
 

Nutation Spectroscopy of a Nanomagnet Driven into Deeply
Nonlinear Ferromagnetic Resonance

Y. Li,
1,*

V. V. Naletov,
1,2

O. Klein,
3
J. L. Prieto,

4
M. Muñoz,

5
V. Cros,

6
P. Bortolotti,

6

A. Anane,
6
C. Serpico,

7
and G. de Loubens

1,†

1Service de Physique de l’État Condensé, CEA, CNRS, Université Paris-Saclay,
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Strongly out-of-equilibrium regimes in magnetic nanostructures exhibit novel properties, linked to the

nonlinear nature of magnetization dynamics, which are of great fundamental and practical interest. Here, we

demonstrate that ferromagnetic resonance driven by microwave magnetic fields can occur with substantial

spatial coherency at an unprecedented large angle of magnetization precessions, which is normally prevented

by the onset of spin-wave instabilities and magnetization turbulent dynamics. Our results show that this

limitation can be overcome in nanomagnets, where the geometric confinement drastically reduces the density

of spin-wave modes. When the obtained deeply nonlinear ferromagnetic resonance regime is perturbed, the

magnetization undergoes eigenoscillations around the steady state due to torques tending to restore the stable

large-angle periodic trajectory. These eigenoscillations are substantially different from the usual spin-wave

modes around the ground state because their existence is connected to the presence of a large coherent

precession. They are experimentally investigated by a new spectroscopic technique based on the application

of a second microwave excitation field that is tuned to resonantly drive them. This two-tone spectroscopy

enables us to show that they consist in slow coherent magnetization nutations around the large-angle steady

precession, whose frequencies are set by the balance of restoring torques. Our experimental findings are well

accounted for by an analytical model derived for systems with uniaxial symmetry. They also provide a new

means for controlling highly nonlinear magnetization dynamics in nanostructures, opening interesting

applicative opportunities in the context of magnetic nanotechnologies.

DOI: 10.1103/PhysRevX.9.041036 Subject Areas: Condensed Matter Physics, Magnetism,

Nonlinear Dynamics

I. INTRODUCTION

Spectroscopy based on the resonant interaction of
electromagnetic fields with material media has had a
tremendous impact on the development of physics since
the beginning of the 20th century and remains of crucial

importance in the study of nanotechnologies. In this area, a
central role is played by magnetic resonance spectroscopy,
which includes various techniques such as nuclear mag-
netic resonance (NMR), electron paramagnetic resonance
(EPR), and ferromagnetic resonance (FMR), all based
on the excitation of the Larmor precession of magnetic
moments around their equilibrium position [1].
FMR differs from NMR and EPR in the fact that in

ferromagnetic media, magnetic moments are coupled by
strong exchange interactions that tend to align them,
leading to a large macroscopic spontaneous magnetization.
In these conditions, magnetodipolar effects become impor-
tant and determine large internal fields that enrich both the
ground state—which can be spatially nonuniform—and the
dynamics of magnetic moments. The complex interactions
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taking place in the media can be described by an
appropriate effective field that sets the timescale of the
magnetization precession and that itself depends on the
magnetization, making the dynamics, for sufficiently
large deviations from the ground state, highly nonlinear
[2]. A special role in FMR is also played by the spin
waves (SWs), which are the collective eigenmodes
associated with small magnetization oscillations around
the equilibrium configuration [3]. When pumping fields
excite SWs well above their thermal amplitudes, a rich
variety of phenomena emerges, such as the formation
of dynamical solitons [4,5], SW turbulences and chaos
[4,6–8], and Bose-Einstein condensation of magnons [9],
the quanta of SWs.
Recent developments in magnetic nanotechnologies

have also demonstrated that FMR and SW dynamics can
be excited either by microwave magnetic fields or by spin
transfer torques, with the promise of innovative magnonic
and spintronic devices for information and communication
technologies [10]. In this area, spin torque nano-oscillators
(STNOs) [11–15], which exhibit strong nonlinear proper-
ties [16], have even been successfully implemented to
perform neuromorphic tasks [17,18].
The complexity of magnetization dynamics when

strongly nonlinear regimes set in is usually detrimental
to the reliable control of nanomagnetic devices, such as
oscillators, memories, and logic gates. In this respect, it is
important to establish how far from equilibrium magnetic
nanostructures can be driven before the coherent magneti-
zation dynamics becomes highly perturbed by the onset of
SW instabilities [19]. In this article, we provide a crucial
advancement for this problem. We demonstrate that FMR
in a sufficiently confined nanostructure can exhibit unprec-
edented large-angle magnetization precessions that are
spatially quasiuniform. The experimental evidence of the
coherence of large precessions is brought about by a new
spectroscopic technique based on the application of a
second probe excitation field, with frequency close to
the one of the main time-harmonic field. This second
excitation is used to drive small eigenoscillations of
magnetization around the FMR large-angle periodic oscil-
lations, corresponding to coherent nutations of the mag-
netization. These nutation modes are substantially different
from the usual SW modes around the ground state because
they correspond to eigenmodes around a far-from-
equilibrium state. Their existence is connected to the one
of a large coherent precession, and their frequencies are set
by the balance of restoring torques acting on the magneti-
zation when it is perturbed from its large-angle periodic
trajectory. Moreover, we show that the resonant excitation
of these nutations can be used to control the nonlinear
magnetization dynamics by affecting the switching fields
associated with the bistability of the large-angle FMR
response pictured in Fig. 1(a), which occurs beyond the
foldover instability predicted by Anderson and Suhl [20].

II. RESULTS

In the following, we investigate the FMR of an individ-
ual nanodisc of yttrium iron garnet (YIG) in the
perpendicular configuration. The choice of YIG is natural
as it is the magnetic material with the smallest SW
damping, making it attractive to study weakly dissipative
magnetization dynamics in the linear and nonlinear regimes
[21]. The nanodisc has a diameter of 700 nm and is
patterned from a 20-nm-thick YIG film of magnetization
μ0Ms ¼ 0.21 T [22], μ0 being the vacuum permeability.
It is saturated out of plane by a magnetic field H0 applied
along its normal, z. A broadband antenna supplies a
spatially uniform, linearly polarized microwave field of
pulsation ω1 oriented in the plane of the nanodisc. It can be
decomposed into its left and right circularly polarized
components, with only the latter being efficiently coupled
to the Larmor precession of the magnetization. In the
following, h1 will refer to the circular amplitude of the
excitation field produced by the output power P1 from
the synthesizer. It drives the YIG nanodisc into FMR,
thereby opening a precession angle θ of the magnetization
M around H0 and decreasing its longitudinal component
Mz ¼ Ms cos θ. This dynamics is characterized by mag-
netic resonance force microscopy (MRFM), which sensi-
tively probes the variation ΔMz ¼ Ms −Mz through the
dipolar force between the YIG nanodisc and a magnetic
nanosphere attached at the end of a soft cantilever [23], as
sketched in Fig. 1(b). Further details about the sample,
the MRFM setup, and the microwave calibration can be
found in the Appendix A.

A. Linear spin-wave spectroscopy

In Fig. 1(c), the SW spectroscopy of the YIG nanodisc
is performed at ω1=ð2πÞ ¼ 10.5 GHz and low power
P1 ¼ −30 dBm, which is pulse modulated at the frequency
of the MRFM cantilever, fc ≈ 12.3 kHz, to improve the
signal-to-noise ratio (the FMR signal is coded in the
amplitude of the cantilever vibrations; see Appendix A 2).
Quantized radial SW modes are excited by the uniform
pumping field [24]. Their spatial profiles indexed by the
radial number are shown above the spectrum. The funda-
mental Kittel mode is the one excited at the largest field,
μ0HK ¼ 0.569 T, and it corresponds to a uniform phase of
the transverse magnetization in the disc. Because of the
geometric confinement, it is well separated from other SW
modes at lower fields [25]. Its full width at half maximum,
μ0ΔH ¼ 0.35 mT, is determined at even lower power
(P1 ¼ −38 dBm) to avoid distortions of the resonance line
due to the onset of foldover, which occurs when the change
in the effective field becomes comparable to the FMR

linewidth, at Pth
1
¼ −33 dBm or μ0h

th
1
¼ 0.009 mT (see

Appendix A 3). It corresponds to a Gilbert damping param-

eter α ¼ γμ0ΔH=ð2ω1Þ ¼ 4.7 × 10−4, where γ is the gyro-
magnetic ratio, in agreement with the value determined

Y. LI et al. PHYS. REV. X 9, 041036 (2019)

041036-2



from broadband measurements (see Supplemental Material,
Fig. S1 [26]).

B. Deeply nonlinear FMR

The FMR spectrum of the YIG nanodisc radically
changes at much stronger pumping fields. Figure 1(d)
shows the measurement with a continuous wave (cw)
excitation at P1 ¼ þ12 dBm, i.e., more than 4 orders of
magnitude larger than the threshold of foldover instability.
The cw excitation allows us to reveal the bistable character
of the nonlinear magnetization dynamics (the FMR
signal is now coded in the cantilever frequency; see
Appendix A 2). By sweeping down the applied field (red
curve) through the resonance of the Kittel mode, the
precession angle substantially increases, which decreases
the static demagnetizing field μ0Mz and shifts the FMR
condition ω1 ¼ γμ0ðH0 −MzÞ to a lower magnetic field by
the same amount. This foldover shift towards low fields

continues until the pumping field cannot sustain the large-

amplitude magnetization dynamics anymore, causing the

sharp downward jump to the lower stable branch observed

at μ0Hdown ¼ 0.381 T. By sweeping up the applied field

(blue curve), an upward jump to the higher stable branch is

observed at μ0Hup ¼ 0.516 T. The extremely hysteretic

foldover witnessed in this experiment is remarkable, if one

compares it to the much weaker bistable response charac-

teristics observed before [27,28]. Moreover, the maximal

foldover shift μ0ðHK −HdownÞ ¼ 0.188 T corresponds to a

reduction of nearly 90% of μ0Mz induced by the microwave

pumping, which translates into a mean precession angle of

84° in the nanodisc.
The evolution of the maximal normalized foldover shift

as a function of the pumping field h1 is plotted in Fig. 1(e)

together with ΔMmax
z =Ms ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4h2
1
=ΔH2

p

calcu-

lated from the macrospin Landau-Lifshitz-Gilbert (LLG)
equation [3]. The measured foldover shift starts to deviate

FIG. 1. Ultrastrong foldover of FMR. (a) Illustration of hysteretic foldover in the nonlinear regime of FMR, where jumps between the
two stable branches of the dynamics occur atHdown andHup. The dotted line is the unstable branch. The black Lorentzian curve centered
atHK corresponds to linear FMR. (b) Schematics of the experiment. A microwave field h1 of pulsation ω1 drives the magnetizationM of

a YIG nanodisc into FMR, opening a precession angle θ around the perpendicularly applied field H0. The associated variation in the
longitudinal component of the magnetization, ΔMz, is mechanically detected by the cantilever of a magnetic resonance force
microscope. (c) Spin-wave spectroscopy performed at 10.5 GHz in the linear regime. The profiles of the quantized radial SW modes,
calculated using a micromagnetic code, are shown above (different colors display regions precessing in opposite phase). (d) FMR
spectrum in the deeply nonlinear regime exhibiting ultrastrong hysteretic foldover and nearly complete suppression ofMz. (e) Evolution
of the maximal normalized foldover shift as a function of the pumping field h1. The dashed line shows the behavior expected for a
macrospin, and the inset is a zoomed view of the low-amplitude regime.
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from the macrospin model beyond μ0h1 ≃ 0.1 mT, which is

an order of magnitude larger than the threshold for fold-

over, when the angle of the uniform precession increases

above 30°, corresponding toΔMz=Ms ≃ 15%. This result is

the signature of the onset of SW instabilities [19], which is

significantly postponed compared to what is observed in

larger YIG samples, where the Suhl threshold is reached

even before the onset of foldover, for a uniform precession

angle of only a couple of degrees [29,30]. In this respect,

the experimental results presented in Fig. 1 demonstrate

that the discretization of the excitation spectrum in nano-

structures efficiently inhibits nonlinear interactions

between SW modes, which enables the preservation of

coherent magnetization dynamics to much higher power

levels [31,32].

C. Nutation spectroscopy in the rotating frame

We now aim at further probing the large-amplitude

magnetization dynamics demonstrated above, which is

periodic at ω1 in the laboratory frame and hence referred

to as a P-mode [33]. In the frame rotating with h1 at ω1

around the z axis, the magnetization M0 of a P-mode is

fixed at a polar angle θ0 and a phase lag φ0 [see Fig. 2(a)

and Supplemental Material [26] ]. For this case, we conduct

two-tone measurements, where in addition to the strong cw

excitation h1 at ω1, a second weak microwave field h2, that

is pulse modulated at the cantilever frequency fc to

improve the sensitivity, is applied at ω2, as shown in

Fig. 2(b). MRFM is used to simultaneously detect ΔM1

induced by the main cw pumping at ω1 [by monitoring the

cantilever frequency, as in Fig. 1(d)] and the additional

change in longitudinal magnetization, ΔM2, induced by

the second excitation at ω2 [by monitoring the amplitude

of the cantilever vibrations, as in Fig. 1(c)]. The former

informs us about the time-harmonic steady-state regime

driven by h1, whereas the latter allows us to spectroscopi-

cally probe the eigenexcitations on top of this P-mode. The

ΔM2 spectrum measured at constant bias field μ0H0 ¼
0.52 T by sweeping ω2=ð2πÞ at low power P2 ¼ −16 dBm

in the vicinity of the frequency ω1=ð2πÞ ¼ 10.5 GHz of the

main pumping (P1 ¼ þ8 dBm) is shown in Fig. 2(d).

It displays two narrow resonance peaks centered at

10.2 GHz and 10.8 GHz, i.e., symmetrically with respect

to ω1=ð2πÞ, which means that in the frame rotating with h1
at ω1, the magnetization is precessing at ðω2 − ω1Þ=ð2πÞ ¼
�ωP;0=ð2πÞ ¼ �0.3 GHz around its equilibrium position

M0 [cf. Fig. 2(a)]. In other words, it is subjected to a slow

nutation motion in the laboratory frame: a combination of

the large periodic motion at frequency ω1 and the small

oscillations at frequency ωP;0 < ω1. The dependence of the

nutation frequency ωP;0 on the main pumping field h1
at fixed μ0H0 ¼ 0.52 T is presented in Fig. 2(e), whereas

its evolution measured as a function of the down-swept

field H0 at fixed P1 ¼ þ8 dBm and P1 ¼ þ1 dBm is

shown in the 2D spectroscopy maps of Figs. 2(f) and 2(h),
respectively.
From the framework of dynamical systems [2], it is

known that when the P-mode is stable and of focus type,
the relaxation dynamics toward the P-mode, from small
perturbations from the P-mode, is a slowly damped
oscillation. Here, the eigenfrequency of the corresponding
nutation dynamics is set by two restoring torques. The first
one is directly provided by h1, which sets the Rabi
frequency in a magnetic resonance experiment [34,35]. It
depends both on the phase φ0 between the magnetization
and the driving field and on the precession cone angle θ0.
The second one is a demagnetizing torque specific to
nonlinear FMR, which only depends on θ0 and stiffens the
nutation resonance. Therefore, the low-frequency nutation
dynamics discussed herein is fundamentally distinct from
the one possibly occurring at very high frequency due to
an additional inertial torque, which might be present in
the equation of motion of the magnetization [36–38].
Following the theoretical approach of Ref. [39], it is
possible to analytically calculate the frequency ωP;0 of

spatially uniform nutation around a given P-mode based
on the macrospin LLG equation. Technical details are given
in Appendix B (the full derivation is presented in the
Supplemental Material [26]). In the limit of small damping,
α ≪ 1, it can be expressed as a function of h1 and the
angles θ0 and φ0 of the P-mode as follows:

ω2

P;0

γ2
¼ μ0h1 cosφ0

sin θ0

�

μ0h1 cosφ0

sin θ0
þ μ0Ms sin

2 θ0

�

: ð1Þ

This analytical expression is plotted as black dashed
lines in Figs. 2(e), 2(f), and 2(h), using the amplitude h1 of
the main driving field in the experiments, the angle of
precession at the bias field H0 determined from the
normalized foldover shift, cos θ0 ¼ ðHK −H0Þ=Ms, and
the phase lag, which satisfies γμ0h1 sinφ0 ¼ αω1 sin θ0 in
the macrospin model. It reproduces rather well the exper-
imental data, except in regions where the level of excitation
is very large, due to the deviation from the macrospin
behavior already noticed in Fig. 1(e). In addition, we have
conducted full micromagnetic simulations in the time
domain (see Appendix C), which allow us to extract the
nutation frequency from the relaxation of the magnetization
towards the steady-state regime driven by h1, shown in
Fig. 2(c). The obtained results are plotted as red dotted
lines in Figs. 2(e), 2(f), and 2(h). They quantitatively agree
with the data on the full range of parameters investigated
because, contrary to the macrospin approach, micromag-
netic simulations can capture the SW instabilities occurring
at high amplitude in the experiments, which slightly
renormalize the nutation frequency (see discussion in
Sec. III).
The dependence of the nutation frequency on h1

observed in Fig. 2(e) can be explained as follows. There
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FIG. 2. (Continued)
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is a minimum amplitude of μ0h1 ≃ 0.15 mT to drive the P-
mode at μ0H0 ¼ 0.52 T, which corresponds to a normal-
ized foldover shift ðHK −H0Þ=Ms ¼ 23%, i.e., an angle of
precession θ0 ≃ 40°. Above this amplitude, the nutation
frequency is defined, and it increases with h1 as predicted
by Eq. (1), which demonstrates that the nonlinear demag-
netizing term is essential to describe the nutation dynamics.
To illustrate this, we have plotted, using blue dotted lines,
the behavior predicted by Eq. (1) in its absence, which
underestimates by about an order of magnitude the
observed nutation frequency.
We now interpret the nutation spectroscopy maps of

Figs. 2(f) and 2(h), where ΔM2 is measured at fixed h1 by
sweeping H0 and ω2. When H0 > HK , the magnetization
dynamics is driven off resonantly by h1 and has small
amplitude. Hence, the weak microwave field h2 simply
excites the linear Kittel resonance on top of it, which
explains the bright linear dispersion ω2 ¼ γμ0ðH0 −MsÞ
observed in this region. This result is also expected from
Eq. (1), which in the limit of small θ0, tends towards the
difference between the Kittel frequency of small linear
oscillations ωK and the frequency of the microwave field
ω1. The situation is quite different when H0 < HK . In this
case, h1 drives the strong foldover regime demonstrated in
Fig. 1, thereby appreciably changing both θ0 and φ0 upon
sweeping down H0, and h2 excites the magnetization
dynamics on top of the corresponding P-mode. The
nontrivial evolution of the two resonance branches sym-
metrically distributed around the main pumping frequency
ω1 as a function of H0 is reproduced qualitatively by
Eq. (1), and quantitatively by micromagnetic simulations.
The fact that the upper branch is continuous with the linear
Kittel resonance branch observed above HK indicates that
the perturbation of the P-mode driven by h2 has a uniform
phase, i.e., corresponds to a uniform nutation of the
magnetization.
The experimental results presented in Fig. 2 also

demonstrate that the weak resonant excitation of the
nutation mode can destabilize the strong foldover dynam-
ics. Figures 2(g) and 2(i) display the evolution of ΔM1

induced by the cw pumping h1 at ω1 while exciting the
nutation dynamics with h2 as a function of H0 and ω2,
whose ΔM2 spectroscopy is presented in Figs. 2(f) and 2(h),

respectively. In these 2D maps, the foldover breakdown
occurring at Hdown is easily identified thanks to the asso-
ciated sharp change of ΔM1, and it is anticipated
as the nutation mode is excited. It is particularly clear in
Fig. 2(i), where the maximal foldover shift
μ0ðHK −HdownÞ is reduced by almost 0.05 T when
jω2 − ω1j=ð2πÞ ≃ 0.2 GHz, which corresponds to the
nutation resonance. Moreover, these data suggest that
higher-order nutation modes can be excited by h2 since
an anticipated foldover breakdown is also observed
at jω2 − ω1j=ð2πÞ ≃ 0.35 GHz.
In order to investigate these other nutation modes, we

perform the same measurements as in Figs. 2(f)–2(i) but
for larger detunings ω2 − ω1 (P2 is also increased from
−19 to −13 dBm). The results obtained at P1 ¼ þ1 dBm
are reported in Figs. 3(b) and 3(c) (those obtained at P1 ¼
þ8 dBm are presented in the Supplemental Material,
Fig. S2 [26]). The spectroscopy map of the SW modes
excited by h2 in the absence of h1 is shown in Fig. 3(a). It
displays the linear dispersion relation of the radial SW
modes excited by the uniform field h2, already discussed in
Fig. 1(c). Because of the strong foldover regime driven by
h1 at H0 < HK in Fig. 3(b), each of these radial SW
branches transforms into a pair of branches symmetric
around ω1. Additionally, there is a pair of branches that
appears at twice the main nutation frequency, which is due
to the ellipticity of the trajectory, apparent in Fig. 2(c). The
macrospin approach used to derive Eq. (1) cannot be used
to account for these higher-order nutation modes, although
plane-wave perturbations to the P-mode can also be
analytically calculated [39]. We therefore use micromag-
netic simulations to calculate the SW nutation spectra
shown in Fig. 3(d), which are in good agreement with
the experiments. The extracted SW nutation mode profiles
(see Appendix C), shown in the insets of Fig. 3(d), indicate
that there is some continuity between the radial SW modes
excited in the linear regime on top of the equilibrium
magnetization and the nutation modes excited on top of
the P-mode driven in the nonlinear regime by h1. Finally,
Fig. 3(c) confirms that the excitation of the nutation
resonances can destabilize the strong foldover dynamics,
with sizable reductions of the switching field Hdown

observed at the corresponding nutation frequencies.

FIG. 2. Nutation of magnetization. (a,b) Principle of the experiment. A low-power microwave field h2 of pulsation ω2, which is pulse
modulated at the cantilever frequency fc ≈ 12.3 kHz, is added to the main pumping cw field h1. This addition enables the spectroscopy
in the frame rotating with h1 at ω1, where the magnetizationM0 of the P-mode is fixed at an angle θ0 and a phase lag φ0. (c) Relaxation
trajectory of the magnetization towards the P-mode in the plane ðe1; e2Þ orthogonal to M0 defined in Appendix B, calculated using
micromagnetic simulations. (d) Spectroscopy performed at ω1=ð2πÞ ¼ 10.5 GHz and μ0H0 ¼ 0.52 T as a function of ω2. The two
resonance peaks that are symmetric with respect to ω1 correspond to a motion of nutation in the laboratory frame. (e) Evolution of the
nutation frequency as a function of the main pumping field h1 at fixed μ0H0 ¼ 0.52 T. (f) Nutation spectroscopy map at fixed h1 of the
small amplitude dynamicsΔM2 excited by ω2 as a function of the down-swept fieldH0. (g) Simultaneous measurement ofΔM1 induced
by the main pumping at ω1. (h,i) Same as (f,g) for a smaller main pumping power. In panels (e)–(i), the black dashed lines show the
analytical predictions from Eq. (1), and the red dotted lines show the results from micromagnetic simulations.

Y. LI et al. PHYS. REV. X 9, 041036 (2019)

041036-6



III. DISCUSSION

As in the case of a spinning top, the nutation of
magnetization demonstrated above is made possible by
the specific properties of the dynamics on the unit sphere
[2]. Namely, it is topologically allowed for the magnetization
to oscillate around its fixed pointM0 ðθ0;φ0Þ in the rotating
frame, which is set by the drive h1. The nutation dynamics
discussed in this work is thus fundamentally connected to
the existence of the P-mode. The nutation frequency results
from the balance of torques acting on the angular momentum
and is given by Eq. (1) in the case of a macrospin governed
by the LLG equation. The accuracy of the latter to account
for the experimental data means that the coherent precession
of the magnetization vector is indeed dominating the deeply
nonlinear driven dynamics, despite the signatures of SW
instabilities observed at very large pumping power.
This preservation of coherent magnetization dynamics,

which we report on a thin disc with submicrometric
diameter, is mainly due to the geometric confinement.
It significantly reduces the density of normal modes and
suppresses the nonlinear SW interactions present in bulk
ferromagnets [31,32]. In addition, in our experiments, the
ground state has magnetization perpendicular to the plane.
In this case, the uniform mode in thin films lies at the
bottom of the SW manifold; thus, it has no degenerate mode
to couple to [40,41], and the angle of the purely circular
precession driven by FMR can reach large values [42]. These
combined circumstances allow for the excitation of large-
amplitude quasiuniform precession of magnetization. The
main effect of the SW instabilities, which eventually occur at
very large pumping power, is to slightly reduce the nutation
frequency, which is well captured by full micromagnetic
simulations. This effect can be ascribed to the shift of the
phase between the pumping field and the average magneti-
zation [43] observed in our simulations, a key effect to
explain the above threshold dynamics [7,44]. The nutation
spectroscopy of magnetization thus allows a more detailed

investigation of the highly nonlinear regime, where auto-
oscillation instabilities [6,40,45,46] and instability patterns
[47] have been evidenced.
Our results also highlight that the dynamical states driven

by a high-power microwave signal can be controlled using
a second signal with much lower power by the resonant
excitation of the nutation modes. This case could be applied
in devices taking advantage of the bistable magnetization
dynamics for microwave signal processing [27], in analogy
to microwave-assisted magnetization switching [48–50].
Furthermore, the frequency selectivity and high susceptibil-
ity of nutation excitations provide new potentials for the
scheme of neuromorphic computing. Cognitive tasks have
already been implemented using the nonlinear dynamics of
nanomagnets, from the transient regime of a single STNO
[17] to the collective behavior of mutually coupled STNOs
controlled by external microwave signals [18,51]. An appro-
priate use of the nutation dynamics of magnetization would
allow us to gain additional control on nonlinear dynamics,
which is highly desired in this field.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Sample preparation

A 20-nm-thick Y3Fe5O12 (YIG) film was grown by
pulsed laser deposition on a (111) Gd3Ga5O12 (GGG)
substrate, as described in Ref. [22]. It was used to pattern

FIG. 3. Spin-wave nutation modes. (a) Spectroscopy map of the SWmodes excited by the low power excitation at ω2 in the absence of
the main pumping at ω1=ð2πÞ ¼ 10.5 GHz. They correspond to the same radial modes as probed in the linear regime in Fig. 1c, whose
profiles are recalled as insets. (b) ΔM2 spectroscopy map of the SW nutation modes excited by the low power excitation at ω2 in the
presence of the main excitation at ω1 (P1 ¼ þ1 dBm). (c) Simultaneous measurement of ΔM1 induced by the main pumping at ω1.
(d) Micromagnetic simulations of the experimental data shown in (b). The SW mode profiles shown as insets are extracted at some
specific ω2 − ω1 and H0. In all the panels, the perpendicular field H0 is swept down.
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the studied YIG nanodisc by electron lithography and dry
etching. After the insertion of a 50-nm-thick SiO2 insulat-
ing layer, a 150-nm-thick and 5-μm-wide gold antenna
was defined on top of the nanodisc to provide the micro-
wave excitation [25].

2. MRFM setup

The magnetic resonance force microscope is located
between the poles of an electromagnet and operated under

vacuum (10−6 mbar) at a stabilized temperature of 288 K.
The cantilever is an Olympus Biolever (spring constant

5 mN · m−1) with a 700-nm-diameter sphere of an amor-

phous FeSi alloy (magnetic moment 0.28 pA · m2) glued to
its apex. In this study, MRFM spectroscopy is achieved by
placing the center of this magnetic nanosphere at a distance
of 1.5–1.8 μm above the center of the YIG nanodisc. The
stray field of the MRFM probe (10–16 mT) is subtracted
from the corresponding spectra. The displacement of the
cantilever is monitored using optical techniques. Its
mechanical frequency (fc ≈ 12.3 kHz) is tracked using a
phase-locked loop, and its vibration amplitude is stabilized
to 4 nm using a piezoelectric bimorph. When the cw
microwave pumping excites the magnetization dynamics in
the sample, its longitudinal component is reduced, so the
static dipolar force with the magnetic probe diminishes.
The associated variation of the cantilever frequency pro-
vides a quantitative magnetometry of the sample [52].
In order to improve the signal-to-noise ratio, the microwave
excitation is pulsed on and off at fc. In that case, the
cantilever vibrations induced by the magnetization dynam-
ics excited in the sample are enhanced by the quality factor
Q ≈ 2000 of the mechanical detection [23].

3. Microwave field calibration

We use the onset of foldover as a means to calibrate the
amplitude of the excitation field produced by the micro-
wave antenna at the sample location [24]. At the threshold

of foldover instability, hth
1
¼ 0.62ΔH3=2=M

1=2
s [20], and the

slope of the FMR curve becomes infinite on the low field
side of the resonance, which is experimentally observed
at 10.5 GHz for an output power from the synthesizer

Pth
1
¼ −33 dBm. Using the FMR linewidth measured in the

linear regime, one gets μ0h
th
1
¼ 0.009 mT, i.e., a calibration

factor a ¼ 0.4 mT=
ffiffiffiffiffiffiffiffiffi

mW
p

between microwave field and
power. To get a better precision, we also fit the dependence
on power of the critical fields Hdown and Hup determined

experimentally beyond the foldover onset [28], which

yields a ¼ 0.41� 0.03 mT=
ffiffiffiffiffiffiffiffiffi

mW
p

.

APPENDIX B: ANALYTICAL CALCULATIONS

The nonlinear FMR excited in a uniaxial system by
the superposition of two time-harmonic external fields,
hacðtÞ ¼ h1ðtÞ þ h2ðtÞ with jh2ðtÞj ≪ jh1ðtÞj, is calculated

based on the macrospin LLG equation. The main stages of

the analytical derivation presented in the Supplemental

Material [26] are the following. The LLG equation is first

written in the frame of reference rotating around the z axis

at the angular frequency ω1 of the dominant time-harmonic

component: _m − αm × _m ¼ −m × ðheff − ω1ezÞ þ αω1m×

ðez ×mÞ, where heff ¼ κeffmzez þ h0ez þ hacðtÞ, _m is the

time derivative of the normalized magnetization vector

taken in the rotating frame, h0 is the normalized bias field,

ez is the unit vector along it, and κeff is the effective

anisotropy constant. It is then written in spherical coor-

dinates and considered in the case where only the right

circularly polarized component of h1 is applied. This

method allows us to find its equilibrium points m0

(P-modes), or equivalently ðθ0;φ0Þ, and to analyze the

foldover of FMR [33]. The standard analysis of the stability

of these P-modes allows us to calculate the nutation

frequency given in Eq. (1) [39]. In brief, m is expanded

around m0 to linearize the LLG equation, and the

complex amplitudes of magnetization perturbations are

calculated in the rotating frame by projecting them in

the plane ðe1; e2Þ orthogonal to m0, where sin θ0e1 ¼
ðez ×m0Þ ×m0 and sin θ0e2 ¼ ðez ×m0Þ. Finally, the

P-mode linear response to the small additional micro-

wave field h2 is studied.

APPENDIX C: MICROMAGNETIC

SIMULATIONS

The magnetization dynamics in the YIG nanodisc is
calculated using the PYTHON module MicroMagnum, a
micromagnetic finite difference simulator that can be
run on graphics processing unit [53]. The nominal geom-
etry of the nanodisc (diameter 700 nm, thickness 20 nm) is
discretized using a 128 × 128 × 1 rectangular mesh. The

following magnetic parameters are used:Ms¼167kA·m−1,

Aex ¼ 4.3 p J · m−1 (exchange length ≃16 nm), γ=ð2πÞ ¼
28.5 GHz · T−1 · s−1, and α ¼ 5 × 10−4. The bias magnetic
field is applied along the normal of the disc. The static
equilibrium configuration of the magnetization is calcu-
lated at 0.59 T. Then, a linearly polarized excitation field of
constant amplitude is applied at 10.5 GHz in the plane of
the disc, and for each value of the bias magnetic field,
which is decreased by steps of 0.002 T, the resulting
magnetization dynamics is calculated over 100 ns with a
typical step of 3 ps. This process allows us to reproduce the
foldover regime demonstrated in the experiments and to
calculate the nutation frequencies. Those frequencies are
obtained by fast Fourier transformation of the transient
dynamics of the average magnetization simulated at each
bias field. The nutation mode profiles are obtained by
stroboscopically averaging the magnetization dynamics
at the corresponding nutation frequencies in the rotating
frame.
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