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Nutation in antiferromagnetic resonance
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The effect of inertial spin dynamics is compared between ferromagnetic, antiferromagnetic, and ferrimagnetic

systems. The linear response to an oscillating external magnetic field is calculated within the framework of the

inertial Landau-Lifshitz-Gilbert equation using analytical theory and computer simulations. Precession and nuta-

tion resonance peaks are identified, and it is demonstrated that the precession frequencies are reduced by the spin

inertia, while the lifetime of the excitations is enhanced. The interplay between precession and nutation is found

to be the most prominent in antiferromagnets, where the timescale of the exchange-driven sublattice dynamics is

comparable to inertial relaxation times. Consequently, antiferromagnetic resonance techniques should be better

suited for the search for intrinsic inertial spin dynamics on ultrafast timescales than ferromagnetic resonance.
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I. INTRODUCTION

Deterministic spin switching at ultrashort timescales builds

the fundament for future spin-based memory technology

[1–5]. At femtosecond timescales inertial switching becomes

particularly relevant, where the reversal is achieved with a

linear momentum gained by the interaction of an ultrashort

pulse and spin inertia [6,7]. The understanding of magnetic

inertia has been pursued along two different directions so far.

On the one hand, spin dynamics in antiferromagnets

(AFMs) and ferrimagnets (FiMs) has successfully been de-

scribed by the Landau-Lifshitz-Gilbert (LLG) equation [8–10]

for two sublattices coupled by the exchange interaction. The

exchange energy created by tilting the sublattice magnetiza-

tion directions away from the antiferromagnetic orientation

is dynamically transformed into anisotropy energy by collec-

tively rotating the sublattices away from the easy magnetic

direction [11], analogously to the transition between kinetic

and potential energy terms in a harmonic oscillator. While the

LLG equation for the two sublattices is of first order in time,

this effect gives rise to an effectively inertial second-order

differential equation for the order parameter in AFMs [12,13].

The interaction between exchange and anisotropy degrees of

freedom causes an exchange enhancement of AFM resonance

frequencies and linewidths [14].

On the other hand, an intrinsic inertia also arises in mag-

netic systems, if it is assumed that the directions of spin

angular and magnetic moments become separated in the ultra-

fast dynamical regime [15,16]. The inertia gives rise to spin

nutation, a rotation of the magnetization around the angu-

lar momentum direction [17], caused by the energy transfer

between magnetic kinetic and potential energy terms. The

emergence of spin inertia has been explained based on an

extension of the breathing Fermi surface model [18,19], cal-

culated from a s-d-like interaction between the magnetization
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density and electron spin [20] and derived from a funda-

mental relativistic Dirac theory [21,22]. Magnetic inertia can

be associated with a torque term containing a second-order

time derivative of the magnetic moment appearing in the

inertial LLG (ILLG) dynamical equation. The characteristic

inertial relaxation time, using its definition in Eq. (1) be-

low, is expected to range from 1 fs [15,20,23,24] to a few

hundred fs [25].

Linear-response theory predicted the emergence of a nuta-

tion resonance besides the conventional precession resonance

in ferromagnets (FMs) [26–28], providing a possible way of

detecting inertial dynamics by applying oscillating external

fields. An indirect evidence of the inertial dynamics was

found in NiFe and Co samples [23] by following the field

dependence of the ferromagnetic precession resonance (FMR)

peaks. The experimental observation of the nutation resonance

has only been achieved very recently in NiFe and CoFeB

using intense terahertz magnetic field transients [25].

While the notion of inertial dynamics has been applied

both in the context of the LLG equation for AFMs as well

as in the ILLG equation for FMs, the linear response of

these two examples is fundamentally different. While in both

cases a pair of resonances is found in contrast to the sin-

gle FMR peak, the excitation frequencies in an AFM are

degenerate in the absence of a static external field, while

they differ by several orders of magnitude in the ILLG

equation. The effective damping parameter of the preces-

sion, defined as the half-width of the peak at half-maximum,

is considerably higher in AFMs than in FMs, where it

corresponds to the Gilbert damping. In contrast, it was demon-

strated that the effective damping decreases in the ILLG

equation applied to FMs [27], particularly at the nutation

resonance [29]. However, the ILLG has not been applied to

AFMs so far.

Here, we explore the effects of the ILLG equation in

two-sublattice AFMs and FiMs using linear-response theory

and computer simulations. It is shown that a pair of nutation

resonance peaks emerges, and that the inertial relaxation time
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influences the precessional resonance significantly stronger in

AFMs than in FMs due to the exchange coupling between

the sublattices. The effective damping parameter is found

to decrease in AFMs, reaching considerably lower values

than the Gilbert damping at the nutation peak, thereby en-

hancing the lifetime of these excitations. The inertial effects

in FiMs are found to interpolate between those in AFMs

and FMs.

II. METHODS

As derived in earlier works [15,21,22], the ILLG equation

reads

Ṁ i = −γiMi × H i +
αi

Mi0

Mi × Ṁi +
ηi

Mi0

Mi × M̈i, (1)

generalized here to multiple sublattices indexed by i. The first,

second, and third terms in Eq. (1) describe spin precession

with gyromagnetic ratio γi, transverse relaxation with Gilbert

damping αi, and inertial dynamics with relaxation time ηi.

Note that an alternative notation for the inertial term with

ηi = αiτi is also used in the literature [15,23,25]; where com-

parison with earlier works is mentioned in the following, the

relaxation time is converted to the formulation of Eq. (1). The

equation of motion was treated analytically as described in

the following sections, and also solved numerically using an

algorithm presented in detail in Appendix A.

III. INERTIAL EFFECTS IN FERROMAGNETS

First, we summarize the effects of the inertial term on FM

resonance. The FM is described by the free energy F (M) =
−H0Mz − KM2

z /M2
0 , modeling a single sublattice where spa-

tial modulations of the magnetization are neglected. M0 is

the magnitude of the magnetic moment, H0 is the applied

external field, and K is the uniaxial anisotropy energy, also

considered to include demagnetization effects in the form of

a shape anisotropy. The effective field can be written as H =
−∂F/∂M = (H0 + 2KMz/M2

0 )êz, and the magnetic moment

is oriented along the z direction in equilibrium.

The linear response to a small transversal external field

component h(t ) is calculated considering M = M0êz + m(t )

and expanding Eq. (1) up to first order in h(t ) and m(t ). The

exciting field is assumed to be circularly polarized, h± = hx ±
ihy = he±iωt , with a similar time dependence for the response,

m± = mx ± imy = me±iωt . The calculated susceptibility reads

(see Appendix B for details)

m± = χ±h± =
γ M0

	0 − ω − ηω2 ± iαω
h±, (2)

with 	0 = γ (H0M0 + 2K )/M0. It is found that the Gilbert

damping is associated with the imaginary part of the sus-

ceptibility, while the inertial term contributes to the real part

of the susceptibility, which is consistent with the previous

calculation in Ref. [21]. The dissipated power is calculated as

P = ṁ · h = ωIm(χ+)|h|2. We note that a linearly polarized

exciting field can be described as a linear combination of

circularly polarized fields with ω and −ω frequencies.

The dissipated power with and without the inertial term

is shown in Fig. 1. The data points denoted by symbols in

Fig. 1 denote the results of the atomistic spin simulations

(see Appendix A for details). The relaxation time is cho-

sen to range from η = 10−15 s to η = 10−12 s. This covers

the fs timescales described in Refs. [20,23,24] and the val-

ues of around 300 fs in Ref. [25]. It can be observed that

the inertial dynamics reduces the precession resonance fre-

quency. The resonance peak position is well approximated

as ωp = (
√

1 + 4βFM − 1)/(2η) ≈ 	0(1 − βFM), with βFM =
η	0. The associated shift in the resonance field Hp was inves-

tigated in Ref. [23]. However, note that the relative value of

this shift is very low since βFM ≪ 1, meaning that it can only

be observed if 	0 is shifted to high values, for example by a

strong external field H0.

The most profound effect of the inertial dynamics is

the emergence of a second resonance peak, associated with

the spin nutation. Its frequency is approximately ωn =
−(

√
1 + 4βFM + 1)/(2η) ≈ −1/η − 	0(1 − βFM). Similarly

to the precession frequency, the subleading corrections βFM	0

are small. The negative sign of the frequency implies an op-

posite rotational sense [30]: while the precession is excited

by a circularly polarized field rotating counterclockwise, the

nutation resonance reveals an opposite polarization.

The effective damping parameter is defined as the ratio of

the imaginary and the real parts of the frequency where Eq. (2)

has a node, and is approximately expressed as αeff,p = αeff,n ≈
α(1 − 2βFM), see Appendix B for the derivation. Since the

imaginary part characterizes the half-width of the resonance

peak at half-maximum, the latter suggests that the linewidth

of FMR decreases due to the inertia, in agreement with the

numerical results in Ref. [27]. The relative value of the reduc-

tion is once again governed by the factor βFM.

IV. INERTIAL EFFECTS IN ANTIFERROMAGNETS AND

FERRIMAGNETS

Next, we consider AFMs and FiMs with two sublattices A

and B. Assuming once again homogeneous sublattice magne-

tizations, the free energy is expressed as

F (MA, MB) = −H0(MAz + MBz )

−
KA

M2
A0

M2
Az −

KB

M2
B0

M2
Bz +

J

MA0MB0

MA · MB,

(3)

with the external field applied along the z direction, H0 =
H0êz, uniaxial easy-axis anisotropy constants KA, KB and in-

tersublattice exchange coupling J . From the free energy, the

associated fields entering the sublattice ILLG equations (1)

can be determined using HA/B = −∂F (MA, MB)/∂MA/B =
H0êz + 2KA/BMA/Bz/M2

A/B0êz − JMB/A/(MA0MB0). In equilib-

rium, the sublattice magnetizations are aligned antiparallel

along the z direction. Linear response to the transverse ho-

mogeneous external field hA(t ) = hB(t ) may be calculated

similarly to the FM case, using the expansions MA(r, t ) =
MA0êz + mA(t ) and MB(r, t ) = −MB0êz + mB(t ).

The two-sublattice susceptibility tensor is expressed as

follows (see Appendix C for details):
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FIG. 1. The rate of energy dissipation in the ferromagnet as a function of frequency for several values of the inertial relaxation time,

(a) η = 1 fs, (b) η = 10 fs, (c) η = 100 fs, and (d) η = 1 ps. The lines denote the results of the analytical calculations and the symbols of the

atomistic simulations for a single macrospin. All curves are compared to the analytical expression obtained without the inertial term. The other

parameters are γ = 1.76 × 1011 T−1s−1, M0 = 2μB, H0 = 1 T, K = 10−23 J, α = 0.05, and |h| = 0.001 T.

(

mA±
mB±

)

= χAB
±

(

hA±
hB±

)

=
1

�±

( 1
γBMB0

(	B ± iωαB − ηBω2 + ω) − 1
MA0MB0

J

− 1
MA0MB0

J 1
γAMA0

(	A ± iωαA − ηAω2 − ω)

)(

hA±
hB±

)

, (4)

Here we use the definitions �± = (γAMA0γBMB0)−1(	A ± iωαA − ηAω2 − ω)(	B ± iωαB − ηBω2 + ω) − J2/(M2
A0M2

B0) as

well as 	A = γA/MA0(J + 2KA + H0MA0) and 	B = γB/MB0(J + 2KB − H0MB0).

To compare with FMR, we compute the dissipated power

for AFMR, P = ṁA · hA + ṁB · hB, with the explicit formula

given in Appendix C. The result is shown in Fig. 2, using the

same parameters for both sublattices as for the FM in Fig. 1.

The insets of Fig. 2 show that without the inertial term the

AFM precession resonance peaks are suppressed with respect

to the FM one by a factor of about J/(2K ) = 50. This is

caused by the fact that the magnetization in the two sublattices

rotates around the equilibrium direction with a phase shift of

π , meaning that the homogeneous exciting field only couples

to the difference of the sublattice precession amplitudes [14]

in the dissipated power. Also, the inertial term shifts the

precession resonance peaks to lower frequencies considerably

stronger than in the FM, and further reduces their magnitude.

At higher frequency, two additional nutation resonance peaks

can be observed. Remarkably, their height is significantly

larger than that of the precession resonances, even exceeding

the intensity of the FMR peaks (cf. Fig. 1 where the same

normalization was used). The latter suggests that probing the

AFM nutation resonance peak is experimentally more suitable

than in the FM case. Most of these effects can be explained by

the fact that the precession and nutation resonance frequencies

lie much closer in AFMs than in FMs, as will be discussed in

detail below.

To obtain the AFM resonance frequencies, we calculate the

nodes of the susceptibility tensor in Eq. (4), obtaining

�± = a±ω4 + b±ω3 + c±ω2 + d±ω + e± = 0 (5)
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FIG. 2. The rate of energy dissipation for the antiferromagnet as a function of frequency for several values of the inertial relaxation time

ηA = ηB = η, (a) η = 1 fs, (b) η = 10 fs, (c) η = 100 fs, and (d) η = 1 ps. The lines denote the results of the analytical calculations and

the symbols of the atomistic spin simulations for two coupled macrospins. All curves are compared to the analytical expression obtained

without the inertial term. The other parameters are MA0 = MB0 = 2μB, γA = γB = 1.76 × 1011 T−1s−1, αA = αB = 0.05, KA = KB = 10−23 J,

J = 10−21 J, H0 = 1 T, and |hA| = |hB| = 0.001 T. The insets show the precession resonances on a smaller frequency and power scale.

with the following definitions:

a± = ηAηB, (6)

b± = ∓i(αAηB + αBηA) − (ηA − ηB), (7)

c± = −1 ± i(αA − αB) − (	AηB + 	BηA) − αAαB, (8)

d± = (	A − 	B) ± i(αB	A + αA	B), (9)

e± = −
γA

MA0

γB

MB0

J2 + 	A	B. (10)

Note that inertial effects enter via a, b, and c terms,

which are of higher order in frequency. Setting the in-

ertial relaxation times to zero, we obtain a second-order

equation that results in the well-known antiferromagnetic

resonance frequencies [31–33]. For equivalent sublattices

and assuming α ≪ 1 and K ≈ H0M0 ≪ J , these read ωp± ≈
(1 ± iα

√
J/(4K ))(γ H0 ± γ /M0

√
4KJ ). Compared to the FM

case, two resonance frequencies are found, and they are ex-

change enhanced by about a factor of
√

J/K . However, the

lifetime of the excitations is reduced since the effective damp-

ing is also higher by a factor of
√

J/(4K ).
In the presence of the inertial term, the resonance fre-

quencies are found as a solution of a fourth-order equation.
The real and imaginary parts of the calculated frequencies
are denoted by Re(ωp,n±) and Im(ωp,n±) for precession and
nutation resonances, respectively. These have been calculated
for an AFM and a FiM as a function of the relaxation time
ηA = ηB = η in Fig. 3. In the absence of external field and
damping, Eq. (5) simplifies to a second-order equation in ω2.
The precession resonance frequencies are given by ωp± ≈
±γ /M0

√
4KJ (1 + 2βAFM)−

1
2 for K ≪ J . It is important to

note here that the relative strength of the inertial corrections
is defined by the dimensionless parameter βAFM =(ηγ /M0)J ,
which is enhanced by a factor of J/K as compared to βFM.
The characteristic timescale of the exchange interactions typ-
ically falls into the fs range in AFMs, which are ordered
at room temperature (γ J/M0 ≈ 1013 s−1 with the parame-
ters used here), which is similar to the typical values of the
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FIG. 3. Real part of the precession resonance frequencies as a function of inertial relaxation time η, (a) for AFMs with MA0 = MB0 = 2μB

and (b) for FiMs with MA0 = 5MB0 = 10μB. The other parameters are γA = γB = 1.76 × 1011 T−1s−1, αA = αB = 0.05, KA = KB = 10−23 J,

J = 10−21 J, H0 = 1 T.

inverse inertial relaxation time [20,23,25]. This explains the
considerable decrease of the AFMR precession frequencies in
Fig. 2, while Fig. 3(a) demonstrates that deviations from the
non-inertial case already become observable for η ≈ 1 fs. This
more pronounced inertial effect should also be observable if
the resonance is measured by sweeping the external field, as
in Ref. [23]. The strongly asymmetric (MA0 = 5MB0) FiM in
Fig. 3(b) is characterized by a high-frequency exchange mode,
strongly influenced by inertial effects as in the AFM, and a
low-frequency mode, which is less affected like in the FM.

The nutation resonance frequencies in the AFM can be

expressed as ωn± ≈ ±
√

1 + 2βAFM/η. Just as for the pre-

cession resonance, the correction factor arising due to the

interplay between inertia and magnetic interactions is given

by βAFM, which is exchange enhanced compared to the FM

case. This gives rise to an increase of the nutation frequen-

cies, as demonstrated in Fig. 2. For the FiM in Fig. 3(b),

the nutation frequency Re(ωn+) belonging to the exchange

mode Re(ωp−) starts deviating from the low-inertia η−1

asymptote at considerably lower frequencies than the FM-like

nutation Re(ωn−).

The effective damping parameters of the excitation modes,

defined as the ratio of the imaginary to the real part of the

frequencies, are shown in Fig. 4. They no longer coincide

between precession and nutation as in the FM case, since

the exchange enhancement discussed above does not affect

the nutation resonance. A reduction of the effective damping

is observed with increasing inertial relaxation times, which

becomes noticeable for βAFM = O(10−2), just as in the case

of the resonance frequencies. The considerable reduction of

the effective damping compared to the Gilbert damping leads

to sharper nutation resonance peaks as demonstrated in Fig. 2,

with higher intensities than for the FM. In the FiM, the

exchange modes ωn+ and ωp− start to become influenced

at lower inertial relaxation times than the FM modes ωn−
and ωp+ [34]. The difference between the effective damping

parameters vanishes between exchange and FM modes for

higher η, but it remains to be observable between precession

and nutation modes.

V. CONCLUSIONS

To conclude, we applied the ILLG equation to FMs

and to two-sublattice AFMs and FiMs, and investigated the

resonance frequencies using linear-response theory and com-

puter simulations. The precession frequencies are found to
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FIG. 4. Effective damping parameters of the resonance modes as a function of inertial relaxation time η, for (a) AFMs with MA0 = MB0 =
2μB and (b) FiMs with MA0 = 5MB0 = 10μB. The other parameters are γA = γB = 1.76 × 1011 T−1s−1, αA = αB = 0.05, KA = KB = 10−23 J,

J = 10−21 J, H0 = 1 T.
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decrease with increasing inertial relaxation time and ad-

ditional high-frequency nutation peaks become observable.

Furthermore, the calculation of the resonance linewidth shows

that the effect of inertia reduces the effective damping param-

eter. While in FMs these corrections scale with βFM = η	0,

in AFMs the dimensionless coupling between precession and

nutation is given by βAFM = (ηγ /M )J , which is typically

several orders of magnitude higher. Therefore, an antiferro-

magnetic system with higher exchange to anisotropy energy

ratio and higher η will be suitable to observe inertial effects.

Such antiferromagnetic systems include NiO [35] and CrPt

[36,37], even though the characteristic inertial relaxation time

η is unknown. The FiM is observed to interpolate between the

FM and AFM limits. The reduced effective damping gives rise

to particularly sharp and high-intensity nutation resonance

peaks in AFMs, with frequencies comparable to the values

already observed in FMs [23,25]. These findings are expected

to motivate the search for the signs of intrinsically inertial spin

dynamics on ultrafast timescales using AFMR techniques.
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APPENDIX A: ATOMISTIC SIMULATIONS OF THE ILLG

EQUATION

The inertial Landau-Lifshitz-Gilbert (ILLG) equation of

motion, given in Eq. (1) in the main text, can be rewritten for

the normalized spin si(t ) = Mi(t )/Mi0 as [21]

∂t si = −γisi × H i + αisi × ∂t si + ηisi × ∂tt si. (A1)

The first term denotes precession of the spins around an

effective field H i, the second term corresponds to a trans-

verse relaxation of the spins, and the last term defines the

inertial dynamics [15]. The ILLG equation can be rewritten

from the implicit form of Eq. (A1) to an explicit differential

equation, which can be solved numerically without iterations.

By taking a scalar product of Eq. (A1) with si it is easy

to see that the length of the spin remains conserved in the

ILLG equation, i.e., ∂t |si|2 = 0 and si · ∂t si = 0. Furthermore,

we use

si × (si × ∂tt si ) = si(si · ∂tt si ) − ∂tt si, (A2)

∂t (si · ∂t si )
︸ ︷︷ ︸

=0

= (∂t si )
2 + si · ∂tt si. (A3)

By multiplying Eq. (A1) by si× and using the conditions

Eqs. (A2) and (A3), we obtain the explicit equation of motion

(cf. Ref. [30])

∂tt si = −
γi

ηi

si × (si × H i ) −
αi

ηi

∂t si −
1

ηi

si × ∂t si

− si(∂t si )
2 = F i(s, ∂t s, t ). (A4)

Note that a second-order explicit differential equation is ob-

tained because of the inertial term, while the LLG equation is

of first order. With the definition pi = ∂t si, we can convert the

second-order differential equation into a system of first-order

differential equations as follows:

∂tt si = ∂t pi = F i(s, p, t ), (A5)

∂t si = pi = Gi(s, p, t ). (A6)

It is obvious that one has to solve six coupled differential

equations of first order per lattice site i. We numerically solve

these equations with Heun’s method [38], where the predictor

steps are

s̄i = si(t ) + �tGi(s, p, t ), (A7)

p̄i = pi(t ) + �tF i(s, p, t ), (A8)

and the corrector steps are implemented as

si(t + �t ) = si(t ) +
�t

2
[Gi(s, p, t ) + Gi(s̄, p̄, t + �t )],

(A9)

pi(t + �t ) = pi(t ) +
�t

2
[F i(s, p, t ) + F i(s̄, p̄, t + �t )].

(A10)

In order to calculate the resonance curves, we employed a

circularly polarized field h(t ) ∼ eiωt in the xy plane in addition

to the static magnetic field H0 along the z direction, and

solved the equations of motion for one and two macrospins

by starting from the equilibrium state along the z direction.

By multiplying Eq. (A4) by Mi0ηi∂t si/γi, summing over

the sublattices, and rearranging the terms, one arrives at

∂t

(

∑

i

Mi0ηi

2γi

(∂t si )
2 + F

)

=
∑

i

Mi0∂t sihi −
∑

i

αi

Mi0

γi

(∂t si )
2. (A11)

The left-hand side of Eq. (A11) describes the change of rate

of the energy of the system, consisting of a kinetic part and

a potential part F . The former sheds light on the meaning of

ηi as an inertial parameter. The right-hand side consists of the

power loss due to damping processes, which is compensated

by the external driving force in a steady state. Accordingly,

we computed the dissipated power using P =
∑

i Mi0∂t si · hi.

APPENDIX B: CALCULATION OF THE LINEAR

RESPONSE IN FERROMAGNETS

In ferromagnets, we consider that the initial magnetization

points towards the z direction, such that the magnetization is

expanded as M = M0êz + m(t ) in linear order. The consid-

ered dynamical field is denoted by h(t ). Using the effective

field in the main text, the linearized ILLG equation can be

written in the following way:
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∂t m = −γ

⎡

⎢
⎢
⎣

M0êz × H0êz
︸ ︷︷ ︸

= 0

+ M0êz ×
2K

M0

êz

︸ ︷︷ ︸

= 0

+M0êz × h(t ) + m(t ) × H0êz + m(t ) ×
2K

M0

êz + m(t ) × h(t )
︸ ︷︷ ︸

negligible

⎤

⎥
⎥
⎦

+
α

M0

⎡

⎢
⎢
⎣

M0êz ×
∂m

∂t
+ m ×

∂m

∂t
︸ ︷︷ ︸

negligible

⎤

⎥
⎥
⎦

+
η

M0

⎡

⎢
⎢
⎣

M0êz ×
∂2m

∂t2
+ m ×

∂2m

∂t2
︸ ︷︷ ︸

negligible

⎤

⎥
⎥
⎦

. (B1)

Thus, we obtain the following two equations for the transver-

sal components:

∂t mx = γ M0hy − γ H0my −
2γ K

M0

my − α∂t my − η∂tt my,

(B2)

∂t my = −γ M0hx + γ H0mx +
2γ K

M0

mx + α∂t mx + η∂tt mx.

(B3)

We define 	0 = γ /M0(H0M0 + 2K ) as in the main text.

Therefore, Eqs. (B2) and (B3) can be recast as

hx =
1

γ M0

[	0mx + α∂t mx + η∂tt mx − ∂t my], (B4)

hy =
1

γ M0

[	0my + α∂t my + η∂tt my + ∂t mx]. (B5)

In matrix form we write

(

hx

hy

)

=
1

γ M0

(

	0 + α∂t + η∂tt −∂t

∂t 	0 + α∂t + η∂tt

)(

mx

my

)

.

(B6)

We switch to the circularly polarized basis, m± = mx ± imy

and h± = hx ± ihy, where the equations decouple,

γ M0

(

h+
h−

)

=
(

	0 + α∂t + η∂tt + i∂t 0

0 	0 + α∂t + η∂tt − i∂t

)(

m+
m−

)

.

(B7)

For the time dependence we consider h± = he±iωt , describ-

ing two types of polarization with opposite handedness. We

assume m± = me±iωt . Thus, we have

heiωt =
1

γ M0

(	0 + iαω − ηω2 − ω)meiωt

⇒ m+ =
γ M0

	0 + iαω − ηω2 − ω
heiωt , (B8)

he−iωt =
1

γ M0

(	0 − iαω − ηω2 − ω)me−iωt

⇒ m− =
γ M0

	0 − iαω − ηω2 − ω
he−iωt . (B9)

This leads to the susceptibility given in Eq. (2). Its real and

imaginary parts are derived as

Re(χ±) = γ M0

	0 − ω − ηω2

(	0 − ω − ηω2)2 + α2ω2
, (B10)

Im(χ±) = ±γ M0

αω

(	0 − ω − ηω2)2 + α2ω2
. (B11)

The dissipated power can be calculated according to its

definition based on Eq. (A11),

P = ∂t m · h

= (∂t mxhx + ∂t myhy)

=
1

2
(∂t m+h− + ∂t m−h+)

=
iω

2
(χ+ − χ−)|h|2

=
iω

2

(
−2iαωγ M0

(	0 − ω − ηω2)2 + α2ω2

)

|h|2

= ωIm(χ+)|h|2. (B12)

The positions and the linewidths of the resonance peaks

may be analyzed by finding the poles of the susceptibility in

Eq. (B8),

ω =
1

2η

[

−(1 − iα) ±
√

(1 − iα)2 + 4βFM

]

=
1

2η
[−1 ± a + iα(1 ∓ a−1)], (B13)

where βFM = η	0 and a is the single positive real solution of

the fourth-order equation

a4 − (1 − α2 + 4βFM)a2 − α2 = 0. (B14)

For βFM ≪ 1, one has a = 1 + 2βFM + O(β2
FM). For the

real parts of the frequencies, corresponding to the peak po-

sitions, one obtains ωp ≈ 	0(1 − βFM) and ωn ≈ −1/η −
	0(1 − βFM), as described in the main text. Note that the

latter expression agrees with Eq. (14) in Ref. [28], but the

correction terms are different from Ref. [27], where ωn =
−

√
1 + βFM/η ≈ −1/η − 	0/2(1 − βFM/4) was suggested.

It is apparent from Eq. (B13) that effective damping param-

eter, i.e. the ratio of the imaginary and the real parts of the

frequency, is αa−1 ≈ α(1 − 2βFM) both for the precession

and the nutation peaks. The full width of the resonance peaks

at half maximum can be expressed as �ω = ω1 − ω2, which

frequencies satisfy
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	0 − ω1 − ηω2
1 = −αω1, (B15)

	0 − ω2 − ηω2
2 = αω2. (B16)

The ratio of the linewidth and the peak position is given by

�ω

ωp

=
[	0 + α	0(1 − βFM)] − η(	0 + α	0)2 − [	0 − α	0(1 − βFM)] + η(	0 − α	0)2

	0(1 − βFM)

=
2α	0 − 6αβFM	0

	0(1 − βFM)
= 2α

1 − 3βFM

1 − βFM

≈ 2α(1 − 2βFM) (B17)

for the precession resonance, confirming that dividing the half-width at half-maximum by the resonance frequency is approxi-

mately equal to the effective damping parameter described above.

APPENDIX C: CALCULATION OF THE LINEAR RESPONSE IN TWO-SUBLATTICE

ANTIFERROMAGNETS AND FERRIMAGNETS

We expand the magnetization around the equilibrium direction in small deviations, MA = MA0êz + mA and MB = −MB0êz +
mB, which are induced by the transverse external field hA/B(t ). The linearized ILLG equation for the two sublattices reads

∂t mA = −
γA

MA0

[−(H0MA0 + 2KA + J )mAx êy + (H0MA0 + 2KA + J )mAyêx] +
γA

MB0

[JmBx êy − JmByêx]

− γAMA0(hAx êy − hAyêx ) + αA(∂t mAx êy − ∂t mAyêx ) + ηA(∂t mAx êy − ∂t mAyêx ), (C1)

∂t mB = −
γB

MB0

[−(H0MB0 − 2KB − J )mBx êy + (H0MB0 − 2KB − J )mByêx] −
γB

MA0

[JmAx êy − JmAyêx]

+ γBMB0(hBx êy − hByêx ) − αB(∂t mBx êy − ∂t mByêx ) − ηB(∂t mBx êy − ∂t mByêx ). (C2)

For the x and y components we obtain

γAMA0hAy =
γA

MA0

(H0MA0 + 2KA + J )mAy +
γA

MB0

JmBy + αA∂t mAy + ηA∂tt mAy + ∂t mAx, (C3)

γAMA0hAx =
γA

MA0

(H0MA0 + 2KA + J )mAx +
γA

MB0

JmBx + αA∂t mAx + ηA∂tt mAx − ∂t mAy, (C4)

γBMB0hBy =
γB

MB0

(−H0MB0 + 2KB + J )mBy +
γB

MA0

JmAy + αB∂t mBy + ηB∂tt mBy − ∂t mBx, (C5)

γBMB0hBx =
γB

MB0

(−H0MB0 + 2KB + J )mBx +
γB

MA0

JmAx + αB∂t mBx + ηB∂tt mBx + ∂t mBy. (C6)

In the circularly polarized basis with mA/B± = mA/Bx ± imA/By, hA/B± = hA/Bx ± ihA/By and defining 	A = γA/MA0(H0MA0 +
2KA + J ),	B = γB/MB0(J + 2KB − H0MB0), we obtain

γAMA0hA± = (	A + αA∂t + ηA∂tt ± i∂t )mA± +
γA

MB0

JmB±, (C7)

γBMB0hB± = (	B + αB∂t + ηB∂tt ∓ i∂t )mB± +
γB

MA0

JmA±. (C8)

The four equations of motion are separated into two pairs of coupled equations for the + and − components. In matrix formalism

we have

(

hA±
hB±

)

=

⎛

⎜
⎝

1

γAMA0

(	A + αA∂t + ηA∂tt ± i∂t )
1

MA0MB0

J

1

MA0MB0

J
1

γBMB0

(	B + αB∂t + ηB∂tt ∓ i∂t )

⎞

⎟
⎠

(

mA±
mB±

)

. (C9)

By substituting the time dependence hA/B±, mA/B± ∝ e±iωt we have

(

hA±
hB±

)

=

⎛

⎜
⎝

1

γAMA0

(	A ± iωαA − ηAω2 − ω)
1

MA0MB0

J

1

MA0MB0

J
1

γBMB0

(	B ± iωαB − ηBω2 + ω)

⎞

⎟
⎠

(

mA±
mB±

)

. (C10)
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We introduce the definition �± = (γAMA0γBMB0)−1(	A ± iωαA − ηAω2 − ω)(	B ± iωαB − ηBω2 + ω) − J2/(M2
A0M2

B0) for the

determinant of the matrix above. The susceptibility tensor is obtained by matrix inversion,

(

mA±
mB±

)

=
1

�±

⎛

⎜
⎝

1

γBMB0

(	B ± iωαB − ηBω2 + ω) −
1

MA0MB0

J

−
1

MA0MB0

J
1

γAMA0

(	A ± iωαA − ηAω2 − ω)

⎞

⎟
⎠

(

hA±
hB±

)

= χAB
±

(

hA±
hB±

)

, (C11)

as also given in Eq. (4).

Similarly to the ferromagnet, we calculate the dissipated power from Eq. (A11) as

PAB = ∂t mA · hA + ∂t mB · hB

=
1

2

[

∂t mA+hA− + ∂t mA−hA+ + ∂t mB+hB− + ∂t mB−hB+

]

=
iω

2

[ 1

�+

(
1

γBMB0

(

	B + iωαB − ηBω2 + ω
)

hA+ −
1

MA0MB0

JhB+

)

hA−

−
1

�−

(
1

γBMB0

(

	B − iωαB − ηBω2 + ω
)

hA− −
1

MA0MB0

JhB−

)

hA+

+
1

�+

(

−
1

MA0MB0

JhA+ +
1

γAMA0

(

	A + iωαA − ηAω2 − ω
)

hB+

)

hB−

−
1

�−

(

−
1

MA0MB0

JhA− +
1

γAMA0

(

	A − iωαA − ηAω2 − ω
)

hB−

)

hB+

]

=
ω2|hA|2

γBMB0

[

(γAMA0γBMB0)−1αA

[

(	B − ηBω2 + ω)
2 + ω2α2

B

]

+ J2/
(

M2
A0M2

B0

)

αB

�+�−

]

+
ω2|hB|2

γAMA0

[

(γAMA0γBMB0)−1αB

[

(	A − ηAω2 − ω)
2 + ω2α2

A

]

+ J2/
(

M2
A0MB0

)2
αA

�+�−

]

−
2ω2J|hAhB|
γAM2

A0γBM2
B0

[
(	AαB + 	BαA) + (αA − αB)ω − (ηAαB + ηBαA)ω2

�+�−

]

. (C12)

As discussed in the main text, the peak positions and the linewidths may be understood by finding the nodes of the

determinant �±,

(

	A ± iωαA − ηAω2 − ω
)(

	B ± iωαB − ηBω2 + ω
)

−
γAγB

MA0MB0

J2 = 0

⇒ ηAηB
︸︷︷︸

=a±

ω4 + [∓i(αAηB + αBηA) − (ηA − ηB)]
︸ ︷︷ ︸

=b±

ω3

+ [−1 ± i(αA − αB) − (	AηB + 	BηA) − αAαB]
︸ ︷︷ ︸

=c±

ω2

+ [(	A − 	B) ± i(αB	A + αA	B)]
︸ ︷︷ ︸

=d±

ω + 	A	B −
γAγB

MA0MB0

J2

︸ ︷︷ ︸

=e±

= 0. (C13)

The fourth-order equation (C13) may be solved in a closed form. However, in order to arrive at solutions, which have a

simpler form, we consider the antiferromagnet with identical sublattices, MA0 = MB0 = M0, αA = αB = α, ηA = ηB = η, and

KA = KB = K . Furthermore, we assume α ≪ 1 and M0H0, K ≪ J , as is typical in most systems. Consequently, we will treat the

terms proportional to the damping and the external field in first-order perturbation theory, leading to

η2ω4 −
(

1 + 2η
γ

M0

(J + 2K )
)

ω2 − i2αηω3
(0) + 2γ H0ω(0)

+ i2α
γ

M0

(J + 2K )ω(0) +
γ 2

M2
0

(J + 2K )2 − γ 2(H0)2

−
γ 2

M2
0

J2 = 0, (C14)
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where ω(0) is the solution for α = 0 and H0 = 0, and we only treat �+ for simplicity since �− may be obtained by complex

conjugation. Equation (C14) is a second-order equation in ω2, the solutions of which are simple to express. Expanding them up

to first order in α and H0 for consistency with the order of the perturbation, and also in first order in K/J ≪ 1, one obtains

ωp± ≈ ±
γ

M0

√
4K (J + K )

√

1 + 2η
γ

M0
(J + 2K )

+
1

√

1 + 2η
γ

M0
(J + 2K )

×
|ω(0)|

γ

M0

√
4K (J + K )

[

γ H0 + iα
( γ

M0

(J + 2K ) − ηω2
(0)

)]

, (C15)

ωn± ≈ ±
1

η

√

1 + 2η
γ

M0

(J + 2K )

⎛

⎝1 −
η2 γ 2

M2
0

4K (J + K )

2
[

1 + 2η
γ

M0
(J + 2K )

]2

⎞

⎠

−
η|ω(0)|

[

1 + 2η
γ

M0
(J + 2K )

] 3
2

[

γ H0 + iα
( γ

M0

(J + 2K ) − ηω2
(0)

)]

, (C16)

for the precession and the nutation frequencies, respectively. Substituting in |ω(0)| from the leading term in the expression into

the perturbative terms, one arrives at

ωp± ≈ ±
γ

M0

√
4K (J + K )

√

1 + 2η
γ

M0
(J + 2K )

+
1

1 + 2η
γ

M0
(J + 2K )

[

γ H0 + iα
γ

M0

(J + 2K )
]

, (C17)

ωn± ≈ ±
1

η

√

1 + 2η
γ

M0

(J + 2K )

⎛

⎝1 −
η2 γ 2

M2
0

4K (J + K )

2
[

1 + 2η
γ

M0
(J + 2K )

]2

⎞

⎠

−
1

1 + 2η
γ

M0
(J + 2K )

[

γ H0 − iα

(
1

η
+

γ

M0

(J + 2K )

)]

. (C18)

The leading-order terms for H0, α = 0 and using

J + K ≈ J are also reported in the main text. As

discussed there, in the antiferromagnet the corrections

caused by the inertial dynamics surpass in magnitude

those in the ferromagnet, since the characteristic

dimensionless parameter βFM = η	0 is replaced by

βAFM = ηγ /M0(J + 2K ) ≈ (ηγ /M0)J . This difference is

also manifest in the dependence of the excitation frequencies

on the static magnetic field H0: while in the ferromagnet

the Larmor frequency is renormalized as (1 − βFM)γ H0,

in the antiferromagnet the corresponding factor is

(1 + 2βAFM)−1γ H0 for both the precession and the nutation

frequencies, causing an apparent decrease in the gyromagnetic

factor.

From Eqs. (C17) and (C18), the effective damping param-

eters in the antiferromagnet may be expressed as

Im(ωp)

Re(ωp)
≈ α

√

(J + 2K )2

4K (J + K )

1
√

1 + 2η
γ

M0
(J + 2K )

, (C19)

Im(ωn)

Re(ωn)
≈ α

1 + η
γ

M0
(J + 2K )

[

1 + 2η
γ

M0
(J + 2K )

] 3
2

. (C20)

While the inertial dynamics decrease the resonance linewidth

of the antiferromagnet by a larger factor (1 + 2βAFM)−1/2

compared to the ferromagnet (1 − 2βFM), this is compensated

by the exchange enhancement expressed in the factor
√

J/4K .

Remarkably, the effective damping of the nutation resonance

is not exchange enhanced, while it is still reduced compared

to the Gilbert damping due to the inertial motion, giving rise

to the particularly sharp peaks in Fig. 2.
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