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                          Indeed, several nutrigenetics studies have shown
       diet to significantly modify the relationship between
                                            polymorphisms in genes coding antioxidant
                                                      enzymes and cancer

 Key insights

This article highlights some of the recent nutrigenetic studies 
that examine interactions between diet, genetic variation in 
antioxidant enzymes, and oxidative stress.

 Current knowledge

Oxidative stress develops as a result of an imbalance between the 
production and accumulation of reactive species and the body’s 
ability to manage them using exogenous and endogenous an-
tioxidants. Oxidative stress has been implicated in the develop-
ment of several chronic diseases, including cardiovascular dis-
ease and cancer. Individual genetic variation in the endogenous 
antioxidant defense systems may affect oxidative stress and 
subsequent disease development. Diet modifies the relationship 
between genetic variation in endogenous antioxidant enzymes 
and oxidative stress biomarkers and related disease risk. 

 Practical implications

As more data emerge, our understanding of the complex re-
lationship between genetics, diet, and disease development 
should improve. In addition to gaining knowledge of the role 
of oxidative stress in disease pathogenesis, this type of research 
may also have important public health implications in identify-
ing subgroups that would benefit from dietary intervention.  
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Genetic variation in the absorption, metabolism, distribution or elimi-
nation of exogenous dietary antioxidants can influence the level of re-
active species exposure to target cells and/or tissues. ROS = Reactive 
oxygen species; RNS = reactive nitrogen species. When the balance is 
tipped to one side (i.e. accumulation of ROS/RNS), the result is altered 
gene expression, molecular damage, leading to oxidative sress, nitrosa-
tive stress, inflammation, and subsequent disease development. See 
text for details.
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rotenoids, have important roles in preventing and reducing 
oxidative stress. Individual genetic variation affecting pro-
teins involved in the uptake, utilization and metabolism of 
these antioxidants may alter their serum levels, exposure to 
target cells and subsequent contribution to the extent of ox-
idative stress. Endogenous antioxidants include the antioxi-
dant enzymes superoxide dismutase, catalase, glutathione 
peroxidase, paraoxanase, and glutathione  S -transferase. 
These enzymes metabolize reactive species and their by-
products, reducing oxidative stress. Variation in the genes 
coding these enzymes may impact their enzymatic antioxi-
dant activity and, thus, the levels of reactive species, oxida-
tive stress, and risk of disease development. Oxidative stress 
may contribute to the development of chronic disease, in-
cluding osteoporosis, type 2 diabetes, neurodegenerative 
diseases, cardiovascular disease, and cancer. Indeed, poly-
morphisms in most of the genes that code for antioxidant 
enzymes have been associated with several types of cancer, 
although inconsistent findings between studies have been 
reported. These inconsistencies may, in part, be explained by 
interactions with the environment, such as modification by 
diet. In this review, we highlight some of the recent studies 
in the field of nutrigenetics, which have examined interac-
tions between diet, genetic variation in antioxidant en-
zymes, and oxidative stress.  Copyright © 2012 S. Karger AG, Basel 

 Key Messages 

 • Individual genetic variation in the endogenous

antioxidant defense systems may affect oxidative 

stress and subsequent disease development. 

 • Diet modifies the relationship between genetic

variation in endogenous antioxidant enzymes and 

biomarkers of oxidative stress and related disease 

risk. 

 • Genetic variation in the absorption, metabolism,

distribution or elimination of exogenous antioxidants 

can influence exposure levels of antioxidants to

target cells. 
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 Abstract 

 Oxidative stress develops as a result of an imbalance be-
tween the production and accumulation of reactive species 
and the body’s ability to manage them using exogenous
and endogenous antioxidants. Exogenous antioxidants ob-
tained from the diet, including vitamin C, vitamin E, and ca-
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 Oxidative Stress 

 Reactive species, including free radicals, reactive oxy-
gen species, and reactive nitrogen species, are produced 
as a result of normal physiological processes and play im-
portant roles in cellular signalling, gene transcription, 
and the immune response  [1] . In the process of aerobic 
metabolism, electron leakage along the electron trans-
port chain in the mitochondria results in the production 
of the superoxide anion (O 2  �  

–  ). Other biological reactions, 
including oxidative bursts produced by phagocytes and 
enzyme systems such as cytochrome P450 and xanthine 
oxidase, also contribute to the production of these highly 
reactive species  [2] . Excessive production or accumula-
tion of reactive species, however, can have detrimental 
effects by participating in reduction-oxidation (redox) 
reactions causing damage to 
macromolecules, cell mem-
branes and DNA  [1, 3] . This 
can alter biological properties 
of membranes, enzymes and 
receptors, impair cell func-
tioning, and lead to cell death 
 [4] . For this reason, a complex 
network of defense systems 

has developed in humans to protect against excessive 
production of and damage by reactive species in an effort 
to maintain ‘redox homeostasis’  [1] . When the produc-
tion or accumulation of free radicals or reactive oxygen 
and nitrogen species surpasses the body’s ability to de-
fend them, a state of oxidative stress (or nitrosative stress) 
results  [1, 4] . In addition to direct damage to biological 
molecules and tissues, oxidative stress can also activate 
transcription factors such as nuclear factor �B (NF- � B), 
which trigger signalling cascades resulting in cytokine 
release and inflammation  [5] . Oxidative stress has been 
the subject of intensive research in recent years and has 
been linked to the pathogenesis of several chronic dis-
eases including cancer, osteoporosis, type 2 diabetes, 
neurodegenerative diseases and cardiovascular disease 

 [1] . This has been supported 
by many studies that have 
shown diets high in fruit and 
vegetables, and thus, rich in 
dietary antioxidants, are asso-
ciated with a reduced risk of 
chronic disease. Antioxidants 
comprise a large group of en-
dogenous enzymes and com-

This has been supported by many 
studies that have shown diets high in 
fruit and vegetables, and thus, rich in 
dietary antioxidants, are associated 

with a reduced risk of chronic disease.
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  Fig. 1.  Overview of the relationship between the production of 
reactive species, oxidative stress, disease development and the role 
of antioxidants and genetic variation. An accumulation of reac-
tive species from external and internal stimuli can cause molecu-
lar damage and result in oxidative or nitrosative stress. Reactive 
species may also alter gene expression, leading to the  release of 
cytokines and inflammation, which results in further production 
of free radicals, reactive oxygen species (ROS), and reactive nitro-

gen species (RNS). Inflammation and oxidative stress may then 
contribute to the development of chronic disease and additional 
production of reactive species. Dietary and endogenous antioxi-
dants work together to reduce oxidative stress development and 
damage; their functioning is further modified by individual ge-
netic variation. CVD = Cardiovascular disease; T2DM = type 2 
diabetes mellitus. 
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pounds as well as exogenous dietary components, which 
protect against oxidative stress by preventing the forma-
tion of reactive species, scavenging, neutralizing and re-
moving reactive species, inhibiting oxidative chain reac-
tions, chelating reactive metals, and repairing damage to 
biological molecules. The ability to manage and prevent 
oxidative stress is dependent upon the functioning of the 
endogenous and exogenous antioxidant defense systems, 
both of which may be influenced by individual genetic 
variation. Single nucleotide polymorphisms (SNPs) in 
genes that code for endogenous antioxidant enzymes or 
proteins involved in dietary antioxidant uptake and uti-
lization may have a direct impact on the ability to manage 
oxidative stress and prevent subsequent disease develop-
ment in an individual. Furthermore, the endogenous and 
exogenous antioxidant systems interact and complex 
gene-diet interactions may further impact an individual’s 
ability to manage oxidative stress ( fig. 1 ). The present re-
view focuses on summarizing the relationship between 
polymorphisms in genes encoding endogenous antioxi-
dant enzymes and their interaction with dietary compo-
nents to modulate oxidative stress.

  Dietary Antioxidants 

 Nutrients and phytochemicals in the diet exhibit a 
range of antioxidant functions and play an important role 
in the defense against oxidative stress ( table 1 ). Vitamin 

C is an essential nutrient and the primary hydrophilic 
plasma antioxidant  [5] . In addition to scavenging and 
neutralizing free radicals, vitamin C (ascorbic acid) also 
plays an important role in the regeneration of the  � -to-
copherol radical.  � -Tocopherol is one of several com-
pounds of the vitamin E family and has important chain-
breaking and scavenging antioxidant functions in the 
lipid phase, protecting lipoproteins and cell membranes. 
The carotenoids make up another group of important di-
etary antioxidants, which like  � -tocopherol, are lipid sol-
uble and may be important in the protection against lipid 
peroxidation  [6] .

  Circulating levels of dietary antioxidants have been 
shown to be influenced by several factors, including in-
dividual genetic variation. Ascorbic acid levels in the cir-
culation are influenced by SNPs in the solute carrier fam-
ily 23, member 1 ( SLC23A1 ) gene, which codes for the 
vitamin C transporter type 1 (SVCT1), responsible for ac-
tive transport of vitamin C from the small intestine  [7, 8] . 
Circulating levels of  � -tocopherol are also influenced by 
polymorphisms in genes coding for proteins involved in 
 � -tocopherol uptake, transport, and metabolism, such as 
apolipoproteins, cytochrome P450 4F2, and cholesterol 
transporter scavenger receptor class B type 1, SR-B1  [9] . 
Variants in similar genes have also been shown to affect 
circulating carotenoid levels  [10] . Together these studies 
suggest individual genetic variation may influence di-
etary antioxidant status, and consequently, the body’s 
ability to manage oxidative stress. Recently, the genetic 
determinants of antioxidant status have been reviewed 
 [6] . The following sections focus on variation in genes 
encoding the endogenous antioxidant enzymes and their 
interaction with diet, including dietary antioxidants, on 
oxidative stress.

Recently, the genetic determinants 
of antioxidant status have been
reviewed  [6] . The present section

focuses on variation in genes encoding 
the endogenous antioxidant enzymes 

and their interaction with diet,
including dietary antioxidants,

on oxidative stress.

Table 1.   Common exogenous antioxidants and examples of their 
dietary sources 

Exogenous antioxidants Dietary sources

Vitamin C
(ascorbic acid/ascorbate)

Bell peppers, strawberries, kiwi, 
Brussels sprouts, broccoli

Vitamin E (tocopherols,
tocotrienols)

Vegetable oil and its derivatives 
(margarine, salad dressing), nuts, 
seeds

Carotenoids (�-carotene,
�-carotene, zeaxanthin,
lutein, lycopene,
�-cryptoxanthin, etc.)

Orange and red vegetables and 
fruits (carrots, tomatoes, apricots, 
plums) and green leafy vegetables 
(spinach, kale)

Polyphenols (flavonols,
flavanols, anthocyanins,
isoflavones, phenolic
acid)

Fruits (apples, berries, grapes), 
vegetables (celery, kale, onions), 
legumes (beans, soybeans), nuts, 
wine, tea, coffee, cocoa

Trace elements (selenium, 
zinc)

Seafood, meat, whole grains



 Da Costa   /Badawi   /El-Sohemy   

 

Ann Nutr Metab 2012;60(suppl 3):27–3630

  Endogenous Antioxidants and Measures of 

Oxidative Stress 

 The body’s natural defense system against oxidative 
stress consists of several enzymes and non-enzymatic 
compounds as well as transfer proteins that sequester 
pro-oxidant metals inhibiting their participation in re-
dox reactions ( table 2 ). Components of the endogenous 
antioxidant defense system work together and in concert 
with dietary antioxidants to prevent and reduce oxida-
tive stress. In addition, the antioxidant activity of many 
of these enzymes and compounds is reliant upon miner-
als derived from the diet such as selenium, copper, man-
ganese, and zinc  [11] . Genetic variation in the antioxi-
dant enzymes may also impact the efficacy of the endog-
enous antioxidant defense system and susceptibility to 
oxidative stress. There are numerous measures of oxida-
tive stress ( table 3 ), most of which are measures of oxi-
dized products of lipids [e.g. malondialdehyde (MDA) or 
isoprostanes], proteins (e.g. protein carbonyls), or DNA 
(e.g. 8-hydroxy-20-deoxyguanosine)  [4] . A recent review 
examined articles published over a 6-month period in 
2006 that used biomarkers of oxidative stress and noted 
that 71 different biomarkers were utilized  [12] . This 
highlights the complexity and difficulty of appropriate 
biomarker selection and comparison of results across 

studies. In addition to the known analytical issues, e.g. 
sensitivity and stability of markers to storage, a concern 
with the use of oxidative stress biomarkers is that some 
exist in multiple forms and in multiple biological matri-
ces  [12] . While some studies have investigated the role of 
genetic variation in antioxidant enzymes and measures 
of oxidative stress, few have further examined potential 
modification by diet. However, numerous studies have 
examined interactions between diet and genetic varia-
tion in antioxidant enzymes in relation to diseases asso-
ciated with oxidative stress, in particular, cancer. Oxida-
tive stress has been implicated in the development of car-
cinogenesis in several ways, including direct damage to 
DNA by reactive species in the form of strand breaks, 
base oxidation, adducts, and protein crosslinks  [13] . 
DNA damage leading to mutation may be particularly 
carcinogenic when affecting oncogenes and tumor sup-
pressor genes  [14] . Reactive species may also influence 
carcinogenesis through attack on DNA repair mecha-
nisms, as well as additional effects on the cell cycle, gene 
expression, and apoptosis  [15] . The following sections 
cover a few of the key antioxidant enzymes, genetic vari-
ation in the genes coding these enzymes, and their inter-
action with diet on biomarkers and diseases associated 
with oxidative stress.

Table 2.   Endogenous antioxidants 

Endogenous antioxidants Examples

Enzymes Superoxide dismutase
Catalase
Glutathione peroxidase
Paraoxanase
Glutathione S-transferase
Glutathione reductase
Thioredoxin reductase
Heme-oxygenase
Aldehyde dehydrogenase
8-Oxoguanine glycosylase

Non-enzymes Glutathione
Lipoic acid
Bilirubin
Melatonin
Ubiquinol
Uric acid

Metal-binding proteins Ferritin
Lactoferrin
Metallothionein
Transferrin
Ceruloplasmin

Table 3. Biomarkers of oxidative stress

Lipid peroxidation
Malondialdehyde (MDA)
Thiobarbituric acid-reactive substances (TBARS)
Isoprostanes
Conjugated dienes
4-hydroxy-2-nonenal (HNE)
2-propenal (acrolein)

Protein damage
Amino acid oxidation (o,o�-dityrosine), nitration

(3-nitrotyrosine), and halogenation
(3-chlorotyrosine, 3-bromotyrosine)

Protein carbonyls [�-glutamic semialdehyde (GGS),
aminoadipic semialdehyde (AAS)]

DNA/RNA base oxidation
8-hydroxy-2-deoxyguanosine (8-OHdG)
8-hydroxyguanine (8-OHGua)
8-hydroxyguanosine (8-OHG)
5-hydroxymethyl-2-deoxyuridine (5-OH-mdU, HMD)
5-hydroxymethyluracil (5-OHmU)
7-hydroxy-8-oxo-20-deoxyguanosine (8-oxo-dG, 8OX)
Thymine glycol (Tg)
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  Superoxide Dismutase  

 Superoxide dismutase (SOD) has important antioxi-
dant functions in the conversion of superoxide radicals 
into hydrogen peroxide and oxygen followed by further 
breakdown of hydrogen peroxide by catalase and per-
oxidases ( fig. 2 ). There are 3 isoforms of SOD in humans 
including the copper/zinc (CuZn) SOD (SOD1), the man-
ganese (Mn) SOD (SOD2), and the extracellular CuZn 
SOD (SOD3 or EC-SOD). SOD1 is a homodimer found 
in the cytosol of intracellular locations, whereas SOD3 is 
a tetramer found exclusively in extracellular domains 
 [16] . MnSOD is the most important of the SOD isoforms 
being the only one essential for life  [17] . A precursor of 
the MnSOD is synthesized in the cytosol before being 
transported into the mitochondria where the active ho-
motetramer plays an essential role in neutralizing free 
radicals produced during aerobic metabolism  [17] . The 
 MnSOD  gene is localized to chromosome 6q25 with the 
most commonly studied polymorphism being a valine to 
alanine amino acid change at codon 16 (Val16Ala) in the 
mitochondrial targeting sequence of the precursor pro-
tein (rs4880)  [18, 19] . This polymorphism alters the func-
tioning of the enzyme and the ability of the precursor 
enzyme to be transported into the mitochondria, and is 
thus believed to affect its ability to defend against oxida-
tive stress  [18, 20, 21] . In one study, levels of DNA damage 
differed significantly by  MnSOD  Val16Ala genotypes at 
baseline, although there was no difference in response to 
antioxidant supplementation on levels of DNA damage 
by genotype  [22] . This polymorphism has also been ex-

tensively investigated in diseases associated with oxida-
tive stress, such as cancer, with several studies further 
examining potential modulation by the diet  [23] . For ex-
ample, diet has been shown to modify the relationship 
between the  MnSOD  Val16Ala polymorphism and cervi-
cal intraepithelial neoplasia (CIN, subdivided into CIN1 
and CIN2/3 based on histology) and cervical cancer  [24] . 
In this case-control study, C allele carriers showed a 
57.3% reduced risk of CIN1, but no association with 
CIN2/3 or cervical cancer; however, several significant 
interactions were noted with serum levels of dietary an-
tioxidants on CIN1, CIN2/3, and cervical cancer risk in-
cluding  � -carotene, lycopene, zeaxanthin/lutein, reti-
nol, and  � - and  � -tocopherol. For example, the reduced 
risk of CIN1 associated with the C allele was only seen 
among those with above median levels of serum  � -caro-
tene [ 1 0.205  � g/ml; odds ratio (OR): 0.286, 95% confi-
dence interval (CI): 0.086–0.953; interaction p = 0.002] 
and  � -tocopherol ( 1 0.30  � g/ml; OR: 0.272, 95% CI: 
0.079–0.944; interaction p = 0.033)  [24] . Two recent me-
ta-analyses have also examined the association between 
the  MnSOD  Val16Ala polymorphism and breast cancer 
risk with modification by vitamin C, vitamin E, and ca-
rotenoid  [25]  and fruit and vegetable consumption  [19] . 
While both meta-analyses showed no independent effect 
of genotype on breast cancer risk, intakes of antioxidants 
were shown to modify risk in premenopausal women 
 [25] , while fruit and vegetable consumption did not  [19] .

  Catalase 

 Catalase is an antioxidant enzyme important in the 
body’s defense against oxidative stress and is found with-
in the peroxisomes of cells and the cytoplasm of eryth-
rocytes. Ubiquitously expressed, catalase expression is 
highest in the liver, kidney, and erythrocytes  [26] . The 
catalase enzyme consists of four identical heme-contain-
ing subunits and catalyzes the decomposition of hydro-
gen peroxide into water and oxygen  [26]  ( fig. 2 ).

  The catalase enzyme is coded by the catalase ( CAT ) 
gene located on chromosome 11p13 and has been found 
to be highly polymorphic  [26] . A common SNP exists at 
position –262 in the 5 �  untranslated region of the  CAT  
gene where a C to T substitution results in lower catalase 
enzyme activity as reported in some  [27–29]  but not all 
studies  [30] . However, the impact of this polymorphism 
on enzyme activity may be further influenced by ethnic-
ity, sex, and fruit and vegetable consumption  [31] . In an 
examination of 1,008 breast cancer cases and 1,056 con-
trols from the Long Island Breast Cancer Study Project, 
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the  CAT  –262 CC genotype was associated with a 17% 
decreased risk of breast cancer compared to T allele car-
riers (OR: 0.83, 95% CI: 0.69–1.00 adjusted for age, fam-
ily history, and body mass index)  [27] . When non-supple-
ment users were examined, significant gene-diet interac-
tions were noted for the  CAT  –262 polymorphism and 
fruit consumption (p = 0.02) and dietary vitamin C in-
take (p = 0.03). A higher consumption of fruit ( 1 10 serv-
ings/week) or dietary vitamin C ( 1 133.7 mg/day) com-
bined with the CC genotype showed the lowest risk of 
breast cancer in this study (OR 0.59: 95% CI: 0.38–0.89 
for high fruit intake and 0.62, 0.40–0.95 for high dietary 
vitamin C intake)  [27] . Additional studies on other SNPs 
in the  CAT  gene and oxidative stress-related outcomes 
continue to be investigated  [32]  and should improve our 
understanding of the impact of genetic variation in the 
 CAT  gene on oxidative stress and potential modulation 
by the diet.

  Glutathione Peroxidase 

 The glutathione peroxidases are a family of selenium-
dependent enzymes that include glutathione peroxidase 
1 (GPX1), GPX2, GPX3, and phospholipid hydroperoxide 
GPX4. The GPX enzyme is ubiquitously expressed with 
cytosolic GPX1 being most abundant in erythrocytes, 
kidney, and liver, cytosolic GPX2 in gastrointestinal tis-
sues, and extracellular GPX3 in plasma. Unlike the tetra-
meric GPX1, GPX2, and GPX3, GPX4 is monomeric and 
has been localized to both the cytosol and membranes 
 [26] . The enzymes reduce hydrogen peroxide, lipid per-
oxide, and other hydroperoxides to their corresponding 
alcohol forms using glutathione or other reducing com-
pounds  [33] . Each GPX enzyme is coded by discrete genes 
located on different chromosomes.

  The  GPX1  gene has been localized to chromosome 
3p21.3 and a well-studied polymorphism at amino acid 
position 198 results in a proline to leucine change, which 
has been shown to affect GPX activity in some  [34–36] , 
although not all studies  [37, 38] . Carriers of the leucine 
allele have also been shown to have significantly higher 
levels of lipoperoxides and MDA in low-density lipopro-
teins  [36] . This polymorphism has also been associated 
with several types of cancer with conflicting results re-
ported. Interactions with the environment may explain 
some of these discrepancies with tobacco smoking  [34] , 
selenium  [35, 39] , alcohol  [35] , and fruit and vegetable 
consumption  [34, 40],  all being shown to modify GPX 
activity in some studies. In one study, alcohol consump-
tion modified the relationship between Pro198Leu geno-

type and erythrocyte GPX activity; however, fruit and 
vegetable consumption and selenium intake did not  [35] . 
The association between the Pro198Leu polymorphism 
and colorectal cancer was examined in 375 colorectal 
cancer cases and 779 gender-matched controls from the 
prospective Diet, Cancer and Health Study  [34] . Erythro-
cyte GPX activity and the Pro198Leu polymorphism were 
not independently associated with colorectal cancer risk 
in this study, yet, significant gene-diet interactions were 
noted such that only subjects with the Leu/Leu genotype 
saw higher colorectal cancer risk with alcohol consump-
tion (interaction p = 0.02) while only subjects with the 
Pro/Pro genotype and higher dietary vitamin C intake 
saw a reduced risk of colorectal cancer (interaction p = 
0.05)  [34] . In other studies, consumption of fruits and 
vegetables  [41]  as well as serum antioxidants and anti-
oxidant supplementation  [42]  have not been shown to sig-
nificantly modify the relationship between the Pro198Leu 
polymorphism and lung cancer.

  Paraoxanase 

 Paraoxanase 1 (PON1) is a calcium-dependent hy-
drolyzing enzyme with substrates including insecti-
cides, nerve agents, lactones, and other endogenous 
compounds such as oxidized low-density lipoproteins. 
Mainly synthesized in the liver, PON1 circulates in the 
plasma bound to the surface of high-density lipopro-
teins and contributes to the antioxidant capacity of 
high-density lipoproteins  [43] . PON1 belongs to a fam-
ily of 3 enzymes coded by 3 different genes  (PON1 , 
 PON2 , and  PON3)  located on chromosome 7q21.22. Two 
common polymorphisms in the coding region of the 
 PON1  gene have been extensively investigated: a leucine 
to methionine substitution at amino acid position 55 
(L55M) and a glutamine to arginine substitution at ami-
no acid position 192 (Q192R). Both polymorphisms have 
been shown to impact PON activity in a direction that 
is dependent upon the substrate and may directly im-
pact the enzyme’s ability to defend against oxidative 
stress  [43, 44] . Other factors that may influence PON1 
activity have been recently reviewed and include age, 
gender, drugs, dietary antioxidants and polyphenols, di-
etary lipids, and alcohol  [43] .

  Several studies have shown that the impact of these 
variants on PON1 activity may also be modulated by the 
diet, including orange and blackcurrant juice  [45]  and 
diets high in vegetables  [46]  and oleic acid  [47] . Diet has 
also been shown to interact with  PON1  polymorphisms 
to modulate oxidative stress. Tomato juice, which is rich 
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in lycopene, has been shown to significantly reduce 
plasma MDA (measured as thiobarbituric acid-reactive 
substances or TBARS) in  PON1  192R allele carriers in a 
study of healthy young men  [48]  and elderly subjects 
 [49] . In a recent cross-sectional study of 107 women, nei-
ther the  PON1  M55L nor the Q192R polymorphisms sig-
nificantly modified the relationship between serum ly-
copene and levels of TBARS, however, both polymor-
phisms showed significant interactions with serum 
lycopene on markers of bone turnover, which may also 
indicate increased oxidative stress  [50] . Studies have 
also shown consumption of restructured walnut paste-
enriched steaks to significantly interact with the  PON1  
Q192R polymorphism such that the walnut-enriched 
meat decreased sVCAM-1 (interaction p = 0.026), a 
marker of inflammation and endothelial activation  [51] , 
and lipid peroxidation (interaction p = 0.04)  [52]  in 192R 
allele carriers only.

  Glutathione  S -Transferases 

 Glutathione  S -transferases (GSTs) are a large group of 
multifunctional proteins localized in the cytosol, mito-
chondria and membrane of cells  [53] . They are phase II 
detoxification enzymes that, through the action of con-
jugation with glutathione, metabolize xenobiotics such as 
carcinogens and pollutants, and by-products of oxidative 
stress  [54] . There are 7 classes of cytosolic GSTs including 
�, �, �, �, 	, 
, and � encoded by genes on chromosomes 
6, 1, 10, 11, 4, 22, and 14, respectively  [53, 54] . Nutrigenet-
ics studies have focused on the GST �1 (GSTM1), 
1 
(GSTT1), and �1 (GSTP1), classes for which common ge-
netic variants have been identified and shown to affect 
enzyme activity. In both the  GSTM1  and  GSTT1  genes, a 
deletion polymorphism exists such that those homozy-
gous for the null allele show a loss of enzyme function  [55, 
56] . In the  GSTP1  gene, several polymorphisms have been 
identified, including a non-synonymous-coding poly-
morphism resulting in a isoleucine to valine amino acid 
change at codon 105 (Ile105Val) and an alanine to valine 
amino acid change at codon 114 (Ala114Val)  [57] . While 
one study showed levels of 8-oxo-7,8-dihydro-2 � -
deoxyguanosine to differ by  GSTP1  but not  GSTM1  or 
 GSTT1  genotypes  [58] , another found no differences in 
protein carbonyl levels by any GST genotype  [59] .

  These polymorphisms in  GSTM1 ,  GSTT1 , and  GSTP1  
have been studied extensively in relation to cancer and 
several studies have also examined potential gene-diet in-
teractions on cancer risks [reviewed in  ref. 23,   60] . For 
example, a recent study examined 19 polymorphisms in 

13 genes coding xenobiotic metabolizing enzymes in-
cluding  GSTM1 ,  GSTT1 , and  GSTP1  in 308 premalignant 
adenoma cases identified by colonoscopy and 296 con-
trols  [61] . Fiber, energy, total vegetable consumption and 
cruciferous vegetable consumption were all found to be 
inversely related to colorectal adenoma risk, whereas 
there was only a modest suggestion of an inverse relation-
ship with fruit consumption and no relationship was 
found with consumption of red meat. Of the GST poly-
morphisms, only the  GSTM1  null genotype was signifi-
cantly associated with increased risk of colorectal adeno-
ma risk (OR: 1.43, 95% CI: 1.04–1.98). In further exami-
nation of gene-diet interactions, the authors found some 
evidence of an interaction between the  GSTP1  Ala114Val 
polymorphism and fruit consumption on colorectal ad-
enoma risk (interaction p = 0.02). Fruit consumption was 
not protective among carriers of the  GSTP1  variant allele 
(OR: 1.28, 95% CI: 0.58–2.83), while it was shown to be 
protective among those homozygous for the reference al-
lele (OR: 0.49, 95% CI: 0.34–0.71)  [61] . Polymorphisms in 
the GST enzymes have been hypothesized and shown to 
have both a beneficial and adverse impact on cancer risk, 
possibly due to the role of GST in eliminating harmful 
oxidative species and carcinogens as well as beneficial di-
etary chemoprotective chemicals such as isothiocyanates 
found in cruciferous vegetables ( fig. 3 ). Thus, GST poly-
morphisms may also alter the relationship between diet 
and other oxidative stress-related conditions, including 
cardiovascular disease  [62] .

GSTs

Enzyme
activity

Enzyme
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Metabolism of
harmful compounds

Metabolism of
harmful compounds

Metabolism of
beneficial compounds

Metabolism of
beneficial compounds

Modulation by diet?

Disease risk?

Disease risk?

Disease risk?

Disease risk?

  Fig. 3.  Potential role of glutathione  S -transferase (GST) polymor-
phisms on disease risk. Genetic variation in the GST enzymes can 
result in altered activity. The reduced activity may result in an 
increase or decrease in metabolism of both harmful compounds 
(including by-products of oxidative stress and carcinogens) as 
well as beneficial compounds (such as isothiocyanates). As such, 
the GST polymorphisms have been proposed to increase or de-
crease disease risk and this relationship may be further modified 
by diet. 
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