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Abstract

We report a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of a solar microflare, SOL2015-09-
01T04. Although it was too faint to be observed by the GOES X-ray Sensor, we estimate the event to be an A0.1
class flare in brightness. This microflare, with only ∼5 counts s−1 detector−1 observed by the Reuven Ramaty High
Energy Solar Spectroscopic Imager (RHESSI), is fainter than any hard X-ray (HXR) flare in the existing literature.
The microflare occurred during a solar pointing by the highly sensitive NuSTAR astrophysical observatory, which
used its direct focusing optics to produce detailed HXR microflare spectra and images. The microflare exhibits
HXR properties commonly observed in larger flares, including a fast rise and more gradual decay, earlier peak time
with higher energy, spatial dimensions similar to the RHESSI microflares, and a high-energy excess beyond an
isothermal spectral component during the impulsive phase. The microflare is small in emission measure,
temperature, and energy, though not in physical size; observations are consistent with an origin via the interaction
of at least two magnetic loops. We estimate the increase in thermal energy at the time of the microflare to be
2.4×1027 erg. The observation suggests that flares do indeed scale down to extremely small energies and retain
what we customarily think of as “flare-like” properties.

Key words: Sun: corona – Sun: flares – Sun: X-rays, gamma rays – X-rays: stars

1. Introduction

Solar flares are impulsive transformations of magnetic
energy into heating, particle acceleration, and, occasionally,
eruptions. They are of interest for understanding the basic
physics of the Sun because they represent a restructuring of the
coronal magnetic field, are often accompanied by coronal mass
ejections, accelerate a huge number of particles up to high
energies (e.g., Lin & Hudson 1976), and may impulsively heat
the corona (e.g., Klimchuk 2006). While many flare investiga-
tions concentrate on the largest events due to the rich
multiwavelength observations and detailed phenomena that
can be studied, there is also extensive investigative opportunity
on the smaller side of the flare distribution, where flares are less
dramatic but far more frequent. In fact, if flares are responsible
for coronal heating, it has been shown that this heating must be
in weak flare-like events, not in the form of typical, larger flares
(e.g., Hudson 1991).

Hard X-rays (HXRs) are a useful tool in understanding the
energetics in flares of any size, because they are produced via
bremsstrahlung by high-energy electrons that are either hot
(millions to tens of millions of degrees) or nonthermal
(accelerated by the flare). For the smallest flares, this can be
especially key—while the time necessary for ionization
equilibrium means that line emission in extreme ultraviolet
(EUV) or soft X-rays (SXRs) might be suppressed for very
short events (e.g., Bradshaw & Klimchuk 2011), HXR
feedback is immediate.

Thorough statistical and case studies were undertaken on
HXR flares and larger microflares (also known as active region
(AR) transient brightenings) using the Hard X-Ray Telescope

on the Yohkoh spacecraft (Kosugi et al. 1991) in the 1990s and
the Reuven Ramaty High Energy Solar Spectroscopic Imager
(RHESSI; Lin et al. 2002) for solar cycles 23 and 24 (the
current era). These instruments employ indirect imaging and
thus have been limited to flares of a certain brightness—for
RHESSI, temperatures T9MK and emission measure
EM1045 cm−3, with particularly good coverage of flares
with T12 MK and EM1046 cm−3

(Hannah et al. 2008).
Nishio et al. (1997) examined 14 impulsive flares observed

in microwaves (by Nobeyama) and SXRs/HXRs (by Yohkoh),
and found that 10 of the 14 displayed evidence for at least two
loops. The two loops were typically of very different lengths,
of order 20 arcsec and 30–80 arcsec. The HXRs and SXRs
came predominantly from the more compact loop and its
footpoints. Hanaoka (1997) also identified a two-loop config-
uration in many radio/SXR flares, with many of the events
showing a three-legged structure and large angles between the
loops. These observations have led to the modern concept that
flares generally consist of multiple, independently excited, loop
structures that may interact.
Battaglia et al. (2005) studied RHESSI flares from GOES

classes B to M, finding a spectral softening of the nonthermal
electron distribution with smaller flare energy. Hannah et al.
(2008) and Christe et al. (2008) studied over 25,000 RHESSI
microflares of GOES classes A and B, finding that they all arise
in ARs and have properties similar to larger flares, including
impulsive rises and slow decays and the presence of thermal
and nonthermal spectral components.
At lower energies, AR microflares have been cataloged in

SXR by Shimizu (1995) using Yohkoh data. In the quiet Sun,
small transient brightenings have been surveyed in the EUV

The Astrophysical Journal, 845:122 (7pp), 2017 August 20 https://doi.org/10.3847/1538-4357/aa80e9

© 2017. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0001-7092-2703
https://orcid.org/0000-0001-7092-2703
https://orcid.org/0000-0001-7092-2703
https://orcid.org/0000-0003-1193-8603
https://orcid.org/0000-0003-1193-8603
https://orcid.org/0000-0003-1193-8603
https://orcid.org/0000-0001-5685-1283
https://orcid.org/0000-0001-5685-1283
https://orcid.org/0000-0001-5685-1283
https://orcid.org/0000-0002-1984-2932
https://orcid.org/0000-0002-1984-2932
https://orcid.org/0000-0002-1984-2932
https://orcid.org/0000-0002-8574-8629
https://orcid.org/0000-0002-8574-8629
https://orcid.org/0000-0002-8574-8629
https://orcid.org/0000-0002-0542-5759
https://orcid.org/0000-0002-0542-5759
https://orcid.org/0000-0002-0542-5759
https://orcid.org/0000-0003-1086-6900
https://orcid.org/0000-0003-1086-6900
https://orcid.org/0000-0003-1086-6900
https://doi.org/10.3847/1538-4357/aa80e9
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa80e9&domain=pdf&date_stamp=2017-08-18
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa80e9&domain=pdf&date_stamp=2017-08-18


using SOHO/EIT (Benz & Krucker 2002) and TRACE
(Aschwanden et al. 2000; Parnell & Jupp 2000). While these
data sets are quite disparate in instrument, AR, and solar cycle
timing, a rough power law is evident, with small events occurring
far more frequently than large ones (see, e.g., Figure2 in Hannah
et al. 2011). It is still unclear if the smallest events release enough
energy to play a major role in heating the corona.

In recent years, new instruments have begun to demonstrate the
dramatically increased sensitivity available via direct HXR
focusing as opposed to RHESSI’s indirect imaging method
(Hurford et al. 2002), with the first two flights of the Focusing
Optics X-ray Solar Imager (FOXSI) sounding rocket (Krucker
et al. 2014; Glesener et al. 2016) and occasional solar pointings by
the Nuclear Spectroscopic Telescope Array (NuSTAR) astrophy-
sics spacecraft (Harrison et al. 2013; Grefenstette et al. 2016).
Focusing HXR instruments, with their larger effective areas and
drastically reduced detector backgrounds, can measure flares of
smaller temperatures, brightnesses, and total energies than those
available to indirect imagers.

We report here an observation of a small HXR microflare near
the west limb on 2015 September 1 observed by NuSTAR. Since
the microflare produced only 5 RHESSI counts s−1 detector−1

(not enough to reconstruct an image), we believe it to be fainter
than any HXR flare in the current literature.

2. Observations

2.1. Overview of the Event

NuSTAR is a NASA Small Explorer that uses directly
focusing HXR optics to observe faint astrophysical sources
(Harrison et al. 2013). Although not explicitly designed for
solar observing, NuSTAR’s high-sensitivity telescopes can
measure faint phenomena on the Sun during low-activity
times, when best use is made of the instrument’s limited
throughput (Grefenstette et al. 2016). Solar pointings are
coordinated as targets of opportunity and occur several times
per year for a few orbits at a time.8 Prime conditions include

(among other scenarios) a productive AR at the limb with an
otherwise quiet disk. This condition was met in early 2015
September, and NuSTAR observed the Sun for eight orbits
spread out through the mornings of 2015 September 1 and 2.
The majority of the AR of interest, 12403, had occulted by that
time, with only a small portion remaining on the visible disk.
Around 04:00 UT on 2015 September 1, a microflare

occurred in the unocculted part of AR 12403. The X-ray
brightness of the microflare was below the sensitivity limit of
the GOES soft X-ray Sensor (XRS), which is typically used for
flare brightness classification. The microflare was observed by
the Atmospheric Imaging Assembly (AIA) on the Solar
Dynamics Observatory (Lemen et al. 2012) and was indepen-
dently identified in NuSTAR movies. Figure 1 shows images
from several of the AIA coronal bandpass filters (top row) and
(bottom row) a sequence of images over time computed using a
linear combination of three AIA filters (94, 171, and 211Å) in
order to estimate the Fe XVIII contribution (formation temper-
ature log T≈6.9), as in Del Zanna (2013).

2.2. RHESSI HXRs

The event was too faint to register in the RHESSI flare list, but
manual inspection of the data identified a small count rate rise in
the 4–9 keV range co-temporal with a NuSTAR peak in the same
range. Detector 1 shows the clearest detection of the nine RHESSI
detectors since several other detectors had thresholds set too high to
register the relatively low-energy flare. Detector 1 emission reached
a peak of 8.8 counts s−1 over a background of 4.3 counts s−1, for a
total of ∼120 photons—not enough to produce an image.

2.3. NuSTAR HXR Data and Pointing Corrections

NuSTAR, with its high effective area (∼700 cm2 at 5 keV)

and minuscule detector background, has a sensitivity higher
than ever before available at HXR energies (Harrison et al.
2013). However, as the X-ray flux from ARs and flares is far
larger than the instrument throughput (800 counts s−1 max-
imum), we can generally only record a fraction of the incoming
X-rays. The livetime (defined as the fraction of time for which
the detector is ready to acquire an event) is typically limited to

Figure 1. AIA images of the 2015 September 1 microflare. (Top row) View of the microflare in several different filters close to the peak time. (Bottom row) Estimates

of the Fe XVIII contribution to AIA channels over time using a linear combination of 94, 211, and 171 Å emission, showing the evolution of hot plasma (∼4–10 MK).

8
Summary plots can be found at http://ianan.github.io/nsigh_all/.
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a small percentage when observing the Sun (Grefenstette et al.
2016). For the 2015 September 01 microflare, the livetime for
NuSTAR’s Focal Plane Module A (FPMA; one of two NuSTAR

detector arrays) was 1.57% at a nonflaring time, dropping to
1.24% at the peak. The corresponding livetimes for Focal Plane
Module B (FPMB) were 1.18% and 1.01%, respectively. All
data shown in this paper are corrected for livetime, which is
measured on a one-second cadence, though error bars are
derived from the raw counts. The effect of this low livetime is
that a nominally one-minute observation has an effective
exposure time of less than one second.

NuSTAR’s solar pointing is uncertain to 1.5 arcmin due to
the forward-facing star camera being blinded by solar flux. This
pointing offset typically changes with orbital thermal changes.
(More sudden pointing changes due to changes in the star
camera combinations in use are not relevant for the time period
of this microflare.) In order to isolate the microflare region over
time (even at nonflaring times), NuSTAR images integrated
over 12 s were cross-correlated with AIA Fe XVIII images.
Cross-correlations were performed on a cadence of 12 s using
an automated procedure. A smooth curve was then interpolated

through the points to determine the necessary NuSTAR pointing
adjustment as a function of time. This pointing correction relies
on the assumption that the majority of the NuSTAR and AIA
Fe XVIII emissions originate from the same location, a reason-
able assumption given that NuSTAR is highly sensitive to the
Fe XVIII contribution to the AIA 94Å filter (log T≈6.5–7.2;
see Lemen et al. 2012). The area used for cross-correlation
includes the entire AR, although the microflare dominates at its
peak time. The pointing adjustments (of 28–69 arcsec) derived
in this way have been applied to all images and regions selected
for the time profiles and spectra shown in this paper.

2.4. NuSTAR HXR Images and Spectra

NuSTAR images of the microflare over time are shown in
Figure 2. FPMA and FPMB data are shown separately, and two
energy bands (2–4 keV and 4–8 keV) are shown for each.
Images have been integrated for one minute, livetime corrected,
and smoothed over 17 arcsec using a Gaussian smoothing
kernel. A small space between detector quadrants produces a
diagonal gap across the FPMB image. By 4:07 UT (last
column), the event has subsided and only quiescent emission is

Figure 2. NuSTAR images of the microflare in two energy bands. The top two rows show images from FPMA at 2–4 keV and 4–8 keV, and the bottom two rows show
the same for FPMB. Images have been integrated for one minute, livetime corrected, and smoothed over 17 arcsec using a Gaussian kernel to reduce statistical noise.
The same intensity scale is used for all images in each row. A diagonal gap across the source in the FPMB images is due to the space between detector quadrants. By
4:07 UT (last column), the microflare has subsided and only quiescent emission is observed. The 2–4 keV images show bright emission from the quiescent active
region in addition to the microflare.
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observed. The 2–4 keV images show bright emission from the
quiescent AR in addition to the microflare, while the 4–8 keV
images show little emission except for the microflare itself.

We fit the NuSTAR spectra using the XSPEC spectral fitting
software (Arnaud 1996). Fits were performed simultaneously to
FPMA and FPMB data, and the pointing adjustments described
in the previous section were applied in order to select a
consistent region for fitting. The region is a circle of radius
15 arcsec centered at the microflare centroid location. First, we
fit an isothermal spectrum at 1 minute intervals throughout the
time range shown in the left-hand side of Figure 3. From these
values, we identified seven intervals that were obviously
flaring. We excluded the flaring intervals and computed the
average temperature and emission measure for the nonflaring
times, which we call the quiescent parameters. Nonflaring fits
are indicated with black markers and error bars in panels (A)

and (B) of Figure 3, and the average quiescent values are
indicated with a dashed line. Those quiescent, nonflaring
parameters were then held as a fixed thermal component during
the flaring times, while a second thermal component was fit to
represent the microflare (see right-hand side of Figure 3). The
resulting thermal fits at flaring times are shown in red in panels
(A) and (B), while the fixed nonflaring component is shown
with black diamonds (and black dashed lines).

Next, we calculated the thermal energy WT of the microflare as
=W V k T3 EMT B , where EM is the emission measure in

cm−3, V is the microflare volume, kB is Boltzmann’s constant, and
T is the temperature. The volume was estimated from the AIA
Fe XVIII images shown in Figure 1 by considering the microflare
loop to be a tube of roughly uniform radius. We assumed the loop
height to be perpendicular to the solar surface and corrected
the loop length for the projection due to its near-limb position.
The resulting volume is ∼3.2×1026 cm3. We also calculated the
thermal emission of an equivalent volume of quiescent plasma,
i.e., using our quiescent background parameters and the same
volume as the microflare. In order to do this, we calculated a
quiescent density from the (nonflaring) emission measure using
the area of the region included in the NuSTAR spectroscopy
(a circle of radius 15 arcsec). We approximated the line of sight
extent from the longitudinal width of AR 12403 as gleaned from
the NOAA history; the resulting dimension of 102 Mm is a slight
overestimate. The calculated quiescent density is 5×108 cm−3.
The thermal energy of the plasma volume throughout the
microflare (red triangles) is shown in panel (C) of Figure 3,
along with a dashed black line that indicates the thermal energy of
the equivalent volume of quiescent plasma at nonflaring times.
We find the microflare energy at its peak (2.4×1027 erg) to be
greater than, but within an order of magnitude of, the quiescent

Figure 3. (Left-hand panels) Evolution of NuSTAR spectral parameters throughout the microflare, using the spectral fits shown to the right. Panels (a) and (b) show the
fit temperatures and emission measures. Panel (c) shows (red triangles) the thermal energy of the flaring volume compared with (black dashed line) the thermal energy
of an equivalent quiescent volume based on fits at nonflaring times. Panel (d) shows the GOES emission expected from the microflare, with A0.1 and A0.01 levels
shown for comparison (red dotted lines). (Right-hand panels) X-ray spectra fit simultaneously to FPMA and FPMB during the microflare. Plots show FPMA and
FPMB data points in blue and red, respectively, as well as a (dotted line) fixed thermal component at the quiescent level found in Section 2.4, held identically for all
flaring intervals, and (dashed line) a fit thermal component for the microflare. The solid lines show the total fit models including all fit components. The vertical dashed
lines show the fit energy range. In the second two intervals, there is an excess in counts above the model above ∼5 keV; this excess emission could be explained by a
nonthermal component or by a small amount of much hotter plasma.

4

The Astrophysical Journal, 845:122 (7pp), 2017 August 20 Glesener et al.



energy. A unity filling factor was assumed in all density estimates.
The quiescent energy we have calculated is a lower limit since we
observe only at the highest temperatures; the likely presence of
brighter but cooler plasma at quiet times would increase the
quiescent thermal energy.

In order to compare with a common measure of flare
brightness, we estimate the GOES XRS flux in the long and
short wavelength bands that would be expected given our
measured temperatures and emission measures; see panel (D) of
Figure 3. For reference, the A0.1 and A0.01 levels (long-
wavelength channel) are indicated with red dotted lines. The
microflare peaks at an estimated GOES1.0–8.0Å level of
1.4×10−9Wm−2. In actuality, the microflare is not observable
by GOES in either channel due to the background contribution of
the rest of the solar disk and due to sensitivity and/or sampling
limitations. We have also estimated the emission observable by
the six AIA coronal filters and find that the NuSTAR microflare
peak brightness is consistent with the measured emission in the
94Å filter, while the images in the other filters are dominated by
their responses to plasma cooler than the 6 MK microflare.

2.5. High-energy Excess in the Impulsive Phase

NuSTAR fits of binned count spectra for several intervals
throughout the microflare are shown in the right-hand side of
Figure 3. Fits were performed simultaneously to FPMA and
FPMB (blue and red data points, respectively) including a fixed
thermal component (dotted lines) at the background level and a
fitted thermal component for the microflare (dashed lines).
Isothermal flare components (plus the isothermal background
component) fit the data well except during the impulsive phase,

∼03:59–04:01 UT, where at high energies there is an evident
excess in counts above the model. This excess emission could
be explained either by a nonthermal component due to flare-
accelerated electrons with a rather flat power-law index of 3 or
by a small amount of hotter plasma (temperature 13 MK,
emission measure 3×1043 cm−3

). However, both fits are
poorly constrained given the low statistics above 5 keV.
Since the pileup of photons arriving in quick succession

could, in principle, produce a high-energy excess, we checked
the pileup probability as indicated by the “non-physical” event
grades; see Appendix C of Grefenstette et al. (2016) for an
explanation. Since no events associated with the microflare
were found to have non-physical grades, we conclude that
pulse pileup does not affect our spectra.
Spectral fitting was also performed to RHESSI data using the

OSPEX9 SSWIDL package. Detectors 1, 3, and 5 detected enough
photons to produce a spectrum. A thermal fit to the spatially
integrated, detector-summed data resulted in a temperature of
13.1±4 MK and an emission measure of (1.7± 3.2)×
1044 cm−3 during the time interval of 03:59–04:00 UT in the
energy range 4–9 keV. This is a somewhat hotter temperature than
NuSTAR finds, but this is probably due to the high-energy excess
present in this time interval.

2.6. HXR and EUV Evolution Over Time

Figure 4 examines the time behavior of the NuSTAR
emission in various energy bands. Panel (a) shows the

Figure 4. (a) NuSTAR time profiles in 30 s bins for the entire active region in several energy bands. Data from FPMA and FPMB have been livetime corrected,
background subtracted, and added together. (b) The same profiles, when normalized, show that the emission appears, on average, earlier with higher energy.
(c) RHESSI time profile for Detector 1 (D1) integrated over 4–9 keV. (d) Evolution of the AIA Fe XVIII line emission for the four regions shown in panel (f). (e)
NuSTAR contours, with the preflare emission subtracted, coaligned to, and overlaid onto a reference AIA Fe XVIII image (at 04:00 UT). The NuSTAR images are
integrated across the flare peak (0358–0402 UT) and have been smoothed over 17 arcsec using a Gaussian kernel. Contour levels are 50%, 70%, and 90%. (f) Selected
AIA regions in a flare-integrated Fe XVIII image.

9
https://hesperia.gsfc.nasa.gov/ssw/packages/spex/doc/ospex_

explanation.htm
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evolution in 1 keV wide energy bins from 2 to 6 keV. Data are
summed from FPMA and FPMB and have been livetime
corrected and background subtracted. These same light curves
are shown, normalized to their respective maxima, in panel (b).
The emissions show a slightly earlier peak time and faster
decay with higher energy. While data from FPMA and FPMB
have been summed for better statistics, the FPMs individually
show this trend. Panel (c) shows the 4–9 keV HXRs detected
by RHESSI’s Detector 1, though the emission is primarily
>5 keV. The small numbers of the counts are statistically
significant (5σ), and the time of the peak is roughly consistent
with that of the higher NuSTAR energy bands. Panel (d) shows
the time profiles from four different regions of the AIA Fe XVIII
images that are indicated in panel (f). The most impulsive
emission emanates from a compact source. The northern
section of the primary loop brightens next, and the lower and
upper sections of the long loop show more gradual behavior.
Visual comparison of the NuSTAR and AIA light curves
suggest that the HXR emission emanates from the compact
sources in the northern region of the microflare, which are not
resolved by NuSTAR. See panel (e) of Figure 4, although note
that NuSTAR images have been coaligned to AIA.

3. Discussion

To summarize the observations, NuSTAR successfully
observed an extremely weak, ∼A0.1 class microflare that
reached a peak thermal energy of 2.4×1027 erg. NuSTAR data
show a clear trend of earlier peak time with higher HXR
energies. The temperature rises quickly and falls slowly, while
the emission measure has a gradual rise and fall, suggesting
impulsive energy release early in the event, followed by the
gradual filling and draining of the flare loop(s). Spectral HXR
fits show a high-energy excess in the impulsive phase. All of
these features are consistent with those observed in larger flares
(e.g., those observed by RHESSI).

Figure 5 shows the NuSTAR temperature and emission
measure at seven times throughout the microflare compared
with GOES (blue) and RHESSI (red) microflares studied by
Hannah et al. (2008) and Christe et al. (2008). The NuSTAR
microflare is cooler or fainter than all of the RHESSI
microflares, and the temperature at the peak time (6.4 MK at
4:00–4:01 UT) is approximately half that of the typical RHESSI
microflare (12.6 MK). In further comparison, the SphinX
instrument observed flares during its spatially integrated
observations in 2009, including two small flares with emission
measures of ∼1046 cm−3 and temperatures of 4–5 MK (Engell
et al. 2011). The NuSTAR microflare has an estimated loop
length and volume of 70Mm and 3.2×1026 cm3. When
compared with the loop lengths and volumes for the RHESSI
microflares (Figure4 in Hannah et al. 2008), we find that the
small energy release takes place in a loop that is not unusually
short or low volume.

Based on the Shimizu (1995) study of Yohkoh SXR
transients, the expected occurrence rate for microflares on the
order of 1027 erg is 10−52 s−1 cm−2 erg−1, which works out to
∼5.5 flares hr−1 for the entire disk. Dividing this rate among
the four named ARs on the disk on 2015 September 1 yields an
expected rate of ∼1 flare hr−1 active region−1. (Each NuSTAR
orbit yields approximately one hour of solar observing time.)
No other AIA brightenings were visible by eye during the
given orbit, although the microflare region does exhibit a
precursor brightening just before the NuSTAR observation

begins. Therefore, our observation of a single microflare in this
orbit is not unusual.
Although the microflare is fainter than any previously reported

HXR flare, it is clear that the event is not a single energy release.
The AIA Fe XVIII emission displays complexity, with a small,
compact source brightening first, followed by another, nearby,
compact region. Either or both of these compact sources could be
small loops. In the longer loop, brightening progresses from low
to high altitudes. This is commonly observed in larger flares and,
in those cases, is usually interpreted as the reconnecting of the
field at progressively higher altitudes within a flare arcade (e.g.,
Gallagher et al. 2002).
Where does high-energy emission lie within this dynamic

picture? The NuSTAR time profiles in Figure 4 and the spectra
in Figure 3 show an impulsive phase of the microflare from
03:59–04:00 UT. It is here that the most significant high-energy
NuSTAR emission is observed, along with a high-energy excess
that cannot be accounted for by an isothermal model of the
flaring emission. This high-energy excess (5 keV in Figure 3)
could be provided by nonthermal electrons, as are commonly
observed in the impulsive phase of larger flares; if present, the
nonthermal power law must be quite flat, with an index of ∼3.
Alternatively, the emission could be provided by a hot, faint,
thermal component (temperature 13 MK, emission measure
3×1043 cm−3

). In either case, the NuSTAR emission is likely
associated with energy release early in the microflare, and the
compact AIA source discussed next responds immediately to
this energy release.
Melrose (1997) considered a model of reconnection between

current-carrying loops and found an energetically favorable
configuration to be the reconnection of two current-carrying
loops at large angles to one other, with closely spaced
footpoints of opposite polarity, so that the by-products are a
small, compact loop and a longer, overarching one. Our
observations of this microflare are consistent with that
geometry. The compact source located at approximately [928,
−185] arcseconds could be the (unresolved) short post-
reconnection thermal loop. This loop is hot but small, and
could quickly fill with chromospheric plasma. The longer loop
may take longer to fill due to its length, accounting for the

Figure 5. NuSTAR spectral fit temperature and emission measure compared
with the GOES (blue) and RHESSI (red) microflares studied by Hannah et al.
(2008). Data points with error bars show the NuSTAR fit parameters for seven
consecutive one-minute intervals throughout the 2015 September 1 microflare.
Black contours give the expected RHESSI counts s−1 detector−1.
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differing timescales in the light curves of the two loops.
Observationally, this microflare is consistent with the survey
performed by Nishio et al. (1997), who found two-loop
interactions in most of the 14 events they examined, as well as
large asymmetries in the two loop lengths.

Studies of such small events address the relationship
between nanoflares and flares. Since individual nanoflares are
not currently observable, their contribution to coronal heating is
often addressed by assuming that they are the low-energy end
of a single power-law distribution of larger, already-observed
flares (see, e.g., Hannah et al. 2011). This extrapolation
explicitly requires that the physics of nanoflares be the same as
the physics of much larger flares. At a crude level, the
mechanism for flares in the solar atmosphere has a source of
free energy, believed to be in the form of magnetic fields, that
accumulates slowly until it exceeds some threshold, at which
time the energy is released impulsively. This is consistent with
the original idea of Parker (1988) for nanoflares, in which
current sheets arise due to footpoint motion and increase in
strength until the coronal magnetic field change across the
current sheet exceeds a threshold and triggers rapid magnetic
reconnection. The question of a trigger is crucial: for many
years, magnetic reconnection theory focused on how to enable
fast reconnection in order to match the energy release rates
observed in large flares, but successfully doing so then raises
the question of how to suppress reconnection while energy is
being stored between flares (e.g., Cassak et al. 2006). An
obvious difference between nanoflares and larger events is in
the volume of magnetic field whose energy is released.
Nanoflares are assumed to occur on very small scales between
almost parallel field lines, whereas the amount of energy
released in a large flare requires a large volume for storage and
could involve large field angles. It is not clear that the same
trigger mechanism should operate over such different regimes,
and so it is not obvious that flares and nanoflares should form
opposite ends of a single distribution. It is therefore critical to
push flare measurements to smaller and smaller scales in order
to probe the transition between flare-triggering regimes.

4. Summary

We have presented a NuSTAR microflare fainter than any in
the previous HXR literature. We estimate the microflare to be
class ∼A0.1, with a peak thermal energy of 2.4×1027 erg,
similar to the quiescent energy of an equivalent plasma volume.
We observe several qualities common to larger HXR flares,
such as early, impulsive energy release followed by a gradual
thermal response, and even more gradual at higher altitudes.
HXRs peak earlier with higher energy and show a high-energy
excess during the impulsive phase that is due to either
nonthermal electrons or faint, hotter plasma. We conclude that
flares do indeed scale down to extremely small energies and
retain what we customarily think of as “flare-like” properties.

We wish to emphasize that, while new to the literature, this
microflare is not unique. Other NuSTAR microflares are the
subjects of recent or upcoming papers, including one by Wright
et al. (2017) that shows a detailed differential emission measure
obtained via Hinode XRT coordination. We expect future
NuSTAR events with higher livetime and correspondingly
better statistics. In addition, the FOXSI sounding rocket has
observed three microflares in its first two flights (Glesener et al.
2016), one of which is estimated to be an A0.5 class flare
(Vievering et al. 2016). This set of observations suggests that

as more sensitive instruments are developed, even smaller
flares will be discovered, allowing more thorough under-
standing of flare energetics and triggering, and the relationship
between flares, microflares, and nanoflares. Thorough discov-
ery of this new flare regime must wait until a solar-dedicated
space-based mission with focusing HXR optics is realized.
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