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Nurturing brain plasticity: impact of environmental
enrichment

L Baroncelli*,1,4, C Braschi2,4, M Spolidoro1,4, T Begenisic1, A Sale3 and L Maffei1,3

Environmental enrichment (EE) is known to profoundly affect the central nervous system (CNS) at the functional, anatomical and
molecular level, both during the critical period and during adulthood. Recent studies focusing on the visual system have shown
that these effects are associated with the recruitment of previously unsuspected neural plasticity processes. At early stages of
brain development, EE triggers a marked acceleration in the maturation of the visual system, with maternal behaviour acting as a
fundamental mediator of the enriched experience in both the foetus and the newborn. In adult brain, EE enhances plasticity in the
cerebral cortex, allowing the recovery of visual functions in amblyopic animals. The molecular substrate of the effects of EE on
brain plasticity is multi-factorial, with reduced intracerebral inhibition, enhanced neurotrophin expression and epigenetic
changes at the level of chromatin structure. These findings shed new light on the potential of EE as a non-invasive strategy to
ameliorate deficits in the development of the CNS and to treat neurological disorders.
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Adult brain architecture is the result of a complex interaction
between genetic developmental programmes and experience-
driven plasticity processes.1,2 A large number of studies demon-
strated the existence of time windows in early postnatal life,
named critical periods (CPs), during which neural circuits display
a heightened sensitivity to acquire instructive and adaptive
signals from the external environment. Various brain regions
subserving major behavioural functions (e.g., sensory percep-
tion, motor control and language) have CPs that occur at different
times and are activated and regulated by distinct mechanisms.3,4

The primary visual cortex (V1) is a paradigmatic model
for studying experience-dependent plasticity. Although the
maturation of the visual system starts before eye opening
and the initial targeting of neural connections is subjected to
either genetic programmes or spontaneous activity, a proper
development of the visual system requires sensory experi-
ence.5,6 A total absence of sensory input leads to a delay
in the functional and anatomical maturation of the visual
cortex, which appears immature far beyond the end of the
critical period. Adult animals reared in darkness from birth
(dark rearing, DR) display serious physiological deficits in

their visual cortex, including reduced orientation and direction
tuning, lower cell responsiveness, larger receptive field sizes,
altered spontaneous activity, immature ocular dominance
(OD) distribution and lower visual acuity (VA).7–10

Ocular dominance plasticity refers to the rapid change in
visual cortex physiology resulting from unbalanced inputs
from the two eyes. Hubel and Wiesel11,12 first reported in
kittens that reducing input from one eye by lid suture (monocular
deprivation, MD) during development dramatically affects the
binocularity of V1, leading to a loss of cortical responses to that
eye and an increase in the number of neurons preferentially
driven by the open eye. As a direct consequence, the deprived
eye becomes amblyopic: its VA is strongly reduced and its
contrast sensitivity is blunted. The effects of MD and the
existence of a CP have been subsequently described in other
species of mammals as well, including primates,13 rabbits,14

hamsters,15 rats,10 mice16 and ferrets.17

In parallel to experiments based on protocols of reduced or
altered sensory experience, relevant progress in understand-
ing the influence of environmental experience on the deve-
lopment, refinement and maintenance of appropriate neural
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connections has been made possible by paradigms specifi-
cally devoted to increasing the quality and intensity of
environmental stimulation, such as environmental enrichment
(EE). EE is defined as ‘a combination of complex inanimate
and social stimulation’.18 Enriched animals are reared in large
groups and housed in widely stimulating environments in
which a variety of differently shaped objects are present and
changed frequently. The goal of EE is to improve the animals’
quality of life by providing them with a combination of multi-
sensory/cognitive stimulation, increased physical activity,
enhanced social interactions and by eliciting natural explora-
tive behaviours (Figure 1). Hence, in contrast to the
approaches based on sensory deprivation, EE is a gain-of-
function paradigm allowing the study of the influence elicited
by increased levels of environmental stimulation on brain
development and plasticity.

Environmental enrichment exerts profound effects on the
adult central nervous system (CNS). A large number of
studies highlighted the fact that EE modifies the behaviour of
animals, leading to a sensitive improvement in complex
cognitive functions, particularly learning and memory,19 and
positively affecting the animal’s emotional and stress reacti-
vity.20 Rodents living in EE conditions display increased levels
of hippocampal long-term potentiation (LTP), a physiological
model of synaptic plasticity related to learning and memory.21

This functional improvement is accompanied by prominent
changes at the anatomical level, with robust increments in
cortical thickness and weight and modifications of neuronal
morphology, in terms of increased dendritic arborization,
number of dendritic spines, synaptic density and post-
synaptic thickening, occurring in several regions of the brain,
particularly in the occipital cortex and hippocampus.22 More-
over, exposure to EE increases hippocampal neurogenesis
and the integration of newly born cells into functional
circuits.21 At the molecular level, EE causes a significant
change in the expression of a large set of genes involved in
neuronal structure, excitability, synaptic transmission and
plasticity,23 modulating the synthesis and secretion of
neurotrophic factors throughout the brain and affecting the
cholinergic, serotoninergic and noradrenergic systems.24–27

Although EE research has been mostly focused on rodents,
similar effects have been reported in several species of mammals
(gerbils, ground squirrels, rabbits, cats and primates).28–32

Influence of EE on Brain Developmental Plasticity

Despite the large body of evidence with regard to the effects of
EE on the adult brain, until recently, the influence of EE on the
developmental physiology and plasticity of the CNS has
remained only scarcely investigated. In the past few years,
this gap has been considerably filled with a series of studies
focusing on the visual system as a paradigmatic model. The
most relevant result was the demonstration that EE from birth
induces a marked acceleration in the maturation of VA, an
effect consistently reported in mice and rats using both
electrophysiological and behavioural methods.33–36 The
acceleration effect is quite strong, yielding a 1-week advance
in the time course of VA maturation with respect to control
animals. This functional outcome is accompanied by a
precocious decline in the possibility of inducing LTP of layer
II–III field potentials after theta-burst stimulation of the white
matter (WM-LTP) in the visual cortex,34 a well-established in
vitro model of developmental plasticity.37 EE also promotes
visual system maturation in the absence of visual experience,
with DR rats maintained in EE conditions showing a normal
VA development and closure of the CP for OD plasticity.38

This indicates that non-visual stimulation counteracts the
effects exerted by a complete lack of visual experience from
birth. In the auditory system, pre-weaning EE improves spatial
localization abilities and enhances directional sensitivity of A1
neurons,39 whereas it remains unexplored whether exposure
to EE conditions induces compensation for the delay in A1
maturation prompted by white noise rearing.

It is worth noting that rearing animals in EE during their early
phases of life leads to a functional phenotype very similar
to that previously reported in transgenic mice overexpressing
BDNF in the forebrain.40,41 Indeed, mice raised in EE show
increased levels of the BDNF protein in their visual cortex at
P7,34,35 revealing the fact that neurotrophin BDNF is one of
the crucial factors that underlie EE effects on V1 maturation.
In both BDNF overexpressing mice and EE pups, higher
BDNF levels were also shown to trigger the maturation of the
inhibitory GABAergic system, which, by affecting receptive
field development and synaptic plasticity, could determine
both the accelerated maturation of VA and the decline of
cortical plasticity.34,35,40

Another molecular factor involved in mediating EE effects
on visual system development is IGF-I.42 IGF-I expression
is higher at P18 in the visual cortex of EE rats compared
with non-EE rats. Moreover, exogenous IGF-I supply mimics,
whereas blocking IGF-I action prevents the EE effects on
VA maturation. The authors observed that inhibitory inter-
neurons respond to IGF-1 with a GAD65 increase in their
synaptic terminals, suggesting that a possible explanation for
the effects of IGF-I on VA development could be an action on
the inhibitory GABAergic system.42

BDNF and IGF-I signalling may eventually converge on the
activation of intracellular pathways, leading to the phosphory-
lation of the transcription factor CREB. The wave of CREB/
CRE-mediated gene expression in the visual cortex is

Figure 1 Environmental enrichment (EE) is a manipulation of the standard laboratory
conditions that modify the quality and intensity of environmental stimulation, reaching an
optimization of the rearing environment. The goal of EE is to provide animals with
increased levels of multisensory stimulation, physical activity and social interactions, and
by eliciting spontaneous explorative behaviours. Drawing by M. Marchi
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accelerated in EE mice, and chronic injections of non-EE
animals with rolipram, a pharmacological treatment increas-
ing the phosphorylation of CREB, partially mimic the EE
outcome on VA maturation.34 Thus, activation of the CREB/
CRE transcription pathway may be one crucial mediator of the
EE effects on visual system development.

Retina development is also affected by high levels of
environmental stimulation. It has been recently reported that
DR induces alterations in both the anatomical stratifications of
retinal ganglion cells (RGCs) and the visual responsiveness
of inner retinal neurons.43,44 EE accelerates the segregation
of RGC dendrites into ON and OFF sublaminae,36 as well as
the rise of retinal acuity during development, even in animals
exposed to differential rearing before eye opening, for the first
10 days of life.45 IGF-I and BDNF are key molecular factors
in these processes: retinal levels of both proteins are
precociously increased in the RGC layer of developing EE
rats, and blocking either IGF-I or BDNF action in EE animals
counteracts the faster retinal maturation.36,45,46 BDNF turned
out to be a downstream target of IGF-I.46

Strikingly, the maturation of the nervous system is sensitive
to environmental stimulation during prenatal life as well.
Recent data by Sale et al.47 demonstrated that exposing
pregnant females to EE (maternal enrichment) profoundly
affects the development of the retina in embryos, leading to an
acceleration of structural processes critical for retinal matura-
tion, such as the migration of neural progenitors and the time
course of naturally occurring cell death in the RGC layer.
Interestingly, a key factor in the effects of maternal enrichment
on retinal morphology and function is IGF-I. Anatomical
modifications are indeed accompanied by a marked increase
in IGF-I levels in the retinas of EE pups and in maternal milk.
Furthermore, IGF-I infusion during late pregnancy is sufficient
to induce, in non-EE animals, all the reported changes elicited
by EE in foetuses, whereas neutralization of IGF-I in EE
mothers prevents the action of maternal enrichment on retinal
development.47

The influence of increased maternal stimulation during
pregnancy is not only restricted to the visual system.
Voluntary wheel running of pregnant mice leads to a twofold
increase in hippocampal precursor-cell proliferation in their
pups.48 Maternal physical activity in the form of swimming
during pregnancy has also been shown to increase hippo-
campal BDNF mRNA expression in the offspring leading to
improved short-term memory abilities.49

Maternal Care, Tactile Stimulation and Visual System
Development

The aforementioned studies demonstrate that, far from being
rigidly determined by genetic programmes, CNS development
is already responsive to the environment at very early stages.
The first two weeks of rodent life are characterized by the
prevalent absence of a direct interaction between the pup and
the external environment, with newborns spending their whole
time in the nest, where the mother is the most important source
of sensory experience.50 It was soon realized that differences in
maternal behaviour between EE and non-EE conditions could
be a fundamental factor triggering the earliest effects of EE
on visual system development. This issue has been directly

addressed by a detailed quantitative study of maternal behav-
iour in different environmental conditions, which led to the first
demonstration that EE pups receive higher levels of maternal
care compared with standard-reared pups.35 More specifically,
EE animals experience a continuous physical contact because
of the presence of adult females in the nest and are also pro-
vided with increased levels of licking and grooming (Figure 2a).
The amount of maternal care received by the developing pup
influences hippocampal structure and function, affects mole-
cular factors crucial for plasticity such as BDNF and NMDA
receptors and leaves long-lasting epigenetic marks in the
offspring’s physiology and behaviour.50–53

Very recently, a protocol of daily artificial tactile stimulation
has been used in the rat as a strategy to promote visual
system development.54 The authors reported that a combina-
tion of gently stroking and massaging is highly effective in
accelerating the maturation of physiological visual functions,
in particular of VA (Figure 2b). Interestingly, tactile stimulation
increases IGF-I levels in the visual cortex at P18, as also
observed in EE animals, and blocking IGF-I action prevents
the effects of massage on VA development.54 Tactile stimula-
tion also compensates for inadequate maternal care: the
negative effects produced by repeated episodes of maternal
separation or by prenatal stress on pup growth, hormone
secretion, hypothalamus–pituitary–adrenal axis and BDNF
expression are all rescued by artificial massage applied to
pups in order to mimic maternal behaviour.55–57 Altogether,
these results provide a remarkable example of cross-modal
plasticity by which an increased input in a single modality
reverberates as a driving force for the whole brain.

Strikingly, Guzzetta et al.54 demonstrated that massage
therapy also accelerates brain development in healthy preterm
infants (gestational age between 30 and 33 weeks). The authors
found that massaged infants exhibit an earlier shortening of
the interbust intervals in the EEG, a robust index of the develop-
mental stage of the brain, a significantly greater reduction in
the latency of flash VEPs and an increase in behavioural VA
outlasting the end of treatment (Figure 2c). In parallel to the
results found in the animal model, massaged infants showed
increased levels of plasma IGF-I, confirming that this molecule
is crucially involved in mediating the effects of an enhanced
sensory stimulation in the brain.54 This result is supported by
the finding that, in preterm infants, tactile stimulation causes an
increase in growth hormone production55 and an enhancement
of serum IGF-I.58 Finally, very recent papers have shown that
IGF-I and IGF-I binding protein 3 (IGFBP3) could be protective
against proliferative retinopathy of prematurity, a severe and
relatively frequent visual disorder in preterm infants.59,60 The
paper by Guzzetta et al.54 underlines the role of environmental
stimulation as a crucial factor for early postnatal development in
humans. Massage therapy could be a good implementation of
normal intensive treatment reserved for preterm babies aimed
at more efficaciously counteracting the onset of neurological
pathologies associated with a precocious delivery.

Rejuvenating the Adult Brain

A classical dogma in neuroscience is that brain plasticity
undergoes a dramatic decline with age. Significant effort is
being made in multiple laboratories to develop new strategies
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aimed at enhancing CNS plasticity after the end of CP. In
this fascinating field, the visual system emerges as the
election test bed. Visual experience, indeed, can be easily
controlled and the consequences of manipulations are readily
measured at the anatomical, cellular and molecular level.
From classic experiments in animal models to human
clinical studies, it is well known that early abnormal visual
experience owing to anisometropia (unequal refractive
power in the two eyes), strabismus (abnormal alignment of
one or both eyes), congenital cataract or, in animal models,
MD results in a functional imbalance between the two eyes,

leading to amblyopia, a widely diffused pathology (2–5%
incidence in the human population) for which no suitable
treatment is yet available in the adult.61 Amblyopia causes
a dramatic loss of VA in an apparently healthy eye, with a
great deal of evidence showing that it also results in a
broad range of other perceptual abnormalities, including
deficits in stereopsis and contrast sensitivity.62,63 Similarly,
in animal models, the classic hallmarks of amblyopia are a
permanent loss of VA in the affected eye and a pronounced
OD shift of visual cortical neurons in favour of the normal
eye.64–68 Traditional amblyopia therapy consists of patching

Figure 2 (a) Enriched pups experience higher levels of maternal care compared with standard-reared pups. (A1) The frequency of ‘pups alone in the nest’ recordings during
the first 10 days postpartum in non-environmental enrichment (EE) (white) and EE (black) animals. Two-way RM ANOVA revealed a significant effect of age and housing condition
(Po0.001) and a significant interaction between age and housing condition (Po0.001). SNK post hoc analysis revealed that groups differ statistically (Po0.05). Vertical bars are
S.E.M. (A2) Frequency of ‘licking’ recordings during the first 10 days postpartum in non-EE (white) and EE (black) animals. Two-way RM ANOVA revealed a significant effect of
age and housing condition (Po0.001) and a significant interaction between age and housing condition (Po0.05). SNK post hoc analysis revealed that groups were statistically
different (Po0.05). Vertical bars are S.E.M. Graphs have been modified from Sale et al.35 (b) Massage in rat pups accelerates visual acuity maturation. The massage protocol
combined gently stroking and massaging to mimic maternal care. Each animal received 5 min of tactile stimulation thrice a day: 2 min with a wet soft paintbrush on their back, head,
limbs and abdomen to mimic licking; 1.5 min massage with finger tips on both sides of their back combined with passive gentle movement of their limbs; 1.5 min with a soft
toothbrush on the back and abdomen to mimic grooming. (B1) Mean visual acuity determined at P25 by means of VEPs recorded from the primary visual cortex for massaged
(grey) and control rats (white). The massage group significantly differs from the control group (one-way ANOVA, factor treatment significant, Po0.05, post hoc Holm–Sidak
method). An asterisk denotes significant difference. Vertical bars are S.E.M. Graph has been modified from Guzzetta et al.54 (c) Maturation of the visual system is accelerated
in massaged preterm infants. Massage therapy was begun on day 10 (±1) after birth. Sessions were performed thrice a day for two blocks of 5 days each, separated by a 2-day
interval. Each treatment session consisted of 10 min of tactile stimulation, followed by 5 min of kinaesthetic stimulation. During tactile stimulation, the infant was placed prone and
was given moderate pressure stroking with the flats of the fingers of both hands. Head, neck, shoulders, buttocks and both legs and arms were stimulated. For the kinaesthetic
phase, the infant was placed in a supine position. Passive flexion/extension movements of the limbs in sequence were applied. (C1) Behavioural visual acuity measured by means
of the Vital-Durand Acuity Cards at 3 months corrected age. Visual acuity in massaged infants is significantly higher than in controls at 3 months (Po0.05, t-test). Normal value for
term-born infants at 3 months is 3–5.2 c/deg. An asterisk denotes significant difference. Vertical bars are S.E.M. Graph has been modified from Guzzetta et al.54
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or penalizing the preferred fellow eye, thus forcing the brain to
use the visual input carried by the weaker amblyopic eye.69

Although it is widely accepted that the reinstatement of visual
functions is possible only if corrective therapy is started early
in development, recent studies in rodents have unmasked a
previously unsuspected potential for promoting recovery well
after the end of CP (for a recent review, see Spolidoro et al.70).
EE turned out to be very effective for treating amblyopia in
adulthood. A brief exposure (2–3 weeks) of adult amblyopic rats
to EE has been demonstrated to promote a complete recovery
of both VA and OD, an effect documented not only at the
electrophysiological level but also by using behavioural
assessments71 (Figure 3a). Recovery of plasticity in EE rats
is associated with a threefold reduction in the basal levels of
GABA detected in the visual cortex by in vivo brain micro-
dialysis. As a consequence of decreased cortical inhibition, EE
dynamically regulates cortical synaptic plasticity as well,
resulting in a recovery of the possibility to evoke WM-LTP in
visual cortical slices,71 a form of LTP that is normally occluded in

adulthood as a result of the maturation of inhibitory circuits.37,40

The reduction of inhibition has proved to be a crucial molecular
mechanism underlying the enhancement of plasticity induced
by EE (Figure 3b), because restoration of plasticity is
completely prevented by benzodiazepine cortical infusion
during the EE period.71 The excitatory-inhibitory balance of
cortical activity is well known to be crucially involved in
regulating plasticity in the developing and adult brain.40,72

Consistently, chronic fluoxetine administration, another manip-
ulation that reactivates cortical plasticity in adulthood promoting
a full reinstatement of OD plasticity in response to MD and the
recovery of visual functions from amblyopia, reduces GABAer-
gic transmission, and its effects are prevented by enhancing
inhibition with diazepam.73 There is also indirect evidence that
the enhanced experience-dependent visual cortical plasticity
driven by exposure of adult rats to complete darkness may also
be related to a reduced expression of GABAA receptors relative
to AMPA receptors, thus altering the balance between inhibition
and excitation in the visual cortex.74,75

Figure 3 Experience-dependent reactivation of neural plasticity in the adult visual cortex. (a) EE in adulthood promotes visual acuity and binocularity recovery from amblyopia.
Left: Behavioural and electrophysiological measurements of visual acuity of the two eyes revealed that the visual acuity of the amblyopic eye was significantly recovered in RS-EE
(paired t-test, P¼ 0.864), but not in RS rats raised in standard conditions (SC) (paired t-test, Po0.05). Right: The VEP ratio was statistically lower in RS-SC compared with RS-EE
rats (t-test, Po0.05), but did not differ between RS-EE and normal (not deprived) adult rats (P¼ 0.907). The hatched grey box represents the range of values for the VEP ratio in
adult normal animals. Asterisks indicate statistical significance. Error bars represent S.E.M. Graphs have been modified from Sale et al.71 (b) Schematic diagram showing key
molecular events underlying restoration of plasticity in the adult visual system. We propose a model in which environmental stimulation could promote the strengthening of
neuromodulatory transmission that triggers the decrease in GABA-mediated intracortical inhibition and, in parallel or in series, the enhancement of BDNF expression. Both the
increase in overall cortical activity and BDNF intracellular signalling could in turn induce a transcriptional programme that leads to activation of other genes promoting plasticity,
for instance through the ERK–CREB pathway. Furthermore, an influence on the epigenetic control of gene transcription has been suggested for EE. Dark grey arrows represent
well-documented interactions between boxes; light grey arrows indicate likely interactions in the context of visual cortical plasticity, deserving further experimental characterization
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The promising results obtained with EE in rodents provide
new hope for clinical application to human patients, given the
completely non-invasive nature of this approach. Strikingly, an
increasing number of clinical studies have reported that
repetitive visual training based on sensory enrichment
procedures may represent a very useful approach for the
treatment of amblyopia, providing substantial improvement in
a variety of visual tasks76–79 (for a review, see Polat80 and Levi
and Li81). One caveat to the therapeutic value of these visual
practice procedures, however, is the narrow specificity of
achievable improvement, which is typically limited to the
selected trained stimulus, condition or task.82 Only in a few
tasks (Vernier acuity, contrast sensitivity and detection) did
training lead, at least in some subjects, to a generalization of
beneficial effects to other degraded visual functions, such as
VA and stereoacuity.81 Interestingly, it has been suggested
that the balance between excitation and inhibition is also
impaired during development in amblyopic human subjects
and that cortical overinhibition could underlie the degradation
of spatial vision abilities.83–87

The study of experimental models of amblyopia has the
advantage of enabling researchers to uncover new molecular
mechanisms underlying the therapeutic value of the used
procedures. The reduction of cortical inhibition in the visual
cortex of EE rats is paralleled by an increased expression of
BDNF71 (Figure 3b), a neurotrophic factor critical for
experience-dependent plasticity.40 Interestingly, it has been
recently shown that intracortical administration of BDNF
reactivates neural plasticity in the adult visual cortex73 and
that TrkB signalling is required for the recovery of deprived-
eye responses subsequent to the reinstatement of binocular
vision during development.88 EE also leads to increased
levels of histone acetylation in the hippocampus and
neocortex.89 A similar relationship between histone acetyla-
tion and EE effects could be present in the adult visual system
(Figure 3b), in which pharmacological treatment with inhibitors
of histone deacetylases restores OD plasticity.90 Another way
by which EE can regulate gene expression might be the
activation of specific transcription factors. One possibility is
that BDNF intracellular signalling stimulates CREB phosphor-
ylation and activation,91–93 which has a pivotal role in various
forms of plasticity in the visual cortex94–96 and other brain
structures.97 In line with this hypothesis, it has been shown
that EE in adulthood increases immunoreactivity to CREB in
the hippocampus as well98 (Figure 3b).

Moving from the intracellular environment to the extra-
cellular milieu, one interesting observation is that EE in
amblyopic rats reduces the density of chondroitin-sulphate
proteoglycan (CSPG) perineuronal nets (PNNs) in the visual
cortex.71 CSPGs exert a powerful repressive control on adult
plasticity. This is demonstrated by pharmacological studies in
which the removal of crucial components of PNNs from the
mature extracellular matrix, by means of the enzyme
chondroitinase ABC, reactivates OD plasticity in monocularly
deprived adult rats and promotes recovery from the effects of
early visual deprivation on VA and binocularity of cortical
neurons.99,100 These functional effects are accompanied by a
recovery of dendritic-spine density, indicating that the removal
of CSPGs favours remodelling of synaptic contacts onto
visual-cortex pyramidal neurons.100

Thus, working with EE offers the opportunity to affect brain
dysfunctions at multiple sites of action, either by allowing
the replication of the successful outcome obtained with
pharmacological treatment that is difficult to apply in humans
or by indicating completely new ways of intervention.

The exact molecular modifications occurring upstream from
the decrease in intracortical inhibition and the enhancement of
BDNF expression observed in EE rats still need to be clarified.
One appealing possibility is the involvement of neurotrans-
mitter systems characterized by diffuse projections through-
out the entire brain, which have been reported to profoundly
affect plasticity in both the developing and adult brain.73,101

First studies by Rosenzweig et al.24,102 reported an increase
in acetylcholinesterase activity, indicating an effect on the
cholinergic system. Subsequent studies confirmed and
extended this initial observation to other neurotransmitter
systems, showing that EE increases noradrenaline concen-
tration and strengthens the b-adrenoceptor signalling path-
way in the cerebral cortex, cerebellum and brainstem,27,103

and augments mRNA expression levels of serotonin 1A
receptor and serotonin (5-HT) concentration in the cerebral
cortex and hippocampus.25,104,105 Interestingly, in vitro
studies have repeatedly reported that 5-HT, acetylcholine,
dopamine and, to a lesser extent, noradrenaline, suppress
inhibition in several brain regions, including the visual cortex,
possibly through a presynaptic mechanism mediated, respec-
tively, by 5-HT1/2, muscarinic D1 and the a-adrenergic
receptor families.106–113 Moreover, very recently, a modifica-
tion of visual cortex pyramidal neuron responses to input
signals depending on the behavioural state has been
observed, related to a bidirectional modulation of somatic
inhibition.114 Equally, a vast number of studies have shown
that neuromodulators, and in particular 5-HT, dramatically
increase the expression of BDNF mRNA in the neo-
cortex.115–118 These facts, together with the recent finding
that fluoxetine administration leads to a reduced GABAergic
neurotransmission and an increased BDNF expression in the
visual cortex of adult rats,73 indicate that 5-HT might act as an
effective trigger of EE effects on adult cortical plasticity
(Figure 3b). Interestingly, the neuromodulatory systems are
known to regulate the arousal state of the brain101 and to
modulate attentional processes.119–121 A recent study in non-
amblyopic subjects provides indirect support to the important
role of visual attention in driving visual cortex plasticity,
showing that normal-sighted people trained with action-based
video games have robust improvements in basic visual
functions.122 The same effect was not observed after non-
action video game playing (equally engaging and visually
complex, but operating at a slower pace and not requiring
precise visually guided actions), suggesting that allocation of
attention is a fundamental component for the effectiveness of
the training paradigm.123,124

Beyond the Sensory Cortex: EE Effects on Animal
Models of Cognitive Impairment

The encouraging results obtained using EE as a tool to
modulate the development of the CNS and as a strategy to
reopen plasticity windows in the adult have shown that it is
possible to control processes crucial for brain function in a
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totally non-invasive manner. An important line of research
deals with the potential therapeutic effects of EE in experi-
mental models of nervous system injuries and disorders
(for a comprehensive review, see Will et al.125 and Nithia-
nantharajah and Hannan126). Given that the action of EE on
brain plasticity is multi-factorial, reducing intracerebral inhibi-
tion,71 increasing histone acetylation89 and enhancing neuro-
trophin expression,26 it may be particularly efficacious in
delaying the progression and/or in ameliorating the symptoms
of those neurological disorders in which neuronal plasticity is
compromised due to alterations in some or all of these
processes. Here, we focus on Rett’s syndrome, Down’s
syndrome and Alzheimer’s disease.

Rett’s syndrome. Rett’s syndrome (ReS) is a progressive
disorder of CNS development that predominantly affects
the female population in early childhood. After a period of
apparently normal development, the onset of developmental
stasis and rapid deterioration occurs at 6–18 months of age,
resulting in a complex neurological and neurobehavioural
phenotype with mild-to-moderate mental retardation and
severe dysfunction in motor coordination skills.127 ReS has
been related to loss-of-function mutations in the X-linked gene
encoding the methyl-CpG-binding protein (MeCP2) involved
in the regulation of epigenetic mechanisms of gene
expression.128 MeCP2 is a multi-functional protein having a
key function in transcriptional silencing and activation129 and in
the modulation of RNA splicing.130

Mice carrying conditional deletion or neuron-specific
expression of mutated MeCP2 forms provide a very good
model in which to examine behavioural and molecular
mechanisms of ReS.131,132 These transgenic mice exhibit
abnormalities in motor coordination, social interaction and
cognitive abilities, with hemizygous males displaying the most
severe phenotype.131–134 Electrophysiological studies from
MeCP2 transgenic mice reported reduced neuronal activity in
cortical135 and hippocampal136 neurons, suggesting that a
shift in the balance between inhibition and excitation could
be responsible for rapid motor, behavioural and cognitive
regression typical of ReS.137 MeCP2-deficient mice have
attenuated ability to express LTP in the hippocampus136,138

and in the motor and somatosensory cortex.138

Importantly, the gene encoding BDNF is under MeCP2
regulation,139 and the progression of symptoms in MeCP2-
deficient mice seems to be correlated with gradually decrea-
sing levels of circulating BDNF.140 Given that BDNF expression
depends on neuronal activity, the reduced neuronal excitability
caused by MeCP2 insufficiency could lead to a decreased
BDNF protein level.140 BDNF overexpression in MeCP2 mutant
mice is able to compensates the deficits at both the behavioural
and electrophysiological level.140 This implies that neurons
deficient in functional MeCP2 retain the capacity to recover
when appropriate neurotrophic signalling is re-established.
Similarly, motor coordination and cognitive deficits in MeCP2
mutant mice are also reversed by EE.141,142 The fundamental
mechanisms through which EE exerts its beneficial effects, that
is, increased trophic factor expression, decreased inhibition and
increased activity-dependent hystone acetylation,143 are all
involved in the pathogenesis of ReS, thus indicating a strong
rationale for the use of EE to treat ReS cognitive deficit.

Accordingly, BDNF is increased in the cerebellum of MeCP2
mutant mice exposed to EE141 and systemic infusion of IGF-I
partially reverts their ReS-like symptoms.144

Down’s syndrome. Down’s syndrome (DS) is caused by
triplication of chromosome 21 (Chr21) and is the most
diffused genetic cause of mental retardation. People with DS
have marked cognitive deficits, with reduced IQ and learning
and memory performances.145 During recent years, several
murine models of DS have been generated, carrying
triplications of different segments of Chr16, which has a
high degree of synteny with human Chr21.146,147 The most
intensively studied mouse model of DS is the Ts65Dn line,148

which summarizes the main hallmarks of the DS phenotype,
including characteristic craniofacial abnormalities, impaired
spatial and non-spatial learning abilities and attention
deficits.149–154 At the cellular level, Ts65Dn mice have
a reduced number of hippocampal and cerebellar
neurons,155,156 impaired neurogenesis in the dentate gyrus
of the hippocampus in both young and aged adults157,158 and
a prominent reduction in dendritic branching in several brain
regions, accompanied by alterations in spine size and
shape.159 It is noteworthy that DS is also associated with
reduced hippocampal neurogenesis160 and volume161 in
humans. Adult Ts65Dn mice show age-dependent
degeneration of basal forebrain cholinergic neurons
(BFCNs),162 the most characteristic neuropathological
correlate of the late cognitive decline observed in
Alzheimer’s disease (AD). Virtually all persons born with
DS develop AD if they live into their fourth decade of
life.163,164 There is evidence that degeneration of BFCNs in
Ts65Dn mice is related to a marked decrease in the NGF
retrograde transport from the hippocampus to the basal
forebrain.165,166 Intracerebroventricular NGF infusion
reverses BFCN morphological abnormalities, restoring the
deficit in cholinergic innervation.165 BDNF signalling in
Ts65Dn mice is also disrupted. In the frontal cortex, lower
levels of BDNF with respect to diploid animals are found and
negatively correlated with the progressive deterioration of
working memory performance.167

A major functional synaptic defect detectable in Ts65Dn
mice is the failure to induce LTP in the hippocampus.168–171

This deficit has been attributed to excessive inhibition,171 a
hypothesis recently confirmed by Fernandez et al.,172 which
showed that the spatial learning disabilities observed in
Ts65Dn mice are rescued by administration of non-competi-
tive antagonists of GABAA receptors. The impairment in
synaptic plasticity is linked to marked morphological changes
in the structure of synapses, with a selective enlargement of
the active zones of asymmetric synapses and increased
immunostaining for synaptic proteins marking inhibitory
synapses.173

Given that EE is particularly effective in reducing GABAergic
inhibition and in enhancing neurotrophin expression, it has
great potential for therapeutic application in the treatment of
DS. Martinez-Cué et al.174,175 reported increased exploratory
behaviour and enhanced spatial learning in EE Ts65Dn mice,
although the effect was gender specific. At the cellular level,
Ts65Dn mice raised in EE conditions have shown increased
dendritic branching in the frontal cortex.176 Despite these
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results, a thorough analysis of the EE effects on mouse
models of DS is still needed.

Alzheimer’s disease. Alzheimer’s disease is a neuro-
degenerative pathology leading to progressive memory loss
and severe cognitive decline. The disease is characterized
by two pathological hallmarks, mainly affecting the neocortex
and hippocampus, that is, senile plaques (extracellular
aggregates of b-amyloid derived from proteolysis of the
precursor protein APP operated by the BACE enzyme)
and neurofibrillary tangles (intraneuronal aggregations of
hyperphosphorylated forms of the microtubule-associated
protein tau).177,178 In addition, as mentioned before, AD is
invariantly associated with marked degeneration of
BFCNs.179 Most AD cases are sporadic and seem to result
from an interaction of multiple genetic and still unknown
environmental factors. However, there are also familial forms
of AD that are inherited in an autosomal dominant manner.
Three genes have been involved in familial AD: APP,
presenilin 1 (PS1) and presenilin 2 (PS2). The main
mutations at the levels of these genes have all been
targeted in transgenic mouse modelling studies. A genetic
risk factor for the sporadic form of AD has also been found in
the e4 polymorphism of the apolipoprotein E (APOE) gene.180

Levi et al.181 were the first to examine the effect of
differential rearing in a mouse model of AD, using transgenic
mice expressing the human APOE3 or APOE4 alleles.
Enriched mice transgenic for human APOE3 showed im-
proved learning and memory associated with higher hippo-
campal levels of presynaptic protein synaptophysin and of
NGF, whereas mice transgenic for human APOE4 were
unaffected by EE. EE has repeatedly been reported to
enhance performance in various cognitive tasks in trans-
genic mice carrying a double mutation at the level of both APP
and PS1 genes,182,183 in mice carrying the so-called Swedish
mutation (SweAPP),184–186 and in AD11 transgenic mice
expressing a recombinant anti-NGF factor antibody.187

The effect of EE on Ab levels and plaque deposition, as well
as their impact on cognitive improvement, is controversial.
Jankowsky et al.182,188 unexpectedly reported that EE APP/
PS1 transgenic mice develop a higher amyloid burden with
increases in aggregated and total Ab levels, particularly in the
hippocampus. Arendash et al.184 failed to observe any change
in Ab deposition in EE APP transgenic mice. In contrast,
Lazarov et al.189 reported a decrease in hippocampal and
cortical Ab levels and amyloid deposits in EE APP/PS1
transgenic animals compared with standard-housed controls.
In addition, the enzymatic activity of neprilysin, an
Ab-degrading endopeptidase, was found to be elevated in
the brain of EE mice.189 A reduction in brain b-amyloid
deposition after EE exposure has also been shown in APP,
TgCRND8 and AD11 transgenic mice.186,187,190,191 Some
studies have also investigated the effects of EE on neurogen-
esis in AD mouse models. Although conditional PS1 knockout
mice and mice overexpressing either wild-type human PS1 or
the mutant form P117L show a deficiency in EE-induced
neurogenesis,192–194 it has been recently reported that EE
promotes hippocampal neurogenesis in APP and TgCRND8
mice.185,191,195 Moreover, EE increases angiogenesis and

facilitates blood Ab clearance through a differential regulation
of Ab receptor/transporter molecules in TgCRND8 mice.196

Lazarov et al.189 carried out a microarray analysis to identify
gene expression changes in APP/PS1 transgenic mice placed
in EE conditions. This study revealed a total of 41 genes
differentially regulated in response to EE, with the vast
majority of genes that showed elevated expression encoding
polypeptides involved in learning and memory, synaptic
plasticity, neurogenesis, vasculogenesis, neuronal cell
growth and cell survival pathways (e.g., NGF-1A, BDNF;
CaMKIIa).189 It is particularly interesting that transthyretin, a
protein involved in Ab clearance, is upregulated in transgenic
mice raised with EE.183 A quantitative RT-PCR study further
confirmed that EE promotes the upregulation of trophic factor
expression (NT-3, BDNF, IGF-I and VEGF) in the hippocam-
pus of SweAPP mice.185 Finally, environmental stimulation
attenuates pro-oxidative processes and triggers anti-oxidative
defence mechanisms, as indicated by diminished biomarkers
for reactive oxygen and nitrogen species, downregulation of
proinflammatory and pro-oxidative mediators and upregula-
tion of superoxide dismutase 1 (SOD1) and SOD2.197

Although the mechanisms underlying the beneficial effects
of EE on mouse models of AD remain to be clarified in more
detail, these studies indicate that an enhanced environmental
stimulation may help in slowing down or preventing the
cognitive decline associated with AD.

Conclusions

Altogether, the findings reviewed here show how dramatic the
influence exerted by the environment can be on brain
plasticity. Studies using the EE paradigm have indicated a
number of molecular hotspots that might emerge as possible
ways of accession for a successful treatment of neuropatho-
logical conditions affecting the juvenile and adult CNS. An
open issue is the extent to which EE in animal models is
relevant for the human living experience. EE is a complex
paradigm, as an increased stimulation is provided at multiple
sensory, motor, cognitive and social levels. Although most
humans do experience a high degree of environmental
complexity and novelty, levels of cognitive, social and physical
stimulation vary greatly among individuals and in different
periods of life. Strong correlative and epidemiological
evidence shows that lifestyle, including occupation, leisure
activities and physical exercise, has a direct effect on the risk of
cognitive decline. Results indicate that a higher level and variety
of mental and physical activity is associated with a lower
cognitive decline and a reduced risk for dementia198–204. These
results encourage stronger efforts in the application of EE
paradigms, alone or in combination with pharmacological
treatments, for the therapy of neurological disorders.
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