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2.1 Instrument Overview 

The NuSTAR instrument consists of an array of two 

co-aligned hard X-ray telescopes.  The grazing 

incidence mirrors focus onto two shielded solid-state 

pixel detectors, separated by a mast that extends the 

focal length to 10.15 meters after launch.  A laser 

metrology system monitors the mast alignment.  The 

optics utilize thin glass shells coated with depth-

graded multi-layers to extend the bandpass and field 

of view (FOV) over that achievable with standard 

metal surfaces.  Cadmium Zinc Telluride (CdZnTe) 

detectors provide excellent spectral resolution and 

high quantum efficiency without requiring cryogenic 

operation.1  The detectors and their associated 

electronics are housed in Pb/CsI scintillator 

Table 1: NuSTAR science objectives and preliminary time allocation for the first two years of the baseline NuSTAR mission. 

Science Objective Observation Requirement 
Time Allocated in 

Mission 

Supermassive black hole survey:   

How are black holes distributed across the 

cosmos, and how do they affect the formation of 

galaxies? 

Extragalactic surveys:  

� Deep survey of ≥200 arcmin2 

� Shallow survey of ≥4 deg2 

10.5 months total: 

� 4 months deep 

� 6.5 months wide 

Collapsed stellar remnants: 

How are stellar remnants distributed within the 

Galaxy and near the Galactic center? 

Galactic survey(s):  

� Survey ≥1 deg2  Galactic center 
 4 months total 

Supernova (SN) explosion dynamics and 

nucleosynthesis:   

How do stars explode and forge the elements that 

compose the Earth? 

Mapping young SN remnants: 

� Cassiopeia A 

� SN 1987A 

2 months total: 

� 1 months per target 

 

Blazars and very high energy sources:   

What powers nature’s most powerful cosmic 

accelerators? 

Blazars & gamma-ray sources: 

� Observe 4 sources, 3 coordinated 

with gamma-ray and optical facilities 

 1.5 months total 

Nearby supernovae: 

How do stars explode and forge the elements that 

compose the Earth? 

 Targets of Opportunity (ToOs): 

� Observe any SNIa closer than 

Virgo or core collapse SN in Local 

Group within 48 hr. 

Part of 6 month 

science reserves 

 

Science reserves 

 

Other science objectives: 

� Internal proposals by science team 
 6 months total 

   

Table 2:  Instrument Fact Sheet (current best estimates). 

Parameter Value
Energy Range 6-79 keV 

Angular Resolution 46” (HPD) 

Field of View 12 arcmin X 12 arcmin 

Spectral Resolution 1.25 keV at 68 keV 

Timing Resolution 1 msec 

ToO response < few hr - 24 hour 

Launch Date August 15, 2011 

Orbit 550 x 600 km, 6° inclination 

Minimum Detectable Flux 
(106 sec, 50% extraction) 

1.8e-15 erg/cm2/s (6-10 keV) 
1.7e-14 erg/cm2/s (10-40 keV) 
1.04e-13 erg/cm2/s (4`10-79 
keV) 
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shielding.  An illustration of the partially deployed 

instrument is shown in Figure 1 and an overview of the 

instrument configuration is given in Table 3. 

2.2 Optics Design 

The two optical modules on NuSTAR collect the 

incoming hard X-rays and focus them on to the detector.  

The optical design is a conical-approximation to a 

Wolter-I, providing high performance across the 

12’x12’ detector field of view.  The optics (c.f., Figure 

3), are built of thermally formed glass substrates, 

precisely held in position by epoxy and graphite spacers.   

The NuSTAR optics are composed of 133 concentric 

layers of conical-approximation Wolter I mirrors 

aligned and held together by epoxy and precisely 

machined graphite spacers that run along the optic axis.  

Details of the instrument design are provided in Table 4. 

Each layer is composed of an upper and a lower set of 

segmented mirrors, 0.21 mm thick and 225 mm long.  

The innermost (outermost) layer has a radius of 54.4 

mm (191.2 mm) and a conic graze angle of 1.3 mrad 

(4.7 mrad).  The inner 65 layers are composed of 6 × 

~60° sectors (sextants) and the outer 65 layers are 

composed of 12 × ~30° sectors (twelvetant), each 

aligned with five axial spacers.  The transition from 

sextant to twelvetant mirrors is made with three 

intermediate sextant layers using nine spacers per sector 

with wide outside spacers that are shared by adjacent 

mirrors to provide azimuthal connectivity of the three transition layers.  The three transition layers are currently only 

required for structural support and are not required to provide any effective area.  However, the intermediate transition 

layers are expected to be made of flight-quality mirrors with multilayer coatings and it is estimated that they will provide 

an additional ~2% effective area above 

the baseline calculations described here.  

Depth-graded multilayers are applied to 

the optical surfaces in a production 

coating facility at the Danish Technical 

University (DTU) that uses planar 

magnetron sputtering.  The multilayers 

provide coherent reflectivity over a 

broad energy band.   

The entire assembly is built on, and 

aligned to, a central mandrel.  After 

construction, support spiders are 

attached to the optic for instrument 

integration. During fabrication, glass 

and graphite layers are built outward 

from the central mandrel and all ground 

handling and alignment activities use 

the inner mandrel as a support and 

reference axis.  Once the telescopes are 

mounted to the telescope bench, each is 

supported and aligned from attachment 

points on the spider supports.   

Table 3:  NuSTAR instrument configuration. 

Parameter Value
# telesc. modules 2
Eff. focal length 10.15 m
Optics Grazing incidence. Conical approx. 
Reflecting surface W/Si &Pt/SiC graded multilayers
Sensors CdZnTe pixel hybrid 
Shielding Pb/CsI scintillator 

 

Figure 2:  NuSTAR effective area plotted as a function of X-ray energy along with 

the effective area of other missions. 

Table 4:  Telescope parameters 

Mirror Parameters 
Geometry Segmented conical approx.
Substrates Thermally formed glass
Shells/module 130 + 3 transition layers
Shell thickness 0.21 mm 
Shell length 450 mm 
Inner radius 54.4 mm 
Outer radius 191.2 mm 
Focal Length 10.15 m 

Multilayer Parameters 
Materials W/Si (outer shells) 

Pt/SiC (inner shells) 
Design Depth graded 
Max. thickness 1.0 μm 
Max. layer pairs 291

Focal Plane (FP) Module Parameters
CdZnTe Pixel pitch 0.605 mm 
CZT Units/FP 4 
Pb/CsI shield thick. 2mm/1.5cm 
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2.5 Optics Assembly 

The coated substrates are assembled into an optic using two new assembly machines at Columbia University’s Nevis 

Laboratory.  The assembly machines, which were built by ABtech†, comprise precision air-bearing axes mounted on 

solid granite bases and provide exceptional machining tolerances.  The machines are housed in a class 1000 clean room 

with temperature and humidity control, and the air-bearings machine components require no oils that could potentially 

contaminate the optics.  Our error-compensating, monolithic assembly and alignment (EMAAL) procedure involves 

constraining the mirror segments to precisely machined graphite spacers that run along the optical axis.  In this process, 

the nominally cylindrical glass segments are forced to a conical form, and in the process, radial mismatches are removed.  

In order to achieve large effective area, concentric layers of glass are stacked on top of each other starting with a central 

mandrel.  Graphite spacers are first epoxied to the mandrel and then precisely machined to the correct radius and angle.  

Next, a layer of glass and second layer of spacers are epoxied to the first set of spacers.  These spacers are then machined 

to the appropriate radius and angle.  This process is repeated until the requisite number of layers is assembled. A key 

point of this process is that each layer of spacers is machined with respect to the optic axis and not the last layer of glass.  

In this way, there is never any stack-up error during the telescope fabrication.  Each layer requires one workday to 

complete.  The two machines will operate in parallel, each producing one layer per day such that each optics module will 

be completed in ~6 months.  Since the schedule allows only a limited time for optics calibration, a third test and 

calibration optic will be built and evaluated through a more extensive calibration procedure. 

 

                                                 
† http://www.abtechmfg.com 

Figure 4:  NuSTAR assembly machine installed inside a class 1000 clean room at Columbia University’s Nevis Laboratory. 

Proc. of SPIE Vol. 7437  74370C-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/28/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

3. NUSTAR OPTICS PERFORMANCE 

The NuSTAR optics performance requirements are driven by the science goals.  For background limited observation, the 

minimum detectable flux sensitivity (c.f., Table 1) goes as  

Fmin ∝
θPSF
Aeff

Bdet

t
,   

where θPSF is the instrument point spread function (PSF), Aeff is the effective area, Bdet is the detector background count 

rate, and t is the observation time.  In addition to being critical to the instrument sensitivity, the width of the PSF is also 

key to resolving extended sources as well as limiting potential source confusion.  The optics contribute the dominant 

portion of the overall instrument PSF with a small additional contribution from pointing error and the detector pixilation 

(CdZnTe pixel size = 0.605 mm or 12”).  The detector has high efficiency over the entire energy range and there are only 

small losses at low energy due to the optics thermal covers and a thin window at the focal plane (i.e., >~90% combined 

efficiency over the entire energy band).  In this section we describe the optics contribution to the effective area and PSF.   

3.1 Point Spread Response Function 

The optics performance dominates the instrument PSF with some additional contribution from aspect reconstruction and 

detector spatial resolution. The optics contribution to the instrument PSF is broken up into three categories:  initial figure 

of the thermally formed substrates, performance after mirror alignment and assembly, and performance on-orbit 

including the thermal operating environment.  The initial figure error of the conical substrates is required to have an 

average of 30” HPD.  A more detailed description of the NuSTAR substrate production and performance is given 

elsewhere.6 The optics performance after mounting and alignment is specified to be 39” HPD with an on-orbit 

specification of 43” HPD.  The uniformity and stability of the epoxy bonds is crucial to meeting and maintaining these 

performance specifications, and details of the epoxy selection and performance are given elsewhere.8  The On-axis PSF 

is radially symmetric.  For sources increasing further off-axis, the 2D PSF will become less symmetrical (i.e., more 

bowtie like than circular), but the HPD is not expected to change significantly. 

Our ability to meet the NuSTAR optics PSF requirement of 43” HPD (half power diameter) was first reported over five 

years ago.5,9 Since then numerous prototypes consisting of a few segments to multiple layers have been built to 

investigate specific aspects of the optics design and assembly process.  This includes detailed study of the spacer width 

and configuration; different epoxy types and application methods; machining techniques; mounting hardware; and 

substrates and mulitilayer coatings.  As an example, a recent prototype composed of 10 uncoated mirror segments 

mounted in a conical configuration was found to have an HPD of 45” (see Figure 5).  The PSF results were generated 

using a raytrace based on axial surface height measurements (LVDT scans) performed every 2.5 in azimuth.  In the past 

this procedure has been demonstrated to agree well with subsequent X-ray pencil beam scan measurements performed at 

8 keV.3,4,5,9,10  The mirrors had NuSTAR flight quality performance (average freestanding performance of 30”) and near 

flight representative geometry (sextant geometry, 0.21 mm thick, and 200 mm long instead of the 225 mm long NuSTAR 

prescription).  From the freestanding performance we deduce a ~30” mounting contribution to the total mounted HPD.  

This prototype was built using the old assembly machine, which was used to build the HEFT telescopes, as well as old 

mounting hardware.  The improved dust/contamination control of the new assembly machines along with improved 

mounting hardware is expected to provide improved mounting performance. 

3.2 Effective Area 

The NuSTAR effective area has been calculated using two separate raytrace codes with good agreement.  The input 

assumptions include 43” HPD and the optimized multitilayer recipes detailed in Madsen et al.7  The calculated effective 

area is plotted as a function of energy in Figure 6 for source positions up to 9’ off-axis in 1’ steps.  The FOV defined as 

the off-axis position for which the effective area has dropped by a factor of 50% relative to the on-axis effective area 

ranges from a diameter of 13’ at the lowest energies (i.e., a radius of 6.5’, which basically covers the entire focal plane 

detector) to a diameter of 6’ at the highest energies.  The decrease in effective FOV at higher energies is due to a steeper 

decrease in reflectivity as a function of graze angle at higher energy.  Further, the optics vignetting function increases 

with shell diameter and since the lower energy X-rays have relatively more effective area in the outer shells than the 

higher energy X-rays, the low energy X-rays experience less off-axis vignetting overall.  As previously mentioned, the 

effective area calculations do not include any contribution from the three intermediate transition layers, which are 

expected to provide an additional ~2% effective area over the entire energy band. 
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4. SUMMARY 

As the first satellite mission to employ focusing optics in the hard X-ray band, NuSTAR is poised to usher in a new 

period of discovery.  In this paper, we have presented an overview of the NuSTAR optics design, production and 

performance. 
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Figure 6:  a) Image of recent prototype optic being built on old assembly machine used for HEFT and NuSTAR development work.  

b) Closeup image of optic showing lower segment and part of the upper segment along with the graphite spacers that run along the 

optical axis that are used to mount and align the cylindrical shells to their correct conic shape.   

Figure 5:  a) 2D reconstructed image from LVDT surface height measurements with log intensity scale of recent prototype 

consisting of 10 individual mirrors mounted in a conic mirror configuration.  The pixel squares of 0.6 mm are the size of the 

NuSTAR CdZnTe detectors.  The 50%, 80% and 90% encircled energy contours are plotted with solid, dotted and dashed lines 

respectively.  b) Plot of the fraction of energy enclosed versus performance diameter.  
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