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Nutrient recovery and recycling are of great importance in sustainable development.
Blackwater (BW) refers towastewater from toilets, which contains feces, urine, water,
and toilet paper from flush toilets. The highly concentrated nutrients of blackwater
could be collected through source separation and treated adequately to recover
nutrients efficiently and economically. The review intends to give an overview of the
characteristics of BW and different techniques to recover nutrients and other
valuable products. A number of these technologies are currently under
development or being tested at laboratory or pilot scale. The perspective for
blackwater nutrient recovery technologies is very positive due to their great
potential. For application of source-oriented sanitation infrastructure and
systems, there is still a long way to go for development of commercial
technologies and valuable products.
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1 Introduction

Issues related to the decreasing quality and quantity of freshwater resources, which may be
partly due to the currently applied sanitation systems, are becoming increasingly serious. In
response to the limits of these sanitation systems, alternative solutions focusing on source
separation and resource recovery, besides hygiene and environmental protection, are gradually
emerging. Such solutions show great potential for promoting environmental and ecological
sustainable development. Generally, wastewater streams (as shown in Figure 1) can be separated
into greywater and blackwater (BW). Compared with mixed wastewater treatment, greywater
recovery involves smaller hygienic concerns, has a reduced “yuck” factor, and demands less
treatment effort. Furthermore, energy and nutrients are more easily recovered from BW (Larsen
et al., 2016). Thibodeau et al. (2014) compared a BW source-separation sanitation system and a
conventional system using life cycle assessment and environmental life cycle costing to show
that the former is significantly superior to the latter in terms of climate change, resources, and
human health, although their cost remains comparable.

BW refers to wastewater sourced exclusively from toilets; thus, it consists of urine, feces,
toilet paper, and flushing water. It also contains large amounts of nutrients, around half of the
domestic COD load, and the major proportion of pathogens excreted from the human body
(Otterpohl, 2002; Vinnerås, 2007; Fidjeland et al., 2015). According to the calculated estimation
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in Table 1, the amounts of nutrients (N, P, and K) are considerable for
resource recovery. Besides, according to the analysis of Mihelcic et al.
(2011), the K available from urine was approximately 1.68 million
metric tons (with a similar mass available in feces). If collected
appropriately, the K available from urine and feces could account
for 22% of the total global K demand. Researchers estimate that, in
2050, the available K from urine associated with the population
increase only will increase to 2.16 million metric tons (with a
similar mass available in feces). Because of its specific composition,
BW requires separate collection, less dilution, adequate treatment and
final recycling of the nutrients.

Applying source-separation systems in rural areas may enable the
recovery of four times more K and over thirty times more N compared
with those obtained in current wastewater treatment systems (Malila
et al., 2019). Kjerstadius et al. (2017) used an attributional life cycle
assessment to investigate the carbon footprint and potential for
nutrient recovery of two sanitation systems for a hypothetical
urban area in Southern Sweden. The carbon footprint and nutrient
recovery (P and N) results obtained revealed that the source separation
system could increase nutrient recovery while decreasing the carbon
footprint to a greater extent compared with the conventional system.
Therefore, if properly managed, BWmay provide not only a source of
different valuable resources, such as nutrients, energy, and reclaimed
water, but also multiple benefits to society. Nutrient recovery

technologies for BW have drawn great concerns but are far from
well development.

In this article, a overview of the characteristics of BW and different
techniques to recover nutrients and other valuable products are given.

FIGURE 1
Wastewater in the source separation sanitation system.

TABLE 1 Calculated estimation of the yearly nutrients in urine and feces (source: Larsen et al., 2016; Malila et al., 2019; Otterpohl, 2002; Stintzing and Salomon, 2004).

Fraction COD (kg/a/person) N (kg/a/person) P (kg/a/person) K (kg/a/person)

Urine 3.6–4.4 1.9–4.1 0.2–0.4 0.9–1.3

Feces 14.0–15.0 0.2–0.5 0.1–0.2 0.3–0.5

Total 17.6–19.4 2.1–4.6 0.3–0.6 1.2–1.8

TABLE 2 Characteristics of feces found in the literature (source: Levitt and Duane,
1972; Otterpohl, 2002; Penn et al., 2018; Rose et al., 2015).

Parameter Urine Feces

Water content >99 wt% 63–86 wt%

TS <1 wt% 14–37 wt%

VS. — 92 wt% of TS

Carbohydrates — 25 wt% of TS

Protein — 2–25 wt% of TS

Fats — 8.7–16 wt% of TS

COD 6,000–10,000 mg/L —

TN 5,000–9,200 mg/L 5–7 wt% of TS

TP 300–2000 mg/L —

pH 6.2–9.1 5.3–7.5
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This work can also help researchers develop ideas concerning future
research areas and make more informed decisions.

2 Characteristics of source-separated
blackwater

BW includes urine, feces, and flushing water. Faecal sludge is raw
or partially digested, a slurry or semisolid, and results from the
collection, storage or treatment of combinations of excreta and
blackwater, with or without greywater. In specific cases, the
characteristics of faecal sludge are similar to BW. The
characteristics of urine and feces vary widely depending on
person’s health and diet, as presented in Table 2. Flushing water is
also an important factor which determines the concentrations of
nutrients in BW. Generally, three toilet flushing system were
commonly mentioned in literatures, i.e., conventional toilet (using
9 L water per flush), dual-flush toilet (using 3/6 L water per flush), and
vacuum toilet (using .5/1.2 L water per flush) (de Graaff et al., 2010;
Gao et al., 2019b). As shown in Table 3, the characteristics of BW
varied widely in different source-separated systems. Compared with
conventional toilet and dual-flush toilet, the sewage system employed
vacuum toilet obtains more concentrated BW, which generally is
beneficial for nutrient recovery, however, Gao et al. (2019a) figured
out that BW from vacuum toilet exhibited lower bio-methane
potential than that from conventional/dual-flush toilet because of
ammonia inhibition. In domestic sewage, BW includes about 97% N,
while greywater only includes about 3% N (Otterpohl, 2002).
Considering the high concentration of N in BW, ammonia
inhibition is one of the main challenges when employing
biotechnology for nutrient recovery. However, as real BW has

highly variable characteristics and involves pathogenic and
individual feces, it is difficult to execute repeatable experiments. In
literatures, synthetic feces were commonly used for providing
consistently reproducible substrate and alleviating these challenges.
Penn et al. (2018) provide a critical literature review of synthetic feces
and faecal sludge used for human waste related research.

3 Nutrient recovery technologies for
blackwater treatment

For safe and clean nutrient recovery from BW, multiple-step
treatment processes are required. In this part, the individual core
processes employed in research or practical applications are presented
firstly. As urine and feces are collected separately in some specific
systems, the raw materials for nutrient recovery technologies include
urine, feces, and BW.

3.1 Physicochemical processes

Processes for nutrient recovery by physicochemical means
reported in the literature are summarized in Table 4, including
evaporation, precipitation, pyrolysis, drying, and adsorption.

3.1.1 Evaporation
Evaporation is a simple technology for removing water from

urine to recover water and concentrated hygienized liquid fertilizer
or even solid fertilizer. It is often used to recycle water of the best
possible quality from urine in space applications. Some pilot
projects for nutrient recovery have been tested in Germany,

TABLE 3 Blackwater characteristics from different sewerage system.

Toilet flushing system Parameter Country/References

pH CODtot

(g/L)
CODsol

(g/L)
TN

(mg/L)
TAN
(mg/L)

TP
(mg/L)

TK
(mg/L)

TS
(%)

No water mixture — — 32.333 7,067–8,867 — 1.266 2.200 — Germany/(Otterpohl
(2002))

Conventional/dual flush toilet
(5–9 L water per flush)

8.9–9.1 — 0.8–3.1 130–180 19 21–58 — — Sweden/(Palmquist and
Hanæus (2005))

1.290 — 162 121 21 — — China/(Ren et al. (2018))

8.5 4.6 1.7 — 120.9 — — — Canada/(Florentino et al.
(2019))

8.4 2.6 0.9 — 68.6 — — — Canada/(Florentino et al.
(2019))

8.5 4.7 3.1 410 182 70.5 — 3.6 Canada/(Gao et al.
(2019b))

8.4 2.6 1.6 190 96.4 38 — 2.4 Canada/(Gao et al.
(2019b))

Vacuum toilet (~1 L water per
flush)

8.8 9.8 3.4 1900 1,400 220 — — Netherland/(de Graaff et al.
(2010))

8.6 29.5 19.3 1700 1,040 330 — 17.1 Canada/(Gao et al.
(2019b))

8.2 18.5 4.8 — 1,595 — — — Canada/(Florentino et al.
(2019))
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Vietnam, and Canada (Antonini et al., 2012; Pahore et al., 2012;
Bethune et al., 2015). The boiling point of the urine is 130°C, which
is very high compared to the boiling point of water. This suggests
that almost all water can be removed with minimal loss of the
nutrient from urine with the loss of ammonia nitrogen (Patel et al.,
2020). Urine evaporation is challenged by two major issues:
ammonia loss and high energy consumption. Unless conducted
in a sealed environment or reclaimed by ammonia stripping, up to
93% of the nitrogen bound in ammonia can be lost due to
volatilization during urine evaporation (Chipako and Randall,
2020). Inhibition of urea hydrolysis, acidification, energy
recovery, and solar energy utilization have been investigated and

tested at the pilot scale to address these problems. Hydrochloric
acid, acetic acid, sulfuric acid, and phosphoric acid have been
reported succeeded in inhibiting urea hydrolysis by maintaining
acidic conditions (Saetta et al., 2020; Moharramzadeh et al., 2022;
Zuo et al., 2022). Ren et al. (2021) improved urea stabilization by
nitrification at a 100 L pilot-scale aerobic MBR reactor, successfully
converted 50% of the ammonia into nitrate and obtained vapour
flux at 1.3 kg m−2 h−1 as well as high solar to vapour conversion
efficiency of 87% by heat localized solar evaporation. The solar
evaporation efficiency could be improved by developing
photothermal conversion materials. Zhang L et al. (2023)
recover 1.1 kg·m−2 of condensed freshwater (meeting WHO

TABLE 4 Physicochemical processes for blackwater treatment.

Process Raw
waste flow

Main effect Target product Remarks References

Evaporation urine Volume reduction and
hygienization

Water, concentrated
fertilizer (N,P,K
recovery)

High temperature has hygienization
effect

(Antonini et al. (2012); Pahore et al.
(2012); Zhang L et al. (2023))

Freeze-thaw urine Volume reduction concentrated fertilizer
(N,P,K recovery)

— (Maurer et al. (2006); Ganrot et al.
(2007); Moharramzadeh et al. (2022))

Reverse osmosis urine Volume reduction concentrated liquid
fertilizer (N,P,K
recovery)

Hygienization measures should be
added

(Pathy et al. (2021); Courtney and
Randall (2022a); Courtney and Randall
(2022b))

Acidification urine preventing urea
hydrolysis with
pH lower than 4

Liquid fertilizer (N,P,K
recovery), urea is main
N- chemical

Neutralization is necessary before it
can be used as fertilizer

(Hellström et al. (1999); Maurer et al.
(2006); Saetta et al. (2020))

Ion exchange urine Ion exchange by zeolite
or polymeric macro
net exchanger

N recovery — (Maurer et al. (2006); Landry et al.
(2015))

Electro-dialysis Urine salts to be extracted
and concentrated

N recovery — (Pronk et al. (2006); Chen et al. (2020);
Rodrigues et al. (2020))

Isobutylaldehyde-
diurea (IBDU)
precipitation

Urine Chemical precipitate N recovery non-hydrolyzed urine should be used Maurer et al. (2006)

Struvite precipitation urine or liquid
digestate of
blackwater

To form the chemical
precipitate of MAP

N and P recovery Addition of magnesium is required (Ronteltap et al. (2010); Hug and Udert
(2013); Ishii and Boyer (2015); Tansel
et al. (2018); Aguado et al. (2019); Wu
et al. (2022))

Ammonia stripping Urine or liquid
digestate of
blackwater

stripped under
vacuum or
atmospheric pressure

N recovery pH should be adjusted to more than 12 (Liu et al. (2015); Xu et al. (2017); Wu
et al. (2022))

Pyrolysis Brown water or
blackwater

Chemical conversion Biochar — (Liu et al. (2014); Krueger et al. (2021))

Hydro-thermal
carbonization

Brown water or
blackwater

Chemical conversion Biochar or hydrochar — (Danso-Boateng et al. (2013);
Danso-Boateng et al. (2015); Fakkaew
et al. (2015); Yahav Spitzer et al.
(2018))

Hydro-thermal
liquefication

Brown water or
blackwater

Chemical conversion Biocrude oil Co-HTL could improves the yield and
fuel composition that exhibits a higher
energy value of biocrude. Co-
liquefaction

(Watson et al. (2017); Hossain et al.
(2022); Kabir and Khalekuzzaman
(2022))

Convective drying Brown water or
blackwater

Moisture removal Fertilizer or fuel Solar and wind energy could assist to
improve the economical efficiency for
application

(Pocock et al. (2022); Seodigeng et al.
(2022); Venkata Sai and Reddy (2022))

Biochar adsorption Urine or
blackwater

adsorption Fertilizer (N,P,K
recovery)

The properties of biochar, such as
surface area, surface functional groups,
and metal oxides modification, are
important for nutrient recovery

(Liu et al. (2021); Pathy et al. (2021);
Mamera et al. (2022))
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standards for drinkable water) from urine at 7.5 h under a low light
intensity using cotton cloth photothermal conversion film-
monolithic hydrophobic.

3.1.2 Precipitation
Struvite precipitation is a chemical reaction in which ammonia

and phosphate are reacted with magnesium salt under alkaline
conditions to form struvite [Mg(NH4)(PO4)•6H2O, MAP], which
is an easily separable solid substance known to be a slow-release
fertilizer. The pH of hydrolyzed urine (approximately 9) is suitable for
struvite precipitation. Struvite precipitation generally has high
removal efficiency and low initial operation cost (Pathy et al.,
2021). Wei et al. (2018) recovered struvite and ammonium sulfate
from urine at a pilot scale precipitation facility and achieved 94%
struvite precipitation efficiency and 93% removal efficiencies for
nitrogen. For forming struvite, human urine contains an excess of
ammonium relative to phosphate but is deficient in Mg. Precipitation
is triggered by addition of Mg, usually in the form of MgO, Mg(OH)2,
MgCl2, or bittern (Maurer et al., 2006). Struvite precipitation has been
extensively investigated to remove N and P from different water flows,
such as digester supernatants, animal waste slurries, and landfill
leachate, among others. Many laboratory studies and pilot scale
experiments have also been conducted for N and P recovery from
urine and BW (Ishii and Boyer, 2015; Tansel et al., 2018; Wang J et al.,
2018; Wei et al., 2018; Aguado et al., 2019; Huang et al., 2019b). Li X
et al. (2022) recovered phosphate as struvite from BW and obtained a
high recovery rate of phosphorus (>98%) by recoverying product
struvite with a median particle size of 32.96 μm, then conducting a
pilot-scale test with a rural public toilet in Xiong’an New District,
Hebei Province. Struvite precipitation has been used for N and P
recovery from hydrolyzed urine in the Netherlands, Sweden,
Germany, and Vietnam at the pilot scale (Winker et al., 2009; Wei
et al., 2018).

However, the purity of the actual struvite production is generally
only 30%–50% due to the simultaneous crystallization of Ca-P and
CaCO3 during the recovery process (Zhang et al., 2022). Ongoing
efforts are made to create new struvite productions. Recovery of
calcium phosphate is attractive as calcium phosphate products
(such as Ca(H2PO4)2·H2O and CaHPO4·2H2O) have comparable

fertilization efficiency with struvite, and it has diverse applications
in manufacturing (Tervahauta et al., 2014). Zhang B et al. (2023)
harvest nutrients from hydrolyzed human urine via precisely
regulating Ca/P dosing ratio, resulting in a P recovery efficiency of
100% and a purity for calcium phosphate of above 90%. K-struvite
(i.e., magnesium potassium phosphate) can be harvested by potassium
struvite precipitation (Wilsenach et al., 2007; Xu et al., 2015). In this
case, the maximum P recovery efficiency could reach 100%, while the
K recovery efficiency was relatively low. Tervahauta et al. (2014)
harvasted calcium phosphate granulation without any addition of
chemicals, proving that only 2% of the incoming K in the upflow
anaerobic sludge blanket (UASB) reactor can be recovered with the
calcium phosphate granules. Huang et al. (2019a) improved the
K-struvite crystallization by using different additions, obtaining a K
recovery efficiency of 25%–70%. Huang et al. (2019b) further observed
the Na-struvite formation in the case that the P recovery efficiency was
96% and the Na content in the precipitates was 67 mg/g.

3.1.3 Pyrolysis
Pyrolysis (Liu et al., 2014; Yacob et al., 2018; Krueger et al., 2021),

hydrothermal carbonization (Danso-Boateng et al., 2013; Danso-
Boateng et al., 2015; Fakkaew et al., 2015; Fakkaew et al., 2018),
and hydrothermal liquefaction (HTL) (Lu et al., 2017; Watson et al.,
2017; Wang W et al., 2018; Hossain et al., 2022) are three
thermochemical conversion processes conducted under different
temperatures and pressures to hygienize and mineralize human
feces from BW or brown water and produce valuable byproducts,
such as biochar, hydro-char, and bio-crude oil. Given the high water
content in BW, HTL is the most frequently used technology where
water is directly used as a liquefacient (Xi et al., 2022). The HTL
continuous reactor has been developed to provide efficient energy
balance (Elliott et al., 2015). Some assistant methods have been
conducted to impove the heating efficiency, such as microwave
technology, electricity-driven method (Xi et al., 2022) and catalyst
(Wang W et al., 2018). Afolabi and Sohail (2017) give an overview of
treat and recover value from BW by microwave heating technology.
Although such processes have only been tested at the laboratory scale,
they also show great potential for practical applications in the near
future.

TABLE 5 Biological processes for blackwater treatment.

Process Raw
waste flow

Main effect Target product Remarks References

Anaerobic
digestion

blackwater or
brown water

Organic matter degradation and
hygienization

Biogas, organic
matter, N, P, K
recovery

Post-treatment is necessary (Mang and Li (2010); Florentino et al.
(2019); Xu et al. (2019))

Composting blackwater or
brown water

Organic matter degradation and
hygienization

Compost fertilizer Dewatering before composting may
be necessary

(Vinnerås (2007); Mahmood et al.
(2015); Oarga Mulec et al. (2016); Zhu
et al. (2022))

Partial
nitrification

urine Partial nitrification to form
Nitrate

Ammonium recovery — (Hellström et al. (1999); Udert et al.
(2003); Fumasoli et al. (2016); Zhang
et al. (2019))

Storage urine Ammonification and pH increase
could inactivate the pathogens

Liquid fertilizer
(N,P,K recovery)

Temperature and storage time are
also key factors

(Hellström et al. (1999); Maurer et al.
(2006); Pahore et al. (2012); Saetta
et al. (2020)

Microalgae-
based method

Urine or
blackwater

Organic matter degradation and
inactivate the pathogens

Microalgae Algal-bacterial aerobic granular
sludge could be used for blackwater
treatment

(Li et al. (2018); Žitnik et al. (2019))
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3.1.4 Drying
Drying provokes the removal of moisture through natural drying,

mechanical drying, or convective drying with hot air (Ling et al., 2022).
It reduces the mass and volume, further destroys the pathogenic
organisms due to the combined effect of heat and moisture
removal during drying. The convective drying method is already
widely studied in the wastewater sludge treatment, focusing on the
direction of thin-layer drying, fluidized bed drying, spray drying and
pneumatic drying. Solar energy can be used to reduce the cost of
drying (Bennamoun, 2012). The thin-layer drying method could be
improved by assisting with ultrasonic, microwave, and desiccant. Ling
et al. (2022) systematically reviews the convective drying technology of
sludge. However, the studies on convective drying of BW are still far
from well developed. Feces and faecal sludge originates from onsite
sanitation without greywater are suitable for drying. The dried product
could be used as an organic fertilizer with a particularly high
phosphorous content and a slow release of nitrogen and
phosphorous (Septien et al., 2020). Besides, with high heating
value, it could also be used as fuel.

Faecal sludge from ventilated improved pit latrines was dried in a
convective drying thermobalance by varying the temperature from
40°C to 80°C, resulting in a drying rate ranging between 1 and 40 g/
min/m2 and a moisture content of dried products ranging between
2.4 and 3.2 g/g db (Pocock et al., 2022). Seodigeng et al. (2022) dried
human faeces using solar and wind energy under ambient conditions
and further developed thin-layer drying semiempirical models.
Venkata Sai and Reddy (2022) proposed a solar energy drying
system of BW treatment with a BW capacity of 2.4 kg/day in
which the moisture content of BW was reduced from 70% (w.b.)
to 6.82% (w.b.). The drying technology could be combined with non-
sewered sanitation system to provide safe local discharge and efficient
nutrient/energy recovery.

3.1.5 Adsorption
Adsorbents such as biochar, zeolite, resins, activated carbon,

alumina, and silica gel have been extensively studied for the
nutrients recovery from urine (Patel et al., 2020). The adsorption
efficiency of ammonium and potassium are not concerned with urine
dilution, while the adsorption efficiency of orthophosphate is different
for different diluted urine solutions. Adsorption of ammonium from
urine on to the zeolites can be achieved up to 100% under appropriate
conditions. In terms of the adsorption of ammonium, resins gave the
highest efficiency for the ammonium compared to the zeolite and
biochar (Tarpeh et al., 2017).

Biochar, produced from the wastes through a process in which
biomass wastes such as agricultural forest residue, food waste, solid
waste, animal waste, and municipal sludge thermally decomposed in
oxygen-less environmental conditions, is gaining the researcher’s
attention in recent years (Li J et al., 2022). It is comparatively
more economical compared with other conventional adsorbents
due to adding value to the management of waste products at the
same time (Pathy et al., 2021). The nutrient-loaded biochar can be
directly applied in the agricultural field to act as slow realizing fertilizer
and soil conditioner with no need for any other special treatment. The
mechanisms of biochar adsorption include ion exchange; electrostatic
interaction; formation of hydrogen bond; exchange of ligand;
precipitation on the surface; complex formation between the target
molecule and functional group present on the biochar surface and/or
either through physical adsorption (Huang et al., 2020). Thus,

researchers tried to increase the efficiency of nutrients recovery by
improving the adsorbate properties of biochar, including increasing
surface area, loading surface functional groups, modification with
various metal oxides, adjusting environmental parameters (Pathy
et al., 2021). Liu et al. (2021) recovered more than 70% of
phosphate in the simulated urine using waste straw biochar
modified with the Mg/Fe bimetallic oxide with a maximum
adsorption capacity of 206.2 mg/g. Pathy et al. (2021) deliberated
possible strategies of preparing engineered biochar aimed for
recovering nutrients from urine with the potential challenges and
opportunities in a review.

Biochar can also recovery nutrients and remove E. coli and faecal
coliform bacteria from BW. Mamera et al. (2022) removed 89%–98%
bacteria and recovered 68% N and 98% P from faecal sludge using
pinewood biochar through different soil-bed biochar column. Besides
the adsorbate properties of biochar, the solid content significantly
impacts the efficiency of recovering nutrients from BW by biochar.
However, the studies on recovering nutrients from BW by biochar are
still insufficient. It generally act as additive for improving anaerobic
digestion in terms of applying biochar in BW treatment.

3.2 Biological processes

Because of their low cost and easy operation and maintenance,
biological treatment processes have been widely applied for BW, faecal
sludge, or brown water treatment. Anaerobic digestion, composting,
and partial nitrification processes are mainly used for nutrient
recovery. Table 5 summerizes biological treatment processes.

3.2.1 Anaerobic digestion
Anaerobic digestion plays a key role as a well-known treatment

technology for hygienizing concentrated wastewater, such as BW. Low
water consumption helps achieve a low dilution of BW, which
provides a good basis for efficient nutrient recovery. Thus, low-
flush or vacuum toilets are preferred when collecting BW for
anaerobic digestion (Mang and Li, 2010). Different types of
digesters, such as anaerobic baffled reactors (ABRs), UASBs,
continuous stirred tank reactors at the industrial level, as well as
fixed domes, water jacked floating drums, and prefabricated plastic
and glass fiber digesters at the household level (Luostarinen et al.,
2007; Wendland et al., 2007; de Graaff et al., 2010), have been used for
anaerobic digestion according to the characteristics of BW and
hygienization demands.

Anaerobic digestion does not remove nutrients valuable as
fertilizer and, therefore, presents an appropriate BW treatment for
the agricultural cycle when combined with safe pasteurization. In
practice, several factors drive the anaerobic digestion of BWwithin the
scope of resource management sanitation:

• Safe sanitation: The hazardous compounds in excreta,
pathogens, and medical residues, which present serious
dangers to public health, are not spread in the water cycle.

• Production of biogas for cooking, lighting and electricity: The
produced biogas is a reliable renewable energy source.

• Nutrients recovery for agriculture: The residues of anaerobic
digestion are valuable fertilizers.

• Water saving: The application of pour or low-flush technology
reduces the consumption of high-quality drinking water.
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The efficiency of anaerobic processes depends on many
influencing factors, such as temperature, the characteristics and
concentration of organic matter, mass transfer, and fluctuations in
composition and load, among others. Because of high N in BW,
ammonia inhibition is a matter of concern which might inhibit
microbial activities and reduce COD removal and methane
production efficiencies. Fuchs et al. (2018) reviewed the state of
technology as well as recent achievements and perspectives on
tackling ammonia inhibition in anaerobic digetion.

BW can also be anaerobically co-digested with kitchen waste or
other organic matter to improve the efficiency of biogas production
(Gunnarsdóttir et al., 2014; Rajagopal et al., 2014; Hertel et al., 2015;
Wang et al., 2020). The microbial community dynamics and inhibition
effects of anaerobic digesters on BW have also been investigated (Gao
et al., 2019a; Gao et al., 2019b).

Measures to enhance anaerobic digestion, such as granular
activated carbon-assisted digestion, biochar addition, and zero-
valent Fe addition, have been investigated (Florentino et al., 2019;
Pan et al., 2019; Xu et al., 2019). Mamera et al. (2022) figured out that
biochar contributed to remove N, P, E. coli and faecal coliform bacteria
in BW.

Anaerobic digestion of BWor faecal sludge has been widely used at
the household and residential levels and even in large-scale plants
(Mang and Li, 2010). Post-treatment processes, such as solid/liquid
separation, composting, and disinfection, should be integrated to
achieve complete nutrient recycling (Mahmood et al., 2015;
Thostenson et al., 2018). One large-scale co-digestion project can
treat up to 400 tons of faecal sludge per day from septic tanks in
Ouagadougou, Burkina Faso. This biogas system has a production
capacity of approximately 5,000 m3 biogas daily. Arobic methods were
also tried in some cases. Barrios-Hernández et al. (2020) co-treated
synthetic faecal sludge with municipal synthetic wastewater in an
aerobic granular sludge reactor, however, the addtion of faecal sludge
decreased the sludge settle-ability and reduced the average granular
size. More efforts are necessary to improve the efficiency and
consistency for full-scal application.

3.2.2 Composting
Composting is an aerobic biological process that converts solid

organic matter into stabilized organic compost, CO2, water, and other
gases. Excessive heat energy generated in on-site composting due to
microbes activity, peak temperatures during the thermophilic phase
can reach up to 70°C (Zhou et al., 2022), thus the pathogens in BW
could be killed by the high temperature. Proper composting of organic
matter yields a nuisance-free, humus-like material that can be used as
a soil conditioner in agriculture. Spreading BW compost on fields can
improve the soil structure and raise the tolerance of plants to salts
(Oarga Mulec et al., 2016).

A bulking agent, such as saw dust or wood chips, is usually added
to reduce themoisture content of the rawmaterial and improve its C:N
ratio. Several studies on the composting of fecal matter and solid
fraction of BW have been carried out (Vinnerås, 2007; Oarga Mulec
et al., 2016). The effect of different bulking materials as a supporting
matrix on the solid fraction of BW composting in terms of pathogen
inactivation, nutrient loss, and CH4 emission have been studied
(Oarga-Mulec et al., 2019). Zhu et al. (2022) composted faecal
sludge with sawdust and rice straw in earthworm-based system and
obtained significant promote in composting efficiency and global
warming potential reduction.

Composting of human excreta from waterless toilets and the solid
fraction or digestate of BW has been applied in practice. In cold
regions, greenhouses could be used to keep a relatively constant
ambient temperature for composting processes (Mahmood et al.,
2015).

3.2.3 Partial nitrification
Nitrification refers to the biological oxidation of ammonia or

ammonium to nitrite, followed by oxidation of nitrite to nitrate.
Nitrification of urine can only oxidize half of the available
ammonium until nitrification ceases due to low pH conditions and
the absence of other relevant buffers at significant concentrations in
urine (Maurer et al., 2006; Feng et al., 2008).

Experiments conducted by Udert andWachter (2012), Udert et al.
(2003) and other researchers reveal that the product of urine
nitrification is either an ammonium-nitrate or ammonium-nitrite
solution with an approximate composition of 1:1; urine
nitrification could stabilize the free ammonia in the solution to
prevent the nitrogen release loss from the urine. Fumasoli et al.
(2016) employed a combined nitrification/distillation process to
stabilize urine and concentrate the nutrient solution at the pilot
scale to produce liquid fertilizer.

3.2.4 Urine storage
Urine storage seems to be a physical process, but, during storage,

urea can be hydrolyzed by enzyme urease, which is a biological
process. Urea is transformed into ammonia and ammonium,
leading to a pH increase. Experimental results have revealed that
temperature and elevated pH (to 9), in combination with ammonia,
can affect the inactivation of microorganisms. The storage time also
plays an important role in urine hygienization (Maurer et al., 2006).
Inactivation of typical enteric pathogens and model organisms has
been studied for hygienization by urine storage under different
conditions of urine dilution and temperatures (Vinnerås et al.,
2008). The results of this research showed that the recommended
storage time for urine (i.e., 6 months at 20°C or higher) is safe for
unrestricted use and could probably be shortened, especially for
undiluted urine (Vinnerås et al., 2008).

Urine storage has been widely applied to hygenization and urine
utilization as fertilizer at the household and residential levels in many
countries, such as Sweden, Germany, Switzerland, China, and some
African countries (Hanæus et al., 1997; Alemayehu et al., 2020).

3.2.5 Microalgae-based nutrient recovery
Microalgae contains high oil content of 20%–50% on a dry weight

basis and are efficient in removing nitrogen, phosphorus from BW and
urine (Zubair et al., 2020; Nguyen et al., 2021). Different microalgae
species have various efficiency on nutrients recovery. Chlorella sp.
shows great tolerance to ammonia and can recovery 23%–100%N and
20%–100% P, respectively (Khan and Yoshida, 2008). Pathogens could
be inhibited during the microalgae-based nutrient recovery process.
Žitnik et al. (2019) removed 12%–51% E. coli from BW treated with
microalgae Chlorella vulgaris.

As heterotrophic bacteria could decompose organic matter and
promote plant growth by complex communication mechanisms and
nutrient exchange, algal-bacterial systems were conducted to treat
wastewater (Ramanan et al., 2016). In algal-bacterial systems, oxygen
and organic carbon produced by microalgal photosynthesis could be
used by heterotrophic bacteria while CO2 released by
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chemoorganotrophic bacterial respiration could be in turn fixed by
algae (Li et al., 2018). Li et al. (2018) studied bacterium Vibrio. sp Y1-5
and microalgae S. platensis in their mutualistic system, obtaining a
biomass yield of 4.28 g/L and recovering 86% of nitrogen and 91% of
phosphorus. Algal-bacterial aerobic granular sludge is an emerging
new method for wastewater treatment with more potentials for
meeting the demands of sustainable bioeconomy due to its lower
energy demand, higher nutrients removal, better biomass settleability,
and CO2 capture capacity (Lee and Lei, 2019; Chen et al., 2022; Lee and
Lei, 2022). However, further researches on recovering nutrients from
BW by algal-bacterial aerobic granular sludge are required and
meaningful.

4 Conclusions and perspectives

This paper summarizes and reviews currently available processes
for nutrient recovery of BW, urine, and feces. In most cases, nutrient
recovery requires a treatment system consisting of multiple steps not
only for nutrient recovery but also for discharge control and removal
of harmful substances (Kakimoto et al., 2007).

A wide range of technological options are available for nutrient
recovery from BW. Depending on the overall goal of the resource-
oriented treatment process, a specific technical solution or
combination of technologies may be determined to meet
requirements. However, most of the techniques developed thus far
present different weaknesses that limit their practical applications.
Future BW treatment solutions will likely consist of a combination of
treatment processes, for example, recovery of biogas energy by
anaerobic digestion, followed by recovery of N and P by struvite
precipitation, solid/liquid digestate separation, and then composting
for solid digestates.

Source separation has shown to be advantageous for improving
treatment capacity, food security, and efficiency; however, these
systems are still immature and considered risky by professionals
and, thus, scarcely implemented (McConville et al., 2017; Trimmer
et al., 2019). Possible barriers to the practical application of these
systems may include:

• Unproven technologies in practices
• Unproven cost benefit in comparison with conventional
wastewater systems

• Complex operations and maintenance
• Lack of a source control collection system,
• Fluctuation of the target product value.

Therefore, additional research is needed to improve or enhance
existing processes and find promising process combinations with great
effectiveness.

However, non-sewered sanitation system, that is not connected to
a networked sewer, and collects, conveys, and fully treats BW to allow
for safe reuse or disposal, is a practical option for BW treatment and

resource recovery. Non-sewered sanitation system was awarded as one
of the top 10 breakthrough technologies in 2019 by MIT Technology
Review (Winick, 2019), seems a feasible solution for decentralized BW
management (Cheng et al., 2022). The developed technologies are
useful for such systems.

Overall, the perspective for resource-oriented BW management
technologies is very positive due to their great potential. More
attention should be paid and more efforts should be spent to
develop efficient technologies and improve the feasibility, reliability,
economy, environment friendliness, and agronomic value of recovered
products. It provides clear evidence that resource-oriented
technologies are very important tools for sustainable development.
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