the sim-
ulation of the scattering of a single plane electromagnetic
wave by Perfect Electric Conductor (PEC) obstacles.

The governing equations are the transient Maxwell’s
equations. For a linear isotropic material of relative permit-
tivity ε and relative permeability µ, and assuming that there
are no current sources in the material, the time dependent
Maxwell’s equations can be written in the conservative form
of (21) with a source term. In 3D the vector of conserved
quantities U and the fluxes F k are

U =

(

εE

µH t

)

=











εE1

εE2

εE3

µH1

µH2

µH3
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−H2
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,

F 2 =











−H3

0
H1

E3

0
−E1











, F 3 =











H2

−H1

0
−E2

E1

0











,

and the source term is given by

S =

(

(1 − ε) ∂Ei

∂t

(1 − µ) ∂H i

∂t

)

,

where E = (E1,E2,E3) and H = (H1,H2,H3) denote the
scattered electric and magnetic fields respectively, and Ei

and H i are the electric and magnetic incident fields respec-
tively.

In 2D, the hyperbolic system (21) decouples into the
Transverse Electric (TE) and Transverse Magnetic (TM)
modes. The vector of conserved quantities, the fluxes and

Fig. 64 Schematic of an
electromagnetic scattering
problem with a PML
surrounding the computational
domain

the source are given by
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for the TE mode, and

U =





µH1

µH2

εE3



 , F 1 =
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−E3
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∂Ei

3
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,

(22)

for the TM mode.
The numerical simulation of electromagnetic scattering

problems involves approximating the interaction between a
known incident field and a scatterer. The scattered field pro-
duced by this interaction is a wave that propagates outwards
towards infinity. It is crucial to use a mechanism to perform
the absorption of outgoing waves. The numerical examples
presented in this chapter consider a Perfectly Matched Layer

(PML) surrounding the computational in order to absorb the
outgoing waves, see for instance [1, 11, 92]. The setup of the
problem is illustrated in Fig. 64, showing a PML surround-
ing the computational domain Ω .

The radar cross section (RCS) is one of the most impor-
tant quantities of interest in electromagnetic scattering prob-
lems. It provides a description of how an object reflects an
incident electromagnetic wave, see [5, 43]. For example, the
scattering width is defined as

χ = lim
r→∞

(2r)nsdπ
|E3|

2

|Ei
3|

2
= lim

r→∞
(2r)nsdπ

|H3|
2

|H i
3|

2
.

Typically, the RCS (per unit area/length) is measured in
Decibels, this conversion is achieved by computing

RCS = 10 log10(χ). (23)



Fig. 65 Scattering by a PEC
cylinder of diameter 4λ

Fig. 66 Scattering by a PEC cylinder of diameter 4λ: p-convergence
comparison of several curved FEs

When only near field data is available, the RCS can be
evaluated by performing a near-to-far field transformation,
for further details see [5, 43, 89].

In this section, several numerical examples are shown in
2D and 3D to illustrate the possibilities and benefits of NE-
FEM. The results are often compared to the curved FE tech-
niques presented in Sect. 5 and to other techniques used by
the CEM community. The behavior and benefits of NEFEM
in the presence of complex scatterers with small geometric
features are also explored and challenging problems includ-
ing complex scatterers and higher frequencies are consid-
ered.

The first example consists on a planar wave traveling in
the x+ direction and scattered by a PEC circular cylinder of
diameter 4λ, where λ denotes the wavelength of the incident
field. A coarse mesh with only four elements for the dis-
cretization of the curved boundary is considered, and high-
order approximations are used to properly capture the so-
lution. Figure 65 shows the computational mesh, the trans-
verse scattered field computed with NEFEM and p = 10,
and the RCS. A 2λ thick PML is introduced in order to ab-
sorb outgoing waves.

The RCS error evolution for increasing p is depicted
in Fig. 66. For the same discretization (i.e. same degree
of interpolation), NEFEM results are more accurate than
isoparametric or Cartesian FE, with an approximate bound-

ary description, and also more accurate than p-FEM, with
an exact boundary representation. For instance, NEFEM
with p = 10 produces a RCS error in L2([−π,π]) norm of
about 10−2, whereas isoparametric or Cartesian FE require
p = 12 to achieve a comparable accuracy, and p-FEM re-
quires p = 11. Thus, NEFEM is able to reach the desired ac-
curacy with a reduction of about 30% compared to isopara-
metric or Cartesian FEs, and of 15% compared to p-FEM
(also with an exact boundary representation). This differ-
ence in ndofimplies important differences in computational
cost. NEFEM computation requires 2 585 time steps to reach
the time-harmonic steady state, whereas isoparametric and
Cartesian FEs employ 3 692 time steps and p-FEM requires
3 114 time steps. In addition, each time step with NEFEM
requires less computational cost due to the lower p needed
to achieve the desired accuracy.

The difference between isoparametric FEs and Cartesian
FEs are indistinguishable, showing that a Cartesian approxi-
mation of the solution does not offer any advantage if an ap-
proximated boundary representation is considered. The dif-
ference between isoparametric FEs and p-FEM is only due
to geometric errors, and relevant differences in accuracy are
observed. Finally, NEFEM also considers the exact bound-
ary representation and outperforms p-FEM, showing that
the Cartesian approximation combined with an exact bound-
ary representation, i.e. NEFEM, provides the maximum ac-
curacy for a given spatial discretization. Finally, note that
with an approximate boundary representation the exponen-
tial convergence is exhibited for p > 8 whereas with an ex-
act boundary representation the exponential convergence is
achieved for p > 5.

To conclude, it is worth remarking that only one element
per two wavelengths is considered in this example and a
RCS error of 10−2 is obtained with p = 10, that is, using
less than 6 nodes per wavelength. Thus, the exact geome-
try considered in NEFEM combined with the Cartesian ap-
proximation allows to compute accurate solutions with the
minimum ndof, compared to other curved FEs and other
techniques used by the CEM community.

In the next example a planar wave traveling in the x+ di-
rection and scattered by the NACA0012 airfoil [56] of chord



Fig. 67 Scattering by a PEC
NACA0012 airfoil of chord
length 2λ

Fig. 68 Scattering by a PEC
NACA0012 airfoil of chord
length 2λ: TE RCS comparison
as p increases

Fig. 69 Scattering by a PEC
NACA0012 airfoil of chord
length 2λ: detailed view of the
transverse scattered field near
the leading edge for
isoparametric FE and NEFEM
increasing p

length 2λ is considered. Figure 67 shows an ultra coarse
computational mesh with a λ thick PML, the scattered H3

field and the total (scattered plus incident) E3 field for a NE-
FEM solution with p = 6. Note that only two elements are
considered in the upper part of the airfoil. Figure 68 illus-
trates the convergence of the solution for increasing p, with
isoparametric FEs and NEFEM. As no analytical solution is
available, a reference solution is computed in a fine mesh
with high-order approximation and a thicker PML.

For isoparametric FEs, the RCS error in L2([−π,π])

norm decreases as p increases, but it is important to remark
that the RCS error in the L∞([−π,π]) norm behaves differ-
ent. In particular, the RCS error for angles near −π or π is
higher with p = 5 than using p = 4, showing important dis-

crepancies with respect to the reference solution. Recall that,
for isoparametric FEs, as p increases not only the solution is
represented with higher degree, but also the geometry. Thus,
slightly different profiles are considered for each p. More-
over, the approximated boundary is only C 0 on the boundary
nodes. In particular a discontinuity of the profile in the lead-
ing edge is clearly observable using coarse meshes and high-
order isoparametric FEs, see Figs. 69(a), (b) and (c). With
NEFEM, the exact boundary representation is considered
with no dependence on the spatial discretization (i.e. the de-
gree of the polynomial approximation), see Figs. 69(d), (e)
and (f). Consequently, with NEFEM, the RCS error is uni-
formly reduced for all viewing angles as the degree of the
approximation is increased, see Fig. 68(b).



Fig. 70 Scattering by a PEC
NACA0012 airfoil of chord
length 2λ: RCS error
comparison for isoparametric
FEM and NEFEM

Fig. 71 Scattering by a PEC
sphere of diameter λ

Figure 70 compares the RCS error distribution with
isoparametric FEs and NEFEM, for a degree of approxima-
tion p = 5 and p = 6. Note that the maximum error with
isoparametric FEs is observed at viewing angles correspond-
ing to the leading edge (φ = −π and φ = π ), whereas for
NEFEM the maximum error is obtained near the singularity
(φ = 0).

This example illustrates the sensitivity of the RCS to
poor geometric representations. Isoparametric approxima-
tions are not sufficient when coarse meshes and high-order
approximations are considered. Geometric errors may lead
to important discrepancies in the RCS. Thus, h-refinement
is usually performed at the leading edge of airfoils to pro-
vide an accurate representation of the geometry. With NE-
FEM, the exact boundary representation allows to mesh the
domain with no dependence on the geometrical complex-
ity. Using only one element per wavelength and p = 5, i.e.
6 nodes per wavelength, an accurate solution is obtained,
without performing h-refinement. The maximum error in
a NEFEM computations is observed where the solution is
complex, not where the geometry is complex.

Next example considers an incident plane wave traveling
in the z+ direction and scattered by a PEC sphere of diam-
eter λ. The sphere is exactly described with a quadratic sin-
gular NURBS surface, and a coarse mesh with only eight

elements for the discretization of the curved boundary is
considered, see two cuts of the volume mesh and the sur-
face mesh of the sphere in Fig. 71(a). The mesh has 1 271
elements with planar faces and 32 curved elements (8 ele-
ments with a face on the NURBS boundary and 24 elements
with an edge on the NURBS boundary). Scattered E1 field
computed with NEFEM and a polynomial approximation of
degree p = 5 is represented in Fig. 71(b), showing the field
intensity on the sphere surface and illustrating the absorp-
tion of outgoing waves in the PML.

Figures 72 and 73 compare the RCS computed with de-
gree p = 3 and p = 4 with the analytical solution, for verti-
cal and horizontal polarization respectively. For Cartesian
FEs, the RCS error is not reduced for all viewing angles
as p increases. In particular, the RCS near viewing angles
−π and π is more accurate with p = 3 than using p = 4,
see Figs. 72(a) and 73(a). Again, the approximate boundary
representation has a critical influence in the RCS. NEFEM
exhibits the same robustness than in the previous examples.
The error is decreased for all viewing angles as the degree
of the approximation is increased. A perfect match between
analytical and computed solution is observed with p = 4,
see Figs. 72(b) and 73(b).

Note that Cartesian FEs offer a slightly different per-
formance for vertical and horizontal polarizations. In fact,



Fig. 72 Scattering by a PEC
sphere of diameter λ: RCS
comparison for increasing p and
for the vertical polarization

Fig. 73 Scattering by a PEC
sphere of diameter λ: RCS
comparison for increasing p and
for the horizontal polarization

Fig. 74 Scattering by a PEC
sphere of diameter λ:
p-convergence comparison of
the RCS error

higher errors are observed for the horizontal polarization,
whereas for NEFEM, almost identical performance is ob-
served for both polarizations. To compare accuracy, Fig. 74
represents the RCS error in the L2(−π,π) norm for increas-
ing p, starting with p = 2, showing the superiority of NE-
FEM compared to Cartesian FEs. The most critical differ-
ence is observed in the horizontal polarization for p = 5.
NEFEM is almost one order of magnitude more precise than
the corresponding Cartesian FEs. It is worth remarking that
the RCS error for Cartesian FEs is controlled by the geo-
metric error for p > 3. In fact, the isoparametric approxima-
tion of the sphere with 8 curved elements is considered in

Sect. 6.1, and a similar performance is observed in a second-
order elliptic problem.

Compared to other techniques, NEFEM is also more ac-
curate and efficient. For instance, to achieve an accuracy of
10−2 measuring the maximum norm of the scattering width,
more than 100 000 degrees of freedom are required using
high-order edge elements [60]. With NEFEM, a degree of
approximation p = 4 provides an error of 4.7 × 10−3, us-
ing 45 605 degrees of freedom, that is, NEFEM is two times
more accurate by using 50% of the ndof, showing that NE-
FEM is also competitive in 3D compared to other techniques
used by the CEM community.



Fig. 75 Scattering by a PEC
NASA almond of characteristic
length λ: computational mesh
and NEFEM solution with
p = 4

Fig. 76 Scattering by a PEC NASA almond of characteristic length
λ: monostatic RCS for a NEFEM solution with p = 4, compared with
high-order edge elements of [59]

The following example considers a popular benchmark
for 3D RCS computations, the scattering by a PEC NASA
almond, see [30, 102]. One of the challenges of this example
is the singularity exhibited by the solution on the tip of the
almond. Moreover, the high variation on the surface curva-
ture introduces extra complexity in the scattered field distri-
bution.

The monostatic RCS computation of an almond of char-
acteristic length λ is considered. The mesh employed for the
computation has 10 805 elements with planar faces and 336
curved elements (120 with a face on the NURBS bound-
ary, and 216 with an edge on the NURBS boundary). Fig-
ure 75(a) shows two cuts of the volume mesh, correspond-
ing to the free-space, and the surface mesh on the almond.
The total component of the E3 field for a NEFEM solution
with p = 4 is represented in Fig. 75(b), for a wave incident
onto the tip of the almond.

The monostatic RCS evaluation is performed by com-
puting N i = 18 solutions corresponding to a series of in-
cident angles φi

j = jπ/N i , with j = 0, . . . ,N i . The mono-
static pattern for the vertical polarization is represented in
Fig. 76, and compared with a reference solution, showing
excellent agreement. The difference between both solutions
is 1.5 × 10−2 in the L2(−π,π) norm. The reference data
corresponds to a computation using high-order edge ele-

Fig. 77 Scattering by a PEC sphere of diameter 20λ

ments, see [59]. In the NEFEM computation, the markers
correspond to the 18 computations, and the continuous line
corresponds to a postprocess of the monostatic data, as de-
scribed in [76].

Previous examples show the potential of NEFEM in front
of several FE methodologies for the numerical solution of
classical test cases, but the challenges of solving Maxwell’s
equations are not typically found in the equations, but in the
geometrical complexity of the scatterer and/or in the wave-
length of the incident field (with respect to the characteristic
length of the scatterer).

The following example considers the scattering of an in-
cident wave traveling in the z+ direction by a PEC sphere
of diameter 20λ. The mesh used in the computations has
124 135 elements with planar faces and 17 856 curved ele-
ments (11 176 elements with a face on the NURBS boundary
and 6 680 elements with an edge on the NURBS boundary).
The surface mesh on the sphere is represented in Fig. 77(a),
and the first component of scattered electric field over the
sphere for a NEFEM solution with p = 5 is represented in
Fig. 77(b). A comparison of the computed RCS with the an-
alytical solution is depicted in Fig. 78, showing good agree-
ment with the analytical solution. In fact, the RCS distri-
butions overlap for a viewing angle in [−π/4,π/4], see
Fig. 79, and some differences are observed in the other view-
ing angles.

Note that the spatial discretization is relatively coarse for
this frequency and a reasonable accuracy for engineering



Fig. 78 Scattering by a PEC
sphere of diameter 20λ: RCS for
a NEFEM solution with p = 4

Fig. 79 Scattering by a PEC
sphere of diameter 20λ: RCS for
a NEFEM solution with p = 4
in the range [−π/4,π/4]

Fig. 80 Scattering by a PEC
NASA almond of characteristic
length 8λ: surface mesh and two
components of the scattered
field for a NEFEM solution with
p = 5

purposes is obtained. The relative RCS in the L2(−π,π)

norm is 4.7 × 10−2 for the vertical polarization and 6.3 ×
10−2 for the horizontal polarization. Again, the error in the
RCS is higher for the horizontal polarization due to the sin-
gularity induced by the logarithmic scale. If the error is mea-
sured in the scattering width, an error of 1.2 × 10−2 is ob-
tained for both polarizations. If lower errors are required,
further p-refinement can be performed on the same mesh.

NEFEM is also a competent approach to 3D challeng-
ing simulations compared to other techniques. For instance,
the method proposed by [50] is applied to compute the scat-
tering by a conducting sphere in the frequency domain. To
achieve a relative error of about 10−2 for a sphere of diame-
ter 15λ, almost 4 million of degrees of freedom are needed.
In this section, same accuracy is obtained with NEFEM for
a higher frequency problem (sphere of diameter 20λ) using
4 344 725 degrees of freedom. It is worth mentioning that an
improved PML is applied in [50] in the frequency domain,

that allows a 0.2λ thick PML, whereas the NEFEM compu-
tation uses a λ thick PML, demonstrating, once more, the
benefits of NEFEM.

It is also worth remarking that even if the surface mesh of
the obstacle is refined for high frequency applications, an ac-
curate geometric model is still important. As noted in [50],
as the frequency is increased, geometric errors are more in-
fluential in the scattered field. For instance, with isoparamet-
ric FEs, the geometric singularities introduced at boundary
edges may produce non physical diffraction.

Next example considers the scattering of a plane elec-
tromagnetic wave by a PEC NASA almond of character-
istic length 8λ. The mesh has 9 348 elements with planar
faces and 1 200 curved elements. The surface mesh on the
almond is represented in Fig. 80(a), and a detailed view of
two components of the scattered field are represented over
the almond surface in Figs. 80(b) and (c), corresponding to
a wave incident onto the tip of the almond.



Fig. 81 Scattering by a PEC
NASA almond of characteristic
length 8λ: RCS for a NEFEM
solution with p = 5

Fig. 82 Scattering by a PEC
NASA almond of characteristic
length 21λ: surface mesh on the
almond and two components of
the scattered field for a NEFEM
solution with p = 3

Fig. 83 Scattering by a PEC
NASA almond of characteristic
length 21λ: RCS for a NEFEM
solution with p = 4

Figure 81 shows the RCS for vertical and horizontal po-
larizations. Two RCS patterns are displayed, for a NEFEM
solution with p = 4 and p = 5 respectively. Results show a
perfect agreement with published results [42], which are ob-
tained with linear FEs in a tetrahedral mesh with 1 121 431
mesh nodes. Thus, this example shows the competitiveness
of NEFEM compared to other formulations for more chal-
lenging applications. Even if a DG formulation is consid-
ered, i.e. duplicating nodes at inter-element faces, the com-
putation requires less degrees of freedom to obtain simi-
lar accuracy, due to the good performance of NEFEM with
coarse meshes and high-order approximations.

Next, the scattering by a PEC NASA almond of charac-
teristic length 21λ is considered. The mesh has 48 699 el-
ements with planar faces and 6 008 curved elements. Fig-
ure 82 shows the surface mesh on the almond and two com-
ponents of the scattered field computed with NEFEM and
p = 3, corresponding to a wave incident onto the tip of the

almond. RCS distribution for vertical and horizontal polar-
ization are represented in Fig. 83. Results compare well with
published results [42], and again show the competitiveness
of NEFEM for higher frequency problems. The tetrahedral
mesh used in [42] has 51 342 008 linear elements, and ap-
proximately 8 million of nodes. With NEFEM and p = 4 the
mesh has 2 million of nodes (including the duplication due
to the DG formulation), requiring four times less degrees of
freedom than using standard linear FEs.

The results presented in this section has shown the ben-
efits of NEFEM using standard FE meshes. However, the
possibilities of NEFEM still go beyond.

It is well known that, in the context of FEs, the size of
the model is sometimes subsidiary of the geometrical com-
plexity and not only on solution itself. In particular, FE sim-
ulation of the scattering by complex objects with small ge-
ometric details requires drastic h-refinement to capture the
geometry. Moreover, for scattering applications, small ge-



Fig. 84 Scattering by an irregular circular cylinder of diameter 4λ: de-
tail of a standard FE mesh refined towards the small geometric details,
and a coarse NEFEM mesh with elements containing corner geometric
singularities

Fig. 85 Scattering by an irregular circular cylinder of diameter 4λ: H3

field computed in the discretizations shown in Fig. 84

ometric details are influential in the solution, specially for
high frequency problems, and a simplification of the geom-
etry may lead to important discrepancies in the computed
scattered field. Nevertheless, as it will be shown next, in the
NEFEM context, when small is influential it does not imply
small elements.

Two numerical examples that show the possibilities of
NEFEM when the scatterer contains small geometric fea-
tures are shown. As noted earlier, in Sect. 4.1, it is important
to remark that the only restriction for a NEFEM element is
that the edges and/or faces on the boundary belong to one
NURBS. It is neither necessary to locate nodes at boundary
corners or edges (entities with C 0 continuity) nor to refine
the mesh near the boundary to capture the geometry. It is
exactly represented in NEFEM independently on the spacial
discretization. The computational meshes in this section are
chosen to emphasize the possibilities of NEFEM.

The scattering by a PEC irregular circular cylinder of
diameter 4λ is considered. Two computational meshes are
employed for the analysis, see a detail near the scatterer
in Fig. 84. The first mesh is a standard FE mesh in which
h-refinement is performed in order to provide an accurate
description of the small geometric features, see Fig. 84(a).

Fig. 86 Scattering by an irregular circular cylinder of diameter 4λ:
detail of the H3 field

Fig. 87 Scattering by an irregular circular cylinder of diameter 4λ:
RCS comparison

The resulting mesh has 130 curved elements. The second
mesh, represented in Fig. 84(b), is a coarse NEFEM mesh

with only 16 curved elements, some of them (represented in
red) containing small geometric details and corner singular-
ities inside an edge.

Figure 85 shows the transverse field H3 computed in the
refined mesh with a degree of interpolation p = 5, and in the
coarse NEFEM mesh with a degree of interpolation p = 12.
The scattered fields are indistinguishable, even near the most
critical zone. Nevertheless, a slight difference near the cor-
ner singularity can be appreciated, see a detailed view of the
solution in Fig. 86. Obviously, the discrepancy is originated
by the limitations of the standard FE nodal interpolation for
the approximation of a singular solution, see [86] and fol-
lowing examples in this section. Despite of this known lim-
itation, it is important to remark that the quantity of inter-
est, the RCS, shows very good agreement when it is com-
pared with the RCS computed with the refined mesh, see
Fig. 87. In fact, two NEFEM computations are performed in
the coarse mesh of Fig. 84(b), with p = 6 and p = 12, illus-
trating the convergence as the degree of approximation is in-
creased. For p = 12 the relative RCS error in the L2(−π,π)

norm is 4.1 × 10−2.
Finally, it is worth mentioning that the drastic difference

between minimum mesh sizes, in the discretizations shown



Fig. 88 Scattering by a PEC thin plate: standard FE meshes

Fig. 89 Scattering by a PEC thin plate: NURBS surfaces (separated
for visualization) and NEFEM coarse mesh with elements containing
edge singularities

in Fig. 84, induces important differences in the time-step
size when explicit time integrators are used and, therefore,
adds another advantage of NEFEM. In the refined mesh
with p = 5 the minimum distance between two mesh nodes
is 1.4 × 10−5, whereas in the NEFEM coarse mesh with
p = 12 the minimum distance is 1.2 × 10−3. The compu-
tation with the refined mesh requires 527 459 time steps,
whereas the computation in the coarse NEFEM mesh re-
quires 6 620 time steps.

The aim of the last example is to show the possibilities
of NEFEM elements, containing edge singularities, in 3D
domains. In large scale 3D computations, very small geo-
metric details may lead to unaffordable computational times
with explicit time-marching algorithms, due to the excessive
h-refinement needed to accurately capture the geometry.

To show the capabilities of NEFEM in this scenario, the
scattering by a PEC thin plate of dimensions λ × 4λ/7 ×
λ/22 is considered. The small thickness of the plate, with re-
spect to the wave length λ, implies that h-refinement in stan-
dard FE meshes is controlled by the thickness of the plate,
not by the desired number of nodes per wavelength.

Two standard FEM computational meshes are consid-
ered to compare the accuracy of NEFEM computations. Fig-
ure 88(a) shows a standard FE mesh with refinement towards
the singularities of the plate. The second mesh, in Fig. 88(b),
is a FEM mesh with a desired mesh size of about λ/8. As
usual, a standard mesh generator needs to perform extra h-
refinement to offer an accurate description of the geometri-
cal model. Therefore, the minimum mesh size in a standard
FE mesh is, at least, λ/22.

Nevertheless, the mesh size for NEFEM is not controlled
by small geometric features, and the desired mesh size
is maintained, even in the presence of singularities in the
boundary of the domain. The plate is exactly represented by
two NURBS surfaces with C 0 continuity at the edges of the

Fig. 90 Detailed view of a NEFEM element containing an edge sin-
gularity in its boundary face

plate, as illustrated in Fig. 89(a). A NEFEM coarse mesh
is represented in Fig. 89(b). Note that, to obtain the desired
mesh size, some elements contain an edge singularity inside
one NURBS face, see a detailed view of a NEFEM element
in Fig. 90.

Figure 91 compares the RCS distribution for vertical and
horizontal polarizations. An excellent agreement is observed
between the three computations, showing the potential of
NEFEM coarse meshes with elements containing singulari-
ties. Again, the maximum disagreement is obtained at singu-
larities of the RCS due to its logarithmic scale. The error of
the scattering width and in the L2(−π,π) norm for NEFEM
is 3.2 × 10−2 and 4.7 × 10−2 for the vertical and horizon-
tal polarizations respectively. Despite the known limitation
of polynomial approximation for the approximation of sin-
gular solutions it is remarkable the quality obtained in the
RCS patterns by using NEFEM meshes.

7 Closing Remarks

This papers presents a complete overview of recently pro-
posed NURBS-enhanced finite element method (NEFEM).
This methodology is an improvement of the standard FEM
where the exact CAD description of the geometrical model
is considered, but only for the boundary of the computa-
tional domain. At elements intersecting the NURBS bound-
ary specific strategies to perform the interpolation and the
numerical integration are proposed. NEFEM defines the ap-
proximation directly with Cartesian coordinates, ensuring
reproducibility of polynomials in the physical space. The
key idea of the numerical integration technique is to use
specifically designed mappings for curved elements in order
to decouple complexity of the NURBS boundary descrip-
tion, allowing a seamless treatment of trimmed and singular
NURBS surfaces in 3D. It is worth recalling that at elements
not intersecting the boundary classical FE are used, preserv-
ing the efficiency of the FEM.

The application and superiority of NEFEM with respect
to other curved FE techniques has been presented. Ranging
from second-order elliptic problems solved with a standard
continuous Galerkin formulation to more complex applica-
tions such as the numerical solution of Euler and Maxwell’s



Fig. 91 Scattering by a PEC
thin plate: comparison of the
RCS computed in the
discretizations shown in
Figs. 88(a), 88(b) and 89(a)

equations solved with a discontinuous Galerkin formulation,
the benefits of NEFEM have been well established. NEFEM
is not only more accurate than classical isoparametric FEM
or Cartesian FEM that use an approximated boundary repre-
sentation of the computation domain, but also outperforms
p-FEM with an exact boundary representation, showing the
importance of both the Cartesian approximation of the solu-
tion and the exact boundary representation.

In addition, the use of NEFEM implies that the spa-
tial discretization is no longer subsidiary to the geometrical
complexity. The behavior and potential of NEFEM elements

have been shown as a powerful way of avoiding excessive
mesh refinement to capture geometric details. With NEFEM,
the mesh is refined where the solution is complex not where
the geometry is complex.

8 Areas of Further Research

The potential and benefits of NEFEM for the treatment of
curved boundaries have been demonstrated during the last
years. However NEFEM is still a relative new approach and
several research lines are still open. Some interesting topics
are discussed next.

NEFEM has not been applied in practical FE adaptive
process, see for instance [48], and the potential benefits in
this context are clear. In this scenario the computational
mesh is locally refined (or the polynomial order of the ap-
proximation increased) to properly approximate both the so-
lution and the geometry. As NEFEM does not require mesh
refinement to capture geometric features, the adaptive pro-
cess is only controlled by the complexity of the solution,
reducing therefore the necessary number of degrees of free-
dom to achieve a desired accuracy. Thus, the study of h and
p adaptive processes in a NEFEM framework is worth to be
investigated and compared with other FE techniques.

The potential of NEFEM for high-order computations
in coarse meshes has been shown in this paper. NEFEM

meshes offer a drastically reduction of the number of de-
grees of freedom compared to standard FE meshes. In ad-
dition, when combined with explicit time marching algo-
rithms, the affordable time step due to the use of coarse
meshes makes that approach highly competitive. Neverthe-
less, one of the topics that deserves attention is the improve-
ment of the quality of the polynomial approximation in the
presence of singular solutions inside NEFEM elements. The
enrichment of the polynomial basis, well known for stan-
dard FEM meshes, see for instance [24], is worth to be in-
vestigated in the NEFEM context.

The generation of coarse meshes of complex geomet-
ric objects for NEFEM computations is not a trivial task.
Although strictly speaking, NEFEM does not need a high-
order mesh generator, the use of a linear mesh generator
may lead to non-valid NEFEM meshes. Moreover, tools for
meshing complex objects without refinement near geometric
singularities in the boundary are not provided by any mesh
generator. Thus, automatic mesh generation technology for
NEFEM is a new challenge by itself.
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