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Abstract

Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited

by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However,

oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA)

and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between

supply and demand of these important nutrients. Camelina sativa was metabolically engi-

neered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute

for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks

with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil

(WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish perfor-

mance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver

transcriptome analysis. The DCO diet did not affect any of the performance or health param-

eters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO

diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in

WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA bio-

synthetic activity was observed in fish fed both the Camelina oil diets as indicated by the

liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid,

with data suggesting that the dietary combination of EPA and DHA inhibited desaturation

and elongation activities. Expression of genes involved in phospholipid and triacylglycerol

metabolism followed a similar pattern in fish fed DCO andWCO despite the difference in n-

3 LC-PUFA contents.

Introduction

Global demand for omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) has sig-

nificantly increased during the last two decades on the basis of their proven health benefits [1].

In addition world population is expected to increase to 9.1 billion by 2050 [2] increasing
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pressure on sources of these fatty acids to cover human requirements, estimated to range

between 250 mg to 1 g per day of eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic acids

(22:6n-3; DHA) combined [3–5]. Therefore, there is mounting concern over the sustainability

of sourcing these critical nutrients as they are largely obtained from fish and seafood, which

accumulate n-3 LC-PUFA biosynthesised in marine microalgae, the main primary producers

[6]. Farmed Atlantic salmon (Salmo salar) is an excellent source of n-3 LC-PUFA as this oily

fish can accumulate high levels of n-3 LC-PUFA in flesh, with one or two 130g portions being

sufficient to supply the amounts of EPA and DHA recommended by EFSA or ISSFAL, respec-

tively [7]. Indeed, aquaculture is the best option to provide these healthy fatty acids as tradi-

tional capture fisheries are stagnating with around 53% of marine fish stocks close to being

fully exploited, 28% overexploited, 3% depleted and 1% recovering from depletion[8]. How-

ever, farmed fish require n-3 LC-PUFA to be included in their diet and this has been achieved

by the use of fish oil but, as fish oil is a finite and limited resource, this is an unsustainable prac-

tice [9]. Thus, there is a need for alternatives to dietary fish oil that will not only assure good

growth and health of the fish, but also maintain the nutritional quality of the final product, par-

ticularly high levels of n-3 LC-PUFA.

Currently the predominant substitutes for fish oil are vegetable oils (VO) that can be rich in

C18 PUFA but naturally lack n-3 LC-PUFA [10]. Dietary VO can generally support normal

growth without compromising fish health but, due to the lack of n-3 LC-PUFA, the nutritional

quality of the fish fillet is affected, with reduced levels of beneficial EPA and DHA [11–14].

Atlantic salmon have the capability to produce n-3 LC-PUFA from α-linolenic acid (ALA;

18:3n-3) [15] although the capacity is limited to that required by the fish to satisfy its physio-

logical demands [9]. Although research has been performed in order to investigate the “omega-

3 trait” in fish, any increased capacity has been insufficient to maintain tissue EPA and DHA in

fish fed VO at levels similar to those found in fish fed fish oil [16,17]. Thus, other alternatives

to fish oil that are capable of maintaining high n-3 LC-PUFA levels in fish are currently being

investigated [9]. Sources such as marine zooplankton (e.g. krill) or phytoplankton (heterotro-

phic microalgae) represent promising options although biological and technical issues remain

that prevent these from being cost-effective alternatives at the moment [9]. Another approach

is to develop a new, renewable source of n-3 LC-PUFA, with metabolic engineering of oilseed

crops being a viable option. A major advantage of using genetically modified (GM) plants is

that oilseed crops already dominate global fat and oil production with well-established infra-

structures for the cultivation, harvest, processing, distribution, marketing and utilisation of VO

[18]. Production of n-3 LC-PUFA in terrestrial plants has been reported in the oilseed Came-

lina sativametabolically engineered to contain high-levels of either EPA alone or both EPA

and DHA in their seeds [19].

Previously, we investigated the EPA—rich Camelina oil in feeds for post-smolt Atlantic

salmon and demonstrated that this novel oil enhanced total n-3 LC-PUFA content in fish fillet

compared to fish fed wild-type Camelina oil with no adverse effects on fish growth or health

[14,20]. Expression of LC-PUFA biosynthesis genes such as Δ5 and Δ6 desaturases was

increased in salmon fed both Camelina oils, although biosynthetic activity was insufficient to

maintain flesh DHA levels compared to FO-fed fish. Interestingly, the presence of high levels

of EPA in transgenic Camelina did not inhibit/suppress the expression of the biosynthetic

genes. In the present study, the efficacy of a second oil derived from transgenic Camelina con-

taining approximately equal proportions of EPA and DHA was evaluated as a replacement for

dietary fish oil in feeds for post-smolt Atlantic salmon. The overarching aim was to assess the

effects of the novel oil on fish performance and tissue fatty acid composition as well as its

impact on metabolism and health.
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Materials and Methods

Construction of plant expression vector, generation of transgenic plants
and extraction of seed oil

A construct containing a cassette of seven genes was used for transformation of Camelina

sativa [19]. Briefly, the seven-gene construct contained a set of genes optimised for EPA and

DHA synthesis: a Δ6-desaturase from Ostococcus tauri (OtΔ6), a Δ6 fatty acid elongase from

Physcomitrella patens (PSE1) a Δ5-desaturase from Thraustochytrium sp. (TcΔ5), a Δ12-desa-

turase from Phytophthora sojae (PsΔ12), an ω3-desaturase from Phytophthora infestans (Pi-

ω3), a Δ5-elongase from O. tauri and a Δ4-desaturase from Emiliania huxleyi as described in

detail previously [19]. All genes were individually cloned under the control of seed-specific

promoters, and then combined into a single T-DNA transformation vector as described previ-

ously [21]. The destination vector contained the dsRed gene with the CsVMV promoter as a

visible selection marker via seed coat-specific expression of DsRed. No antibiotic marker was

used in the generation of this iteration. All open reading frames for desaturases and elongases

were chemically synthesised and codon-optimised for expression in C. sativa.

Transgenic C. sativa lines were generated via “floral dip” essentially as described previously

[22,23]. Briefly, the designed vector was transferred into Agrobacterium tumefacians strain

AGL1 and C. sativa inflorescences immersed in the Agrobacterium suspension for 30 sec with-

out application of vacuum. Visual screening for dsRed activity was used to select transgenic

seeds expressing the n-3 LC-PUFA biosynthetic pathway. Seeds harvested from transformed

plants were illuminated with green LED light and fluorescent seeds identified using a red lens

filter. No obvious phenotypic perturbation was observed as a result of modification of the seed

oil composition. Full details are in [19]. C. sativa was grown in a controlled-environment glass-

house at 25°C day/18°C night, 50–60% humidity, and kept under a 16 h photoperiod (long

day) at levels of 400 μmol m-2 sec-1. Oil was extracted from seeds by cold-pressing and solvent

extraction (hexane) to maximise yield (PPM, Magdeburg, Germany) with solvent removed by

rotary evaporation. The EU authorised anti-oxidant, ethoxyquin was added at 300 ppm to sta-

bilise the final product [24].

Diets and feeding trial

Three isonitrogenous and isoenergetic diets were formulated to satisfy the nutritional require-

ments of salmonid fish [25] (Table 1). The diets supplied 45 g/kg crude protein and 26 g/kg

crude lipid and were manufactured at BioMar Tech-Centre (Brande, Denmark). The three feeds

were produced by vacuum coating identical dry basal extruded pellets with either fish oil (FO),

wild-type Camelina oil (WCO) or EPA/DHA-Camelina oil (DCO). Non-defatted fish meal

(FM) was employed as the major protein source to ensure EFA requirements were met [25].

Yttrium oxide was added to the experimental diets (0.5 g/kg) as an inert marker for determina-

tion of lipid and fatty acid digestibility. A total of 144 post-smolt Atlantic salmon with an aver-

age body weight of 256.2 ± 11.7 g (mean ± S.D.) were distributed into 9 seawater tanks (16 per

tank) and fed one of the three experimental feeds in triplicate for 11 weeks at the BioMar

Research Centre (Hirtshals, Denmark). Prior to the start of the experimental period, during a 1

week acclimation period, fish were fed theWCO diet. The experimental system comprised 1 m2,

500 L tanks supplied by flow-through seawater (15 L/min) at ambient temperature that averaged

10.2 ± 0.6°C. Experimental feeds were delivered in excess by belt feeders during 07.00 to 15.30

hrs with uneaten feed collected at the end of the working day in order to accurately determine

feed efficiency. All procedures were conducted in accordance with the regulations set forward

by the Danish Ministry of Justice and Animal Protection committees by Danish Animal
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Experiments Inspectorate Permit 2012-15-2934-00573. The experiment was subjected to ethical

review by the University of Stirling through the Animal andWelfare and Ethical Review body

Sample collection

After 10 weeks of feeding, samples of faeces were collected from all the fish from each tank and

the faecal samples pooled by tank. Fish were anesthetised with metacaine sulphonate (MS222)

(Finquel1, Argent Chemical Laboratories, Redmond, WA, USA) 3 hours after their last meal

and faecal samples collected from the hind-gut region by gently squeezing the ventral abdomi-

nal area [26]. Faecal samples were stored at -20°C prior to lipid and fatty acid analysis. At the

end of the trial (11 weeks), blood and tissue was sampled from randomly selected fish. Follow-

ing 48 h fasting fish were killed by overdose with MS222 and blood from 6 fish per tank col-

lected via the caudal vein by heparinised vacutainers and centrifuged to obtain plasma. Plasma

was pooled to obtain three samples per tank and stored at -70°C until further analysis. Nine

fish per tank were used for biometric measurements (hepato-somatic and viscera-somatic indi-

ces) and tissue analyses. Three whole fish, and samples of muscle (flesh), liver, brain, anterior

intestine and pyloric caeca from a further 3 fish per tank were immediately frozen in liquid

nitrogen and stored at– 70°C prior to lipid and fatty acid analyses. Additionally, samples of

liver from 6 fish per tank were collected, stabilised in RNA Later (Sigma, Poole, UK) and stored

at -20°C prior to RNA extraction.

Biochemical composition

Feeds and whole fish were ground before determination of proximate composition according

to standard procedures [27]. Three fish were pooled per tank and three technical replicates for

the single batch feeds were analysed. Moisture contents were obtained after drying in an oven

at 110°C for 24 h and ash content determined after incineration at 600°C for 16 h. Crude pro-

tein content was measured by determining nitrogen content (N x 6.25) using automated Kjel-

dahl analysis (Tecator Kjeltec Auto 1030 analyzer, Foss, Warrington, UK) and crude lipid

content determined gravimetrically after Soxhlet lipid extraction (Tecator Soxtec system 2050

Auto Extraction apparatus).

Table 1. Formulations and proximate compositions of the experimental feeds.

FO WCO DHCO

Feed ingredients (%)

Fish meal 49.8 49.8 49.8

Soy protein concentrate (60%) 12.0 12.0 12.0

Wheat gluten 1.9 1.9 1.9

Wheat 14.0 14.0 14.0

Fish oil 20.8 - -

Wild-type Camelina oil (Wt-CO) - 20.8 -

EPA+DHA-Camelina oil (Tr-CO) - - 20.8

Vitamins/Minerals 0.8 0.8 0.8

Ytrium oxide 0.05 0.05 0.05

Analysed composition

Dry matter (%) 94.2 94.4 94.4

Protein (%) 45.0 45.5 45.4

Lipid (%) 25.8 25.4 26.2

Ash 8.5 8.8 8.9

doi:10.1371/journal.pone.0159934.t001
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Calculations

Feed efficiency and biometric parameters were estimated as follows: Feed intake (FI, g) was

estimated by subtracting uneaten feed from fed feed on a dry matter basis. Uneaten feed was

recovered daily and corrected for dry matter losses during feeding and collection. Specific

growth rate (SGR) = 100 � (lnWo—ln Wf) � D-1, where Wo and Wf are the initial and final

weights (tanks means), respectively, and D represents the number of feeding days. Feed effi-

ciency ratio (FER) = G � F-1, where G is the weight gain and F is the dry matter consumed. Pro-

tein efficiency ratio (PER) = weight gain � protein intake. Fulton’s condition factor (k) = 100 �

(W/L3), where W is the final weight (g) and L is the total length (cm). Liver and empty gastro-

intestinal tract were used to calculate hepatosomatic index (HSI) = liver weight (g) � 100/Wf

(g), and viscerosomatic index (VSI) = viscera weight (g) � 100/Wf (g).

Digestibility analysis

The apparent digestibility coefficients (ADC) of lipid and selected fatty acids were calculated

as: 100 –[100 x (Y2O3 concentration in feed/Y2O3 concentration in faeces) x (lipid or fatty acid

concentration in faeces/lipid or fatty acid concentration in feed)]. The concentration of indi-

vidual fatty acids in diets and faeces were calculated based on the relative proportion of each

fatty acid compared with a known amount of the internal standard (17:0) added and the total

lipid content determined in the samples.

Tissue and faeces lipid content and fatty acid composition

Samples of flesh, liver, brain, midgut, pyloric caeca from three fish per tank were prepared as

pooled homogenates (n = 3 per treatment) whereas faecal samples were analysed on a tank

basis (n = 3 per treatment). Total lipid was extracted from approximately 1 g of sample by

homogenising in chloroform/methanol (2:1, v/v) using an Ultra-Turrax tissue disrupter (Fisher

Scientific, Loughborough, UK), and content determined gravimetrically [28]. Fatty acid methyl

esters (FAME) were prepared from total lipid by acid-catalysed transesterification at 50°C for

16 h [29], and FAME extracted and purified as described previously [30]. FAME were sepa-

rated and quantified by gas-liquid chromatography using a Fisons GC-8160 (Thermo Scien-

tific, Milan, Italy) equipped with a 30 m × 0.32 mm i.d. × 0.25 μm ZB-wax column

(Phenomenex, Cheshire, UK), on-column injector and a flame ionisation detector. Data were

collected and processed using Chromcard for Windows (version 2.01; Thermoquest Italia S.p.

A., Milan, Italy). Individual FAME were identified by comparison to known standards and

published data [30].

Plasma lysozyme activity and myeloperoxidase and protein contents

Plasma lysozyme activity was based on the lysis of lysozyme-sensitiveMicroccoccus lysodeikti-

cus as described by [31]. Total myeloperoxidase (MPO) content in plasma was measured fol-

lowing the procedure described by [32]. Protein content of plasma was determined by the

Pierce bicinchoninic acid (BCA) protein assay kit (Thermo Scientific, IL, USA) based on the

conversion of Cu2+ to Cu+ under alkaline conditions (Biuret reaction) using bovine serum

albumin (BSA) as a standard.

RNA extraction and cDNA synthesis

Liver from eighteen individual fish per dietary treatment were homogenized in 1 ml of TriRea-

gent1 (Sigma-Aldrich, Dorset, UK), total RNA following manufacturer’s instructions and

cDNA synthesized as detailed in [33].
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Microarray hybridisations and image analysis

Transcriptome analysis of liver was performed using an Atlantic salmon custom-made oligoar-

ray with 44k features per array on a four-array-per-slide format (Agilent Technologies UK

Ltd., Wokingham, UK), ArrayExpress accession number A-MEXP-2065. A dual-label experi-

mental design was employed for the microarray hybridisations with Cy3-labelled test samples

competitively hybridised to a common Cy5-labelled pooled-reference per array. A total of 18

arrays were utilised. The common reference consisted of a pool of equal amounts of amplified

RNA from each individual experimental sample.

Sample indirect labelling and hybridization were performed as reported in [14]. Briefly, 250

ng of total RNA were amplified (TargetAmpTM 1-Round Aminoallyl-aRNA Amplification Kit

101. Epicentre, Madison, Wisconsin, USA) and experimental and pooled reference labelled

with Cy3 or Cy5 respectively (GE HealthCare, Little Chalfont, UK). Microarray hybridisations

were performed in SureHyb hybridisation chambers in a DNAMicroarray Hybridisation Oven

(Agilent Technologies) with 825 ng of Cy3-labelled experimental biological replicate and

Cy5-labelled reference pool being combined and total volume made up to 35 μl with nuclease-

free water. Scanning was performed at 5 μm resolution using an Axon GenePix 4200AL Scan-

ner (MDS Analytical Technologies, Wokingham, Berkshire, UK). Laser power was kept con-

stant (80%) and PMT adjusted for each channel such than less than 0.1% features were

saturated and that the mean intensity ratio of the Cy3 and Cy5 signals was close to one. Details

of the microarray experiment were submitted to ArrayExpress under accession number

E-MTAB-4621.

Quantitative real time PCR

Expression of candidate genes of interest (fatty acyl desaturases 5 and 6 and fatty acyl elongases

2, 5a and 5b) was determined by quantitative PCR (qPCR) in liver of fish from all treatments

(S1 Table). Results were normalised using reference genes, elongation factor 1-α (ef1a) and cofi-

lin-2 (cfl2), chosen as the most stable according to GeNorm. Primers were designed using

Primer 3 [34] in regions that included the microarray probes. qPCR was performed using a

Biometra TOptical Thermocycler (Analytik Jena, Goettingen, Germany) in 96-well plates in

duplicate 20 μl reaction volumes containing 10 μl of Luminaris Color HiGreen qPCRMaster

Mix (Thermo Scientific), 1 μl of the primer corresponding to the analysed gene (10 pmol), 3 μl

of molecular biology grade water and 5 μl of cDNA, with the exception of the reference genes,

which were determined using 2 μl of cDNA. In addition, amplifications were carried out with a

systematic negative control (NTC-no template control) containing no cDNA. Standard ampli-

fication parameters contained an UDG pre-treatment at 50°C for 2 min, an initial activation

step at 95°C for 10 min, followed by 35 cycles: 15 s at 95°C, 30 s at the annealing Tm and 30 s

at 72°C.

Statistical analysis

All data are means ± S.D. (n = 3) unless otherwise specified. Percentage data were subjected to

arcsin square-root transformation prior to statistical analyses. Data were tested for normality

and homogeneity of variances with Levene’s test prior to one-way analysis of variance

(ANOVA) followed by a Tukey-Kramer HSDmultiple comparisons of means. All statistical

analyses were performed using SPSS software (IBM SPSS Statistics 19; SPSS Inc., Chicago, IL,

USA). Statistical analysis of microarray hybridisation data was performed in GeneSpring GX

version 12.6.1 (Agilent Technologies, Wokingham, Berkshire, UK) using a Welch (unpaired

unequal variance) t-test, at 0.05 significance. No multiple test correction was employed as previ-

ous analyses indicated that they were over-conservative for these nutritional data [16]. Data
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were submitted to the Kyoto Encyclopedia of Genes and Genomes (KEGG;) [35] for biological

function analysis. Gene expression results were analysed using the relative expression software

tool (REST 2009; http://www.gene-quantification.info/), which employs a pairwise fixed reallo-

cation randomisation test (10,000 randomizations) with efficiency correction [36] to determine

the statistical significance of expression ratios (gene expression fold changes) between two

treatments.

Results

Fatty acid compositions of the dietary oils

The fatty acid profile of the oil (Tr-CO) extracted from seeds of transgenic Camelina sativa

showed that this crop effectively accumulated high levels of EPA and DHA (6.0% and 5.1%

respectively; Table 2). In addition, the oil also contained appreciable levels of 18:4n-3, 20:4n-3

and docosapentaenoic acid (DPA, 22:5n-3), so that the total n-3 LC-PUFA (20:4n-3, EPA,

DPA and DHA) level was almost 15%. None of the aforementioned n-3 PUFA are present in

wild-type Camelina oil (Wt-CO) that only contains 18:3n-3 and 20:3n-3 (Table 2), and their

presence in Tr-CO was accompanied by decreased proportions of 18:3n-3, 18:1n-9 and 20:1n-

9 compared to Wt-CO. The Tr-CO also contained the n-6 LC-PUFA, 20:3n-6 and arachidonic

acid (ARA, 20:4n-6), as well as 18:3n-6, whereas both Tr-CO and Wt-CO contained high levels

of 18:2n-6. Thus, the Tr-CO displayed a hybrid PUFA composition showing characteristics of

FO (LC-PUFA including EPA, DHA and ARA) and VO (18:2n-6) (Table 2).

Fish growth performance, feed efficiency and biochemical composition
of whole fish

No mortality was observed during the trial (final survival = 100% in all dietary treatments) and

fish grew well, more than doubling their initial weight during the experimental period

(Table 3). No differences were found between fish fed any of the dietary treatments in any of

the fish growth or performance parameters, or indicators of feed efficiency that were evaluated.

In contrast to fish performance, differences were found among dietary treatments regarding

whole body composition (Table 3). In this regard, the lipid (fat) content of fish fed WCO was

higher than that of fish fed the other diets with fish fed DCO showing the lowest lipid content.

As expected moisture content was inversely related to lipid content with fish fed WCO having

lower water content than fish fed DCO with FO-fed fish displaying intermediate values albeit

not significantly different to either WCO or DCO-fed fish.

Lipid and fatty acid digestibilities

Oil source affected lipid digestibility with apparent digestibility coefficient (ADC) of lipid

being higher in WCO than FO, with DCO showing intermediate values (Table 4). Irrespective

of feed, saturated fatty acids were higher and PUFA lower in faeces compared to dietary levels,

whereas monoene content was similar in both feed and faeces (Fig 1; S2 Table). High ADCs for

EPA and DHA as well as DPA, 18:4n-3, and total n-3 PUFA were observed for FO and DCO.

Similarly, ADC for ARA was also higher in FO and DCO than in WCO, but ADCs for other n-

6 PUFA did not vary between WCO and DCO feeds. In general, ADCs for saturated and

monounsaturated fatty acids were higher for WCO than for FO, with DCO generally interme-

diate (Table 4). This was clear with ADCs for 14:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-7, 22:1n-11,

22:1n-9 and total monoenes.
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Tissue total lipid content

There were no differences in total lipid content of muscle of fish fed the different dietary treat-

ments (Table 5). Similarly, there were no differences in total lipid contents of liver and brain,

due to diet (Table 6). However, fish fed DCO showed the lowest total fat contents in pyloric

caeca and midgut (p = 0.017 and 0.005 respectively).

Fatty acid composition of muscle (flesh)

The fatty acid composition of salmon muscle (flesh) largely reflected the dietary fatty acid com-

position. Thus, the percentages of EPA, DHA and DPA were highest in fish fed FO, and lowest

in fish fed WCO, with fish fed DCO showing intermediate values (Table 5). The highest levels

Table 2. Fatty acid composition (percentage of fatty acids) of the oils and feeds.

Oils Feeds

Fish oil Wt-CO Tr-CO FO WCO DCO

14:0 7.9 0.1 n.d. 6.9 0.9 1.0

16:0 20.1 5.2 7.2 19.6 7.5 9.4

18:0 3.9 2.6 5.0 3.8 2.7 4.5

20:0 0.2 1.4 2.8 0.2 1.2 2.0

Ʃ saturated1 32.7 9.6 15.5 31.3 12.8 17.4

16:1n-7 8.9 0.1 n.d. 8.1 0.9 1.0

18:1n-9 10.8 14.9 7.3 10.9 14.1 8.4

18:1n-7 3.0 0.8 1.6 2.9 1.1 1.6

20:1 2.0 15.0 9.8 2.4 13.1 7.9

22:1 1.8 2.7 1.2 2.8 3.4 2.0

Ʃmonounsaturated2 27.2 33.9 19.9 27.8 33.2 21.4

18:2n-6 1.2 19.5 20.9 2.6 17.5 19.1

18:3n-6 0.2 n.d. 5.0 0.2 n.d. 4.1

20:2n-6 0.1 2.0 1.3 0.2 1.6 1.0

20:3n-6 0.2 n.d. 1.3 0.2 n.d. 1.0

20:4n-6 1.4 n.d. 2.1 1.3 0.1 1.8

Ʃ n-6 PUFA3 3.6 21.5 30.7 4.9 19.6 27.2

18:3n-3 0.1 33.6 13.0 0.8 27.6 12.4

18:4n-3 2.1 n.d. 3.9 2.1 0.4 3.8

20:3n-3 0.1 1.4 0.8 0.1 1.1 0.6

20:4n-3 0.6 n.d. 2.3 0.6 0.1 2.0

20:5n-3 17.0 n.d. 6.0 15.4 1.7 6.5

22:5n-3 1.9 n.d. 1.5 1.7 0.2 1.5

22:6n-3 9.5 n.d. 5.1 10.7 3.0 6.9

Ʃ n-3 PUFA 31.3 35.0 32.7 31.4 34.1 33.7

Ʃ PUFA4 40.1 56.5 63.4 40.9 54.0 61.2

Ʃ n-3 LC-PUFA 29.0 n.d. 14.9 28.4 5.0 16.9

1contains 15:0, 22:0 and 24:0;
2contains 16:1n-9 and 24:1n-9;
3contains 22:4n-6 and 22:5n-6;
4contains C16 PUFA.

Fish and FO, fish oil and respective feed; LC- PUFA, long-chain polyunsaturated fatty acid (sum of 20:4n-3, 20:5n-3 22:5n-3 and 22:6n-3); n.d. not detected;

Tr-CO and DCO, oil from transgenic Camelina and respective feed; Wt-CO andWCO, oil from wild-type Camelina and respective feed.

doi:10.1371/journal.pone.0159934.t002
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of 20:4n-3 and 18:4n-3 were found in fish fed DCO, whereas highest levels of 18:3n-3 and

20:3n-3 were found in fish fed WCO. Importantly, total n-3 LC-PUFA and EPA + DHA levels

were significantly and substantially increased in flesh of DCO-fed fish compared to WCO-fed

fish (Table 5). Overall, however, there were no differences in total n-3 PUFA as the lower pro-

portions of n-3 LC-PUFA found in WCO-fed fish were counteracted by higher levels of 18:3n-

3. In contrast, 18:2n-6 and total n-6 PUFA were highest in flesh of fish fed DCO with fish fed

FO showing the lowest, other than ARA, which was lowest in fish fed WCO (Table 5). Total

saturated fatty acids were highest in flesh of FO-fed fish mainly due to the highest content of

16:0, whereas WCO-fed fish showed the lowest saturates with DCO showing intermediate val-

ues (Table 5). Flesh of WCO-fed fish displayed the highest monoene content due to the high

percentages of 18:1n-9, 20:1n-9 and 22:1n-9, with DCO-fed fish showing the lowest monoene

content.

In absolute terms (mg of fatty acid per 100 g of tissue), substantial differences were observed

between dietary treatments in EPA, DHA and n-3 LC-PUFA contents of flesh (Fig 2; S3 Table).

These data showed that 100 g of flesh from DCO-fed fish delivered almost double the amount

of EPA than fish fed WCO with only FO-fed fish providing slightly higher levels (p = 0.003)

than DCO. DCO-fed fish flesh also provided higher amounts of DHA than WCO-fed fish

(p = 0.017), and similar levels to FO-fed fish (p = 0.282). Total n-3 LC-PUFA (EPA+DHA

+DPA+20:4n-3) contents were also similar between muscle of fish fed FO and DCO

(p = 0.054), significantly higher than in fish fed WCO (p = 0.001).

Fatty acid composition of liver and brain

Liver of fish fed DCO displayed similar EPA and DHA levels to fish fed FO, with fish fed WCO

displaying the lowest values (Table 6). The percentages of 18:4n-3 and 20:4n-3 were highest in

fish fed DCO but n-3 DPA values were intermediate between the levels in fish fed FO and

Table 3. Growth performance, survival and basic biometry over the 11-week experimental period.

FO WCO DCO

Initial weight (g) 258.9±7.3 249.1±18.7 260.8±4.9

Final weight (g) 541.6±20.7 543.2±45.1 536.7±28.6

Total length (cm) 35.0±0.5 34.8±0.8 35.0±0.5

FI (g/fish/day) 3.8±0.1 3.9±0.4 3.7±0.3

SGR (%/day) 0.9±0.2 0.9±0.1 0.9±0.1

FER 1.1±0.0 1.2±0.1 1.2±0.0

PER 2.4±0.0 2.4±0.1 2.4±0.1

k 0.6±0.0 0.7±0.1 0.6±0.0

HSI 1.0±0.1 1.1±0.0 1.1±0.0

VSI 9.6±1.0 10.0±0.4 9.2±0.1

Whole body proximate composition (% wet weight)

Moisture (%) 65.0±0.8ab 64.3±0.3b 66.1±0.7a

Protein 17.3±0.5 17.1±0.2 17.3±0.1

Lipid 14.6±0.2b 15.6±0.2a 13.7±0.5c

Ash 2.3±0.3 2.1±0.5 2.0±0.2

Data are means ± SD (n = 3). Different superscript letters within a row denote significant differences among

diets as determined by one-way ANOVA with Tukey’s comparison test (p<0.05). FI, feed intake; SGR,

specific growth rate; FER, feed efficiency ratio; PER, protein efficiency ratio; k, Fulton’s condition factor; HSI,

hepato-somatic index; VSI, viscero-somatic index.

doi:10.1371/journal.pone.0159934.t003
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those fed WCO. Although numerically slightly lower, the levels of EPA+DHA and n-3

LC-PUFA in liver of fish fed DCO were not significantly different to those in fish fed FO and

significantly higher than in fish fed WCO. Livers of fish fed DCO displayed the highest ARA,

18:3n-6, 20:3n-6 and total n-6 PUFA, with a similar level of 18:2n-6 to that in fish fed WCO

(Table 6). Liver in fish fed DCO showed the lowest level of monoenes and an intermediate level

of saturates compared to fish fed the other diets.

The fatty acid composition of brain was less affected by diet. There were no effects of diet on

total n-3 LC-PUFA, EPA+DHA or DHA levels in brain (Table 6). The proportions of EPA and

DPA were slightly lower in brain of fish fed DCO andWCO compared to fish fed FO.

Although no differences were observed in 18:4n-3 levels between fish fed the different dietary

treatments, higher levels of 20:4n-3 were observed in fish fed both vegetable derived oil treat-

ments (Table 6). Total n-6 PUFA was higher in brain of fish fed WCO and DCO with fish fed

DCO having the highest level of ARA (Table 6). Proportions of saturated and monounsatu-

rated fatty acids in brain showed no influence of diet.

Table 4. Apparent digestibility coefficient (ADC) of lipid and fatty acids in Atlantic salmon fed the three experimental diets differing in oil source
for 11 weeks.

FO WCO DCO

Lipid ADC 93.2 ± 0.8b 96.7 ± 0.8a 95.2 ± 1.0ab

14:0 93.4 ± 0.6c 98.0 ± 0.4a 96.2 ± 1.2b

15:0 90.8 ± 0.8b 96.6 ± 0.9a 94.3 ± 1.7a

16:0 89.1 ± 0.7b 96.9 ± 0.9a 94.5 ± 1.8a

18:0 85.0 ± 1.0c 96.0 ± 1.4a 91.7 ± 2.5b

Total saturated1 89.5 ± 0.7b 96.6 ± 1.1a 93.2 ± 2.1b

16:1n-7 98.6 ± 0.2 98.7 ± 0.3 98.1 ± 0.7

18:1n-9 97.9 ± 0.2b 99.1 ± 0.2a 98.2 ± 0.7ab

18:1n-7 97.3 ± 0.2 98.4 ± 0.3 97.9 ± 0.7

20:1n-9 96.4 ± 0.4c 99.0 ± 0.3a 98.0 ± 0.7b

20:1n-7 94.3 ± 0.4c 98.7 ± 0.4a 97.3 ± 0.9b

22:1n-11 96.3 ± 0.4b 98.2 ± 0.5a 97.0 ± 1.0ab

22:1n-9 92.8 ± 0.7c 98.4 ± 0.5a 96.6 ± 1.1b

Total monoenes2 97.6 ± 0.2b 98.9 ± 0.3a 97.8 ± 0.8b

18:2n-6 96.2 ± 0.4b 99.2 ± 0.2a 98.9 ± 0.3a

20:2n-6 98.0 ± 0.3b 99.4 ± 0.1a 98.9 ± 0.3a

20:4n-6 99.4 ± 0.1a 97.5 ± 0.5b 99.4 ± 0.2a

Total n-6 PUFA3 97.6 ± 0.2b 99.2 ± 0.2a 99.1 ± 0.3a

18:3n-3 98.3 ± 0.1c 99.7 ± 0.1a 99.4 ± 0.2b

18:4n-3 99.6 ± 0.0ab 99.4 ± 0.1b 99.7 ± 0.1a

20:4n-3 99.3 ± 0.0 99.2 ± 0.7 99.5 ± 0.5

20:5n-3 99.6 ± 0.0a 98.7 ± 0.2b 99.4 ± 0.2a

22:5n-3 99.3 ± 0.1a 97.8 ± 0.4b 99.2 ± 0.2a

22:6n-3 98.6 ± 0.1a 96.7 ± 0.6b 98.1 ± 0.5a

Total n-3 PUFA 99.2 ± 0.1 99.3 ± 0.1 99.1 ± 0.3

Total PUFA4 99.0 ± 0.1 99.3 ± 0.1 99.1 ± 0.3

Data are means ± SD (n = 3). Different superscript letters within a row denote significant differences among diets as determined by one-way ANOVA with

Tukey’s comparison test (p<0.05). FI, feed intake; FCR, feed conversion ratio; SGR, specific growth rate; FER, feed efficiency ratio; PER, protein efficiency

ratio; k, Fulton’s condition factor; HSI, hepato-somatic index; VSI, viscero-somatic index.

doi:10.1371/journal.pone.0159934.t004
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Fatty acid composition of intestinal tissues, pyloric caeca (PC) and mid-
gut

Fatty acid compositions of PC and midgut varied between treatments but mainly reflected die-

tary compositions. In both PC and midgut, highest proportions of EPA were found in fish fed

FO, with lowest percentage in fish fed WCO and DCO-fed fish showing an intermediate level

(Table 7). The percentages of DHA were similar in PC and midgut of fish fed DCO and FO

and higher than that in fish fed WCO, significantly so in the case of PC in fish fed FO. The PC

and midgut of fish fed DCO also displayed the highest values for 18:4n-3 and 20:4n-3.

Although numerically lower, the variation in EPA+DHA and total n-3 LC-PUFA meant levels

in intestinal tissues in fish fed DCO were similar to the levels in fish fed FO, but higher than in

fish fed WCO. Total n-6 PUFA were higher in intestinal tissues of fish fed WCO and DCO

than in FO-fed fish, with DCO-fed fish having the highest total n-6 PUFA mainly due to the

highest levels of 18:2n-6, 18:3n-6, 20:3n-6 and ARA. The PC and midgut in fish fed DCO

showed the lowest level of monoenes and intermediate level of saturates compared to fish fed

the other diets.

Fig 1. Fatty acid compositions (% of total fatty acids) of the three feeds and faeces of fish fed those
feeds. FO, feed containing oil from fish oil; WCO, feed containing oil from wild-type Camelina; DCO; feed
containing EPA and DHA.

doi:10.1371/journal.pone.0159934.g001
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Plasma lysozyme and myeloperoxidase and protein concentrations

Diet had no significant impact on plasma lysozyme activity, myeloperoxidase (MPO) activity

or protein concentration in plasma (Table 8), although WCO-fed fish displayed the lowest

MPO activity and plasma protein content (p = 0.376 and 0.085 respectively).

Table 5. Total lipid content (percentage of the weight) and fatty acid compositions (percentage of total fatty acids) of total lipid of Atlantic salmon
muscle (flesh) at the beginning and end of the feeding trial.

Initial FO WCO DCO

Lipid content 2.3 ± 0.4 3.0 ± 0.7 3.2 ± 0.6 3.4 ± 0.4

14:0 2.3 ± 0.2 4.0 ± 0.3a 1.2 ± 0.1b 1.2 ± 0.0b

16:0 12.9 ± 1.2 16.6 ± 0.1a 10.9 ± 0.5c 11.7 ± 0.2b

18:0 3.2 ± 0.2 3.8 ± 0.1b 3.4 ± 0.1c 4.4 ± 0.1a

Total saturated1 18.9 ± 1.2 25.0 ± 0.3a 16.6 ± 0.4c 18.7 ± 0.3b

16:1n-7 2.4 ± 0.1 5.1 ± 0.4a 1.4 ± 0.1b 1.3 ± 0.0b

18:1n-9 24.3 ± 2.6 15.9 ± 0.6b 18.0 ± 0.8a 14.2 ± 0.7b

18:1n-7 2.6 ± 0.1 3.1 ± 0.1a 1.6 ± 0.1c 2.0 ± 0.0b

20:1n-11 0.4 ± 0.1 0.3 ± 0.0a 0.2 ± 0.0b 0.2 ± 0.0b

20:1n-9 3.8 ± 0.5 2.4 ± 0.0c 8.4 ± 0.6a 5.3 ± 0.0b

20:1n-7 0.1 ± 0.0 0.2 ± 0.0b 0.3 ± 0.0a 0.3 ± 0.0a

22:1n-11 3.7 ± 0.5 2.3 ± 0.1a 1.6 ± 0.3b 1.6 ± 0.2b

22:1n-9 0.4 ± 0.1 0.3 ± 0.0c 1.3 ± 0.1a 0.6 ± 0.0b

Total monounsaturated2 38.5 ± 4.0 30.7 ± 1.2b 33.7 ± 0.8a 26.5 ± 0.8c

18:2n-6 12.2 ± 2.3 5.8 ± 0.1c 13.4 ± 0.5b 15.3 ± 0.3a

18:3n-6 0.3 ± 0.1 0.2 ± 0.0b 0.3 ± 0.0b 1.8 ± 0.1a

20:2n-6 0.7 ± 0.1 0.4 ± 0.0c 1.8 ± 0.1a 1.2 ± 0.0b

20:3n-6 0.5 ± 0.1 0.3 ± 0.0c 0.6 ± 0.0b 1.7 ± 0.1a

20:4n-6 0.7 ± 0.2 1.1 ± 0.0b 0.5 ± 0.0c 1.5 ± 0.1a

22:5n-6 0.2 ± 0.0 0.1 ± 0.0c 0.2 ± 0.0b 0.4 ± 0.0a

Total n-6 PUFA3 14.5 ± 2.3 8.3 ± 0.1c 16.5 ± 0.5b 21.9 ± 0.5a

18:3n-3 3.0 ± 0.3 1.6 ± 0.0c 14.3 ± 1.4a 8.1 ± 0.2b

18:4n-3 1.0 ± 0.1 1.2 ± 0.1c 1.7 ± 0.1b 2.3 ± 0.1a

20:3n-3 0.2 ± 0.0 0.1 ± 0.0c 1.4 ± 0.1a 0.7 ± 0.0b

20:4n-3 0.7 ± 0.0 0.9 ± 0.0c 1.2 ± 0.0b 1.9 ± 0.1a

20:5n-3 4.0 ± 1.1 8.0 ± 0.3a 2.4 ± 0.1c 4.3 ± 0.1b

22:5n-3 1.2 ± 0.2 3.2 ± 0.1a 0.9 ± 0.1c 1.8 ± 0.0b

22:6n-3 17.3 ± 4.3 19.0 ± 2.0a 11.0 ± 1.0c 13.6 ± 0.6b

Total n-3 PUFA 27.6 ± 5.2 34.5 ± 1.7 33.0 ± 0.8 32.7 ± 0.6

EPA+DHA 21.3 ± 5.4 27.0 ± 1.9a 13.4 ± 1.1c 17.9 ± 0.7b

EPA/DHA 0.2 ± 0.1 0.4 ± 0.1a 0.2 ± 0.0c 0.3 ± 0.0b

n-3/n-6 1.9 ± 0.1 4.2 ± 0.2a 2.0 ± 0.1b 1.5 ± 0.1c

n-3 LC-PUFA 23.4 ± 5.7 30.9 ± 1.8a 15.5 ± 1.1c 21.6 ± 0.7b

Data are expressed as means ± SD (n = 3). Different superscript letters within a row denote significant differences among diets at the end of the trial as

determined by one-way ANOVA with Tukey’s comparison test (p < 0.005).
1Includes 15:0, 20:0, 22:0 and 24:0.
2Includes 16:1n-9 and 24:1n-9.

DCO, feed containing EPA+DHA oil from transgenic Camelina; DHA, docosahexaenoic acid (22:6n-3); FO, fish oil feed; n-3 LC-PUFA (sum of 20:4n-3,

20:5n-3, 22:5n-3 and 22:6n-3); PUFA, polyunsaturated fatty acid;

WCO, wild-type Camelina oil feed.

doi:10.1371/journal.pone.0159934.t005

De Novo EPA-DHA Source in Atlantic Salmon Aquafeeds

PLOS ONE | DOI:10.1371/journal.pone.0159934 July 25, 2016 12 / 28



Table 6. Total lipid content (percentage of wet weight) and fatty acid compositions (percentage of total fatty acids) of total lipid of liver and brain
after feeding the experimental diets.

FO WCO DCO

Liver

Lipid content 3.8 ± 0.2 4.6 ± 0.7 3.3 ± 0.2

Total saturated 26.3 ± 0.4a 16.3 ± 1.7c 23.0 ± 0.6b

Total monounsaturated 22.7 ± 2.7b 32.0 ± 4.0a 17.4 ± 0.7b

18:2n-6 4.2 ± 0.7b 11.3 ± 1.2a 9.1 ± 1.1a

18:3n-6 0.2 ± 0.1b 0.2 ± 0.0b 0.5 ± 0.1a

20:2n-6 0.5 ± 0.0c 2.2 ± 0.2a 1.3 ± 0.0b

20:3n-6 0.4 ± 0.1c 1.4 ± 0.1b 2.4 ± 0.1a

20:4n-6 3.8 ± 0.4b 1.5 ± 0.4c 6.1 ± 0.5a

22:5n-6 0.4 ± 0.0a 0.1 ± 0.0c 0.3 ± 0.0b

Total n-6 PUFA 9.7 ± 2.7c 16.7 ± 0.9b 19.9 ± 0.9a

18:3n-3 1.1 ± 0.2c 9.4 ± 1.0a 4.0 ± 0.8b

18:4n-3 0.4 ± 0.2b 1.1 ± 0.2a 0.7 ± 0.1ab

20:4n-3 0.1 ± 0.0c 1.5 ± 0.1a 0.6 ± 0.0b

20:5n-3 8.6 ± 0.3a 4.8 ± 1.0b 7.0 ± 0.4a

22:5n-3 3.3 ± 0.2a 1.2 ± 0.1c 1.9 ± 0.0b

22:6n-3 26.0 ± 3.4a 15.2 ± 3.4b 23.8 ± 1.5a

Total n-3 PUFA 40.9 ± 3.0 35.0 ± 3.2 39.7 ± 0.6

EPA+DHA 34.6 ± 3.5a 20.0 ± 4.4b 30.8 ± 1.9a

EPA/DHA 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0

n-3 LC-PUFA 38.9 ± 3.4a 23.0 ± 4.6b 34.4 ± 1.9a

Brain

Lipid content 8.3 ± 0.8 8.3 ± 0.6 8.0 ± 0.2

Total saturated 22.8 ± 0.2 22.3 ± 0.7 22.6 ± 0.3

Total monounsaturated 37.5 ± 0.7 37.6 ± 0.8 37.2 ± 1.3

18:2n-6 0.9 ± 0.1b 2.0 ± 0.5a 1.6 ± 0.2ab

18:3n-6 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0

20:2n6 0.1 ± 0.0c 0.4 ± 0.0a 0.3 ± 0.0b

20:3n-6 0.2 ± 0.0c 0.3 ± 0.0b 0.4 ± 0.0a

20:4n-6 1.3 ± 0.0b 1.0 ± 0.0c 1.6 ± 0.0a

22:5n-6 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Total n-6 PUFA 2.6 ± 0.1b 3.7 ± 0.6a 4.1 ± 0.3a

18:3n-3 0.2 ± 0.0b 1.4 ± 0.4a 0.6 ± 0.1b

18:4n-3 0.1 ± 0.0 0.2 ± 0.1 0.2 ± 0.0

20:4n-3 0.3 ± 0.0b 0.5 ± 0.0a 0.4 ± 0.0a

20:5n-3 5.7 ± 0.1a 5.1 ± 0.1b 5.1 ± 0.1b

22:5n-3 1.8 ± 0.0a 1.4 ± 0.1b 1.5 ± 0.1b

22:6n-3 21.3 ± 0.6 20.5 ± 1.1 20.8 ± 1.2

Total n-3 PUFA 29.5 ± 0.6 29.5 ± 0.7 28.9 ± 1.3

EPA+DHA 27.0 ± 0.7 25.6 ± 1.2 25.9 ± 1.3

EPA/DHA 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1

n-3 LC-PUFA 29.1 ± 0.7 27.5 ± 1.3 27.9 ± 1.4

Data are expressed as means ± SD (n = 3). Different superscript letters within a row denote significant differences among diets as determined by one-way

ANOVA with Tukey’s comparison test (p < 0.005). DCO, feed containing EPA+DHA oil from transgenic Camelina; DHA, docosahexaenoic acid (22:6n-3);

FO, fish oil feed; n-3 LC-PUFA (sum of 20:4n-3, 20:5n-3, 22:5n-3 and 22:6n-3); WCO, wild-type Camelina oil feed.

doi:10.1371/journal.pone.0159934.t006
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Expression of genes of LC-PUFA biosynthesis in liver

Quantification of expression by qPCR of fatty acyl desaturase and elongase genes involved in

the biosynthesis of LC-PUFA showed that there was significant up-regulation of fads2d6 (Δ6

desaturase) and fads2d5 (Δ5 desaturase) in liver of fish fed WCO compared with fish fed FO

and DCO (Fig 3). Expression of fads2d6 was similar in liver of fish fed DCO and FO, but that

of fads2d5 was higher in fish fed DCO than fish fed FO. There were no significant differences

in the expression of the elovl2, elovl5a or elovl5b elongases in liver between fish fed the three

dietary treatments (Fig 3).

Liver transcriptome

Of 43413 specific probes, 26420 passed the quality filtering across the experiment and showed

positive and significant signals above background in both channels. Statistical analysis of the

microarray data returned a list of 1002 differentially expressed gene (DEG) features in liver

between Atlantic salmon fed the DCO and FO diets, compared to 1109 DEG when comparing

fish fed the WCO and FO diets, and 944 DEG between fish fed DCO and WCO diets (Table 9).

Around 40% of DEG were regulated at a relatively low fold change (FC, 1–1.5) in all contrasts,

with the highest percentage of higher FC (> 2.5) found in the DCO/WCO contrast (29.6%;

Table 9). DEG with a FC lower than 1.3 were excluded from subsequent analysis, resulting in

931 features for the WCO/FO contrast, 865 for DCO/FO and 794 for DCO/WCO. The DEGs

for each comparison were subjected to more detailed analysis by assigning KEGG orthology

(KO) numbers and mapping them to a known compendium of metabolic pathways (KEGG).

The main pathway categories affected when comparing the livers of WCO-fed fish with those

of fish fed either FO and DCO were generally similar being “signal transduction” (32% and

34%, respectively), “metabolism” (27% and 25%, respectively) and “immune system” (15% and

18% respectively) (Fig 4A & 4B). In contrast, the main processes differentially regulated in liver

in the comparison between DCO and FO were different, with “signalling” being the main

Fig 2. Absolute contents (mg fatty acid/100 g tissue) of EPA, DHA and total n-3 LC-PUFA (EPA+DPA
+DHA+20:4n-3) in flesh of Atlantic salmon fed the three experimental diets. FO, feed containing oil from
fish oil; WCO, feed containing oil from wild-type Camelina; DCO; feed containing EPA and DHA.

doi:10.1371/journal.pone.0159934.g002
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Table 7. Total lipid content (percentage of wet weight) and fatty acid compositions (percentage of total fatty acids) of total lipid of pyloric caeca
andmidgut after feeding the experimental diets.

FO WCO DCO

Pyloric caeca

Lipid content 17.7 ± 4.7ab 23.0 ± 1.9a 10.3 ± 3.0b

Total saturated 23.9 ± 0.5a 15.9 ± 1.8b 19.5 ± 2.9ab

Total monounsaturated 38.0 ± 1.3a 39.1 ± 0.7a 23.8 ± 1.6b

18:2n-6 8.4 ± 0.6b 15.3 ± 1.2a 16.9 ± 1.8a

18:3n-6 0.3 ± 0.0b 0.3 ± 0.0b 1.8 ± 0.3a

20:2n-6 0.5 ± 0.0c 1.8 ± 0.1a 1.2 ± 0.1b

20:3n-6 0.4 ± 0.0c 0.6 ± 0.1b 1.7 ± 0.1a

20:4n-6 0.9 ± 0.1b 0.4 ± 0.2b 1.7 ± 0.6a

22:5n-6 0.3 ± 0.0a 0.1 ± 0.1b 0.2 ± 0.1a

Total n-6 PUFA 10.8 ± 0.6c 18.1 ± 1.0b 23.8 ± 1.6a

18:3n-3 2.0 ± 0.1c 14.0 ± 2.4a 7.6 ± 1.3b

18:4n-3 1.4 ± 0.1b 1.7 ± 0.2ab 2.2 ± 0.4a

20:4n-3 0.9 ± 0.1b 1.0 ± 0.1b 1.6 ± 0.3a

20:5n-3 6.1 ± 1.1a 1.4 ± 0.3c 3.0 ± 0.2b

22:5n-3 2.7 ± 0.2a 0.7 ± 0.1c 1.4 ± 0.2b

22:6n-3 11.7 ± 0.8a 6.3 ± 2.0b 10.5 ± 2.7ab

Total n-3 PUFA 24.9 ± 1.6 26.4 ± 0.6 26.9 ± 1.0

EPA+DHA 17.9 ± 1.2a 7.7 ± 2.3b 13.5 ± 2.5a

EPA/DHA 0.5 ± 0.1a 0.2 ± 0.0b 0.3 ± 0.1b

n-3 LC-PUFA 21.4 ± 1.4a 9.4 ± 2.4b 16.5 ± 2.3a

Midgut

Lipid content 10.2 ± 1.4a 12.9 ± 2.6a 6.5 ± 0.7b

Total saturated 24.7 ± 0.6a 18.1 ± 2.1b 21.3 ± 2.5ab

Total monounsaturated 35.8 ± 1.1a 36.6 ± 3.1a 28.2 ± 0.7b

18:2n-6 7.6 ± 0.7b 13.6 ± 1.2a 14.8 ± 2.1a

18:3n-6 0.2 ± 0.0b 0.3 ± 0.0b 1.5 ± 0.4a

20:2n-6 0.5 ± 0.0c 1.6 ± 0.1a 1.2 ± 0.1b

20:3n-6 0.4 ± 0.0b 0.6 ± 0.1b 1.6 ± 0.2a

20:4n-6 1.3 ± 0.1ab 0.7 ± 0.3b 2.1 ± 0.5a

22:5n-6 0.3 ± 0.1 0.1 ± 0.0 0.3 ± 0.0

Total n-6 PUFA 10.5 ± 0.7c 17.0 ± 0.7b 21.6 ± 2.2a

18:3n-3 1.8 ± 0.2c 11.7 ± 1.8a 6.7 ± 1.5b

18:4n-3 1.2 ± 0.0b 1.5 ± 0.1ab 1.9 ± 0.5a

20:4n-3 0.8 ± 0.0b 1.0 ± 0.0ab 1.5 ± 0.4a

20:5n-3 6.0 ± 0.8a 1.7 ± 0.3c 3.2 ± 0.2b

22:5n-3 2.6 ± 0.3a 0.8 ± 0.0c 1.4 ± 0.1b

22:6n-3 14.5 ± 1.0 10.1 ± 3.5 13.3 ± 3.2

Total n-3 PUFA 27.1 ± 1.0 27.9 ± 1.8 28.6 ± 0.0

EPA+DHA 20.6 ± 1.1 11.8 ± 3.8 18.0 ± 4.0

EPA/DHA 0.4 ± 0.1 0.2 ± 0.0 0.3 ± 0.2

n-3 LC-PUFA 23.9 ± 1.2a 13.6 ± 3.9b 19.9 ± 4.5ab

Data are expressed as means ± SD (n = 3). Different superscript letters within a row denote significant differences among diets as determined by one-way

ANOVA with Tukey’s comparison test (p < 0.005). DCO, feed containing EPA+DHA oil from transgenic Camelina; DHA, docosahexaenoic acid (22:6n-3);

FO, fish oil feed; n-3 LC-PUFA (sum of 20:4n-3, 20:5n-3, 22:5n-3 and 22:6n-3); WCO, wild-type Camelina oil feed.

doi:10.1371/journal.pone.0159934.t007
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category affected (35%) followed by “immune system” (17%) and “metabolism” (15%) (Fig

4C). Within the “metabolism” category, the representation of each metabolic pathway

remained fairly stable among all contrasts, although a reduction in “lipid metabolism” was

observed in the contrast DCO/FO (4% compared to 8% and 7% when comparing WCO/FO

and DCO/WCO, respectively) (Fig 4).

Of all DEG transcripts, 559 were exclusive to the DCO/WCO comparison, 600 to the DCO/

FO, comparison and 189 were DCO-specific (common to both contrasts, p< 0.05; Fig 5A).

Table 8. Lysozyme activity andmyeloperoxidase (MPO) and protein contents in plasma of Atlantic salmon fed the three dietary treatments.

FO WCO DCO

Lysozyme activity (units/min/ml) 681.5 ± 56.3 665.8 ± 66.6 660.0 ± 48.3

MPO (Absorbance450 nm) 1.90 ± 0.35 1.69 ± 0.27 1.88 ± 0.38

Protein (mg/ml) 87.1 ± 26.5 68.5 ± 24.4 89.8 ± 22.0

Data are expressed as means ± SD (n = 9). DCO, feed containing oil from transgenic Camelina; FO, fish oil feed; MPO, myeloperoxidase activity; WCO, feed

containing oil from wild-type Camelina.

doi:10.1371/journal.pone.0159934.t008

Fig 3. Expression of genes of the LC-PUFA biosynthesis pathway in liver of Atlantic salmon as determined by qPCR.Results are normalised
expression ratios (means ± SEM; n = 6). FO, feed containing fish oil as the lipid source; WCO, feed containing wild-type Camelina oil; DCO, feed
containing DCO; feed containing EPA and DHA.

doi:10.1371/journal.pone.0159934.g003
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After removing non-annotated genes and those probes with a FC<1.3, KEGG analysis of the

common 189 DEG DCO-specific returned 172 KO terms at p< 0.05 and revealed that the

most affected biological categories were “signal transduction” (36%), followed by “immune sys-

tem” (22%) and “metabolism” (14%). Analysis of the top 100 most significant common 189

DEG according to p value showed increased representation of “signalling” (45.2%) and “metab-

olism” categories (19%), mainly due to increased lipid, amino acid and energy metabolism fea-

tures (Fig 5B). All genes followed the same sense of expression in both contrasts (DCO/FO and

DCO/WCO), excepting for long-chain acyl-CoA synthetase, a gene involved in fatty acid bio-

synthesis and degradation, which was up-regulated in the first contrast (S4 Table). Two of the

other lipid metabolism genes were involved in glycerophospholipid metabolism (phosphatidate

phosphatase and phospholipase D3/4) and bile acid biosynthesis (cholestanetriol 26 monooxy-

genase). Only one gene, belonging to the “immune system” category, was represented by more

than one feature (kindilin 3) although direction of the regulation diverged between both

probes.

Of the 1109 DEG inWCO/FO comparison (Table 9), 219 were commonly regulated in the

DCO/FO comparison (Fig 5A), with 186 probes having a FC> 1.3. KEGG analysis of these

FO-specific DEG showed that the main category regulated was that of metabolism, accounting

for 34%, followed by signalling (22%), with transport and catabolism, and folding, sorting and

degradation accounting for 14% each (Fig 5C). When these genes were restricted to the top 100

most significant hits (S5 Table), the category “metabolism” remained at around 32% with

“lipid metabolism” still being the main category affected with genes involved in the subcatego-

ries, fatty acid synthesis (delta– 6 fatty acyl desaturase, delta– 5 fatty acyl desaturase and palmi-

toyl—protein thioesterase, acetyl-CoA carboxylase), degradation (long-chain acyl-CoA

synthetase) and glycerophospholipid metabolism (glyceronephosphate O-acyltransferase and

lysophosphatidic acid acyltransferase). “Folding, sorting and degradation” showed an increased

percentage (22%) mainly due to the presence of repeated features for the genes 78kDa glucose-

regulated protein, DNAJ homolog subfamily C member 3, protein disulphide-isomerase A6 and

signal peptidase complex subunit 2. Calreticulin, an endoplasmic reticulum resident protein

involved in several processes such as “folding, sorting and degradation”, “transport and catabo-

lism” or “immune system” was up-regulated in liver of FO-fed fish compared to fish fed WCO

or DCO.

Table 9. Summary of the results of microarray analysis.

DCO/FO DCO/WCO WCO/FO

Total no of probes 44000

Total no of DEG 1002 944 1109

Up-regulated genes 480 441 563

FC 1–1.5 178 198 229

FC 1.5–2.5 169 132 167

FC > 2.5 133 111 167

Down-regulated genes 522 503 547

FC 1–1.5 196 180 212

FC 1.5–2.5 171 155 194

FC > 2.5 155 168 140

DCO, feed containing oil from transgenic Camelina; FC; fold change; FO, fish oil feed; WCO, feed containing

oil from wild-type Camelina.

doi:10.1371/journal.pone.0159934.t009
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Discussion

In the present study a new source of the n-3 LC-PUFA fatty acids, EPA and DHA, from GM

Camelina sativa was evaluated in Atlantic salmon post-smolts as a potential substitute for fish

oil in aquafeeds. The search for alternatives to fish oil in feeds is currently one of the main pri-

orities in the aquafeed industry [37] and this essentially reduces to a search for new sources of

EPA and DHA [9], and why this transgenic oilseed crop has been developed [38]. Inclusion of

the EPA+DHA Camelina oil in feeds for Atlantic salmon had no detrimental effect on fish

growth and performance after 11 weeks of feeding, indicating that this new source of n-3

LC-PUFA could be a potential substitute for dietary fish oil. Results obtained in the present

trial are consistent with a previous study employing a GM-derived oil that was high in EPA (~

20%) where salmon fed this oil as a replacement for fish oil grew well and showed no negative

effects on any performance parameter evaluated [14], indicating this oil was also a feasible

alternative to fish oil.

Fig 4. Functional categories of genes differentially expressed in liver of Atlantic salmon post smolts fed diet FO compared to fish fed diet WCO
(A) or diet DCO (B), or fish fed DCO compared to those fedWCO (C). Probes with a fold change under 1.3 were removed from the analysis, as well as
non-annotated genes and features corresponding to the same gene (Welch t-test, p < 0.005).

doi:10.1371/journal.pone.0159934.g004
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Atlantic salmon fed the WCO feed also showed similar growth performance to that

obtained in fish fed the diets with higher n-3 LC-PUFA, which was in agreement with previous

studies in salmon where good performance with no compromise on health has usually been

observed in trials investigating substitutes for dietary fish oil [13–14,16]. This would be influ-

enced by the high inclusion level of fishmeal in the present study that was deliberately chosen

to ensure that no dietary treatment would be limited by base pellet composition as the fishmeal

is an excellent source of essential amino acids, minerals and vitamins. However, it must be

stressed that inclusion of conventional VO, characterized by having high levels of C18 fatty

acids and devoid of n-3 LC-PUFA, translates into lower contents of EPA and DHA in fish tis-

sues and consequently reduced intake to consumers of farmed fish [7,39,40]. This is a signifi-

cant issue in aquaculture as fish are not simply an excellent source of protein but also the main

source of n-3 LC-PUFA in the human diet with intake associated with beneficial effects on

pathologies affecting cardiovascular and neurological systems, and some type of cancers [41–

Fig 5. Impact of diet on liver transcriptome of Atlantic salmon fed a diet containing oil from transgenic Camelina (DCO) in comparison with
those of fish fed diets containing fish oil (FO) or wild-type Camelina oil (WCO). Venn diagram representing mRNA transcripts differentially
expressed in liver of Atlantic salmon fed the three diets with area of the circles scaled to the number of transcripts (Welch t-test, p < 0.05) (A). Distribution
by category of common differentially expressed genes in liver of Atlantic salmon fed DCO compared to fish fed FO andWCO (B) or between Atlantic
salmon fed FO compared to fish fed WCO and DCO (C).

doi:10.1371/journal.pone.0159934.g005
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45]. Thus, apart from supporting optimal growth of the fish, the new GM crop-derived oils

containing n-3 LC-PUFA enhance the content of these fatty acids in farmed fish compared to

feeds containing standard VO.

Lipids are the preferred sources of energy for fish [15] but the differing composition

between terrestrial and marine oils can lead to differences in digestibility. For instance, the

degree of unsaturation and the chain length of fatty acids can affect their digestibility and,

therefore it is important to evaluate the digestibility coefficients of this de novo oil. Total lipid

ADC was high (> 93%) and higher in the WCO feed compared to the FO feed, in agreement

with previous studies in Atlantic salmon [20,46] and other species [47]. Some studies in other

teleost species showed lower ADC of lipids in fish fed VO compared with fish fed fish oil,

which may be due to the specific VO or formulations used or different digestive capabilities

[48–50]. Interestingly, the presence of both EPA and DHA in the DCO feed enhanced the

ADC of total fat to a level similar to that found in fish oil, in contrast to that observed with the

EPA only Camelina oil tested previously where ADC of total lipid was similar to that of the

WCO feed [20]. Higher ADC for LC-PUFA compared to MUFA and SAFA has been reported

in several species previously and could explain the difference observed in total fat ADC

[12,20,46,47,49,51]. The individual fatty acid ADC were not negatively affected in diet DCO,

with enhanced digestibility of LC-PUFA such as ARA, EPA, DPA and DHA compared to diet

WCO. The inclusion of DHA in this the present GM oil improved the digestibility of dietary

DHA to levels similar to those observed for fish oil compared to the previously (EPA only) GM

oil tested making the present oil even more favourable as a fish oil replacement than the former

oil [20]. Thus, the EPA+DHA GM Camelina oil can be included in salmon feeds with no

apparent negative impact on lipid and fatty acid digestibility, absorption and utilisation com-

pared to fish oil or other VO.

A common side effect of dietary VO, apart from reduced n-3 LC-PUFA levels, has been

increased lipid deposition in fish tissues [13,52–54]. Results of the present study supported

this, as whole fish lipid content was higher in fish fed WCO than fish fed the FO and DCO

diets. However, no differences were observed in flesh lipid content or VSI between fish fed any

of the dietary treatments, similar to what was observed with the previous iteration [14]. The

mechanism underpinning increased lipid accumulation/deposition is not clear but it has been

hypothesised that this could be due to low dietary n-3 LC-PUFA as these fatty acids are known

to enhance β-oxidation in Atlantic salmon [55]. Results from the previous high-EPA GM oil

showed higher total body fat content in fish fed both wild-type and transgenic Camelina oils

compared to fish oil and, thus, we speculated that reduced dietary DHA could be responsible

for the increased adiposity as EPA alone did not restore tissue lipid levels to that of fish fed fish

oil [14,20]. The present study supports this theory as inclusion of both EPA and DHA in diet

DCO reduced total lipid content of salmon. Indeed, body total lipid level was lower in DCO-

fed fish than in FO-fed fish. Therefore, the inclusion of the EPA+DHA Camelina oil in the feed

led to leaner whole fish without affecting the levels of protein that, in turn, could be another

positive effect associated with the use of this new oil.

As mentioned above, one negative effect associated with dietary VO is reduced levels of ben-

eficial n-3 LC-PUFA in fish tissues with accumulation of the shorter C18 fatty acids rich in VO

[7,15]. The EPA+DHA Camelina oil can be considered a “hybrid” oil as it contains features of

both terrestrial and marine oils as the crop has been modified to produce n-3 LC-PUFA from

the precursor, 18:3n-3, in the seeds [19]. The DCO feed enhance the deposition of DHA in

salmon flesh compared to WCO-fed fish, which contrasted with results obtained with the pre-

vious EPA only Camelina oil where DHA levels were similar between fish fed both VO (wild-

type and EPA Camelina oils) [14]. However, both GM Camelina oils elevated the proportions

of total n-3 LC-PUFA in flesh compared to WCO. This was even more evident when data were
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presented as absolute values (mg fatty acid/100 g tissue) with flesh of DCO-fed salmon provid-

ing the same amount of DHA and total n-3 LC-PUFA as FO-fed fish. In this way, one 140 g

portion of DCO-fed Atlantic salmon would supply 623 mg of n-3 LC-PUFA and be sufficient

to satisfy daily DHA+EPA requirements recommended by the World Health Organization

[56] (250 mg) and International Society for the Study of Fatty Acids and Lipids [3] (500 mg). It

must be noted that fish from this trial were not marketable size (0.5 kg) and that fish were fed

for a short period of time, thus it is necessary to establish the effect of both oils over longer peri-

ods and in market sized fish.

There are further potential health benefits associated with the use of this novel EPA and

DHA oil in aquafeeds than just the levels of DHA and n-3 LC-PUFA in flesh. The flesh of fish

fed DCO also displayed lower levels of saturated fatty acids and higher levels of PUFA than FO-

fed fish. There is evidence that saturates, particularly 12:0, 16:0 and 18:0, raise total cholesterol

concentrations and can increase coagulation, inflammation and insulin resistance [57–59]. Die-

tary guidelines recommend that the daily intake of saturated fatty acids in humans should be

limited to 7–10% of energy or less [60]. However, these guidelines have been criticised lately

given that the reduction of dietary saturated fat usually results in a diet lower in fat and high in

refined carbohydrates, which can cause more undesired health effects than simply eating high

saturated fat [61]. Thus, salmon flesh that is naturally rich in protein and low in carbohydrates

and contains elevated levels of beneficial PUFA and lower saturated fatty acids as a result of the

inclusion of DCO is a food with a desirable ratio of protein:PUFA:saturated fat.

Liver is the main lipid metabolic tissue in fish and is known to be very active in the synthesis

of LC-PUFA in salmon [15]. Salmon fed standard VO as a replacement for fish oil show

increased expression and activity of LC-PUFA synthesis genes [14,20,62–65]. In the previous

study, fish fed both the wild-type Camelina oil and the EPA only Camelina oil displayed

increased hepatic expression of fads2d5, fads2d6, elovl2, elovl5a and elovl5b and the fish fed the

EPA Camelina oil also showed active biosynthesis of n-3 LC-PUFA as indicated by increased

levels of n-3 DPA and DHA in liver [14]. With the EPA+DHA Camelina oil, the presence of

both EPA and DHA resulted in only a mild response in liver gene expression with only fads2d5

showing increased expression compared to fish fed the FO diet, and there was no accumulation

of intermediate metabolites such as n-3 DPA. Thus, despite of having high levels of the sub-

strate for the biosynthesis of n-3 LC-PUFA (18:3n-3), the pathway was suppressed when high

levels of the final product (DHA) were also present in the feeds, in contrast to when the dietary

oil supplied only EPA. These data confirm an earlier study that suggested the suppressed

LC-PUFA biosynthetic activity in salmon fed fish oil was associated with DHA, and that EPA

does not inhibit this pathway [66]. Nonetheless, the LC-PUFA biosynthetic capacity of salmo-

nids is limited and thus the inclusion of DCO would probably enhance total n-3 LC-PUFA lev-

els in salmonids compared to the EPA only Camelina oil due to the better retention of DHA

despite inhibition of endogenous biosynthesis.

The liver transcriptome analysis of common DEG revealed differences in expression of

fads2d6 and fads2d5 between fish fed FO and DCO, although it should be noted that desa-

turases are represented in the microarray by more than 10 features each and only one was

detected in this comparison, in contrast to what was found when FO-fed fish were compared

to WCO-fed fish (data not shown). It has been demonstrated that discrepancies between

microarray and qPCR increase when FC is under 1.4 as was the case in the FO/DCO compari-

son present study [67]. It was noteworthy that up-regulation of long-chain acyl-CoA synthetase

(acsl) was observed in both WCO and DCO-fed fish when compared to FO-fed fish. After

LC-PUFA enter cells, acsl converts them to fatty acyl-CoAs that can have numerous metabolic

fates, including incorporation into triacylglycerol or phospholipids, or substrates for β-oxida-

tion and protein acylation [68]. However, previous studies in Atlantic salmon did not show
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differences in the expression of acsl in liver between fish fed fish oil and VO, and authors sug-

gested that the function of this gene must not be directly related to β-oxidation, but could be a

general fatty acid activator for other lipid metabolism pathways [69]. Glyceronephosphate O-

acyltransferase (gnpat), an enzyme involved in de novo biosynthesis and remodelling of glycer-

ophospholipids, was greatly down-regulated in liver of fish fed the WCO and DCO diets com-

pared to those fed FO (10.1- and 5.4-fold in WCO and DCO-fed fish, respectively). Similarly,

rats fed rapeseed oil showed decreased activity of mitochondrial GNPAT compared to rats fed

fish oil [70]. Thus, despite diet DCO having levels of EPA+DHAmore similar to diet FO than

WCO, the presence of shorter chain PUFA, typical of terrestrial plants, elicited a response on

triacylglycerol and phospholipid metabolism similar to that observed in fish fed other VO.

However, another gene involved in glycerophospholipid metabolism, lysophosphatidic acid

acyltransferase, showed up-regulation in liver of fish fed both Camelina oils, which is in agree-

ment with previous studies in Atlantic salmon, where up-regulation of this pathway was

observed in VO-fed fish which also showed higher fat deposition [16]. In addition, the hypotri-

glyceridemic effect of n-3 LC-PUFA in mammals is widely known and is associated with inhi-

bition of ACSL activity [71] as observed in the present study, which highlights the relevance of

this pathway in the increased lipid accumulation found in VO-fed fish. Another gene involved

in the synthesis of fatty acids, acetyl-CoA carboxylase (acc), which provides the malonyl Co-A

substrate necessary for the biosynthesis of fatty acids, was up-regulated in fish fed both WCO

and DCO, with similar enhanced enzymatic activity found in rainbow trout fed low levels of

FO [72]. Similarly, dietary n-3 PUFA suppressed transcription of several lipogenic genes

including acc in mammals [73].

The liver transcriptome revealed a number of genes that were DCO-specific (genes com-

monly expressed between the contrasts DCO/FO and DCO/WCO) with the functional cate-

gory mainly affected being signalling. Liver and pyloric caeca transcriptome of fish fed the EPA

only Camelina oil did not show the same pattern, as metabolism was the main category affected

followed by translation in liver [14] or signalling in caeca [20]. Immune system was slightly

over-represented in DCO-specific DEG in the present study in contrast to the previous study,

with three genes related to blood coagulation (coagulation factor II receptor, coagulation factor

III and component factor D) showing increased expression in liver of DCO-fed fish. LC-PUFA

are precursors for eicosanoid synthesis involved in the control of blood coagulation [74] and

blood coagulation can be influenced by diet with fish fed VO showing up-regulation of the

pathway [75]. Despite the high representation of the “immune system” category, diet DCO had

no effect on the cellular and humoral innate immunity indicators evaluated in the present

study. Inclusion of VO did not affect serum lysozyme activity in Atlantic salmon, similar to

what has been reported in other teleost species fed a range of different VO [76–80]. Myeloper-

oxidase (MPO) is an enzyme present in neutrophils with several functions including neutrophil

activation [81] and stimulation of macrophages [82], contributing to the general inflammatory

response. No effects on plasma MPO values were observed between fish fed the three different

dietary treatments suggesting that the number of circulating leucocytes did not vary. In agree-

ment, no significant differences were found in total plasma peroxidases (including MPO) in

sea bream (Sparus aurata) fed VO [83]. Plasma protein levels can be reduced when plant pro-

teins are used in feeds for fish [84,85], in contrast to what was observed in the present study

where there was no variation in this parameter. Thus, fish fed the Camelina oil feeds (WCO

and DCO) in the present study did not display any sign of activation or depression of their

immune status. However, it is important to stress that many potentially adverse health effects

associated with dietary VO are only noticeable when fish are subjected to environmental/path-

ogen challenges [86]. Thus, it is necessary to also evaluate the response of fish after a stress in

order to further assess potential effects of the new GM-oils on fish health.
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In summary, the oil containing 6% EPA and 5% DHA, and 15% total n-3 LC-PUFA derived

from GM Camelina sativa effectively substituted for fish oil in feed for Atlantic salmon, provid-

ing sufficient n-3 LC-PUFA to maintain the nutritional quality of the flesh for the human con-

sumer. In addition, the novel oil did not negatively affect the growth performance or overall

health of fish. Given the hybrid nature of the oil, with a fatty acid profile between fish oil and

VO, additional positive effects to the fillet were observed such as reduced saturated fatty acid

content further improving overall health qualities of product. The data showed that the expres-

sion of fatty acyl desaturases and elongases in fish fed the DCO diet were similar to those in

fish fed the FO diet and lower than fish fed WCO, in contrast to our previous trial where the

EPA only Camelina oil induced high expression of these genes indicating that it is DHA that

suppresses expression of the genes of the LC-PUFA biosynthetic pathway and not EPA. Fur-

ther studies are required to investigate the EPA+DHA Camelina oil in large market-size

salmon and over the whole production cycle as higher levels of n-3 LC-PUFA could be accu-

mulated in the flesh. The present study demonstrates that genetically modified oilseed crops

are a potential solution to fill the gap between demand and supply of EPA and DHA and, spe-

cifically, are a viable alternative to fish oil for the supply of n-3 LC-PUFA in aquaculture.
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