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ABSTRACT

We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzakuobservations of the
X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with
NuSTAR, which enables us to study the reflection and broadband spectra in unprecedented detail. We confirm that
the iron line cannot be fit with a combination of narrow lines and absorption features, instead requiringa
relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use
the reflection models of García et al. to simultaneously measure the black hole spin, disk inner radius, and coronal
height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring,
indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low
source heightand rule out truncation to greater than three gravitational radii at the 3σ confidence level. In addition,
we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences
are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that
the blurring parameters are consistent when fitting either just the iron line or the entire broadband spectrum, which
is well modeled with a Comptonized continuum plus reflection model.

Key words: accretion, accretion disks – black hole physics – X-rays: binaries – X-rays: individual (Cygnus X-1)

1. INTRODUCTION

The hard state in X-ray binaries (XRBs) is characterized by a
spectrum with only weak thermal emission from the disk, a
hard Comptonized component, and reflection from the
accretion disk. It is generally agreed that the change between
soft and hard states must be due to a change in the geometry of
the accreting system, but there is still controversy over the
exact nature of the change. This disagreement hinges on
whether the accretion disk is significantly truncated in the hard
state. It is generally agreed that the disk is truncated at a radius
of ∼100 gravitational radii ( rG) as binaries go into quiescence
(e.g., Tomsick et al. 2009), but at what stage truncation begins
as the accretion rate drops remains uncertain. In the disk
truncation model (Esin et al. 1997), as the accretion rate drops,
the classical thin disk becomes unstable and is truncated. This
radius is typically greater than ∼10rG–20rG, and the inner disk
is replaced with a radiatively inefficient advection-dominated
accretion flow (Narayan & Yi 1994; Narayan 1996; Blandford
& Begelman 1999). This behavior has been invoked to explain
the transition from soft to hard states. However, some authors
claim instead that the disk extends to small radii in the hard
state while the accretion rate is higher than ∼1% of the
Eddington rate, as measured using the profile of the relativistic

iron line (e.g., Miller et al. 2006a, 2006b, 2015; Reis
et al. 2010).
There are two main ways of probing the inner edge of the

thin disk, both of which rely on measuring the relativistic
effects that occur close to the black hole. The first involves
modeling the relativistic blurring of the Fe Kα line emitted
when coronal X-rays are reflected from the inner accretion disk
(Fabian et al. 1989). This technique has been used extensively
to measure black hole spins, in both XRBs and active galactic
nuclei (AGNs; see review by Reynolds 2013). The second
method, known as continuum fitting, relies on the blackbody

spectrum of the disk itself (see review by McClintock
et al. 2014). There are difficulties with using either method
to look at XRBs in the hard state, as both reflection and disk
components are much weaker in this state than in the soft state.
In this work we will focus on modeling the iron line, as the disk
blackbody lies outside the energy range covered by NuSTAR.
The expected behavior of the reflection spectrum, if the disk
truncation model is correct, is for the iron K line to become
narrower as the disk truncates, since the relativistic blurring
becomes less extreme. While this is difficult to measure owing
to the relative weakness of the reflection component in the hard
state, truncation has been claimed in some sources at relatively
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high accretion rates (e.g., Plant et al. 2015). This also provides

a natural explanation for the lower reflection fraction in the

hard state, as far less of the Comptonized emission encounters

the thin disk if it is truncated, assuming a compact corona.
Further confusing the issue is the degeneracy between source

height and inner radius (Dauser et al. 2013; Fabian et al. 2014).
For simple coronal models where the source is compact and on-

axis (the “lamp-post” geometry; see Wilkins & Fabian 2012,

for discussion of more complex geometries), the narrow lines

predicted by truncation can instead be interpreted as an increase

in the distance between the source and the disk, which leads to

less extreme lightbending and more illumination of the

outer disk.
Cygnus X-1 (Cyg X-1) was the first confirmed black hole,

when its mass was determined to be too great for it to be a

neutron star (e.g., Bolton 1972; Tananbaum et al. 1972;

Webster & Murdin 1972; Gies & Bolton 1986). It was one of

the first X-ray sources discovered, using Geiger counters

aboard a sounding rocket (Bowyer et al. 1965), and has been

extensively studied since then. Several authors have investi-

gated the inner disk in the hard state in this source. Done &

Zycki (1999) used a combination of ASCA, EXOSAT, and

Ginga data to investigate the hard state, finding significant

relativistic blurring, consistent with a moderately truncated

disk. Young et al. (2001) use data from the same three

instruments and argue in favor of a non-truncated disk around a

Schwarzchild black hole. Frontera et al. (2001) compared the

soft and hard states using BeppoSAX data, finding inner radii of

<10rG for the soft state and r10 4
5
G-

+ in the hard state. Reis et al.

(2010) found an inner radius consistent with the innermost

stable circular orbit (ISCO) of a Schwarzchild black hole using

Suzaku data. Miller et al. (2012) found that the inner edge of

the accretion disk in Cyg X-1 was consistent with being located

at the ISCO using reflection modeling of 20

Suzaku observations of the hard state, and Fabian et al.

(2012a) found that the relativistic reflection required high

spin, fitting an average observation from the same data set.

Measurements of the spin of Cyg X-1 in the soft state using

continuum fitting and relativistic reflection have also returned

high spin values (Gou et al. 2011; Tomsick et al. 2014),
and the same has been found during transition (Duro
et al. 2011). Therefore, a systematic difference in the spin

measurement between states would be indicative of truncation

of the disk.
Here we present NuSTAR and Suzaku observations of Cyg

X-1 in the hard state. The soft state of Cyg X-1 was previously

observed with NuSTAR and Suzaku (Tomsick et al. 2014), but
this is the first time that the hard state of Cyg X-1 has been seen

with the groundbreaking sensitivity and bandpass of NuSTAR.

The launch of the NuSTARX-ray telescope (Harrison
et al. 2013) has revolutionized the study of the X-ray spectra

of XRBs, as NuSTARʼs high sensitivity, broad energy range,

and triggered readout allow for spectra of unprecedented

quality (Miller et al. 2013a, 2013b; Fürst et al. 2013, 2014;

Natalucci et al. 2014; Tendulkar et al. 2014). In this paper we

focus on modeling the broadband spectrum of the Cyg X-1

hard state. Timing and variability analysis will appear in future

work. In particular, we are interested in measuring the spin and

inner radius of the disk, so that we can establish whether the

disk is truncated, and if so, by how much.

2. OBSERVATIONS AND DATA REDUCTION

Cyg X-1 was observed for ∼35 ks with NuSTARand
∼107 ks with Suzaku. The details of all observations are given
in Table 1. In this section we separately describe the
observations and data reduction for each instrument.

2.1. NuSTAR

The NuSTARdata (ObsID 30001011007) for the two focal
plane modules (FPMs) were reduced using the latest versions
of the NuSTARdata analysis software (NuSTARDAS v1.4.1)
and CALDB (20140414). Cleaned event files were produced
using the NUPIPELINE routine, and spectral products with
NUPRODUCTS. We used a 150″ circular extraction region for
the source spectrumand a 100″ region for the background,
taken from an area of the detector not strongly contaminated by
source counts (i.e., the part of the field farthest awayfrom
Cyg X-1). The source flux is at least an order of magnitude
higher than that of the background over the whole band, so
variations in the background with position or off-axis angle will
not affect our results. We fit the NuSTAR data over the whole
energy range of 3–79 keV. The NuSTARspectra are binned to
oversample the spectral resolution by a factor of 3, and to a
minimum signal-to-noise ratio of 50 after background subtrac-
tion. At low energies in both detectors the oversampling
restriction dominates (below ∼20 keV), as the total number of
counts is extremely large (the FPMA spectrum alone contains
almost 5 million counts).

2.2. Suzaku

For Suzaku, we reduced the X-ray Imaging Spectrometer
(XIS; Koyama et al. 2007) data from ObsID 409049010 using
HEASOFT v6.16 and the 2014 July 1 version of the calibration
files. The XIS coverage began on 2014 May 20, 6.7 hr UT and
ended on 2014 May 22, 7.4 hr UT. Although there are normally
three operational XIS units, only XIS1 was on during this
observation owing to limitations on the available power during
the late stages of the mission. We produced two separate XIS1
event lists using aepipeline, one of the full observation and
one only including the first half of the observation (from the
start time given above to 2014 May 21, 9.1 hr UT),
corresponding to the time of the NuSTAR coverage. We ran
aeattcor2 and xiscoord to update the photon positions.
Owing to the brightness of Cyg X-1, XIS1 was operated in 1/4
window mode, which reduces pileup at the expense of reduced
exposure time, and used the 0.3 s burst option. Even with the

Table 1

Times, Exposures, and Count Rates for the Two NuSTARDetectors (FPMA
and FPMB) and Three Suzaku Detectors (XIS1, PIN, and GSO)

Instrument Start Time On-source Count Rate

(UT) Exposure (ks) (s−1)

FPMA 2014 May 20, 09 hr 34.4 205

FPMB 2014 May 20, 09 hr 35.3 189

XIS1 2014 May 20, 07 hr 12 134

PIN 2014 May 19, 07 hr 107 9.6

GSO 2014 May 19, 07 hr 107 8.4

Note. Exposure times are after filtering for background flares. Count rates are

for the energy bands used for spectral fitting: 3–79 keV for NuSTAR, 1.2–1.7

and 2.5–9 keV for XIS1,20–38 and 43–70 keV for the PIN,and 60–300 keV

for the GSO.
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window mode, we used pileest and found >4% pileup
within 1′ of the center of the point-spread function. For making
the XIS1 spectrum, we used an annular extraction region with
an inner radius of 1′ and an outer radius of 4′. After this region
is excluded, the photon-averaged pileup fraction is 1.6% and
the pixel-averaged fraction is 0.7%. A background spectrum
was taken from a rectangular region near the edge of the field
of view. A portion of the source extraction region includes
inactive regions of the detector, and we accounted for this by
adjusting the BACKSCAL keyword in the source spectral file.
After creating the source and background spectral files, we
used xisrmfgen and xissimarfgen to produce the
response matrix. In the spectral fitting, we included the
1.2–1.7 keV and 2.5–9.0 keV ranges. There are known
calibration uncertainties associated with the Si K-edge in the
1.7–2.1 keV band, and we extend the excluded range up to
2.5 keV because of the presence of narrow features potentially
due to calibration errors. We bin the spectra to oversample the
spectral resolution by a factor of 3, and to a minimum signal-to-
noise ratio of 30 after background subtraction. The over-
sampling restriction dominates below ∼8 keV, so the full
instrumental resolution is maintained over the iron line band.
We do not add any systematic error to the XIS data.

The hard X-ray detector (HXD; Takahashi et al. 2007)
consists of silicon PIN diodes covering an energy range of
12–70 keV and GSO scintillators covering an energy range of
40–600 keV. Cyg X-1 was observed at the XIS nominal
position, with a net HXD exposure of 107.0 ks, and detected up
to 400 keV by GSO. The HXD data were analyzed in the
standard manner using the perl script hxdpinxbpi and
hxdgsoxbpi for PIN and GSO, respectively. The modeled
non-X-ray background (NXB) was taken from public ftp
sites,15 and cosmic X-ray background was also subtracted
based on previous HEAO observations (Gruber et al. 1999) for
PIN. A 1% systematic error was added for each spectral bin. In
the spectral fitting, we used the energy responses: ae_hxd_-
pinxinome11_20110601.rsp for PIN and ae_hxd_gsoxi-
nom_20100524.rsp with an additional correction file
(ae_hxd_gsoxinom_crab_20100526.arf) for GSO. We fit
the PIN data from 20–70 keV, excluding lower energies to
avoid thermal noise and the 38–43 keV band to avoid a known
calibration feature, and the GSO data from 60–300 keV. We
extracted spectra for both HXD detectors corresponding to the
intervals simultaneous and non-simultaneous with the NuS-

TARexposure. We find no significant differences in the
spectral shape for either detector between the two intervals,
so we use the full exposures in all fits.

3. RESULTS

We split the spectral fitting into three sections: in Section 3.1
we fit simple continuum models to the broadband spectrum to
establish the presence and energy of the high-energy cutoff
without modeling the reflection spectrum; in Section 3.2 we fit
the iron line profile in detail, to measure the relativistic blurring
without complications from other regions of the spectrum; and
finally, in Section 3.3 we fit the full broadband spectrum,
including the reflection, to calculate our final best-fit model.
We use XSPEC (Arnaud 1996) version 12.8.2 a for all

fitting. All errors are quoted at 1 standard deviation unless
otherwise stated.

3.1. Broadband Continuum Fitting

To establish a baseline continuum model from which to
measure the reflection properties, we initially fit the
NuSTAR FPMA and FPMB and SuzakuXIS, PIN, and GSO
data simultaneously. For this section only, we include a 5%
systematic error to each spectral bin for all data sets, to ensure
that the model is being fit to the broadband spectrum rather
than being dominated by small but high signal-to-noise features
in the NuSTAR spectra. We stress that the χ2 values presented
in this section should therefore not be taken as absolute
indications of the fit quality, only relative—without the
systematic error, the reduced χ2 values are on the order of
35–40. In all fits we include interstellar absorption, modeled
with TBABS (using the abundances of Wilms et al. 2000), fixed
at the value of 6 × 1021 cm−2 from Tomsick et al. (2014). We
use only the simultaneous XIS1 for the broadband fits
(Sections 3.1 and 3.3), as this ensures a consistent power-law
index Γ between the XIS and FPM spectra. The full XIS1
spectrum gives a significantly different value of Γ, making it
much more difficult to simultaneously fit the XIS and
NuSTARspectra. We include a constant normalization offset
between the instruments, to allow for differences in flux
calibration.
In the left panel of Figure 1, we show the five spectra fit with

a Comptonization plus disk blackbody model (TBABS*(DISKBB
+COMPTT)), along with background spectra and residuals. Clear
reflection features are apparent in the spectrum, along with the
absorption line at ∼6.7 keV previously seen by Tomsick et al.
(2014) from the companion stellar wind. In the right panel, we
show the unfolded spectrum to this model, where it becomes
immediately apparent that there is a steep turnover at high
energies, just above the NuSTAR energy band. This turnover
has previously been observed with RXTE and Suzaku (e.g.,
Gilfanov et al. 2000; Wilms et al. 2006; Nowak
et al. 2011)and appears to be similar between observations.
The presence of this high-energy curvature, while not
immediately apparent in the NuSTAR data alone, must be taken
into account before the reflection spectrum can be accurately
modeled (Section 3.3). The model parameters for this fit are
given in Table 2, along with those for simpler power-law
models (with and without a cutoff). We find the best fit with
the COMPTT model, which we use as our initial continuum model
for the detailed spectral fitting in Section 3.3.
We also fit the more complex EQPAIR Comtponization model

to these data;however, with the fitting procedure outlined
above, this results in unphysical best-fit parameters, as the
model is complex enough to be partly able to fit the reflection
curvature as well as the continuum. We therefore defer
discussion of this model to the more detailed fitting in
Section 3.3.
The accuracy and reliability of the cutoff measurement

dependon the accuracy of the GSO background. From
∼100 keV upwardthe GSO spectrum is background domi-
nated, so small differences between the modeled and true
background can potentially have a large effect. The background
spectrum itself is completely dominated by the NXB, generated
by radioactive isotopes, cosmic rays, and albedo neutrons
(Kokubun et al. 2007). This background signal is significantly
time variable;however, it is well understood and can be

15
ftp://legacy.gsfc.nasa.gov/suzaku/data/background/pinnxb_ver2.2_tuned/

and ftp://legacy.gsfc.nasa.gov/suzaku/data/background/gsonxb_ver2.6/

3

The Astrophysical Journal, 808:9 (13pp), 2015 July 20 Parker et al.

ftp://legacy.gsfc.nasa.gov/suzaku/data/background/pinnxb_ver2.2_tuned/
ftp://legacy.gsfc.nasa.gov/suzaku/data/background/gsonxb_ver2.6/


accurately modeled and compared with the observed spectrum

during Earth occultations. The estimated systematic error on

the background spectrum is less than 1% for observations of

over 10 ks (Fukazawa et al. 2009), which we exceed by a factor
of 10. To test the systematic error this uncertainty introduces,

we assume a conservative 1% error in the normalization of the

GSO background, calculate background spectra scaled up or

down by this amount, and then re-fit the data using these
background spectra instead. This changes the cutoff energy by
±1.5 keV (comparable to the ±0.8 keV statistical error)but
makes no qualitative difference to the spectral shape.

3.2. Iron Line Fitting

To avoid possible confusing effects from other spectral
features, we fit the XIS and NuSTARspectra over the iron line
band (4–10 keV) alone. For this section we use the full XIS
exposure, rather than just the strictly simultaneous data, as
changes in the continuum shape are less critical when fitting a
limited energy range, and we want to maximize the signal
around the iron line. There is a slight difference in the photon
index measured by Suzakuand NuSTARwhen using the full
data set, which is due to spectral variability (the simultaneous
Suzakuand NuSTARdata agree well, and the two Suzaku
spectra from simultaneous and non-simultaneous intervals
show the same difference). We therefore allow the index to
change between the two, though this is a small effect
(∼2%)and will not affect our results or conclusions.
In Figure 2 we show the iron line profile from 4 to10 keV,

fit with several different models. In the top panel we show the
total profile, fit with a power law (including interstellar
absorption). The line profile is clearly broad, extending from
∼5 to8 keV, with an absorption feature at around 6.7 keV.
There is a generally very good agreement between the XIS and
FPM spectra, although there is a difference in flux between the
two above ∼8 keV, which holds whether we use the full XIS
spectrum or just the simultaneous data, implying that it is due
to calibration differences. There are known calibration issues
with XIS1 spectra above ∼8 keV, stemming from variable
background contamination from cosmic-ray photons (Ishida
et al. 2011), making the background level uncertain. As
NuSTARis likely to have better calibration at high energies and
dominates the signal in the combined spectrum, this disagree-
ment should not significantly affect our results. We next fit a

Figure 1. Left: source and background (shaded regions) spectra from the five detectors, fit with a Comptonization model (COMPTT; Titarchuk 1994), and residuals to
the fit. A constant offset is allowed between the data sets to account for flux calibration differences. Right: same five spectra, shown unfolded against the model,
showing the sharp high-energy turnover. XIS1 data are rebinned slightly in XSPEC for clarity.

Table 2

Fit Parameters for the Continuum Models

Parameter Value Unit/Description

POWERLAW

Γ 1.702 ± 0.003 Photon index

Tdisk 0.43 ± 0.01 Disk temperature (keV)

χ2/dof 1973/948 L

CUTOFFPL

Γ 1.568 ± 0.005 Photon index

Ecut 156 ± 3 High-energy cutoff (keV)

Tdisk 0.53 ± 0.01 Disk temperature (keV)

χ2/dof 941/947 L

COMPTT

Tplasma 43.4 ± 0.8 Plasma temperature (keV)

Tdisk 0.448 ± 0.007 Disk temperature (keV)

τ 1.27 ± 0.03 Optical depth

χ2/dof 863/947 L

Cross-normalization Constants

CFPMA 1 L

CFPMB 1.015 ± 0.004 L

CXIS1 0.948 ± 0.006 L

CPIN 1.31 ± 0.01 L

CGSO 1.16 ± 0.02 L

Note. We include 5% systematic error on all continuum-only fits, so χ2 values

do not indicate absolute goodness of the fits. Cross-calibration constants are

given for the best-fit model.
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series of models to the line profile, shown in the remaining
panels of Figure 2, and the model parameters are shown in
Table 3. Before fitting a blurred reflection spectrum, we test
simpler models to check whether the line profile can be
explained as a combination of narrow features and absorption,
as the Cyg X-1 binary system is known to have a strong stellar
wind that can produce these effects (Marshall et al. 2001;
Schulz et al. 2002; Miller et al. 2005). We first fit a simple
model consisting of a power law plus two narrow emission
lines (POWERLAW+GAUSS+GAUSS), but this model leaves a
strong, broad excess from 5 to6 keV. Modeling the line with

ionized, but not blurred, reflection (using XILLVER;16 García

et al. 2013) fares no better, even when we include absorption

from the wind using the same XSTAR (Kallman & Bautista 2001)
grid as Tomsick et al. (2014).
The exceptional quality of the combined spectrum makes it

clear that only a relativistically blurred iron line can explain the

observed line profile. The broad excess remaining from 5

to6 keV after fitting the two-Gaussian model must be due to

Figure 2. Data-to-model ratios for the FPMA andFPMB 4–10 keV spectra and
XIS1 4–9 keV spectrum. In all cases we include interstellar absorption.
Numbers in parentheses correspond to model numbers in Table 3.

Table 3

Fit Parameters for the Model Fits to the Iron Line Band (4–10 keV)

Model Parameter Value Units

1 Γ 1.85 L

χ2/dof 4311/256 L

2 Γ 1.85 L

E1 6.34 keV

W1 33 eV

E2 7.06 keV

W2 20 eV

χ2/dof 1574/251 L

3 Γ 1.87 L

AFe 1.01 L

logξref 1.67 log(erg cm s−1)

θ 68.1 degrees

χ2/dof 1694/251 L

4 NH 6.3 × 1021 cm−2

logξabs 3.29 log(erg cm s−1)

Γ 1.88 L

AFe 1.01 L

logξref 1.67 log(erg cm s−1)

θ 68.1 degrees

χ2/dof 1395/249 L

5 nH 1.47 100.17
0.08 22´-

+ cm−2

logξabs 4.85 ± 0.02 log(erg cm s−1)

h <1.21 rISCO
a >0.84 L

rIN 1.11 ± 0.01 rISCO
Γ 1.926 0.006

0.001
-
+

L

AFe <0.55

logξref 2.768 ± 0.003 log(erg cm s−1)

θ 47.8 ± 0.3 degrees

R 0.809 ± 0.01 L

EGauss 6.43 ± 0.01 keV

WGauss 12 ± 1 eV

χ2/dof 294/249 L

Cross-normalization constants

CFPMA 1 L

CFPMB 1.0157 ± 0.0007 L

CXIS1 1.148 ± 0.008 L

Note. Model 1 is a pure power-law model, model 2 includes two narrow

Gaussian lines, model 3 replaces the lines with the XILLVER reflection model,

model 4 includes an ionized absorber, modeled with an XSTARgrid, and model

5 is the full relativistic reflection model (see the text for a description). All

models include interstellar absorption. Errors are only quoted when 22c <n .

We give the cross-calibration constants for the best-fit model.

16
We note that XILLVER version 0.2 d contains a bug affecting models with

cutoff energies >300 keV, which affects both XILLVER and RELXILL (J. Garcia &
T. Dauser 2015, private communication). This is not a problem for this work,
as all of our models have cutoff energies ⩽300 keV.
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blurred reflection, as there are no strong atomic lines in this

band. We fit the relativistic reflection spectrum with the

RELXILLLP model (García et al. 2014), which self-consistently

calculates the reflected emission as a function of inclination for

an on-axis point source above the disk. Relative to models that

assume a broken power-law emissivity profile, this has the

advantage of parameterizing the profile in terms of a physical

quantity, reducing the number of parameters needed to describe

the profile from 3 to 1, and restricting the profile to regions of

parameter space that make physical sense. In addition to the

broad line, we find a weak narrow emission feature at 6.4 keV,

which we model with a narrow Gaussian line (see bottom two

panels). This feature is only obvious in the full XIS spectrum

but corresponds to an excess in the NuSTARspectrum as

welland results in a highly significant improvement in the

fit statistic Δχ2 = 56 for 2 additional degrees of freedom (dof).
The iron line in Cyg X-1 was shown to be a composite of

broad and narrow lines using the ChandraHETGS by Miller

et al. (2002). The best-fit model parameters are shown in

Table 3.
In Figure 3 we show Δχ2 contours from fitting the iron line

profile for the spin (a), source height (h), and inner radius (rIN)
model parameters. All three are strongly constrained to values

indicating strongly blurred emission from the innermost

regions of the accretion disk. Even if we assume the 3σ limits

on a and rIN (0.8rISCO and 2rISCO), this gives an inner radius of

only ∼6rG, which argues strongly against significant disk

truncation.
We check for degeneracy between parameters by using a

Markov chain Monte Carlo (MCMC) algorithm to explore the

parameter space.17 We use 50 walkers with 15,000 iterations

each, burning the first 5000. The walkers are initially

distributed around the best-fit value found by XSPEC, following

a normal distribution in each parameter, with the standard

deviation set to the delta value of that parameter (we ensure

that the delta values are all smaller than the uncertainties on

each parameter). We check that the autocorrelation time is at

least 100 times smaller than the chain length for all parameters,

and we “jackknife” the chains (comparing the distributions

from the first and second halves of the chain) to check that

there are no large systematic differences between the
distributions.
We calculate the distributions of all parameters (Figure 4)18

and find significant degeneracies in only two cases. The
truncation radius of the disk is degenerate with the spin, as
expected as both parameters control the effective inner radius.
While these parameters cannot therefore be independently
constrained, this remains a very strong limit on the truncation
of the inner disk. If we take the 3σ limits of the distribution, at
no point does the inner radius exceed 3rG, so this strongly
requires the disk not to be truncated.19

Additionally, the reflection fraction and iron abundance are
degenerate. This is also expected since we are only fitting the
iron line band, so a true constraint on either value is hard to
achieve—within this limited energy range, the main effect of
both of these parameters is to alter the strength of the iron line.
This goes some way toward explaining the subsolar iron
abundance we find, which is unlikely to be correct as the iron
abundance in Cyg-X-1 is generally thought to be supersolar
(Hanke et al. 2009; Duro et al. 2011; Fabian et al. 2012b;
Tomsick et al. 2014). We note that there is a slight discrepancy
between the STEPPAR and MCMC contours—for example, the
3σ limit on a is lower when calculated using STEPPAR. This
difference can be explained by the limited accuracy possible
with STEPPAR—while both methods agree on the requirement for
high spin, the best fit found by STEPPAR has a χ2 value of 298,
compared to the solution with 294 found by the MCMC
analysis. In addition, the power-law index and ionization
parameter ξref are degenerate, although this covers only a very
small range in logξref.
To investigate the iron abundance further, we re-fit the data

with the abundance fixed at 2, as found by Tomsick et al.
(2014). This worsens the fit significantly (Δχ2 = 15 for 1
fewer dof);however, it introduces only minor differences in
the other parameters (all of the relativistic blurring parameters
are consistent within errors). The only parameter to change
significantly is the reflection fraction, which decreases from
0.81 ± 0.01 to 0.34 ± 0.01. Because of the lack of change in
other parameters and absence of significant residual features, it
seems likely that the constraint on the iron abundance is being

Figure 3. Left: χ2 contour plot for the inner radius of the accretion disk, in units of the ISCO. Middle: χ2 contour plot for black hole spin parameter. Right: contour
plot for the height of the emitting source above the disk plane, in units of the ISCO radius. All plots are calculated using the STEPPAR function in XSPEC.

17
We use the XSPEC_ EMCEE code by Jeremy Sanders, based on the EMCEE

python implementation (Foreman-Mackey et al. 2013) of the Goodman–Weare
affine-invariant MCMC ensemble sampler (Goodman & Weare 2010).

18
This plot and the plot in Figure 7 are produced using the TRIANGLE.PY python

module (Foreman-Mackey et al. 2014).
19

This differs from the 6rG previously quoted because that estimate did not
take into account parameter degeneracies.
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driven by random statistical fluctuations in the data or a minor

feature of the reflection model.
In the top panel of Figure 5 we show a comparison of the

iron line profiles from the soft and hard states. We use the soft-

state observations 30001011002 and 30001011003, which

were presented by Tomsick et al. (2014)and were taken at a

similar orbital phase (0.845–0.962 in Tomsick et al. compared

to 0.902–0.104 in this work, so the absorption should be

similar). We plot the combined FPMA and FPMB spectrum

from both observations. These data are reduced and extracted

as in Tomsick et al. (2014). We fit both spectra with simple

continuum models over the 3–4 keV and 8–10 keV bands. For

the hard state, we use a power law, and in the soft state a power

law plus disk blackbody, with the temperature fixed at the best-

fit value from Tomsick et al. (2014). We then scaled the

residuals of the hard state by a factor of 3 so that the amplitudes

of the two lines are comparable. It is immediately apparent

from the residuals that there are no significant qualitative

changes to the red wing of the line, which is the part of the line
profile that should be most affected by truncation of the disk. In
both cases, the line extends to below ∼5 keV. The ∼6.7 keV
absorption feature appears to be consistent between the two,
with the spectral changes concentrated on the blue side of the
line. In the bottom panel we show the same profiles, but after
correcting for the absorption from the companion wind (using
the absorption parameters from model 5). This makes the
6.4 keV excess from the narrow line in the hard state more
obviousand demonstrates more clearly the lower energy of the
peak in the hard state.

3.3. Full Spectrum Fits

We now fit all five spectra (XIS, FPMA, FPMB, PIN, and
GSO) simultaneously over the full energy range, modeling
both the continuum and reflection components. We allow for a
constant normalization offset to account for flux calibration

Figure 4. Output distributions from the MCMC analysis of the best-fit model of the iron line profile. Contours correspond to 1σ, 2σ,and 3σ. Points are shown where
the density of points drops beyond the 3σ limit. They-axes for the histograms are in arbitrary units. Only two of the contour plots show strong degeneracy: a and rin
are degenerate, as are the iron abundance and reflection fraction. Negative values for rin and h correspond to units of rISCO, following the convention from RELXILL.
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differences between the spectra. As in Section 3.1, we use only
the XIS1 data that were taken simultaneously with NuSTAR.

We initially fit the full spectrum with a combination of the
models for the continuum (COMPTT + DISKBB; Section 3.1) and
line profile (RELXILL + GAUSS; Section 3.2). The full model is,
including absorption, TBABS * XSTAR * (DISKBB + COMPTT +
RELXILLP + GAUSS). As the RELXILL models assume a cutoff
power law as the illuminating spectrum, we fix the cutoff of the
reflection spectrum to three times the plasma temperature of the
Comptonization component (i.e., the peak of the Wien law in
energy flux), which is approximately the cutoff energy that
would be measured with a power-law model. This model does
not result in a formally acceptable fit—we find no solutions

with 22c <n . It is not clear why this model does not work, as it
results in significant residuals over the full energy band. We
conclude that it is likely due to subtle spectral curvature that
cannot be accounted for by the simple continuum model used.
We test adding a partial-covering ionized absorption zone as a
potential explanation for the curvature, and we find that while it
significantly improves the fit (Δχ2

∼ 500, for 3 additional dof),
the fit is still not acceptable ( 1669 839 1.992c = =n ).

Next, we fit the more sophisticated EQPAIR model
(Coppi 1999). EQPAIR calculates the Comptonized spectrum
for a combined population of thermal and nonthermal
electrons. EQPAIR was used extensively to model the broadband
spectrum of Cyg X-1 by Nowak et al. (2011), who found that it
could account for the spectral shape well. As in Nowak et al.,
we assume the default distribution of nonthermal electrons: a
density following a power law γ−2 between γmin = 1.3 and
γmax = 1000, where γ is the Lorentz factor. While this model
can also calculate the reflection spectrum as of version 1.10, we

set the flux of this component to zero and continue to use
RELXILLLP for our reflection model. This is done for two reasons:
first to maintain consistency with the other models and the fits
in Section 3.2, and second because the RELXILL models are more
sophisticated and include more atomic physics than the IREFLCT

model used by EQPAIR. We fix the cutoff of the illuminating
spectrum of the reflection model to 100 keV, as there is no
parameter to tie it to in the EQPAIR model, and it is very hard to
constrain independently. We choose 100 keV as it corresponds
to the peak of the spectrum shown in Figure 1and is in the
range of 2–3 times the plasma temperature (Table 2) expected
for a power-law approximation to a Comptonization spectrum.
While this is not an exact value, the systematic error introduced
is unlikely to be large, comparable to that introduced by the
reflection model assuming a power law as the input spectrum.
Following Nowak et al. (2011), we include an un-Comptonized
blackbody, as well as the Comptonized one included in the
EQPAIR model. This model can better account for the subtle
spectral curvatureand results in a much better fit to the
broadband spectrum (χ2 = 1219/919 = 1.33). The data, model,
and residuals are shown in Figure 6, and the parameters are
given in Table 4.
We note that in the best-fit model almost all the blackbody

flux is outside the range covered by the regions of the XIS1
spectrum that we fit. It is therefore likely that the temperature is
being affected more strongly by the EQPAIR continuum
component than the blackbody itself. The measured tempera-
ture, while consistent with the hard state in Cyg X-1
(Balucinska-Church et al. 1995; Di Salvo et al. 2001), should
therefore be treated with a degree of caution.
We show the confidence contours for the reflection spectrum

in Figure 7. As in Section 3.2, these are calculated using
MCMC chains. As we are exploring a larger parameter space,
we increase the number of walkers to 100and the chain length
to 20,000. The results are very similar to those found from
fitting the line profile alone—the blurring parameters are
strongly constrained to produce a high level of blurring, with a
small inner radius, low source height, and high spin. Again, the
spin and inner radius are highly degeneratebut are inconsistent
with a large degree of disk truncation, with rin < 3rG in all
cases.
The EQPAIR continuum model includes a Comptonization of a

population of nonthermal electrons. We test whether a hybrid
electron population is important to the fit by fixing the
compactness of nonthermal electrons, lnt, to zero. We find a
significantly worse fit with this model (Δχ2 = 222, for 1
additional dof), which indicates that nonthermal scattering is
important in the continuum modeling.

4. DISCUSSION

As found by Tomsick et al. (2014), the inclination values we
measure based on the reflection spectrum are not consistent
with the binary inclination of 27.1° ± 0.8° from Orosz et al.
(2011), based on optical measurements. Tomsick et al. use a
selection of models and find inclinations in the range 42°–69°.
Progressing from the recent work of Tomsick et al., we are
using the latest reflection models that self-consistently calculate
the reflection spectrum and relativistic blurring as a function of
angle (García et al. 2014), but we nevertheless find a similarly
high inclination of 45.3° ± 0.4° from our best-fit broadband
model. Tomsick et al. discuss the high ionization value found
in the soft state as a possible cause of higher inclinations,

Figure 5. Top: comparison of the NuSTARiron line profiles of Cyg X-1 in the
hard and soft states, with observations taken at approximately the same orbital
phase. The hard-state profile is scaled to approximately match the flux of the
soft-state line at 6 keV. Bottom: same as the top panel, but after correcting for
the ∼6.7 keV absorption line using the parameters from the best-fit models in
Tomsick et al. (2014) and this work.
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owing to additional Compton broadening of the line not
accounted for by the model. This is unlikely to be the same in
the hard state, which we find has ∼20 times lower ionization
than the soft state, so we would expect significantly less
broadening and a correspondingly lower inclination value.
Including the expected broadening

E

kT

m c

2
(1)

BB

e
2

1 2
s æ

è
çççç

ö

ø
÷÷÷÷÷



for a given disk temperature TBB and energy E (Pozdnyakov
et al. 1983)does not significantly affect either the quality of the
fitor the inclination. As a high inclination value has now been

found with NuSTARin two observations with different

reflection models and in different states, this rules out a range

of systematic effects, making it more likely that there is a real

physical effect behind this measurement. The receding jet in

Cyg X-1 has not been detected (Stirling et al. 2001), which
points to a small inclination angle;however, the jet angle,

which would offer an independent constraint, is not strongly

constrained. It is possible that the differences between the

binary inclination and our inclination are due to precession of

the disk or a warp in the disk. A strong modulation with a

period of 142 ± 7 days is identified as the effect of precession

by Brocksopp et al. (1999), with an angle of up to 37° between
the binary plane and the disk. This would easily enough explain

the observed discrepancy;however, there are uncertainties in

the precession measurement (Zdziarski et al. 2011), and if this

is the case, we would expect the measured inclination to change

with this period, which has not so far been observed.

Additionally, this period has only been observed in the hard

state and so may not be able to explain the soft-state result. A

potential problem with a warped disk is that thick disks are not

expected to align (Ivanov & Illarionov 1997; Fragile 2009), so
this may not be possible, depending on the state of the

accretion flow.

We find some minor differences in the results when we fit
the Fe Kα line alone compared to when we fit the full
spectrum. The Γ value found for the reflection component in
the broadband model, where it is independent of the continuum
(Section 3.3), is significantly lower than that found when fitting
a power law to the low-energy continuum (Section 3.2),
although this does not appear to impact the other reflection
parameters. If, as has been suggested elsewhere (Fabian
et al. 2014), the continuum spectrum seen by the disk differs
from that seen by an external observer, then tying the Γ values
of the reflection and continuum components may not be
appropriate (this has also been observed in GX 339–4 by Fuerst
et al. 2015). Additionally, we find a large difference in the iron
abundance between the two fits, with the line fit returning a
very low abundance (<0.51 solar) and the broadband fit giving
a supersolar value (4.7± 0.1). The estimate from the line
profile fit cannot be treated as reliable, as a measurement of the
iron abundance requires additional reflection features to
establish the relative strength of the iron line. The result from
the broadband fit is more plausiblebut could still be affected by
systematic effects such as the assumed density of the disk.20

We note additionally that neither of the iron abundances found
in this work is consistent with the value from Tomsick et al.
(2014). This difference cannot be due to changes in the iron
abundance of Cyg X-1and must therefore be due to systematic
effects unaccounted for by the modeling.
The strength of the relativistic blurring in the hard-state

spectrum argues strongly against the disk being truncated. The
line profile is not significantly narrower in the hard state
compared to the soft state, and our best-fitting models exclude
an inner disk radius larger than 3rG at 3σ, which does not allow
for significant truncation in the switch from soft to hard states.
This holds whether we fit the whole spectrumor restrict our fits
to the line profile. A similarly constant line profile was found

Figure 6. Left: the upper panel shows the broadband spectrum and best-fit EQPAIR model; the lower panel shows the ratio of the data to the model. Shaded regions
show the background spectra for each instrument. Right: best-fit model, showing the different model components.

20
Changes in the density can potentially alter the strength of the iron line

relative to the soft excess and Compton hump without otherwise changing the
shape of the line profile. A discussion of this and other density effects will be
presented in future work (A. C. Fabian et al. 2015, in preparation).
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by Reis et al. (2011) in XTE J1752-223, where the shape of the
line profile was not significantly affected by the state transition.
The main difference between the hard and soft line profiles
appears to be attributable to changes in the ionization parameter
of the underlying reflection spectrum, rather than the extent of
the relativistic blurring. The blurring parameters we find in this
work are generally consistent with those found by Tomsick
et al. (2014), but the ionization parameter differs by an order of
magnitude and can strongly affect the shape of the line profile,
extending it to higher energies (e.g., Ross & Fabian 2005). If
the disk is not truncated, another explanation for the lower
reflection fraction in the hard state is needed: the ratio of
reflected to continuum fluxes in the 20–40 keV band is 0.16
from our best-fitting modeland 0.52 for model 7 from Tomsick

et al. (2014). Potential explanations include outflowing
material (Beloborodov 1999; Miller et al. 2012) or increased
Comptonization of the reflected emission by the corona
(Wilkins & Gallo 2015). We find some changes in the shape
of the iron line profile between the soft and hard states,
although we do not make a detailed comparison. These
differences are largely on the higher-energy side of the line—
the red wings of the two line profiles overlap very closely when
the hard-state residuals are scaled to match those of the soft
state. A more detailed investigation of the changes between the
states will be presented in future work.
Measuring the spin or inner radius of XRBs in the hard state

is significantly harder than in the soft state owing to the
reduced flux and lower reflection fraction. For this reason there
are relatively few estimates of these parameters to compare our
results to, and no strong consensus on true values. Our result
(a > 0.97) is consistent with recent measurements of the spin in
the hard state by Miller et al. (2012) (0.6 < a < 0.99) and

Fabian et al. (2012b) (0.97 0.02
0.014

-
+ ). Previous works on the hard

state have been unable to simultaneously measure the spin and
inner radius, instead using one as a proxy for the other, owing
to the strong degeneracies and limited spectral quality
available. Our new measurement thus represents a significant
step forward in understanding the behavior of Cyg X-1 in the
hard state, made possible by high-quality NuSTAR spectra and
the latest generation of reflection models. These spin values are
also consistent with the near maximal values found in the soft
state, where the line profile is clearer and the spin can be
independently measured using the continuum fitting method
(Gou et al. 2011, 2014; Tomsick et al. 2014).
We use the RELXILLLP relativistic reflection model throughout

this work. Unlike other such models, RELXILLLP explicitly
assumes a particular geometry—that of an on-axis point source.
In reality, the corona will have some radial and vertical extent,
so eventually this assumption will break down. However, this
should not affect the results presented here, as the strength of
the relativistic blurring is very high. The combination of high
spin, low source height, and small inner disk radius all point
toward a compact source, close to the event horizon. Under
these circumstances the point-source assumption is valid
beyond the limits of current instrumentation. Introducing either
a large radial or vertical extent to the source would flatten the
emissivity profile (Wilkins & Fabian 2012; Dauser et al. 2013),
reduce the level of blurring, and worsenthe fit. One possibility
for an alternative geometry that retains the high level of
blurring would be to introduce an outflowing vertically
extended corona, where the continuum emission comes from
large height regions and the reflection spectrum is produced by
the emission from the base of the corona. However, this is a
complex geometry to model, making it hard to implement and
beyond the scope of this work. In any case, the requirements
for high spin and small inner disk radius would have to be
retained in any such model;otherwise, the broad line could not
be produced.
The weak narrow line detected in the NuSTARand XIS1

spectra has been detected previously in the hard state with
Chandra (Miller et al. 2002)but was not detected in the soft
state either byChandra (Feng et al. 2003) or in the combined
NuSTARand Suzakusoft-state observation (Tomsick et al.
2014). This difference is most likely due to the lower flux level
in the hard state and the smaller contribution from relativistic
reflection, which is typically much stronger in the soft state.

Table 4

Fit Parameters and Normalization Constants for the Best-fit Broadband Model

Parameter Value Units

Interstellar absorption (TBABS)

NH (5.1 ± 0.1) × 1021 cm−2

Wind absorption (XSTAR)

NH (1.35 ± 0.07) × 1022 cm−2

log(ξabs) 4.81 ± 0.02 log(erg cm s−1)

Disk blackbody (DISKBB)

TBB 0.104 0.004
0.016

-
+ keV

Comptonization (EQPAIR)

lh/ls 0.75 0.08
0.06

-
+

L

lnt/lh 0.060 0.010
0.003

-
+

L

τ 0.46 ± 0.01 L

Narrow line (GAUSS)

EGauss 6.40 ± 0.01 keV

WGauss 10 ± 1 eV

Reflection (RELXILLLP)

h <1.56 rISCO
a >0.97 L

rin 1.5 ± 0.3 rISCO
θ 45.3 ± 0.4 degrees

Γ 1.60 ± 0.02 L

log(ξref) 3.03 ± 0.01 log(erg cm s−1)

AFe 4.7 ± 0.1 L

R 0.16 L

Cross-normalization constants

CFPMA 1 L

CFPMB 1.0163 ± 0.0005 L

CXIS1 0.923 ± 0.002 L

CPIN 1.295 ± 0.003 L

CGSO 1.192 ± 0.005 L

Fluxes

2–10 keV (XIS1) 7.57 × 10−9 erg cm−2 s−1

2–10 keV (FPMA) 6.35 × 10−9 erg cm−2 s−1

10–50 keV (FPMA) 1.04 × 10−8 erg cm−2 s−1

L LX,0.1 200 Edd-- (FPMA) 0.0250 L

Note. lh, ls, and lnt refer to the hard, soft, and nonthermal compactnesses,

respectively. The X-ray luminosity is absorption corrected;however,the fluxes

are not. We assume the distance of 1.86 kpc from Reid et al. (2011) and mass

of 14.8 Me from Orosz et al. (2011). The reflection fraction r is calculated

from the ratio of model fluxes, rather than the model parameter;hence, no error

is calculated.
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The equivalent width of the line we find, 10 ± 1 eV, is lower

than that found by Miller et al. (2002), 16 2
3

-
+ eV, but not

by a great deal. This could indicate changes in the outer disk
or stellar wind, where some of the line flux is thought to
originate, or could be due to systematic effects introduced
by the different levels of absorption in the observations—the
Chandra spectrum was taken when there was very little
absorption by the stellar wind.

Simple phenomenological cutoff power-law models for the
continuum spectrum of Cyg X-1 fail to properly reproduce the
sharp high-energy cutoff observed. This is a known problem
with these models (e.g., Zdziarski et al. 2003), as the turnover
predicted by Comtonization can be significantly steeperthan an
exponential. We find that a simple disk blackbody, thermal
Comptonization, and reflection model cannot adequately
describe the broadband spectrum of the source. There are
several potential explanations for this, which cannot be easily
differentiated. The Comptonization model used may not be

suitable for fitting the spectrum (COMPTT is only an analytical
approximation of thermal Comptonization; Titarchuk 1994).
We find a significantly improved fit using the more complex
EQPAIR model, which includes both thermal and nonthermal
Comptonization. Alternatively, the additional curvature may be
due to deficiencies in the reflection modeling. The RELXILLLP

model used here is calculated for a density of 1015 cm−3, which
is closer to the expected density of an AGN accretion disk than
that of an XRB. Differences in the density of the reflecting
medium are unlikely to make a difference to the parameters
returned for the relativistic blurring of the iron linebut can
cause subtle changes to the broadband reflection spectrum
(A. C. Fabian et al. 2015, in preparation).
We find that the same best-fit EQPAIR model gives a

significantly worse fit to the data when we exclude nonthermal
electrons. This, combined with the failure of the COMPTT model,
demonstrates that thermal Comptonization alone cannot
describe the continuum of Cyg X-1 in the hard state. This

Figure 7. Output distributions from the MCMC analysis of the best-fit model of the broadband spectrum of Cyg X-1. Contours correspond to 1σ, 2σ, and 3σ. Points
are shown where the density of points drops beyond the 3σ limit. They-axes for the histograms are in arbitrary units. Negative values for rin and h correspond to units
of rISCO, following the convention from RELXILL.
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leaves two possibilities—a combination of thermal and
nonthermal Comptonization as in our fit model, or a jet-based
model (Markoff et al. 2005; Maitra et al. 2009). Although we
do not test jet descriptions here, we demonstrate that the high-
quality broadband observations of XRBs now possible with
NuSTARcan distinguish between different continuum models.
This is a promising avenue for further research. If the
Comptonization interpretation is correct, this may provide a
possible explanation for the difference in the measured
continuum spectrum and that inferred from the reflection
spectrum. The reflected emission could potentially be produced
primarily from one population only, leading to the observed
difference.

5. CONCLUSIONS

The NuSTARand Suzakuspectra of the hard state in Cyg
X-1 have resulted in a broadband spectrum of exceptional
quality, which enables weak reflection features to be measured
more precisely than ever before. Our main conclusions are
summarized below.

1. The broadband spectrum of Cyg X-1 shows a very steep
cutoff above ∼100 keV, detected with the GSO, corre-
sponding to a plasma temperature of 43.4 ± 0.8 keV.
This cutoff is not apparent in the NuSTAR spectrum alone
and is worth considering in other NuSTARspectra of
hard-state binaries, where simultaneous GSO data may
not be available to measure the cutoff energy.

2. Fitting the iron line energy band alone (from 4
to10 keV), we find that the line cannot be modeled with
a combination of narrow lines and ionized absorption,
and that a relativistic line profile is needed. In addition,
we find that a weak narrow line is needed to fully
describe the profile.

3. When we carefully model the relativistic blurring of the
iron line, we find that it requires a high degree of
smearing, with a high spin (a > 0.97) and small inner
radius (rin < 1.7rISCO), as well as a low source height
(h < 1.56rISCO). This rules out significant truncation of
the disk at the transition to the hard state. While the disk
remains close to the ISCO in the bright part of the hard
state, disk truncation at much lower Eddington fractions
remains possible.

4. A simple comparison of the line profiles from the soft and
hard states shows that the line has not become
significantly narrower. While the high-energy side of
the line appears to drop earlier in the hard state, the red
wing extends to similarly low energies, and the
differences can be attributed to differences in the
ionization of the disk.

5. We confirm the high level of blurring with fits to the full
spectrum, simultaneously modeling the continuum and
reflection spectra. After running extensive MCMC chains
to explore the parameter space, we do not find any
solutions with rin > 3rG at the 3σ confidence level.

6. We find that thermal Comptonization models (COMPTT

and EQPAIR without nonthermal electrons) cannot ade-
quately describe the continuum. Instead, a hybrid model
is required for Comptonization to fit the data.
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