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Abstract. Beta diversity, the spatial or temporal variability of species composition, is a
key concept in community ecology. However, our ability to predict the relative importance of
the main drivers of beta diversity (e.g., environmental heterogeneity, dispersal limitation, and
environmental productivity) remains limited. Using a comprehensive data set on stream
invertebrate assemblages across the continental United States, we found a hump-shaped
relationship between beta diversity and within-ecoregion nutrient concentrations. Within-
ecoregion compositional dissimilarity matrices were mainly related to environmental distances
in most of the 30 ecoregions analyzed, suggesting a stronger role for species-sorting than for
spatial processes. The strength of these relationships varied considerably among ecoregions,
but they were unrelated to within-ecoregion environmental heterogeneity or spatial extent.
Instead, we detected a negative correlation between the strength of species sorting and nutrient
concentrations. We suggest that eutrophication is a major mechanism disassembling
invertebrate assemblages in streams at a continental scale.

Key words: assemblage structure; beta diversity; continental United States; ecoregions; environmental
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INTRODUCTION

Spatial variation in biodiversity has received much

interest in the last century, yet our knowledge of the

alpha, beta, and gamma components of species diversity

remains limited for many ecological systems, organisms,

and regions. Although the term ‘‘beta diversity’’ was

coined decades ago (Whittaker 1960), it has not been a

topic of rigorous investigation until the last two decades

(Anderson et al. 2011). In the present study we

investigated two facets of beta diversity: (1) the variation

in assemblage structure among a set of sites (hencefor-

ward, ‘‘beta diversity’’) and (2) the strength of relation-

ships between compositional dissimilarities and

environmental or spatial distances (Anderson et al.

2011). We examined relationships between these two

facets of beta diversity and environmental heterogeneity,

spatial extent, and average environmental conditions.

In an analysis encompassing multiple regions (each

one with a number of sites), variation in beta diversity

among these regions (see Fig. 4 of Anderson et al. 2011)

is often thought to be caused by environmental

heterogeneity (e.g., Veech and Crist 2007). This rela-

tionship is expected because more heterogeneous condi-

tions in a region provide more niche opportunities,

leading to greater variation in species composition

between sites (Leibold et al. 2004). Also, spatial extent

is likely to be correlated with beta diversity because the

likelihood of a species dispersing from one site to

another should decrease with increasing region size

(Hubbell 2001, Shurin et al. 2009).

Nutrient concentration has also been shown to be an

important factor modulating beta-diversity patterns

(Van der Gucht et al. 2007). Nutrients can be regarded

as proxies for productivity (Langenheder et al. 2012)

and, in this context, a positive relationship between beta

diversity and productivity has been detected in experi-

mental (Chase 2010) and observational studies (e.g.,

Langenheder et al. 2012) conducted at different spatial

scales. However, using gridded data (cells of ;676 km2)

over a large spatial extent, Bonn et al. (2004) found a

hump-shaped relationship between productivity (nor-

malized-difference vegetation index, NDVI) and beta

diversity in southern African birds. Thus, similar to the

uncertainties regarding the species richness–productivity

relationship (see the review by Whittaker [2010]), even

the form of the relationship between beta diversity and

productivity is open to debate.
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Empirical studies have typically found that either the

environment alone or both the environmental and

spatial distances between sites are related to variation

in compositional dissimilarity (e.g., Thompson and

Townsend 2006). However, the conditions under which

the environment should be important and those when

spatial effects should increase in importance remain

largely unknown. In this context, variation in the

strength of the relationships between community dis-

similarity and geographical or environmental distances

(see Fig. 3 in Anderson et al. 2011) can be associated

with differences in the spatial extent of the study regions.

Greater spatial distances between sites within a region

are likely to lead to higher strengths of relationship

between community dissimilarity and geographical

distances because dispersal limitation should play an

increasingly important role with increasing geographic

distance (Hubbell 2001, Shurin et al. 2009). Similarly,

environmental heterogeneity is thought to be positively

related to the strength of relationships between commu-

nity dissimilarity and environmental distances because

species sorting should be increasingly more important

over wider environmental gradients (Leibold et al.

2004).

The importance of stochastic assembly relative to

species-sorting processes is expected to increase with

productivity (Chase 2010). The idea behind a strong role

of stochastic assembly in more productive environments

may be understood if one considers that a large fraction

of the regional species pool can maintain viable

populations in these environments. Conversely, Chase

(2010) found that only a subset of the total species

persisted in environments with low productivity, sug-

gesting a stronger role for species-sorting processes.

However, other studies suggest a positive association

between the efficiency of species sorting and productivity

assessed as the degree of eutrophication (Van der Gucht

et al. 2007, Langenheder et al. 2012).

Streams are suitable model systems for examining the

interacting effects of spatial extent and environmental

heterogeneity on beta diversity because streams harbor

taxa that vary widely in their dispersal modes (e.g., taxa

with or without flying adults) and range from relatively

environmentally homogeneous to extremely heteroge-

neous systems. Our study benefits from a comprehensive

data set gathered at a fine spatial resolution (i.e.,

individual stream sites) and covering a large spatial

extent (Hawkins et al. 2008, Paulsen et al. 2008a), a rare

combination in macroecological studies (Beck et al.

2012). Specifically, we examined 689 local assemblages

of stream macroinvertebrates across 30 ecoregions of the

conterminous United States. We predicted that within-

ecoregion beta diversity would be positively correlated

with within-ecoregion (1) environmental heterogeneity,

(2) spatial extent, and (3) nutrient concentration. We

also predicted that the strength of the relationships

between the compositional dissimilarity and environ-

mental or geographical distances would be positively

related to environmental heterogeneity and spatial

extent of the ecoregions, respectively. To our knowledge,

these relationships have not been tested explicitly in the

field, most likely due to the paucity of available data sets

(i.e., covering multiple regions, each with different

sampling sites). Finally, following Chase (2010), we

predicted that the strength of relationships between

community dissimilarity and explanatory distance ma-

trices (spatial or environmental) would be weakest in

regions with high nutrient concentrations, suggesting an

increased role of deterministic processes in community

assembly at nutrient-poor sites.

METHODS

The stream data set

We used a large data set collected by the United States

Environmental Protection Agency (US-EPA, available

online7) to assess the biological condition of wadeable

streams in the United States (Hawkins et al. 2008,

Paulsen et al. 2008a). After removing missing values, the

data set included 30 level-three ecoregions (sensu

Omernik 1995) with �10 stream sites, for a total of

689 stream sites. The maximum number of stream sites

within an ecoregion was 62.

Macroinvertebrate data set

The complete U.S. EPA data set comprised 918

taxonomic units, of which 739 were identified to the

genus level; the remaining 179 taxonomic units were

identified at the family, order, class, or phylum level and

were not included in our analyses. After excluding the

ecoregions with fewer than 10 streams and the sites with

fewer than 300 individuals (see next paragraph), the data

contained 606 genera. The use of data sets that contain

taxa above the species level to represent ecological

patterns in communities has been debated, at least with

regard to aquatic systems (Lenat and Resh 2001).

Although many authors defend the use of species-level

data, aquatic studies have often found that the species-

level patterns of macroinvertebrate assemblages are well

reproduced through a multivariate analysis of genus- or

family-level data (Heino 2008). Moreover, genus is

thought to represent the main taxonomic unit with

respect to ecological variation in aquatic invertebrates

(Wiggins and MacKay 1978). We therefore consider the

U.S. EPA’s genus-level data to adequately portray the

variation in assemblage structure within and between

ecoregions in our multivariate analyses.

The Wadeable Streams Assessment (WSA) used a

standard field collection method (USEPA 2004), but the

number of individuals reported in EPA website are

based on nonuniform subsampling of the entire samples

(Charles P. Hawkins, personal communication). Thus, we

wrote an R code to randomly resample individuals from

7 http://water.epa.gov/type/rsl/monitoring/streamsurvey/
index.cfm
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each site to a fixed count of 300 individuals (for an

evaluation of the effects of sampling effort on sensitiv-

ities to stress, see Cao and Hawkins 2005). All sites with

,300 individuals and all taxa registered as NA (‘‘not

applicable’’) were excluded prior to the analyses.

Environmental variables

We included a total of 25 environmental variables that

could be retrieved from the EPA website in our analysis:

watershed area (km2); elevation (m); canopy cover

(quantified using a spherical densitometer, counts from

0 to 17); temperature (8C); instantaneous discharge (m3/

s); bankfull width (m); depth (cm); wetted width (m); the

proportion (in area) of the stream bed covered by algae,

macrophytes, wood debris, small debris, overhanging

vegetation, undercut banks, boulders, and artificial

structures; potassium (leq/L); NH4 (leq/L); color

(PCU); conductivity (lS/cm at 258C); total nitrogen

(lg/L); total phosphorus (lg/L); suspended solids (mg/

L); turbidity (NTU; nephelometric turbidity units); and

alkalinity (leq/L). A description of the field measure-

ments and laboratory methods used to determine these

variables can be found in USEPA (2004). In addition,

long-term climatic data (annual temperature, tempera-

ture seasonality, annual precipitation and precipitation

seasonality) were obtained from WorldClim (Hijmans et

al. 2005). These or related variables have previously

been found to be associated with variation in the

assemblage structure of stream macroinvertebrates in

large-scale studies (Carlisle and Hawkins 2008, Carlisle

et al. 2008, Hawkins et al. 2010, Chinnayakanahalli et al.

2011). Also, these variables were used in an attempt to

describe environmental heterogeneity in a comprehen-

sive way, as environmental heterogeneity is thought to

be a key predictor of beta diversity.

Resemblance matrices, ordination, and average

differences in assemblage structure and

environmental conditions

We constructed biological resemblance matrices from

the sites-by-genera data set based on the Bray-Curtis

(abundance data), Sørensen (presence–absence), and

Simpson (presence–absence) coefficients. We used the

Bray-Curtis coefficient for the abundance data, log(y þ
1)-transformed, to emphasize the abundant species and

the Sørensen coefficient for the presence–absence data to

give equal weight to both rare and abundant species.

The Sørensen coefficient incorporates both taxon

replacement and taxon richness differences. In contrast,

the Simpson coefficient is independent of taxon richness

differences and more directly portrays the true compo-

sitional differences between sites (Koleff et al. 2003).

The standardized Euclidean distance was employed to

calculate an environmental dissimilarity matrix (E)

using all environmental variables.

Using the distance matrices derived from the biolog-

ical and environmental data sets, we performed principal

coordinate analyses (PCoA; Legendre and Legendre

1998) to reduce the dimensionality of the data and

ordinate the sites. The first two axes of the PCoA

applied to the environmental data set were used as

explanatory variables of our main response variables

(i.e., beta diversity and strengths of relationship between

biological and environmental or geographic distance

matrices). We then performed a permutational multi-

variate analysis of variance (PERMANOVA; Anderson

2001) using the distance matrices to test for between-

ecoregion differences in assemblage composition and

environmental conditions.

Differences in the heterogeneity of the assemblage

structure and environmental conditions

We also used the biological and environmental

dissimilarity matrices described above to evaluate

whether ecoregions differ in terms of beta diversity

and environmental heterogeneity. For this task, we used

the permutational analysis of multivariate dispersions

(PERMDISP; Anderson et al. 2006). This method is

similar to the Levene’s test of homogeneity of variances

in the univariate case.

Measures of beta diversity, environmental heterogeneity,

and spatial extent

Following Anderson et al. (2006), we estimated beta

diversity as the average compositional dissimilarity (dB)

from individual streams to the centroid formed by all

streams within an ecoregion. Thus, the higher the value

of dB in an ecoregion, the higher is beta diversity of this

ecoregion. According to our predictions, dB should be

positively correlated with environmental heterogeneity,

spatial extent and average environmental conditions (see

Modeling beta diversity).

By applying the method proposed by Anderson et al.

(2006) to matrix E and to the matrix of geographic

distances between streams, we also estimated the

environmental heterogeneity (dEH) and spatial extent

(dS) of each ecoregion, respectively. However, we

reasoned a priori that dEH, as a composite variable

estimated using all environmental variables, could mask

the effects of key environmental factors on our response

variables. We then calculated more-specific metrics of

environmental heterogeneity to be used as explanatory

variables in the regression models. We did this by also

applying the method proposed by Anderson et al.

(2006), separately, on four subsets of variables. The

first subset included general physiographical character-

istics and stream attributes (dstrm: watershed area,

elevation, canopy cover, instantaneous discharge, bank-

full width, depth, wetted width, and the areal proportion

of overhanging vegetation). The second subset encom-

passed substrate characteristics (dsubs: the areal propor-

tion of algae, macrophytes, debris, undercut banks,

boulders, and artificial structures). The third subset

included only water-quality characteristics (dWQ: tem-

perature, potassium, NH4, color, conductivity, total

nitrogen, total phosphorus, suspended solids, turbidity,
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and alkalinity). The fourth subset included the climatic

variables from WorldClim (dWC: annual temperature,

temperature seasonality, annual precipitation, precipi-

tation seasonality). These quantities (i.e., dB, dEH, dstrm,

dsubs, dWQ, dWC, and dS) were then used to formulate our

models (see below and Appendix A: Fig. A1).

Modeling beta diversity

We tested the hypothesis that the average distance

from individual streams to their ecoregion centroids

(i.e., the variation in invertebrate assemblage structure

or beta diversity according to Anderson et al. 2006,

2011) defined by the biological data (dB) was positively

correlated with our measures of environmental hetero-

geneity (dEH or dstrm, dsubs, dWQ, and dWC) and spatial

extent (dS).

The first PCoA axis derived from the environmental

data was positively (considering absolute loadings

�0.70) correlated with nutrient concentrations (K, N,

and P), conductivity, temperature, suspended solids and

turbidity (Appendix B: Table B1). As expected, these

results were consistent with those obtained by Herlihy et

al. (2008) using largely the same data set. Therefore, we

used this axis as a new predictor (i.e., in addition to dS
and dEH) to test the responsiveness of beta diversity (dB)

to this set of variables (i.e., the ones correlated with the

first PCoA axis). The second axis, which was also

included as a predictor of dB, was positively correlated

with wetted width (Appendix B: Table B1), a measure of

stream size. Significant partial regression coefficients

associated with these axes would indicate responsiveness

of the variation in assemblage structure (dB) to the

average environmental conditions.

Modeling the strength of relationships between

compositional dissimilarities and environmental

or spatial distances

We used Mantel and partial Mantel tests to estimate

the strength of relationships between the compositional

dissimilarity matrices and the explanatory matrices

(environmental or geographical distances) within each

ecoregion. The r values of the partial Mantel tests

pertaining to pure spatial and nonspatially structured

environmental effects were further employed in regres-

sion analyses in which an r value was considered the

effect size of the strength of the relationships within each

ecoregion and was used as a response variable. As

explanatory variables in these across-ecoregion regres-

sions (n¼30), we used the first two axes derived from the

PCoA applied to the environmental data, and the

average distance from individual streams to their

within-ecoregion centroids in geographical (dS) and

environmental (dEH) spaces. Therefore, the across-

ecoregion regressions tested the relationship between

the effect size and the four ecoregion characteristics. We

also used generalized linear models (GLMs) with a log-

link function to quantify the relationship between

assemblage dissimilarity and the explanatory matrices

(geographic and environmental distances). According to

Millar et al. (2011), GLMs are the best approach to cope

with dissimilarity values of 1 (or 0, if similarity

coefficients are employed). These values are likely to

occur when the environmental or geographic distances

are so large that no species are shared between the sites.

Thus, the GLM-estimated slopes were also used as

response variables in the regression models, with the

PCoA axes scores, spatial extent (dS), and environmental

heterogeneity (dEH) being used as the explanatory

variables.

Spatial autocorrelation analysis

We used Moran’s I coefficient to test for spatial

autocorrelation in the original variables and in the

residuals of all of the models described above based on

10 distance classes. The number of distance classes was

defined using the Sturges’ rule (Legendre and Legendre

1998), and the global significance of the spatial correlo-

grams was tested using Bonferroni’s correction (as

suggested by Oden 1984), at P , 0.05/10 (where 10 is

the number of distance classes). The spatial autocorre-

lation analysis was conducted to test for significant

spatial patterns and to verify whether spatial autocor-

relation was an issue that we should address in the

analyses described above.

We used 9999 permutations to assess the significance

levels in PERMDISP, PERMANOVA, and Mantel tests

using the package vegan (Oksanen et al. 2013) for the R

language and environment for statistical computing

(version 2.15.1; R Core Development Team 2012).

Multiple regression models (including GLMs) and

Moran’s I coefficients were estimated using the R-

packages stats and spdep (Bivand et al. 2013), respec-

tively.

RESULTS

We found that the ecoregions differed significantly

among each other in terms of their average environ-

mental conditions (PERMANOVA results, F ¼ 12.3, P

, 0.001; Fig. 1a) and assemblage structure for both

abundance and presence–absence data (Appendix B:

Table B2; Fig. 1b). The spatial autocorrelation analyses

applied to the ecoregions’ mean scores on the first

principal coordinate axis (PCoA) retrieved from each

data set further indicated that the environmental

conditions and assemblage structure (Fig. 1c) were

spatially patterned (P , 0.05 for 10 distance classes [P

, 0.05/10], for both correlograms). Indeed, according to

both data sets, there was a clear longitudinal pattern,

with the highest PCoA scores derived from the

environmental data being predominantly found in the

Central region of the United States. Nutrients (K, TN,

TP, and NH4), suspended solids, conductivity, turbidity,

water temperature, and alkalinity were the variables that

were most strongly and positively correlated with the

first PCoA axis (Appendix B: Table B1); accordingly,

the values of these variables increased toward the
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Central ecoregions (with the highest axis 1 scores).

Similarly, the highest scores from the PCoA applied to

the biological data were mainly found in the Central

regions of the United States (Fig. 1b). After adjusting

for spatial autocorrelation, the average scores for the

ecoregions on the first axis of the PCoA applied to the

biological data were significantly correlated with the

scores derived from the PCoA applied to the environ-

mental data (Appendix B: Fig. B1).

The magnitude of environmental heterogeneity

(PERMDISP results, F ¼ 4.71; P , 0.001; Fig. 1d)

and beta diversity (Appendix B: Table B2; Fig. 1e)

differed significantly among ecoregions, but these

variables were not spatially patterned (Fig. 1f; P .

0.05 for both correlograms).

We did not detect significant relationships between our

measure of beta diversity (dB) and spatial extent (dS) or the

different measures of environmental heterogeneity (dEH,

dstrm, dsubs, dWQ, dWC; Fig. 2; results for dstrm, dsubs, dWQ,

and dWC were omitted for brevity). However, we detected

a quadratic relationship (hump shaped) between dB and

the first environmental axis derived from the PCoA (Fig.

2). Thus, higher values of dB were found in the middle of

the environmental gradient represented by this axis

(mainly associated with nutrient concentrations; see

Appendix B: Table B1). The second environmental axis

was not significantly correlated with dB. The results

derived from the application of the Sørensen and Simpson

distances were similar to those described above (Fig. 2).

The matrix correlation tests (Appendix B: Fig. B2)

and generalized linear models (Appendix B: Fig. B3)

indicated that the biological distance matrices were

mainly correlated with environmental distances rather

than with geographical distances. The strengths of the

correlations between biological and environmental

distances were independent of spatial extent (dS) and

environmental heterogeneity (dEH) in a specific eco-

region; however, they were significantly and negatively

correlated with the first-axis scores from the PCoA (Fig.

3 and Appendix B: Fig. B4). The strengths of the

correlations between biological and geographical dis-

tances were unrelated to all explanatory variables (Fig.

3). These results were obtained independently of the

measure of the effect size used (i.e., matrix correlations

or regression coefficients derived from GLM based on

the Bray-Curtis, Sørensen, and Simpson coefficients)

and how heterogeneity was calculated (results not

shown).

Our results are unlikely to be influenced by a violation

of ordinary-least-squares assumptions, as the residuals

were independent (Appendix C: Fig. C1) and normally

distributed (Appendix C: Table C1). Additionally, the

variance inflation factors (VIF) were always lower than

1.7, which rules out multicollinearity problems (Appen-

dix C: Table C2). Finally, after removing a few outliers,

the patterns described above were even clearer.

DISCUSSION

Predicting variation in beta diversity

Our results indicate that ecoregions with significantly

lower or higher environmental and biological variability,

FIG. 1. Spatial variation of the average continental U.S. ecoregion scores along the first axis of a principal coordinate analysis
(PCoA) applied to the (a) environmental and (b) macroinvertebrate data sets. The latitudinal and longitudinal midpoints of
Omernik’s (1995) ecoregions (with more than 10 streams) are presented. The size of the symbols is proportional to the average axis
scores. (c) Moran’s I correlograms of the axis scores shown in panels (a) and (b). The average distance of each stream to its
ecoregion centroid (from PERMDISP analysis), indicating the (d) environmental heterogeneity and (e) beta diversity within
ecoregions, and (f ) their respective correlograms are also provided. Significant Moran’s I coefficients (P , 0.05) are indicated by
solid symbols.
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in terms of the variables used here, can be found

anywhere in the continental United States. However, the

results did not support our hypothesis of a positive

relationship between within-ecoregion beta diversity and

environmental heterogeneity or spatial extent. Signifi-

cant results would support the idea that environmental

heterogeneity, by creating niche opportunities, would

increase species coexistence (Cardinale 2011) and

variation in species composition within a given region

(Ellingsen and Gray 2002). A relationship with spatial

extent, after accounting for environmental heterogene-

ity, would be consistent with the hypothesis of a

decreasing rate of dispersal with geographic distance

(Thompson and Townsend 2006). In this context, there

are studies showing that beta diversity was strongly

related to components of environmental heterogeneity.

For instance, beta diversity was found to increase with

increasing environmental heterogeneity in kelp holdfast

assemblages in New Zealand (Anderson et al. 2006).

Likewise, McKnight et al. (2007) found a positive

relationship between beta diversity and topographic

heterogeneity. Our results display, therefore, some

striking differences with these studies that were also

able to map beta diversity.

There are also reports describing a lack of or a weak

relationship between beta diversity and environmental

heterogeneity (Heino et al. 2013), indicating that other

factors and processes may also control beta diversity.

For example, Chase (2010) showed a positive relation-

ship between productivity and beta diversity and

attributed this relationship to a strong role of stochastic

processes of community assembly in more-productive

ecosystems. Similarly, Langenheder et al. (2012) found

that productivity influenced beta diversity more strongly

than did environmental heterogeneity in a bacterial

metacommunity. Thus, despite confounding factors, our

results support the idea that potential productivity (as

suggested by nutrient concentrations and temperature) is

an important driver of beta diversity. More importantly,

however, our findings also suggest that the prevalence of

stochastic assembly processes in warmer and more

nutrient-rich environments, leading to an increase in

beta diversity (Chase 2010), may prevail even at a

continental scale. As detailed below (Predicting the

strength of relationships), this inference is strongly

supported by the fact that the strengths of the

relationships between compositional dissimilarities and

environmental distances (demonstrating deterministic

FIG. 2. Standardized partial regression coefficients (6SE) from models regressing beta diversity (dB; average distance from a
stream to its ecoregion centroid) against the first two principal coordinate analysis (PCoA) axis scores (Axis 1, Axis 2; ‘‘Axis 1 Sq’’
means that the square of the first PCoA axis was also included as an explanatory variable), spatial extent (dS), and environmental
heterogeneity (dEH). The adjusted R2 and P values of the overall regression models, including all five explanatory variables, are
provided; the solid squares indicate significant coefficients (P , 0.05).
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processes of community assembly) are consistently lower

in more nutrient-rich and warmer ecoregions.

The relative importance of environmental

and spatial predictors

We detected a strong relationship between assemblage

structure and environmental conditions (Appendix B:

Fig. B1). This pattern was mainly driven by the highest

nutrient concentrations and sediment loads found in the

Central U.S. ecoregions (see Paulsen et al. [2008b] for a

comprehensive evaluation of the effects of these stressors

on stream macroinvertebrates). We also found that

compositional dissimilarities were mainly correlated

with environmental distances rather than with geo-

graphic distances, independent of the analytical ap-

proach (i.e., simple and partial Mantel’s tests or slopes

obtained from GLMs). In addition to reinforcing the

validity of stream invertebrates as reliable bioindicators

of stream health at a broad scale, our results, using

either a raw-data approach (Appendix B: Fig. B1) or a

distance-based approach (Appendix B: Figs. B2 and B3),

strongly emphasize ‘‘the power of species sorting’’ (Van

der Gucht et al. 2007). It is interesting to note that

results from previous analyses of the comprehensive US

EPA data set, which focused on different response

variables (e.g., O/E index from RIVPACS-type models),

also support species-sorting mechanisms as the primary

drivers of macroinvertebrate assemblage structure (e.g.,

Carlisle and Hawkins 2008, Ode et al. 2008, Hawkins et

al. 2010).

Despite the higher predictive power of environmental

variables compared with geographical ones, as com-

monly found in aquatic community studies (Cottenie

2005, Van der Gucht et al. 2007), the strengths of the

relationships between the response and predictor matri-

ces were highly variable. For instance, the partial Mantel

correlations between the Bray-Curtis and environmental

distances ranged from �0.04 to 0.45 (Appendix B: Fig.

B4). With this substantial variability, our focus should

shift from defining a generally applicable metacommun-

ity model to understanding the cause of this variability

itself, which we address below.

FIG. 3. Standardized partial regression coefficients (6 SE) from models of effect sizes regressed against the first two PCoA axis
scores, spatial extent (dS), and environmental heterogeneity (dEH). The effect sizes, as response variables, include the simple matrix
correlations (r) between community dissimilarities (Bray-Curtis coefficient, B) and geographical distances (G) or environmental
distances (standardized Euclidean, E): r(B 3 G) and r(B 3 E), respectively. The partial matrix correlations for which either E or G was
held constant are also shown: r(B 3 G.E) and r(B 3 E.G), respectively. The solid squares indicate significant coefficients (P , 0.05).
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Predicting the strength of relationships

Heterogeneous conditions provide suitable environ-
ments for different species (Leibold et al. 2004). Thus,

assuming a predominant role of species-sorting mecha-
nisms driving beta diversity variation, the strength of the

relationship between compositional dissimilarities and
environmental distances is predicted to increase with

increasing environmental heterogeneity. On the other
hand, beta diversity can also be driven by dispersal

limitation. In this case, in a cross-region analysis, spatial
extent would be correlated with beta diversity because

increasing distances among sites would increase dispers-
al limitation that, in turn, should increase the differences

in species composition between distant sites (Hubbell
2001, Shurin et al. 2009). This is equivalent to stating

that the relative importance of species-sorting processes
and spatial processes should increase in more environ-

mentally heterogeneous ecoregions and in ecoregions
with larger spatial extents, respectively. However, we
obtained no support for these predictions, despite the

fact that there was a significant relationship between the
biological and environmental distances within most of

the ecoregions. It is important to emphasize that we
observed no significant relationship between environ-

mental heterogeneity and the strength of correlation
between compositional dissimilarities and environmen-

tal distances, even after allowing for more specific
measurements of environmental heterogeneity (i.e.,

dstrm, dsubs, dWQ, and dWC instead of dEH). Thus, it is
unlikely that the lack of significant relationships between

the strength of the matrix correlation and environmental
heterogeneity can be explained by the composite nature

of the measurements of environmental heterogeneity.
Previous studies attempting to identify correlates of

the relative importance of species-sorting effects and
dispersal limitation were based on heterogeneous data

sets (e.g., examining different groups of organisms and
regions; e.g., Cottenie 2005, Soininen et al. 2007, De Bie

et al. 2012). Thus, comparisons with previous results are
not straightforward. Even so, contrary to the results of a
meta-analysis (Soininen et al. 2007), we did not detect a

significant and positive relationship between spatial
extent and the effect sizes indicating the strengths of

species-sorting or spatial processes. Instead, we found
that nutrient concentration was a significant correlate of

the strength of the relationship between biological and
environmental distances. In general, the matrix correla-

tions and slopes derived from GLMs decreased with
increases in nutrient concentrations. This result strongly

suggests a large role for stochastic community assembly
processes in more nutrient-rich environments and that

species-sorting mechanisms prevail in nutrient-poor
environments (Chase 2010; but see next paragraph).

However, in marked contrast with our results, Langen-
heder et al. (2012) found that species sorting was more
frequent during periods of high productivity, environ-

mental heterogeneity, and only when beta-diversity was
relatively high.

Chase (2010) also observed a strong role of species

sorting in his lowest productivity treatments. However,

assemblages with the lowest species richness were found

in these treatments, whereas richer assemblages, where

stochastic assembly processes prevailed, were found in

the most highly productive treatments. In contrast, we

detected a strong role of species sorting in ecoregions

with richer macroinvertebrate assemblages. This differ-

ence can most likely be accounted for by the fact that the

nutrient gradients in running waters in the United States

result partially from eutrophication caused by agricul-

ture and urbanization (Paulsen et al. 2008b, Van Sickle

and Paulsen 2008), and this eutrophication gradient is

positively associated with the effects of other stressors

(e.g., sediment loading) that can severely impair

macroinvertebrate assemblages (Carlisle and Hawkins

2008; but see also Olson and Hawkins [2013] who

reported large natural variation in nutrient concentra-

tions). Indeed, we found a negative and significant

correlation between average species richness and our

first PCoA axis summarizing the environmental data (r¼
�0.73; P ¼ 0.009; after accounting for spatial autocor-

relation according to Clifford et al. [1989]). Thus, our

results suggest that eutrophication is a disassembly

mechanism, decoupling the relationship between com-

positional dissimilarities and environmental distances.

In a related context, Gutiérrez-Cánovas et al. (2013),

analyzing five benthic macroinvertebrates data sets from

Great Britain, Iberian Peninsula, and Himalayan

Mountains, found that the nestedness component of

dissimilarities in community composition was mainly

correlated with environmental distance matrices based

on anthropogenic stressors (acidity, metals, land use).

On the other hand, the turnover component was

correlated with environmental distance matrices based

on natural gradients (elevation and salinity). It is not

possible, however, to disentangle the effects of an

increase in nutrient concentrations per se and other

stressors accompanying eutrophication on this mecha-

nism of disassembly. In any case, our results clearly

indicate a hitherto-unrecognized consequence of eutro-

phication pertaining to community disassembly.

Conclusions

Using a unique broad-scale data set of stream

invertebrate assemblages across the United States, we

showed that within-ecoregion compositional dissimilar-

ity matrices were mainly related to environmental

distances in most of the ecoregions studied. This finding

strongly suggests a more important role for species-

sorting than dispersal-driven processes in determining

the composition of stream invertebrate assemblages. The

strengths of these compositional dissimilarity–environ-

mental distance relationships varied considerably among

ecoregions. They were unrelated to within-ecoregion

environmental heterogeneity or spatial extent. Instead,

we detected a negative correlation between the strength

of species sorting and nutrient levels across the

LUIS MAURICIO BINI ET AL.1576 Ecology, Vol. 95, No. 6



ecoregions, which we interpret as a disassembling

mechanism. Further studies should (1) aim to determine

breakpoints in nutrient levels at which beta diversity
begins to decrease due to a human-caused eutrophica-

tion process and (2) disentangle the effects of eutrophi-

cation from other anthropogenic stressors on
biodiversity. The US EPA data set can be further

examined to accomplish these goals.
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