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The field of lipidomics is providing nutritional science a more comprehensive view of lipid in-
termediates. Lipidomics research takes advantage of the increase in accuracy and sensitivity of
mass detection of MS with new bioinformatics toolsets to characterize the structures and abun-
dances of complex lipids. Yet, translating lipidomics to practice via nutritional interventions is
still in its infancy. No single instrumentation platform is able to solve the varying analytical
challenges of the different molecular lipid species. Biochemical pathways of lipid metabolism
remain incomplete and the tools to map lipid compositional data to pathways are still being
assembled. Biology itself is dauntingly complex and simply separating biological structures
remains a key challenge to lipidomics. Nonetheless, the strategy of combining tandem ana-
lytical methods to perform the sensitive, high-throughput, quantitative, and comprehensive
analysis of lipid metabolites of very large numbers of molecules is poised to drive the field
forward rapidly. Among the next steps for nutrition to understand the changes in structures,
compositions, and function of lipid biomolecules in response to diet is to describe their dis-
tribution within discrete functional compartments lipoproteins. Additionally, lipidomics must
tackle the task of assigning the functions of lipids as signaling molecules, nutrient sensors,
and intermediates of metabolic pathways.
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1 Introduction: Concepts of nutritional
lipidomics

The term lipidomics is quite new, first appearing in 2001.
Its definition is still being debated, from “the comprehensive
analysis of all lipid components in a biological sample” to
“the full characterization of lipid molecular species and their
biological roles with respect to the genes that encode proteins
that regulate lipid metabolism”. In principle, lipidomics is a
field taking advantage of the innovations in the separation sci-
ences and MS together with bioinformatics to characterize the
lipid compositions of biological samples (biofluids, cells, tis-
sues, organisms) compositionally and quantitatively [1]. This
approach of making quantitative, comprehensive molecular
measurements of lipids provides access to the same research
strategies of metabolomics and proteomics that are changing
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our understanding of biological processes across all of the life
sciences. The first generation of research using lipidomics
tools has been successful with breakthrough studies iden-
tifying lipids in novel compositions and unique functions.
The biological membrane is in particular an enigmatic living
structure with a highly complex and dynamic molecular com-
position; its properties as soft matter and its dynamic nature
render it frustratingly difficult to study. In a purely descrip-
tive sense, lipidomics studies are revealing the basic biological
properties of lipids whose comparable functions have been
known for polynucleotides and proteins for decades. Suc-
cesses in lipidomics studies are also slow due to the fact that
lipids, like polysaccharides, are the products of enzymes and
thus are removed from the inherited genome of organisms.
As a result of being the products of diet and metabolism,
lipids in vivo can exhibit wide variation within individuals
and across organisms. Because lipids are metabolites of an
individual’s diet and metabolic pathways, the accurate mea-
surement of all lipids within an individual biofluid, tissue,
or cell type, positions lipidomics with the potential to revolu-
tionize nutrition research. Diet has important effects on the
substrates, products, and the overall metabolism of lipids in
all animals and humans. The first generation of lipidomics ar-
ticles have provided proofs of principle of its ability to: develop
diagnostics of disease, detect microbial contamination, estab-
lish dietary actions, identify novel signaling pathways, define
cellular compartments, reveal disease mechanisms, and es-
tablish toxicological targets and mechanisms [2–8]. Building
on these successes, lipidomics is poised to become a central
toolset in life science research.

2 Lipids as a unique class of biomolecules

Lipids are not genetically encoded molecules but are sub-
strates and products of enzymes constituting metabolic path-
ways. Lipids are derived preformed directly from the diet
or by de novo synthesis from simple precursors. Variations
in lifestyle and genetics influence the enzymatic activities
involved in their metabolism. The wide diversity of lipid
structures relate to their wide array of functions ranging
from energy storage, transport, and utilization to host pro-
tection, barrier functions, and insulation. Lipids make up the
main fluid structures of cellular membranes at high concen-
trations. At low concentrations, lipids exhibit diverse roles
in cellular communication through paracrine and autocrine
signaling. Cellular lipids vary only very slightly in response
to wide variations in diet, providing evidence for consider-
able homeostatic regulation to maintain lipids at constant
levels.

In spite of the fact that the core biosynthesis pathways of
lipids are mainly two; fatty acid and isoprenoid metabolism,
the total number of complex lipids that are assembled from
these two pathways is immense [9]. The heroic scientific job
of identifying and cataloguing this biological library is be-
ing organized by several consortia including the Lipid Maps

project [10–13], and the European Lipidomics Initiative [14].
The immense challenge of annotating the structures func-
tions and diverse bioactivities of complex lipids will be the
basis of an increasing fraction of basic life science research as
the implications of applying this knowledge to improving hu-
man health becomes ever more apparent. For lipid scientists,
they now have a virtual home (http://www.lipidmaps.org/).

3 Technologies of lipid analysis

The complexity of biofluids, cells, and tissues in terms of the
total numbers and structures of lipids exceeds the capability
of lipidomics to identify and quantitate all of the lipid struc-
tures present. Nevertheless, it is possible to generate accu-
rate and precise quantitative data on subsets of lipid classes
based on their chemical and physical behaviors. Research
today takes advantage of the increase in the accuracy, sen-
sitivity, and speed of mass detection of MS with structural
information of complex lipids [15]. The ability of mass spec-
trometers with higher resolution and faster chromatography
to accurately determine precise masses that mathematical
computations solve for the structure of lipids was a major
scientific breakthrough. Only recently have the enhanced ac-
curacy, sensitivity, and efficiency of MS made it possible to
begin the exhaustive process of cataloguing the lipid com-
position of cells and biofluids making the field of lipidomics
possible for medical diagnosis and therapeutic treatment [16].
Yet, a single complex platform is unable to solve the varying
analytical challenges of the different molecular species of
lipids. Analytical strategies coupling different modalities—
separation science and mass spectroscopy, notably liquid and
GC and MS—into complementary platforms have been most
successful. The enabling capabilities of HPLC coupled to ESI-
MS and novel strategies for quantitative MALDI-MS to si-
multaneously identify and quantitate the full range of global
cellular polar lipidomes directly from crude lipid extracts of
biological samples was the first proof of principle of shotgun
lipidomics [17, 18].

MS is now able to identify molecules by virtue of precise
molecular mass measurement, thus providing the analytical
power needed to identify large numbers of complex lipids si-
multaneously. However, some important problems remain.
The isomeric diversity of fatty acids in biology still frustrates
mass analyzers because the absolute mass of some of the fatty
acid positional isomers is identical. Because these fatty acid
isomers are biologically different, this limitation still needs
to be addressed for the field of lipidomics to continue its
rapid progress. Second, mass spectrometer ion sources still
remain somewhat unstable and vary dramatically with vendor
and design. As a result, MS in the absence of standards is not
as quantitatively accurate as metabolite measurements need
to be. For many applications, measuring the subtle changes
associated with early stages of disease development is neces-
sary.
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Figure 1. Targeted lipidomics using UPLC-MS/MS and MVA. Se-
lection of the target fatty acid and oxylipin metabolites for (A)
LC separation with the appropriate mobile and stationary phase.
Tandem MS and multiple reaction monitoring provide molecu-
lar ions and daughter ion fragments (B) as well as specific and
selective transitions (C) essential to identify and quantify the com-
pounds, including those with co-eluting peaks. Metabolite levels
are used in (D) data processing with principal component anal-
ysis and other multivariate methods (plot from Zivkovic et al.
2012) [99].

Resolution of lipid species with overlapping molecular
weights of fatty acids with isomeric differences in the fatty
acid structures is achievable with ultrahigh-performance liq-
uid chromatography (UPLC) coupled to triple quadrupole
LC–MS/MS detection [19] (Fig. 1). Normal phase HPLC
coupled to electrospray ion-trap MS can simultaneously

examine changes in multiple phospholipid classes (phos-
phatidylethanolamine, phosphatidylinositol, phosphatidyl-
choline, lysophosphatidylcholine, and sphingomyelin) and
the individual molecular species within each class without
prior derivatization, TLC or SPE. Tandem LC coupled to MS
has also been used to separate complex lipid species prior
to ionization and detection by MS [20]. The strategy of com-
bining tandem analytical methods to perform the sensitive,
high-throughput, quantitative, and comprehensive analysis
of lipid metabolites for high throughput of very large num-
bers of molecules is driving all of the fields of metabolism.
This option is propelling the field of lipid biochemistry for-
ward rapidly in describing which lipids are present in dif-
ferent tissues, cells, subcellular organelles, and lipoproteins.
Nonetheless, the problem of quantitation is critical for un-
derstanding biological processes with the accuracy necessary
to distinguish early stages of disease. For example, improved
quantitation and qualitative analysis is needed to evaluate the
slow, incremental deterioration of the vasculature seen in
atherogenesis and the development of heart disease.

Quantification using MS requires that each analyte is com-
pared to an internal standard and the actual amounts deter-
mined by peak area ratios [21]. These methods are clearly
problematic for highly complex samples with dozens of dif-
ferent species of lipids because they require a large number of
internal standards. Even more, the number of different linear
ranges for detection required for such a highly multiplexed
assay is not easily solved in a “global” analysis. Sacrificing
quantification of metabolites for higher throughput is pos-
sible when only chemical identification is needed; however,
using lipidomics in disease research is more challenging.
Quantitative analyses are needed to detect the small differ-
ences that are the basis of varying states of metabolic health
in different phases of disease. Hence, the decision to forego
quantitative precision will limit the future utility of integrated
databases of metabolites that are produced by these analyses.
The success of the famous Framingham study in identifying
variations in heart disease linked to variations in measure-
able biomarkers was predicated upon banking quantitative
data of heart disease incidence and specific metabolites. This
study protocol also highlights that it is only possible to corre-
late health and disease with metabolic processes if the status
of those processes is accurately captured. The limitations of
the Framingham and other large databases lie in the lack of
quantitative and comprehensive detail for many input and
outcome variables [22]. The Framingham study showed what
is possible. Moving forward, it will be necessary to revisit this
principle with even more ambitious studies that build quanti-
tative databases of health variations against which individual
metabolite profiles can be compared to distinguish important
differences (i.e. diagnostic applications, unintended side ef-
fects of therapeutics). As lipidomics platforms become more
available and more clinical populations are measured, the pre-
dictive power of the data will increase with increased number
of analytes, accurate identification, and increased accuracy
and precision of the quantitative data.
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4 Dietary lipid transport and signaling:
From organelles to cells, from tissues to
individuals, from biofluids to systems

Among the first steps toward understanding the structure
and function of biomolecules has been to describe their dis-
tribution within discrete functional compartments—cells, or-
ganelles and subcellular particles. Such strategies have been
a hallmark of biochemistry research for decades, and combin-
ing this approach with the tools of lipidomics has the poten-
tial to add substantially to our knowledge of lipids in areas as
disparate as cellular membrane topology and lipid transport
systems. Moreover, combinations of lipidomics techniques
with specific sample collection, cell isolation, and subcellular
fractionation methods are beginning to reveal relationships
between composition and location, if not yet function.

The technologies necessary for profiling lipid metabolites
have been established for many years; however, there are few
reports of quantitative and comprehensive lipid metabolite
profiles in the literature. Most reports provide normalized
data (i.e. percentage of a particular fatty acid relative to to-
tal fatty acids within a lipid class), and these datasets con-
sisting solely of mol% data can provide information about
how composition is changing in response to a treatment or
over time. A normalized analysis is valuable in assessing
metabolic information that quantitative values cannot such
as when the biology is at the level of intermediary or com-
plex lipid metabolism. In contrast, quantitation is important
for accessing global lipid metabolism and for reproducible
relationships among metabolites over time. For example, ab-
solute quantitation of total cholesterol in the bloodstream has
provided a highly successful and actionable marker for treat-
ment and disease diagnosis. Fortunately, the field is moving
toward absolute quantitation.

Structural lipids make up the most widely studied set of
lipids, particularly in the context of cardiovascular disease
(CVD). Plasma total cholesterol, LDL and HDL cholesterol,
triglycerides (TG), and lipoprotein particle distribution (size
and number of particles) have all been widely studied, an-
notated, and used both as diagnostic markers and targets
of intervention, with great success. Dietary changes such as
decreasing saturated fat intake to lower cholesterol and in-
creasing n-3 PUFA intake to decrease TG, as well as pharma-
ceutical lowering of cholesterol through statins have been a
standard approach to modifying CVD risk for decades. New
and emerging areas of dietary lipid-mediated mechanisms of
disease initiation and progression as well as their prevention
are being discovered through more comprehensive profiling
of lipids.

The composition of circulating fatty acids reflects habitual
diet [23, 24], genetics [25–27], metabolic phenotype [28–30],
lifestyle [31], hormonal regulation [32] and their interactions.
Quantitative lipid metabolome data were used to determine
the differential effects of dietary �–linolenic acid and n-3
PUFA (>20 carbon chain-length) on heart and liver phos-
pholipid metabolism [33]. A recent study used UPLC coupled

with ESI-quadrupole TOF MS to analyze the plasma lipidome
(including 260 identified lipid species) of healthy subjects in
response to fish oil [34]. Circulating fatty acids are key regula-
tors and surrogates of lipid anabolic and catabolic pathways.
For example, in a 12-wk dietary intervention in overweight
subjects, 500 kcal reduction per day plus calcium supple-
mentation or 3–4 servings of dairy products could not be
specifically related to observed changes in anthropometric
measurements. Yet, baseline circulating levels of free fatty
acids 18:1n9 and phosphatidylcholine 18:0 explained up to
33% of the variance of changes in waist circumference, per-
cent body fat, and lean mass [35]. These data suggest proof
of concept that lipid surrogates of metabolism could predict
responsiveness to preserve lean mass at the expense of catabo-
lizing adipose tissue during energy restriction. Future studies
are needed to validate how metabolic phenotypes described by
circulating lipidomic measurements predict responsiveness
to any dietary intervention.

Several factors influence fatty acid composition including
the fatty acid composition of the background diet (both short
term and long term) but also macronutrients, micronutri-
ents as well as food structure. Saturated fatty acids (SFA),
MUFA, trans-fatty acids, and PUFA all modulate plasma
lipids and lipoproteins, as does the relative intake of n-3 and
n-6 PUFA. For example, consumption of diets higher in
MUFA and PUFA, particularly n-3 PUFA, exert beneficial
effects on plasma lipids whereas diets higher in SFA and
trans-fatty acids are associated with deleterious effects on
plasma lipid profiles and CVD risk [36, 37]. As a percent
of energy, MUFA intake during caloric restriction in over-
weight individuals was inversely associated with changes in
lean mass but positively associated with changes in percent
body fat [38]. These data suggest that during energy restric-
tion, dietary MUFA shift energy partitioning toward muscle
catabolism and adipose anabolism. These results highlight
the necessity to elucidate how dietary fat composition influ-
ences not only plasma lipids but also metabolic indices of
lipid metabolism such as body composition.

The signaling functions of lipids are more difficult to
study than their structures. The cellular and nuclear mem-
branes are the sources of signaling molecules, or oxylipins,
including the eicosanoid family. There are three major fam-
ilies of oxylipins—the cyclooxygenase metabolites that in-
clude prostaglandins and thromboxanes, the lipoxygenase
(LOX) metabolites that include leukotrienes and some hy-
droxy fatty acids, and the cytochrome P450 (CYP) metabo-
lites that include other hydroxy fatty acid epoxides and their
downstream metabolite hydroxy fatty diols. Of course, all of
these lipids can be metabolized to other, often biologically
active lipid amides. n-3PUFAs eicosapentaenoic acid (EPA,
20:5n3) and docosahexaenoic acid (DHA, 22:6n3), and n-6
PUFAs dihommo-gammalinolenic acid (20:3n6), and arachi-
donic acid (ARA, 20:4n6) serve as the substrates for these
enzymes. Each fatty acid can be either derived directly from
the diet or converted in the liver from n-3 and n-6 PUFA
precursors alpha-linolenic acid (18:3n3) and linoleic acid (LA,
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18:2n6), respectively. Alpha-linolenic acid and LA themselves
can also act as substrates for the LOX and CYP pathways. Over
85 distinct oxylipin metabolites can be measured simultane-
ously on a single platform and comprise a complex network
of communication for both the initiation and termination of
inflammation-related events [39, 40].

The lipids that form diverse signaling molecules are
the basis of much of biology’s alarm communication
system, triggered by various forms of “stress” and mediating
appropriate cellular responses. Lipid structures themselves
are in many respects chemically fragile. Phospholipids in
particular and the PUFA they contain can readily break
down via simple, thermodynamically favorable chemical
reactions (hydrolysis, oxidation) into products with solubility
and structural features distinctly different from their intact
precursors. This means that with a biomolecular layer of
fragile phospholipids surrounding every cell, virtually every
type of stress to a cell is likely to liberate lipid fragments,
the presence of which contributes to a signaling system
appropriate to the recognition and management of stress.
The biological and chemical properties of lipids that make
them such a valuable signaling system for cellular stress
makes them difficult to study. Only with extensive experience
and familiarity with mass spectra from a variety of samples
with a range of levels of auto-oxidation and controlled exper-
iments with little auto-oxidation have researchers been able
to distinguish between biological samples that likely contain
predominantly auto-oxidation products versus biologically
relevant enzymatically derived signaling molecules. Not sur-
prisingly, the importance of oxidation of lipids to biological
processes still remains a poorly understood field of biology,
and similarly its inhibition through antioxidants is equally
poorly understood and controversial. Lipidomics can provide
considerable input to solve the complexities of lipid oxidation
in vivo and the value of antioxidant molecules in nutrition.

5 Lipid regulation and cellular
homeostasis

Systemic regulation of lipid anabolism and catabolism is crit-
ically dependent on cellular energy homeostasis, membrane
structure and dynamics, and signaling. Dysregulation of lipid
metabolism results in disease. Cellular regulation of dietary
and endogenous lipids occurs through the action of nuclear
receptors that act as sensors for cellular lipids. One such nu-
clear receptor superfamily–peroxisome proliferator-activated
receptors (PPARs)—functions as transcription factors
to regulate the expression of lipid metabolic genes [41].
PPARs play essential roles in the regulation of cellular
differentiation, development, and carbohydrate, lipid, and
protein metabolism [42–44]. Additionally, microarray and
gene ontology analyses provided new functional clusters of
genes that were not previously known to be directly regulated
by PPARs such as chromatin remodeling, DNA damage
response, Wnt signaling proteins, and mitogen-activated
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protein kinase signaling [45]. Transcriptional regulation
by PPARs requires hetero-dimerization with the retinoid x
receptor and when activated by a ligand, the dimer modulates
transcription via binding to a specific DNA sequence element
called a peroxisome proliferator response element in the
promoter region of target genes (Fig. 2A).

PPAR-�, predominantly expressed in tissues that oxidize
fatty acids that include liver, muscle, and brown adipose tis-
sue, regulates lipid metabolism and transport, fatty acid oxida-
tion, and glucose homeostasis [46]. PPAR-� regulated genes
are those encoding fatty acid transporters, proteins involved
in export (apolipoprotein B), the microsomal triglyceride
transfer protein, fatty acid binding proteins, and acyl CoA
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dehydrogenase [46]. They also include P450 enzymes and
epoxide hydrolases that regulate levels of potent lipid
chemical mediators. Activation of these genes results in
increased uptake and oxidation of free fatty acids, increased
triglyceride hydrolysis, and upregulation of apolipoprotein
AI and II (apoA-I and apoA-II) gene expression. The net
effect is increased fatty acid oxidation, decreased serum TG,
a rise in HDL, and an increase in cholesterol efflux. The
ligands for PPAR-� are fatty acids, leukotrienes, pesticides,
and environmental contaminants and drugs including
nonsteroidal anti-inflammatory drugs and fibrates [47–49].
PPAR-� knockout mice exhibit steatosis, myocardial lipid
accumulation, and hypoglycemia during short-term starva-
tion or after high-fat diet administration [50, 51]. In mice
fed fenofibrate or fish oil, both PPAR-� agonists, plasma TG
were significantly decreased. Yet, fenofibrate was found to
specifically downregulate genes involved in the complement
cascade and inflammatory response and fish oil specifically
downregulated genes involved in cholesterol and fatty acid
biosynthesis and upregulated genes involved in amino acid
and ARA metabolism [52]. These data suggest that despite
being similarly potent PPAR-� agonists, activation by fish
oil that contains two anti-inflammatory fatty acids (DHA and
EPA) may influence multiple pathways either by their additive
effects or multiplicative effects through de novo metabolism
into oxidized products that are also PPAR agonists [53, 54].
These data reflect one difference between food-based and
pharmacological interventions in that the former contains
mixtures of ligands at low doses that target multiple pathways
compared with the former that often contains one or two
highly concentrated synthetic compounds with fewer targets.
The complexity of food to simultaneously target multiple
pathways is attractive for nutrition research and highlights the
value of comprehensively and quantitatively measuring lipids
to identify their molecular targets and their mechanisms.

5.1 Bile acid and cholesterol metabolism

Bile acids role in the mammalian system is much broader
than simply to aid in the digestion and absorption of dietary
lipids. They have been recognized as important signaling
molecules with systemic endocrine functions [55]. Bile acids
are natural ligands for the nuclear receptor, farnesoid X
receptor (FXR), which co-dimerizes with retinoid x receptor
to regulate lipid [56], glucose [57], and energy homeosta-
sis [58] in addition to regulating bile acid synthesis [59],
conjugation [60], transport [61], and detoxification [62]. Using
ChIP sequencing, our group found that FXR [63] and RXR-�
(unpublished) bind to the same locations in about 2000
hepatic genes suggesting their roles are coupled in the liver.
FXR functions as a receptor for a wide range of bile acids,
including cholic and deoxycholic acids as well as their glycine
and taurine conjugates. FXR is primarily expressed in the
liver, kidney, and intestines, and overall inhibits hepatic de
novo bile acid production [64] via feedback regulation through

the repression of cholesterol 7 alpha-hydroxylase [64, 65].
In the liver, FXR reduces bile acid toxicity by upregulating
bile acid modifying enzymes including sulphotransferase
2A1 [66], UDP-glucuronosyltransferase 2B4 [62], and CYP
450 3A4 [67,68] and increases bile acid conjugation to taurine
or glycine [69]. Increasing the amphipathic nature of bile
acids is necessary for their transport to the gallbladder and
intestine. In the intestine, FXR reduces bile acid absorption
by inhibiting the expression of apical sodium-dependent
bile acid transporter, increasing bile acid transport through
the enterocyte via ileal bile acid binding protein [70], and
promoting recycling of bile acids to the liver via organic solute
transporter � and � [71]. FXR knockout [72] and hepatic
RXR-� knockout mice have elevated total bile acids, plasma
triglyceride, and cholesterol levels, and they are susceptible
to developing steatohepatitis [73] and colon cancer [74]. These
data clearly indicate that FXR regulates bile acid turnover,
suppressing the synthesis of new bile acids and stimulating
biliary excretion to prevent excessive bile acid induced toxicity.

The global signaling capacity of bile acids is supported by
the expression of bile acid receptors FXR in tissues outside
of the enterohepatic circulation, including the kidney, vascu-
lature, heart tissues, and immune cells [75–77] and suggests
their systemic role. Using a shotgun approach with RP UPLC
coupled to ESI quadrupole TOF MS, plasma bile acids glyco-
cholic acid, glycochenodeoxycholic acid, and glycodeoxycholic
acid were identified as highly responsive to an oral glucose
tolerance test in healthy humans [78]. These data found that
bile acids displayed biphasic kinetics with a maximum 4.5-
to 6-fold increase at 30 min after glucose ingestion and a
significant decrease over the next 60 min followed by an in-
crease after 120 min [78]. The bile acid response to the oral
glucose tolerance test could reflect the body’s adaptation to
promote glucose sensitivity and oxidation [79]. Additionally,
plasma bile acids exert a high circadian rhythmicity such that
bile acids failed to oscillate in the livers of clock-deficient
mice [80]. The role of bile acids in relation to diet, metabolic
phenotype, lifestyle, intestinal microbiota, genetics, and ef-
fects on whole body metabolism is a new and exciting area of
lipidomics research.

Lipid-regulating genes are reflective as measurable indices
in circulation, the best studied of which is cholesterol, and
its many metabolites. Cholesterol plays an essential role in
an array of biochemical, structural, and signaling functions
in biology. It is a major component of cellular membranes
and lipid rafts, is involved in intracellular trafficking and sig-
nal transduction, is a precursor for the synthesis of bile salts,
steroid hormones, vitamin D, ubiquinone, dolichol, and coen-
zyme Q10, and acts as an anchor for membrane proteins such
as farnesyl isoprenoid groups [81–83]. Cholesterol and its ox-
idation into oxysterols regulates HDL metabolism through
transcriptional regulation in intestinal epithelia. In hamsters,
dietary cholesterol upregulated the expression of apical in-
testinal ATP-binding cassette transporter A1 (ABCA1) and
ATP-binding cassette transporter G1 [84] which function to
efflux cellular cholesterol [85–87]. The mechanism of action
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is through the activation of LXR-� [88]. LXR-� senses and
responds to levels of cellular cholesterol by modulating the
expression of genes that regulate cellular levels of choles-
terol by targeting genes involved in the synthesis of bile
acids [89], cholesterol efflux [90], and intestinal cholesterol ab-
sorption [90]. Specifically, when activated, LXR-� stimulates
the expression of ABCA1 in the intestine [91, 92]. Although
ABCA1 is required for transporting cholesterol from periph-
eral tissues to the liver, during reverse cholesterol transport,
this transporter may play an important role in regulating in-
testinal cholesterol absorption [93,94]. When caco-2 cells were
incubated with labeled cholesterol, ABCA1 and ATP-binding
cassette transporter G1 gene expression was increased with
concomitant basolateral efflux of cholesterol to HDL and
apoA1 [95]. These data suggest that ABCA1 plays a role in in-
testinal production of HDL and cholesterol absorption. If so,
inducing ABCA1 expression by dietary cholesterol would be
a molecular strategy to regulate cellular cholesterol turnover.
Overall, FXR and liver X receptor coordinately regulate bile
acid, oxysterol, and lipid homeostasis (Fig. 2B).

6 Diversity as groups of individuals
whose phenotype defines a particular
risk

Although people are different and not everyone responds
equally to a given diet or intervention, studies that reveal sub-
groups of individuals with a common metabolic phenotype
or response have begun to emerge. For example, researchers
identified three distinct phenotypes in healthy subjects in
response to high versus low-glycemic index meals [96]. The
group with the highest number of subjects had prototypi-
cal responses to the different meals, but two smaller groups
showed unexpected deviations, with one group showing signs
of early insulin resistance and the other showing an exagger-
ated leptin response. Response to n-3 PUFA has also been
shown to be divergent. For example, in African American
subjects grouped according to their 5-lipoxygenase genotype
(“dd”, “d5”, or “55”), fish oil supplementation had differential
effects [97]. In the high coronary heart disease risk group (the
“dd” subjects), consumption of 5 grams per day of fish oil
failed to even increase plasma and red blood cell EPA and
DHA and lower the n-6:n-3 PUFA ratio. Only the subjects
with the “d5” genotype had the expected decrease in plasma
TG in response to the n-3 PUFA supplementation. These data
highlight the variation in response to dietary fatty acids based
on genotype.

Phenotype is likely to become even more revealing and
ultimately more actionable as a way to assess and monitor
response to diets. Again, n-3 PUFA are a powerful exam-
ple, highlighting the variation in response among individu-
als. In healthy subjects, the predominant changes in plasma
oxylipins in response to n-3 PUFA were increases in the n-3
PUFA derived CYP pathway epoxides and diols, along with
decreases in n-6-derived metabolites, particularly those pro-

duced by the LOX pathway (Fig. 3) [98]. In IgA nephropathy
patients, similar increases in n-3 PUFA derived epoxides and
diols were observed; however, there was a divergent response
in patients for whom kidney function improved versus those
for whom it did not improve or worsened [99]. The same po-
tently pro-inflammatory and cytotoxic LA and ARA-derived
LOX metabolites that decreased in response to n-3 PUFA
supplementation in the healthy subjects described by Shearer
et al [98], decreased in IgA nephropathy patients whose kid-
ney function improved but not those whose kidney function
did not improve. These data suggest that there are different
lipid metabolic phenotypes that determine response to dif-
ferent dietary fatty acids. These findings highlight the impor-
tance of measuring lipidomic profiles for detecting different
metabolic phenotypes and assessing their response to dietary
interventions and treatments. In the case of IgA nephropathy,
these differences in response may be part of the reason for
the inconsistent findings of beneficial effect of n-3 PUFA in
the treatment of the disease. The measurement of lipidomic
profiles could potentially identify those patients for whom n-3
PUFA treatment is beneficial.

7 Diagnostics and health assessment

7.1 Measuring lipids as biomarkers of disease

Lipidomics is better able to identify and characterize the com-
plexities of lipid regulation than measurements of single
biomarkers using traditional biochemical methods [100]. The
lipidome is not definable in the same sense as the genome.
Unlike the genome, which remains static, lipids change in
every cell and body fluid, notably in response to food in-
take [101]. All of our cells and biofluids contain a finite num-
ber of key lipid metabolites, and lipid homeostasis is gen-
erally maintained so that the actual variations in any given
lipid pool are typically minor relative to the abundance of the
lipids. These basic molecules and their fluxes through hu-
man metabolism, i.e. those that all humans have in relatively
constant amounts [102], include substrates, intermediates,
and products of endogenous metabolism [103]. Hence, the
lipidome will remain a discussable biological construction
in which pragmatic clinical utility will require that assump-
tions, protocols, and reference conditions are standardized.
Nonetheless, lipidomics is already proving to be informa-
tive in revealing the complex metabolic effects of diet [104],
in predicting responders to drugs [105] and changes in body
composition during energy restriction [35], and in identifying
metabolic aberrations associated with disease [106].

Lipidomics has demonstrated its investigative power by
its key role in the discovery of a novel class of signaling
molecules termed lipokines [107]. Mice deficient in adipose
tissue lipid chaperones (aP2 and mal1) are protected from
the complications of metabolic syndrome when fed a high-
fat diet. Researchers discovered that the mechanism under-
lying this effect was increased lipogenesis in the adipose
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Figure 3. Reprinted from Metabolomics, Volume 8, Issue 6, 2012, 1102–1113, Angela M. Zivkovic, Jun Yang, Katrin Georgi, Christine
Hegedus, Malin L. Nording, Aifric O’Sullivan, J. Bruce German, Ronald J. Hogg, Robert H. Weiss, Curt Bay, Bruce D. Hammock, Fig. 1,
with kind permission from Springer Science and Business Media. Fatty acid precursors and their oxylipin products.The fatty acids linoleic
acid (LA; 18:2n6), �-linolenic acid (ALA, 18:3n3), ARA, 20:4n6, dihommo-�-linolenic acid (DGLA; 20:3n6), eicosatrienoic acid (ETA; 20:3n9),
eicosapentaenoic acid (EPA; 20:5n3), and docosahexaenoic acid (DHA; 22:6n3) are precursors to a number of oxylipin products produced
via the cyclooxygenase, lipoxygenase, and cytochrome P 450 (CYP) enzymes. The oxylipin products of the cyclooxygenase pathway
include prostaglandins (PGE1, PGD1, PGH2, PGF2�. PGE2, PGB2, PGD2, PGJ2, 15-deoxy-PGJ2, PGI2, 6-keto-PGF1�, PGE3, PGH3, and
resolvin E1) and thromboxanes (TXA2, TXB2). The oxylipin products of the lipoxygenase pathway include hydroperoxyeicosatetraenoic
acids (HpETEs) and dihydroxyeicosatetraenoic acid (DiHETE), (further converted to hydroxyeicosatetraenoic acids (HETEs)), hydroxyoc-
tadecadienoic acids (HOTrEs), hydroxyeicosaptenaenoic acids (HEPEs), hydroxydocosahexaenoic acid (17-HDoHE), and leukotrienes (LTA4,
LTB4, 20-OH-LTB4, 20-COOH-LTB4, 6-trans-LTB4, LTC4, LTD4, LTE4, LTB3, LTB5) as well as the hydroxyoctadienoic acids (HODEs), and
trihydroxyoctamonoenoic acids (TriHOMEs). The products of the CYP hydroxy (OH) pathway include 20-HETE, and the products of the CYP
epoxy pathway include the epoxyeicosatrienoic acids (EETs), epoxyoctadecadienoic acids (EpODEs), epoxyoctamonoenoic acids (EpOMEs),
epoxyeicosatetreaenoic acids (EpETEs), and epoxydocosapentaenoic acids (EpDPEs), as well as the downstream soluble epoxide hydrolase
(sEH) metabolites dihydroxyoctamonoenoic acids (DiHOMEs), dihydroxyeicosatrienoic acids (DiHETrEs), dihydroxyoctadecadienoic acids
(DiHODEs), dihydroxyeicosatetraenoic acids (DiHETEs), and dihydroxydocosapentaenoic acids (DiHDPEs). Each fatty acid precursor and
its oxylipin products are colored the same: LA = orange; DGLA = yellow; ETA = dark blue; ALA = purple; EPA = green; DHA = red; and
ARA = light blue.

tissue, which led to suppressed hepatic steatosis and in-
creased muscle insulin sensitivity. Importantly, the de novo li-
pogenesis marker, palmitoleate (16:1n7), was shown to be the
signal that mediated the protective effects, and was discovered
through a lipidomic approach measuring lipids quantitatively
in plasma, adipose, liver, and muscle tissue. Another recent
study simultaneously measured fatty acids, oxylipins, and en-
docannabinoids in overweight and obese subjects with type
II diabetes mellitus and discovered specific pathways affected
by this disease including increased stearoyl CoA desaturase
activity and increases in specific oxylipin classes, particularly
epoxides and ketones of 18-carbon fatty acids [108]. Lipidomic
profiling has also been used to detect diseases not directly
associated with lipid metabolism. Phospholipids and ether-

linked phospholipids were accurate and sensitive markers of
prostate cancer, for example [109].

7.2 Dynamics of lipid metabolism

Lipids are the functional signatures of the interactions be-
tween genotype and environment, offering clinical relevance
for the individual. Using the response-to-challenge model
adds several dimensions to existing methods for revealing
lipid metabolism. The fasted condition is a metabolic state
when diet is absent. During fasting in an insulin-sensitive
model, the insulin counter-regulatory hormones, glucagon,
and epinephrine, peak while circulating insulin levels are
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low. As a result, free fatty acids are liberated from adipose
tissue and are oxidized by extrahepatic tissues; the liver
and kidneys are gluconeogenic and hepatic glycogenolysis
is active. During this period, energy partitioning shifts to a
catabolic and oxidative state. In the fed state, insulin peaks,
glucagon, and epinephrine are suppressed and energy par-
titions to an anabolic state. Circulating lipids change in re-
sponse to both of these states, yet the fasted condition receives
the most attention. To achieve a complete picture of lipid
metabolism, both fasted and fed states need to be rigorously
studied.

The concentrations of circulating lipids are dynamic, and
actively respond to environmental stimuli and diet. One time
point only reveals a snapshot, whereas metabolites measured
over a time-course provide a short film of the dynamic in-
teractions among lipid pathways. Measuring changes in lipid
metabolism provide a valuable assessment of metabolic reg-
ulation. The postprandial state, or the state following a meal,
has recently come to be known as an important transient
period during which significant vascular damage can occur.
Given that most of the population in the United States is in
a postprandial state for most of the day and given the rise in
obesity and its associated complications (i.e. metabolic syn-
drome, type 2 diabetes mellitus, and heart disease), the post-
prandial state has become an increasingly important area of
investigation. In fact, postprandial responses have recently
been implicated in the causal processes of CVD [110] and
metabolic syndrome [111]. For example, postprandial circu-
lating TG are proving to be an independent predictor of CVD
risk when compared with measurements in the fasted condi-
tion [112] that was recently reviewed in Jackson et al. [113].

Postprandial lipemia is characterized by a rise in triglyc-
eride or triglyceride-rich lipoproteins (TRL) and their rem-
nants in the immediate hours following food intake, and
is an independent risk factor for CVD [114]. The amount
and type of fat given in a meal has been shown to influ-
ence the rates of metabolism of TLR, their residence time in
circulation, and in turn their potential impact on LDL and
HDL particle size distribution and HDL cholesterol (HDL-C)
concentrations. Data from animal experiments have shown
that apoB48 and apoB100 TRL remnants bind and infiltrate
the arterial wall leading to concomitant retention of choles-
terol within the intimal sites of carotid arteries [115]. Another
mechanism explaining the increased CVD risk with post-
prandial lipemia is through modulation of HDL and LDL
size distribution and HDL-C concentrations through the ac-
tion of circulating cholesterol ester transfer protein (CETP).
CETP mediates the transfer of TG from TRLs to HDL and
LDL particles in exchange of cholesterol ester. Both the ab-
solute number of apoB-containing particles and concentra-
tion of TG in these particles favors CE enrichment of TRL
and TG enrichment of HDL particles [116, 117]. The action
of hepatic lipase on TG-rich HDL particles results in the
production of small HDL particles, which are targeted for
catabolism by the kidneys. Additionally, renal catabolism of
circulating apoA1 associated with TG-rich HDL particles is

enhanced [118, 119]. Low-circulating apoA1 and HDL-C are
both independent risk factors of CVD [120, 121]. TG enrich-
ment of LDL particles by CETP gives rise to the formation
of small dense LDL particles, which were found to be associ-
ated with established CVD [122]. Small dense LDL particles
have enhanced binding capacity to LDL receptor independent
binding sites in extrahepatic tissues and reduced binding ca-
pacity to the LDL receptor [123,124] which would extend their
residence time in circulation and potentially increase their
infiltration rate into the arterial wall. Small dense LDL parti-
cles are pro-atherogenic by accumulating in the vascular en-
dothelium, and depositing cholesterol in the subendothelial
space [125]. Postprandial endothelial dysfunction is positively
associated with the concentration of TRL in healthy individu-
als and in patients with elevated fasting TG [126]. Thus, post-
prandial lipemia influences lipoprotein size, distribution, and
metabolism.

Challenging lipid metabolism in individuals with a strate-
gically designed meal coupled to lipidomics is an experimen-
tal instrument for measuring the dynamic and interactive
changes of lipid pathways in the postprandial state. In the
near term, designing dietary challenges will depend on the
targets of biochemical pathways and the responsiveness of
physiological and clinical outcomes in question such as blood
pressure and insulin sensitivity. The complexity of lipid path-
ways is mediated by diet in several ways: (i) as substrates and
products of these pathways, (ii) as modulators of enzymatic
activities, (iii) as stimulators of hormonal regulation of enzy-
matic activities, and (iv) as effectors of gene expression regula-
tion. For example, shotgun lipidomics identified fluctuations
in MUFA and SFA FFA, and acyl carnitines that reflected the
switch from �-oxidation to glycolysis and fat storage during
an oral glucose tolerance test in healthy subjects [78]. Devel-
oping a standardized challenge to scrutinize lipid metabolism
combines lipid biochemistry and effects from food, points of
regulation at various transcriptional and posttranslational lev-
els, cellular lipids and abundance, and interactions between
organ systems and the plasma compartment.

There are several advantages to measuring lipids in the fed
condition to discriminate individual variation as metabolic
phenotypes. In a study investigating the response of healthy
individuals measured three times in response to the same
challenge meal, as many as 50% of the total measured lipids
were “individual discriminators”. Individual discriminators
are metabolites for which the variation in metabolic response
to the defined dietary challenge within each subject was sig-
nificantly lower than the variation among the three subjects.
These findings highlight the fact that certain metabolites are
indicators of response to a specific meal rather than simply
reflections of recent and habitual dietary fatty acid composi-
tion [127]. When designed appropriately, the challenge can
be a tool to perturb specific pathways of interest. A challenge
in which all lipid pathways are interrogated and measured
simultaneously would be ideal, but this feat would require
formulation of dietary components that are substrates to all
pathways in question, and not abundant in the food supply
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and circulation. Assessment of pathway activities can be done
for isolated pathways with ease.

8 Designing interventions: Cohort
selection criteria

In studies designed to discover the relationships between diet
and health among different cohorts within the general pop-
ulation, selection criteria can be critical. Study criteria must
deliver statistical power to accommodate multiple posthoc
statistical tests possible. Some outcome variations stem from
biological variability within groups. Sex and BMI influence
peak/nadir and time courses of postprandial hormonal re-
sponses [128]. Sex also influences lipid metabolism in a va-
riety of ways, including greater very low density lipoprotein
secretion rates and lower postprandial TG concentrations in
women compared with men [129]. Metabolic status such as
obesity determines circulating postprandial leptin dependent
on the macronutrient composition of a dietary challenge [130].
Differences in postprandial lipid metabolism are also caused
by normal dynamic fluctuations in metabolism as part of
diurnal rhythms and other cyclical events. For example, in
women, lipid metabolism is affected by the phase of the men-
strual cycle [131]. Other determinants include health status
(e.g. diabetic versus healthy) [132], age [133], and even place
of residence, which reflects cultural differences as well as
differences in food availability and composition [134]. Not
surprisingly, genetic factors interact with diet to contribute
strongly to interindividual variation in lipid metabolism, and
contribute significantly to phenotype [135]. For example, the
combination of a variant lipoxygenase genotype and increased
dietary intake of the n-6 PUFA resulted in increased intima-
media thickness, a measurement of atherosclerosis progres-
sion whereas, the intake of n-3 PUFA was negatively associ-
ated with intima-media thickness [136]. Metabolic outcomes
of interest will determine the appropriate time intervals and
frequency of blood draws [137]. The controllable confound-
ing variables that could potentially interact with dependent
variables of interest need to be identified a priori.

Because small variations in the exact composition of meals
result in variable responses and because the influence of diet
is variable depending on the individual, studies must be de-
signed to capture both variables. The traditional approach of
using a randomized, placebo-controlled design, in which half
of the participants are randomized to treatment and the other
half are randomized to the control arm, fails when the aim is
to understand the phenotypic differences among individuals.
The crossover design is powerful when each participant acts
as his or her own control, undergoing both the treatment and
control arms repeatedly to obtain estimates of intraindividual
variation. In the future, as tools develop to control the compo-
sition and structure of food coupled to more comprehensive
measurements of repeated time samples using lipidomics, in-
vestigators and clinicians will gain a powerful diagnostic tool
to understand an individuals’ postprandial lipid metabolism.

9 Use of chemometrics to reveal
complexities of lipid metabolism

The concept of chemometrics has its origin in chemistry. The
overall aim to mathematically extract relevant information
from high-dimensional empirical data makes chemometrics
ideally suited for omics research [138]. The high dimension-
ality of datasets in lipidomic studies makes it often difficult
to visualize the results, and correlations between different
variables may compromise the utility of traditional statisti-
cal methods. To address the issue of multidimensional and
correlated data, a research field of bioinformatics and com-
putational methods in lipidomics research is emerging, ex-
tensively reviewed by Niemelä et al. [139]. We have limited
the scope of our review to the use of chemometrics for statis-
tical experimental design and multivariate analysis (MVA) in
nutritional lipidomics.

9.1 Statistical experimental design

A systematic approach of maximizing meaningful data while
limiting the contribution of noise already in the stage of set-
ting up the experiment is crucial when dealing with the vast
amount of data produced in a lipidomics study. Statistical ex-
perimental design has been used extensively for this purpose,
for instance in predictive metabolomics and has great poten-
tial in improving the quality of nutritional lipidomics studies
as well [140–142]. It can advantageously be used throughout
the workflow, from defining the aim to the final extraction of
information. As a consequence, it limits the noise and makes
the study contain data with the information relevant to the
specific study aim/hypothesis addressed. The idea is to obtain
well-balanced data by spanning the variation in a systematic
way, which can be done through for instance factorial and
D-optimal designs [143]. Furthermore, multivariate design
can be used to optimize the selection of objects that span the
biological variation [144, 145].

9.2 Multivariate analysis (MVA)

Traditional univariate statistical methods commonly used,
such as Student’s t-test, are sensitive toward missing data
and assume variable independence, which makes them less
suitable than MVA for lipidomics and other large-scale omics
data. Since omics data often contain a large number of vari-
ables tested simultaneously, large datasets are generated with
potentially intradependent variables, which represent a risk
for cumulative errors and biased results. To that end, MVA,
through different mathematical tools, creates robust models
for analyzing the complexity of the lipidomic data. This is
done by reducing the dataset to a few latent variables that
represents the majority of the variance among the measured
variables. MVA methods can be divided into unsupervised
projection methods and supervised methods where the user
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Figure 4. Principal component analysis is an unsuper-
vised multivariate projection method for pattern recog-
nition in multidimensional data tables. To illustrate the
concept of principal component analysis, the variables
(x1, x2, x3) describing the objects (black squares and
gray circles) are reduced from a three-dimensional
space to a 2D plane by modeling the principal com-
ponents in the direction of the largest variability. The
resulting score plot (to the right) facilitates the inter-
pretation of clusters and outliers among the objects.
This concept might be extended to reducing unlimited
number of variables to typically one to three principal
components in order to summarize the major portion
of the variability.

defines which variables belong to the X dataset (e.g. lipidomic
profile) and which belong to Y dataset (e.g. intervention
group).

Principal component analysis is a popular unsupervised
projection method for pattern recognition often used to ob-
tain an overview of all the observations/subjects included
in the study, both visually and mathematically [144]. This
overview plotted in a 2D (or 3D) coordinate system is achieved
by projecting the multidimensional data to a few orthogonal
principal components, also called latent variables (axes in
the coordinate system). The first component (PC1) summa-
rizes the largest possible portion of the systematic variation in
the data set and the following principal components contain
decreasing portions of the variation in the dataset (Fig. 4).
Regression analysis between large data sets can be achieved
through the supervised methods of projections to latent struc-
tures (PLS), and its extension orthogonal (O) PLS [146]. In
OPLS, systematic variability in the X data set is separated
into two parts, related and unrelated to Y. In doing so, inter-
pretability is greatly enhanced and the resulting coordinate
system will contain variability in X related to Y on the x-axis
and unrelated to Y on the y-axis.

For clinical applications, principal component analy-
sis and OPLS methods have been used in a number of
metabolomics studies, reviewed by Madsen et al. [147]. How-
ever, in nutritional lipidomics, such methods are still not
used to its full potential. A few examples of successful applica-
tions exist, exemplified by studies of responsiveness to dietary
cholesterol [148–150], and to a dietary lipid challenge [127],
as well as studies of altered lipid metabolism in relation to
osteoarthritis [151]. In the future, we anticipate an increasing
number of studies using a combination of the strengths in
both univariate analysis and MVA to reveal complexities of
lipid metabolism.

10 Translation: What is not known, what
needs to be developed

The ultimate test of any new scientific strategy is its ability
to bring knowledge to practice. The field of translational sci-
ence is establishing standardized protocols and metrics to

accelerate the processes of bringing scientific breakthroughs
to human health. Lipidomics is ideally suited to participate.
The translation of nutrition research is both forward and re-
verse. Translation is forward when it brings scientific break-
throughs in the laboratory to public policy and marketplace
action. Translation is reverse when it alerts the scientific
community of the gaps in knowledge that underlie diversity
in diet-dependent health outcomes in the population [152].
Lipidomics will enhance the power of lipid knowledge in
applications in diagnostics; the early recognition of health
disparities, in interventions; and the recommendations for
inclusion or removal of lipid components in diets and in ther-
anostics. The application of theranostics, a key component of
personalized medicine in which treatments are tailored based
on the test results [153,154], will lead to the demonstration of
efficacy and safety of various dietary interventions in individ-
uals in practice.

Lipids have a long history in diagnostics of health, (serum
cholesterol, TG, LDL, HDL, free fatty acids) precisely because
they are highly responsive to pathologic, metabolic, dietary,
and genetic diversity. This diagnostic power of lipids will
increase as lipidomics studies reveal patterns of lipids that
are reflective of normal and aberrant states and in parallel,
technologies to measure these lipids comprehensively and
more accurately improve to bring lipid measures to clinical
practice [155].

Lipids can be highly active as dietary ingredients whether
that SFA that alter metabolism or the n-3 PUFA that alter
signaling pathways. Lipidomics technologies are revealing
novel mechanisms of the actions of dietary lipids and the ef-
fects of diet on lipid metabolism. The comprehensive nature
of lipidomics is particularly effective in evaluating the breadth
of nutritional interventions, both efficacy and unanticipated
side effects [156–159]. The future importance of lipidomics
cannot be overstated in part because we still know so little
about lipids. The cataloguing of lipids will continue a pace
with the ever more sensitive and high-throughput analyti-
cal platforms emerging [18]. The great excitement will come
with a more detailed and predictive understanding of the
functions of lipids in vivo and the directed manipulation of
those functions through explicit dietary manipulation. How-
ever, to understand lipid functions in vivo, new toolsets will
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need to be developed that extend the reach of science into the
complex structures of lipids as they function.

Lipids are metabolites and soft structures. We need to
understand both. Lipidomics analytics exceeds our ability to
separate subcellular compartments of lipids in which the soft
structures function. Cell biology can assist greatly by devel-
oping the means to capture/sample functional units of sub-
cellular compartments as they exist in vivo. A portend of
this direction is the lipidomic study of mitochondria [160].
Yet we need to go farther. Novel biologically based separation
systems are likely to be critical to complement the more tradi-
tional physically based separation methods. The recognition
that retroviruses escape their cellular hosts by co-opting their
lipid membrane microdomains led to novel separation meth-
ods for lipid rafts, greater insights into viral replication and
novel drug and dietary targets for membrane functions [161].

As metabolites, lipids are part of complex pathways and
while the absolute concentration of each intermediate is valu-
able information, the actual flux through pathways is a key to
understanding function. Analytic platforms capable of mea-
suring varying concentrations of metabolic intermediates as
a function of time (fluxomics) are a holy grail of lipidomics
and kinetics. The first generation of these studies is already
providing a glimpse of this approach [162]. Combining flux
with spatial discrimination is a dream that is tantalizingly
close with MS imaging [163]. Perhaps the most perplexing
aspect of biological lipids is that in spite of the diversity of
complex lipids, the absolute and relative concentrations of the
lipids themselves and even the fatty acids that are esterified
to them remain remarkably constant. How cells sense and
regulate the relative abundance of lipids remains unknown,
except for one, cholesterol. Breathtakingly elegant studies led
by Brown and Goldstein, laid out the basic cholesterol-sensing
mechanisms, the signals transducing the effective cholesterol
concentrations within the ER and the resulting coordinate
regulation of cholesterol, synthesis, uptake, and mobilization
to normalize intracellular concentrations [164]. Discovering
the mechanisms by which the concentrations of docosahex-
aenoic acid, ARA, etc., are regulated in cells is a tantalizing
challenge for the field of lipidomics whose solution would
lead immediately to strategies to control these molecules for
therapeutic benefits.

11 Conclusions

The field of lipidomics is bringing lipids into the main-
stream of research and translation. Lipids themselves, the
long underappreciated biomolecule class, are beginning to
reveal their functions through lipidomics in sufficient de-
tail to guide nutritional interventions. It is now the role of
the lipid specialists to recruit scientist collaborators in fields
from nanoscience to clinical medicine. The resulting collab-
orations will set a new standard for multidisciplinary and
integrative science.
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