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Abstract: The use of computational modeling and
simulation has increased in many biological fields, but
despite their potential these techniques are only
marginally applied in nutritional sciences. Nevertheless,
recent applications of modeling have been instrumental
in answering important nutritional questions from the
cellular up to the physiological levels. Capturing the
complexity of today’s important nutritional research
questions poses a challenge for modeling to become
truly integrative in the consideration and interpretation
of experimental data at widely differing scales of space
and time. In this review, we discuss a selection of
available modeling approaches and applications relevant
for nutrition. We then put these models into perspective
by categorizing them according to their space and time
domain. Through this categorization process, we iden-
tified a dearth of models that consider processes
occurring between the microscopic and macroscopic
scale. We propose a ‘‘middle-out’’ strategy to develop
the required full-scale, multilevel computational models.
Exhaustive and accurate phenotyping, the use of the
virtual patient concept, and the development of
biomarkers from ‘‘-omics’’ signatures are identified as
key elements of a successful systems biology modeling
approach in nutrition research—one that integrates
physiological mechanisms and data at multiple space
and time scales.

Introduction

Nutritional science is presently undergoing a data explosion as

an increasing number of studies are incorporating methods from

genomics, transcriptomics, proteomics, and metabolomics. How-

ever, it is presently unclear how these high-dimensional datasets

can be related to the physiological characterization of phenotype

using traditional nutritional research methods such as indirect

calorimetry, nutrient balance, body composition assessment, and

isotopic tracer methods. Thus, a fundamental challenge for

nutrition research is to connect these data that are collected at

vastly different spatial, temporal, and dimensionality scales.

Although statistical analysis is still the method of choice to deal

with the high dimensionality of ‘‘-omics’’ datasets, systems biology

and computational modeling approaches begin to reveal quanti-

tative mechanistic relationships between these various measure-

ments.

A large variety of computational modeling approaches have been

applied to wide-ranging levels of organization—from molecules

to humans. The processes that are modeled include molecular

interactions, signaling pathways, metabolic pathways, cellular growth,

anatomical structures, and physiological processes. Accordingly,

computational approaches differ widely with application.

In this review, we discuss the relevance of current and future

applications of computational modeling in nutrition research. To

this end, we first introduce important concepts in nutrition and the

typical issues for modeling that arise in this field. Then, we give a

broader review of some representative modeling approaches that

have successfully addressed key nutritional questions. We then

proceed to identify knowledge and technology gaps and suggest

how the computational approaches may be integrated and

extended to address these gaps and bring nutritional systems

biology modeling an important step forward in the near future.

Nutrition and Modeling
Nutrition research investigates the processes by which the living

organism receives and utilizes the materials necessary for the

maintenance of life and health (as defined by James S. McLester in

his classic 1927 textbook) [1]. Traditionally, nutritional research

investigates these processes at the level of the whole organism.

From a thermodynamic viewpoint, all living organisms exist in a

state that is far from equilibrium. To maintain this state, it is of

central importance to harvest sufficient energy from the

surroundings. This energy comes from the controlled combustion

of the macronutrients carbohydrate, fat, and protein. The

overarching organizing principle expressed in the Dynamic

Energy Budget theory [2], which considers that energy from food

is extracted (by the gut), stored in reserves (body fat, protein, and

carbohydrate pools), and distributed throughout the body to fuel

the processes essential for life. These processes include the

generation of heat, maintenance of gradients across cell mem-

branes, the production of gametes, the synthesis of structural mass,

the establishment of maturity, somatic maintenance, and maturity

maintenance. This organization effectively decouples the organ-

ism’s internal energy from the external world, facilitating
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homeostasis. As such this principle has a clear relevance for

nutritional physiology.

In contrast to the dietary macronutrient energy sources (i.e.,

protein, carbohydrate, and fat), dietary micronutrients, notably

mineral elements and vitamins, also play a key role for the overall

health of the organism. Inadequate amounts of some dietary

micronutrients have been demonstrated to cause classic deficiency

diseases such as scurvy, beriberi, anemia, goiter, and cretinism. As

a third class, various essential nutrients exist that can be used for

both energy harvesting, synthesis of structural mass, as well as

precursors of specific bioactive compounds. These nutrients

include the essential amino acids and the essential omega-3 and

omega-6 fatty acids.

Many health disorders are not necessarily caused by dietary

deficiencies, but more generally from imbalances between intake

and utilization of nutrients. While there is general consensus that

proper nutrition can prevent various chronic diseases, under-

standing the health effects of specific nutritional compounds is

extraordinarily complicated. First, delivery of a nutritional

perturbation is difficult to control over long time periods and

such perturbations often have relatively subtle effects over the time

scales typically investigated (as compared to pharmacological

compounds whose effects are detected on time scales from minutes

to days or weeks). Second, it is very difficult to unravel the

distinctive bioactivity of a nutritional compound of interest when it

is supplied in a background diet containing hundreds of other

bioactive components. Third, it can be difficult to assess the

bioavailability of the nutrient of interest, especially at the level of

specific target organs or cells.

The problem of bioavailability at the whole body level has had a

long history of mathematical modeling, specifically for trace

elements. Computational kinetic methods were introduced in

nutritional sciences along with the use of stable isotopes where the

interpretation of the kinetic data required the development of

appropriate mathematical models [3–6]. Typically, compartmen-

tal modeling approaches are used to describe the absorption,

distribution, and elimination of a nutrient. Common to most of

these models is the high level of aggregation, where the body is

adequately described by only a few compartments. Together, these

models aim to provide a rational basis for the determination of the

nutritional requirements of the body, and for the understanding of

differences in requirements (both locally for organs and at the

whole body level) for different micronutrients.

While such traditional modeling methods have been very useful, the

real challenge for modeling in nutrition is to help understand and

rationally manipulate the complex relationship between nutrition and

health, which is determined by the integrated multiscale responses to

nutrients, ranging from whole body to subcellular levels of

organization and over time scales of minutes to years.

This difficulty is apparent from the problems that arise with

current efforts to pinpoint the precise role of nutrition in the

metabolic syndrome. At the long time scale and whole body level

of organization, a prolonged period (,weeks to years) of

consuming more energy than is expended results in the gradual

development of obesity and increases one’s risk for developing

insulin resistance—a hallmark of the metabolic syndrome. The

study of insulin resistance has revealed that the function of this

hormone at the level of organs and tissues occurs on the time scale

of minutes to hours. For example, insulin stimulation of skeletal

muscle glucose uptake, inhibition of hepatic glucose output,

inhibition of adipose tissue lipolysis, and a host of other

physiological effects occur on this time scale. Methods developed

to unravel and quantify the molecular mechanisms underlying

these effects have shown the involvement of complex intracellular

signal transduction pathways, changes of gene expression,

modification of enzyme kinetics, and intracellular molecular

trafficking. Furthermore, the production of insulin by pancreatic

beta cells occurs in response to glucose and amino acids and can

be modulated by fatty acids, all of which can clearly be influenced

by diet and nutrition. The unique electrophysiological properties

of beta cells are influenced by the metabolism of glucose and fatty

acids, while the electrical bursting and oscillatory behavior is

coupled to insulin secretion on the time scales of seconds to

minutes. Thus, understanding how nutrition impacts the mecha-

nisms underlying insulin resistance requires a quantitative analysis

and description of a multiscale, highly coupled regulatory network

that includes thousands of components, ranging over subcellular to

whole body levels of organization and spanning time scales from

seconds to years.

Although a conceptual perspective as outlined above can be

derived from literature without too much effort, it is extremely

difficult to develop an integrated quantitative understanding that

spans the entire complexity of the mechanisms involved. In

principle, mathematical models offer this capability and therefore

are required to more fully understand the physiological basis not

only of the metabolic syndrome, but of the role of nutrition in

health and disease in general. Without such a quantitative and

integrative approach, it is inevitable that one will get lost in the

tangle of bubbles and arrows typical of conceptual models and find

oneself unable to weigh the relative importance of each

component or interaction in determining the overall physiological

phenotype.

The field of mathematical modeling in nutrition is very diverse

and presently no single mathematical formalism allows one to

generate the required integrated quantitative understanding of

nutrition as formulated above. Therefore, in developing our vision

of what is needed in the coming years, we now review several

representative models that have successfully addressed key

nutritional questions and together may help point the way to a

more integrative modeling approach.

First, we review modeling approaches for processes at the

cellular level describing the biochemical processes (i.e., signaling-

and metabolic pathways) that operate to convert food ingredients

into energy and building blocks for the cell as the fundamental unit

of life. Insight into these processes teaches us how metabolism is

regulated at its most basic level. Furthermore, modeling at the

cellular level provides the entry point to considering the vast

quantity and complexity of ‘‘-omics’’ data.

Second, we review the use of metabolic flux analysis (MFA) as a

framework for the quantitative analysis of material fluxes within the

single cell as well as between different cell populations and organs,

up to the whole body level. Thus, MFA forms a natural bridge

between different levels of organization and different time scales.

Thirdly, we review compartmental models of lipoprotein

metabolism, because lipoproteins are the major mediators of lipid

trafficking between organs, and many processes linked with lipids

are associated with the metabolic syndrome, which includes

cardiovascular diseases, obesity, and insulin resistance, modern

plagues in industrialized societies. Finally, we review mathematical

models of body weight and composition regulation and the

complex relationship with macronutrient metabolism at the whole

body level. Modeling at this whole body physiological level

demonstrates the importance of considering long time scales that

are characteristic of chronic diseases like obesity and metabolic

syndrome.

Of course, we cannot cover all areas of modeling in the field of

nutrition in this review. For instance, we will not review models of

gut-associated processes of nutrient absorption and bacterial
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conversion of nondigestible food components into such important

compounds as short-chain fatty acids (for a review on the latter, see

reference [7]). Another important area that we will not review is

models of the neuro-hormonal regulation of food intake and

metabolism. Nevertheless, the collection of models that we chose

to review ensures that we cover process occurring on a vast space–

time spectrum, from nanometer to meter and from microseconds

to years. Therefore, the four areas of modeling that we discuss

provide a sufficiently broad basis for our goal, namely to review

the available computational approaches that are key to answering

central questions in nutrition and that can serve as a platform for

the development of more integrative systems models.

Cellular Modeling Approaches
Mathematical models of cellular processes can be used to

simulate cellular behavior to better understand the complex

mechanisms underlying experimental observations. This under-

standing may relate to specific research questions such as how the

system will react to the addition of a certain substrate (nutrient) or

the deletion of a gene. Alternatively, cellular models may also

address more general issues such as how control is distributed in a

complex network. Predictions can subsequently be experimentally

tested, and observed deviations from model predictions can help

with data interpretation through the process of modifying the

model to better represent the true behavior of the cell [8].

To allow such quantitative simulation and prediction, cellular

modeling ultimately aims at a detailed, mechanistic description of

molecular processes occurring in single cells. Towards this goal,

known pathway structures are translated into differential equations,

which—after estimation of the unknown parameters from exper-

imental data—can be used for dynamic simulations of a pathway or

network behavior. However, such mechanistic modeling approach-

es are presently only feasible for rather small pathways or networks.

Thus, even on the cellular level, there is a gap between kinetic

mechanistic models on the one hand and more coarse-grained

modeling approaches on the other hand. The latter are larger in

scope (i.e., they encompass more modeled components and

interactions—up to the genome scale) but describe the interactions

between the modeled components with less mechanistic detail. This

section provides an overview of the two categories of mathematical

modeling approaches that are used to describe processes on a single

cell level and mentions application areas.

Mechanistically detailed kinetic models. The first type of

cellular models describe molecular mechanisms at the cellular level

on the basis of ordinary differential equations. These models

consist of balance equations describing the dynamic concentration

changes of the considered molecules with appropriate rate laws

(e.g., mass action or Michaelis-Menten kinetics). In most cases,

these models consider only a few dozens of molecules and either

focus on metabolic or on signaling processes. Prominent examples

of such models include a model of glucose metabolism of the red

blood cell [9], and a model for the yeast Saccharomyces cerevisiae that

mechanistically describes the organism’s response to osmotic shock

[10]. The latter describes biochemical reactions comprising

receptor stimulation, mitogen-activated protein kinase cascade

dynamics, gene expression activation, and adaptation of cellular

metabolism with a thermodynamic description of volume

regulation and osmotic pressure. As such, this model is one of

the few kinetic models that describe processes on more than one

cellular level. A recent model of the carbon transfers in the hepatic

folate cycle [11] is an example of a model directly related to a

specific nutrient. More cellular models can be found in dedicated

model repositories (www.systems-biology.org, www.biomodels.

org).

From such kinetic models, mechanistic insight about the

modeled molecular interactions can be obtained by means of

numerical simulation and other computational analyses such as

metabolic control analysis, which determines how the control of

flux is distributed in metabolic networks [12]. One of the major

hurdles in the development of these mechanistic models is that

significant uncertainties exist in the molecular mechanisms and in

the respective model parameter values. Typically, such informa-

tion is estimated from either kinetic measurements in an isolated in

vitro system, or from parameter optimization methods to fit the

model to quantitative (and ideally dynamic) measurement data

obtained from the in vivo system. Although currently such data are

being generated for single cell organisms, model structure and

parameter identification challenges remain huge, particularly with

models of larger size [13].

Large scale, coarse-grained topological network models.

The second type of mathematical models are coarse-grained

topological network models. These models—denoting static

representations of components (nodes) and interactions (links)—

describe the interactions between molecular components with less

molecular detail than kinetic mechanistic models (and sometimes

without any detail), but often include hundreds to thousands of

components, up to the full genome scale. The capability to create

such models arose in parallel with the capability to sequence and

annotate genomes and the advent of high-throughput ‘‘-omics’’

techniques. These models basically represent an organism-specific

collection of components and interactions based upon, for example,

the genome annotation and on information from the literature. As

such, topological models can be first considered as comprehensive

collections of the information about a particular network (i.e.,

components and interactions) within a specific organism. Well-

known examples for such topological models are the signaling

networks of the epidermal growth factor receptor [14] and the Toll-

like receptor [15] or the recently published complete metabolic

network of the human cell [16]. The complexity of these models can

even be further expanded by including component interaction,

physical arrangement, and evolutionary changes as separate

additional dimensions [17].

A special class of topological models, stoichiometric metabolic

network models, describes an organism’s complete set of metabolic

reactions. Typically, stoichiometric models describe the chemical

stoichiometries of the biochemical reactions of an organism in its

entirety to predict the steady state fluxes of all pathways in the

network given the uptake rates of one or more substrates (e.g.,

nutrients). Such models have been developed for many organisms,

including yeast [18], mouse [19], and human [16,20].

Utility of cellular models. Mechanistically detailed kinetic

models allow one to numerically simulate the behavior of a small

part of the cellular system in response to changes of environmental

parameters (e.g., model inputs) or when specific cellular components

are modified (e.g., gene knock-outs). Coarse-grained topological

network models can be used for qualitative simulations, even at the

basic level of curated knowledge. For example, assuming that

individual regulatory interactions are either on or off generates a

kind of discrete network dynamics much the same as in logical

electronic circuits, hence they are referred to as Boolean network

models [21]. Surprisingly (because no mechanistic detail was

included), patterns in the regulatory properties of such networks

often match those found experimentally in the modeled biological

system.

Current research tries to uncover and exploit pattern structures

in the interactions that make up the topological model so as to

infer specific regulatory properties of the network. For instance,

metabolic reactions from the recently reconstructed human
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metabolic network can be positioned in a variant of the so-called

bow-tie structure (one that makes a network flexible and robust at

the same time [22]) depending on whether or not they are fuelled

by essential nutrients [16]. As another example, since metabolic

networks appear to be organized in a modular and hierarchical

manner, methods for rational decomposition of the metabolic

network into relatively independent functional subsets can help us

better understand the modularity and organization principle of

large-scale, genome-wide networks [23].

Secondly, graphical representations of topological network

models may be used to map results of transcriptomics, metabo-

lomics, or proteomic experiments that compare cellular behavior

under different conditions. As such, these models allow for a more

or less direct linkage between wet lab and model at the -omics

level. For instance, representing increased/decreased concentra-

tions in a network context often allows one to efficiently locate by

visual inspection the spots in the respective network where most of

the changes occurred. Recently, a graph-based algorithm has been

proposed that allows one to computationally map transcript data

onto a genome-scale metabolic network model. This approach

identifies so-called reporter metabolites (i.e., metabolites around

which the most significant transcriptional changes occur) from

gene expression data as demonstrated by a study on different

carbon sources and/or genetic perturbations in yeast [24]. In

another approach, a stoichiometric metabolic network model was

used to predict putative active regulatory sites in metabolism on

the basis of quantitative metabolome data and a thermodynamics-

based computational approach [25,26].

Finally, the concept of constraint-based modeling [27] (an

example of which is flux balance analysis) was developed to

perform computational simulations with stoichiometric metabolic

network models. Such simulations are based on a numerical

optimization of a certain biological objective (e.g., biomass yield)

within the constraints defined by the steady-state mass balance

equations describing the reaction stoichiometry along with energy

[28], thermodynamic [25,26], or physico-chemical considerations

[29]. Within certain limits, constraint-based models can predict

the effect of metabolic gene deletions on the fitness of a cell and the

modulation of phenotypes in response to substrate (i.e., nutrient)

availability can be studied in silico and verified experimentally.

Towards closing the gap between the two cellular

modeling approaches. The future challenge for modeling

processes on the cellular level will be to describe larger networks in

a mechanistic way. For example, ideally we would like to predict

the effects of simultaneous application of a nutrient with a drug

such that the best cellular marker for a given response (e.g.,

hepatocyte insulin response) can be identified. To meet this

challenge, models are required that integrate the kinetic as well as

the topological approaches. Such models should first be calibrated

using experimental flux and ‘‘omics’’ data taken from a set of

individuals with well-chosen biological variability (i.e., genetic

difference), then used for prediction. On a small-scale, this

integrative approach was demonstrated to work for lysine

production in Corynebacterium glutamicum [30], where various genes

were deleted or overexpressed and their effects were correctly

predicted. It may also be feasible to construct large-scale

mechanistic models by combining mechanistically detailed

kinetic models and coarse-grained topological network models

[31]. In fact, it was recently shown that complex system behavior is

often largely defined by the model structure (i.e., the interaction

topology) [32,33]. This finding further supports the expectation

that in order to obtain meaningful predictions most likely only a

few molecular processes need to be described in great detail

with precise parameters estimates, while the rest of the system can

be described using the coarse-grained interaction topology.

Therefore, since genome-scale topological network models are

now available from microbe to man and high-throughput

experimental data are becoming more and more available, it is

possible that genome-scale kinetic models can be built in the not-

too-distant future [34]. Thus, we foresee that the activities in the

field of cellular modeling will eventually lead to a situation where

in silico prediction of the effects of nutritional and

pharmacological treatments in health and disease will be part of

the biological research routine [8].

MFA
Flux balance analysis is closely linked to an experimental

technique called MFA, which allows one to quantify intracellular

metabolic fluxes on the basis of acquired experimental data on the

uptake and/or production rates of a few metabolites. Stoichio-

metric metabolic network models, as discussed above in Cellular

Modeling Approaches, provide the basic modeling background for

MFA [35].

The power of MFA can been significantly augmented by also

including experimental data from stable isotope labeling experi-

ments [36]. Metabolic networks are thereby probed with complex

mixtures of multiply stable isotope-labeled precursors, and the

data analysis proceeds via isotopomer distribution modeling,

which is again built around stoichiometric mass balance (or,

rather, isotopomer balance) equations [37–39]. Stable isotope-

aided MFA has found broad application in metabolic engineering

efforts aimed at the targeted improvement of microbial fermen-

tations [38]. MFA is increasingly being used in biomedical studies,

especially since some investigators have argued that metabolic

pathways, rather than genes or proteins, are the true units of

function in biology and biochemistry [40]. Thus, flux analysis of

target proteins and amino acids in lipoproteins, or of isotope-

labeled target compounds in lipoproteins such as glycerol, may

help elucidate the mechanisms by which components in the diet

(especially dietary fatty acids) affect lipoprotein metabolism and

thereby influence the risk of cardiovascular disease (see Modeling

of Lipid Transport, below). Furthermore, intrahepatic flux analysis

of triglycerides, glycerol, and fatty acids may help elucidate the

mechanisms by which components in the diet affect development

of hepatic steatosis and subsequent changes in lipoprotein

metabolism, which are major contributors to the development of

insulin resistance.

Because metabolic fluxes are closely associated with the

physiological phenotype, whereas genome-wide stoichiometric

models provide the basis for their modeling, MFA bridges the

gap between genotype and phenotype, and provides a key for

integration of the modeling levels. Indeed, MFA has become a key

technique to advance the understanding of biochemical control

and gene function. Mapping the effects of gene overexpression and

deletion onto changes in intracellular metabolic fluxes, has often

revealed unexpected compensatory regulation mechanisms that

result in an absence of any clear phenotype. Alternatively, such

analyses can help explain an unexpected phenotype. The series of

MFA studies on amino acid overproduction by the bacterium

Corynebacterium glutamicum (reviewed in [41]) provides a number of

interesting examples that illustrate this point. One particularly

interesting case shows how this organism adapts to growth on

acetate instead of glucose. Not only does it activate the classical

acetate-induced glyoxylate pathway, but it also greatly increases

the amount of oxaloacetate that is decarboxylated to (phosphoe-

nol) pyruvate thereby creating the required acetyl-coenzyme A

needed as energy substrate for the citric acid cycle. In mammalian

systems, modern genetic techniques can generate highly selective
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genetic perturbations, targeted globally or to specific organs,

which has led to a variety of mouse models with interesting

metabolic phenotypes. MFA of these mouse models promises to

help elucidate mechanisms of metabolic regulation in both health

and disease.

Modeling of Lipid Transport
Modeling can help to explain the mechanisms involved in the

dyslipidemia that occurs with type 2 diabetes, obesity, and the

metabolic syndrome. Lipids are a major source of energy and are

essential for many processes in the cell, including signaling. Lipids

are stored and transported as nonpolar, inert triglycerides.

However, neutral lipids are hydrophobic and need to be packed

into hydrophilic particles, called lipoproteins, in order to be

transported in the blood or into lipid droplets to be stored inside

the cell. Lipids are safely stored inside adipocytes in the adipose

tissue, however when the lipid load exceeds the adipose tissue

storage capacity, lipids are instead stored in other organs resulting

in ectopic lipid distribution. These organs, such as liver, heart,

pancreas, and muscle are apparently suboptimally equipped to

store lipids, and insulin resistance develops. This is obvious in

patients with lipidystrophy, who lack adipose tissue and develop

severe insulin resistance as well as other symptoms normally

associated with obesity [42].

The liver plays a central role in lipid metabolism as it

redistributes dietary, systemic (released from adipose tissue), and

de novo synthesized lipids into very low density lipoproteins

(VLDLs), the precursor for low density lipoproteins (LDLs). In

humans, LDL is the major cholesterol carrier in the blood. Under

atherogenic conditions it can enter the arterial wall and cause

atherosclerosis. The associated dysregulation of lipoprotein

metabolism leads to dyslipidemia, which is typically observed in

type 2 diabetes, obesity, and the metabolic syndrome [43],

explaining why VLDL and LDL have been intensively studied.

The lipoproteins consist of a core of nonpolar lipids, such as

triglycerides and cholesterol esters, surrounded by an amphi-

pathic monolayer of phospholipids and free cholesterol. On the

surface different proteins (apolipoproteins) are attached, hence the

name lipoproteins. Traditionally, the lipoproteins are divided into

different classes depending on their protein content and their

density, measured by ultracentrifugation. In general, a large particle

has a higher lipid to protein content and thus has a lower density.

The metabolism of the apolipoprotein B100 (apoB100) carrying

lipoproteins (VLDL, intermediate density lipoprotein [IDL], and

LDL) is briefly outlined in Figure 1A. The kinetic properties of a

lipoprotein particle depend on the composition of the different

apolipoproteins, the size, and most likely other factors such as the

composition of the surface phospholipids. For instance, triglycer-

ides in VLDL are hydrolyzed by lipoprotein lipase, which in turn

is activated by apolipoprotein CII on the surface but inhibited by

apolipoprotein CIII.

Current models of in vivo lipoprotein metabolism provide

lipolytic rates. Today, lipoprotein kinetics are studied using

infusion of stable isotope-labeled amino acids and glycerol [44,45].

The enrichment of the stable isotopes is measured for time periods

of 8 h up to 5 d in different lipoprotein classes separated by

ultracentrifugation.

The main choice of mathematical model to analyze the resulting

data has for the past few decades been multicompartmental

modeling. Generally these models consist of blocks as described in

Figure 1B. A block may contain several compartments, each of

which represents material with homogenous kinetics, often

corresponding to a separated density fraction of lipoproteins.

Recently a model was published where stable isotopes of leucine

and glycerol are used as tracers, and VLDL1 and VLDL2 are

modeled in a combined model [46]. In this model each

compartment in the VLDL blocks (Figure 1B) corresponds to a

specific triglyceride:apoB100 ratio (triglycerides per particle) and is

represented by one apoB100 compartment and one triglyceride

compartment. The equation for the rate of change of an apoB100

compartment is thus linked to the rate of change of the

corresponding triglyceride compartment size. This procedure of

tying together the apoB100 and triglyceride models enhances the

precision of the model as a whole. As each particle contains one

single copy of apoB100, the model provides an estimate of the

lipolytic rates (the loss of triglycerides per time unit), which can

Figure 1. Lipid transport in the body: modeling of apoB100-containing lipoproteins. (A) apoB100 carrying lipoproteins are synthesized in
the liver by stepwise addition of lipids to the growing particle. Once secreted, lipoprotein lipase (LpL) and hepatic lipase (HL) may hydrolyze the
triglycerides. Intermediate- and low-density lipoproteins (IDLs and LDLs) may be taken up by the LDL receptor. (B) The outline of compartmental
models describing lipoprotein kinetics consists of subsystems of tracer molecules (e.g., leucine and/or glycerol), which can be replaced by forcing
functions from sample data. A time delay represents the incorporation of the tracer molecules into proteins and triglycerides and is modeled as a
series of compartments. The complexity of the blocks representing VLDL1, VLDL2 (and IDL and LDL) varies with the studied individuals, the length of
the study, and the infusion (bolus or primed constant).
doi:10.1371/journal.pcbi.1000554.g001
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then be used as a physiological readout for answering study

questions related to dyslipidemia.

Novel modeling approaches help to link up with

molecular mechanisms. There are also new, mechanistically

driven approaches emerging in cholesterol modeling. A particle-

centered model approach has been described independently by

Hübner [47] and by van Schalkwijk [48]. They showed that

cholesterol plasma levels can be simulated as resulting from a

steady state of a particle distribution. Formulated as a stochastic

particle population model, a large number of individual

lipoprotein particles must be modeled for a simulation, and

considerable computational power is required. Alternatively, as in

[48] a large number of lipoprotein compartments similar to the

ones figuring in traditional lipoprotein models (see above) may be

defined and simulated, thereby greatly improving the

computational efficiency. Pearson and coworkers [49] have

published a deterministic model for lipoprotein endocytosis in

which different processes for the uptake of LDL and VLDL

particles and the receptor kinetics are integrated in a model and

compared to in vitro data. These model approaches are still in

early development, but show that there is a progress in integrating

molecular information in the field of lipoprotein/cholesterol

modeling, further helping to tie down phenomenological/

physiological observations to underlying molecular mechanisms.

What can we learn about normal and patho-physiology

from models of lipoprotein metabolism? As shown, stable

isotope studies and mathematical modeling provide a tool for the

in vivo probing of lipoprotein kinetics and help to reveal

mechanisms involved in dyslipidemia observed in various disease

states. Results from recent kinetic studies in individuals with the

metabolic syndrome have been reviewed recently [50,51]. These

and other results testify that models have played a key role in

elucidating the regulation of secretion of the differently sized

lipoproteins. For instance using the above model it was shown that

type 2 diabetes patients oversecrete the largest VLDL1 particles

whereas VLDL2 production is comparable [51] adding to the

knowledge that VLDL is oversecreted in obesity and type 2

diabetes [52,53]. Moreover, the approach allowed pinpointing

liver fat as the best determinant of VLDL1 production [54] and of

the dynamic response to insulin [55].

What is the lipid-lowering mechanism of statins/omega-

3/weight loss? By quantifying lipoprotein metabolism in treated

and nontreated individuals, the effect of interventions on lipid

metabolism can be studied. Both weight loss and omega-3

treatment have thus been shown to act on lowering plasma

lipids by decreasing the secretion [56–59], whereas an increased

clearance rate was found to be the resultant of the lipid-lowering

drugs statins [60].

To elucidate further details of the molecular processes involved

in lipid metabolism, in vitro studies are required. The information

gained in these molecular studies can serve as scaffolds for models

that can then be tested in vivo using the appropriate experimental

labeling techniques, analysis protocols, and mathematical models.

Clearly, in vivo studies, in combination with mathematical

modeling, are essential to provide information regarding both

normal physiology, dys-regulation in disease states, and mecha-

nistic insights of drug effects, because this cannot be learned from

molecular studies in vitro.

Modeling Whole Body Metabolism and Body Weight
Change

Understanding the dynamics of human body weight change has

important consequences for nutrition-related conditions such as

obesity, starvation, and wasting syndromes such as anorexia

nervosa and cancer cachexia. But making quantitative predictions

of body weight and composition changes has proved difficult

because of the number of interacting components and the inherent

nonlinearity of the system. However several recent mathematical

models have substantially improved our ability to integrate whole

body metabolism data with body composition data and make

quantitative predictions as reviewed below.
What proportion of weight loss is attributable to reduced

body fat? Ideally, weight loss interventions would primarily result

in body fat loss, but unfortunately lean tissue mass is also reduced.

A recent mathematical model was developed to quantify the

factors that determine the proportion of weight loss coming from

body fat versus lean tissue. The basis for the model was a classic

theory of Gilbert Forbes who hypothesized that longitudinal body

composition changes are described by movement along a

logarithmic curve relating lean body mass to fat mass [61]. The

new updated equation accounted for the effects of the initial body

fat mass as well as the direction and magnitude of weight change

as depicted in Figure 2 showing the proportion of weight loss from

body fat mass as a function of initial fat mass for different degrees

of weight loss [62].

The predictions of the new equation compared favorably with

data from human under-feeding and over-feeding experiments

and accounted for previously unexplained trends in the data. For

large weight changes, such as the massive weight losses found in

obese patients following bariatric surgery, Forbes’s original

equation consistently underestimated the lean tissue loss—a

potentially dangerous result. Because the new equation accounted

for the magnitude of the weight loss, it provided better predictions

of the body composition changes observed in bariatric surgery

patients.
What is the required energy deficit per unit weight

loss? Weight loss is caused by eating fewer calories than are

expended to perform physical work and maintain life. But how

many calories translate to one kg of body weight change and what

are the biological determinants of this calorie-to-weight loss

conversion? The ubiquitous dieting rule ‘‘3,500 kcal to lose one

pound ’’ has been used for more than half a century to estimate

expected weight loss. Despite its popularity, the biological basis of

this rule has been mysterious. A recent mathematical model

showed that the caloric equivalent of lost weight is not a constant

but rather depends nonlinearly on initial body fat mass, with fatter

Figure 2. The proportion of body weight loss (DBW) from loss
of body fat mass (DFM) as a function of initial fat mass (FM) for
different degrees of weight loss DBW as calculated using a
novel mathematical model [62] that revisits Forbes classical
theory [61].
doi:10.1371/journal.pcbi.1000554.g002
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people requiring a greater energy deficit than lean people for the

same amount of weight loss [63]. The magnitude of weight loss

also plays a role in determining the caloric equivalent of lost

weight and the popular dieting rule was found to be approximately

valid only for obese people with initial body fat above 30 kg.

What permanent lifestyle changes are required for

weight-loss maintenance? Diet and exercise can successfully

cause significant weight loss in obese individuals, but most people

eventually regain their lost weight. Weight regain is likely due to a

return to the former lifestyle and it is unclear what permanent

changes would be required to maintain lost weight. In other

words, if an obese person wishes to achieve a specified goal weight

then how would their diet or physical activity have to permanently

change to maintain their goal weight? A quantitative answer to this

question at the outset of an obesity intervention could help both

the patient and physician assess whether long-term adherence to

the calculated lifestyle change is a realistic proposition. Before a

recent mathematical model was developed to address this

important topic, such a calculation was not possible.

The mathematical model accounted for the decreased energy

requirements at a reduced body weight and incorporates the

nonlinear relationship between body fat and lean mass changes

[64]. The model calculated the expected change of steady-state body

weight loss arising from given changes of dietary energy intake and

physical activity. Conversely, the model equations were also solved

for the energy intake change required to maintain a particular body

weight loss. The model was developed using data from eight

longitudinal weight loss studies representing 157 participants with

initial body weights ranging from 68–160 kg and stable weight

changes between 27 and 254 kg. The model provided the first

realistic calculations of body weight and composition change as well

as the dietary modifications required for weight loss maintenance.

Importantly, the model was implemented using standard spreadsheet

software and can therefore be widely used by physicians and weight

management professionals [64].

Can weight loss interventions specifically target ‘‘belly

fat’’? The anatomical location of body fat storage is another

important issue of body composition. A common question is

whether there are ways to target the reduction of fat in specific

areas of the body. In particular, it would be desirable to target

visceral adipose tissue, commonly called ‘‘belly fat,’’ since fat

storage in this area is believed to confer greater risk of cardio-

metabolic disease. But what determines the relative change of fat

storage in some locations compared with others? Is it possible to

‘‘spot reduce’’ belly fat with certain diet or exercise programs?

A large number of clinical studies have investigated whether diet

interventions, exercise, or bariatric surgery can preferentially

target the reduction of belly fat, with some investigators

concluding that exercise specifically targets visceral adipose tissue.

However, a recent mathematical modeling analysis of these data

found that changes of visceral adipose tissue do not depend on the

type of weight loss intervention. Rather, the model showed that a

simple allometric equation with a single parameter explained more

than 70% of the variability of the data relating the changes of

visceral adipose tissue to changes of overall body fat [65]. The

model showed that changes of visceral adipose tissue are primarily

determined by overall body fat changes as well as the initial ratio

of visceral to total body fat—a variable that also accounted for the

influence of sex. The model also correctly predicted how

increasing weight loss decreases the proportion of fat loss from

visceral versus subcutaneous tissue [66]. The simple allometric

equation has clinical utility because it can be used as the

appropriate null hypothesis to test whether an intervention

specifically targets the reduction of visceral adipose tissue.

How does the body decide what fuel mixture to

burn? The food we eat has three macronutrients that the

body can use to provide energy: carbohydrate, fat, and protein.

But how does the body decide what fuel mixture to use? The

composition of our diet clearly plays a strong role, but does our

body composition also provide feedback that influences fuel

selection? How does fuel selection change during under-feeding or

over-feeding?

A two-dimensional ordinary differential equation model of

human macronutrient balance was recently developed where the

dynamics of the model were constrained to obey the Forbes

logarithmic body composition curve [67]. This procedure resulted

in a single equation that, for the first time, explained how

interactions of diet, energy expenditure, and fat oxidation are

quantitatively connected to changes of body composition [68].

Remarkably, the equation (containing no free parameters)

accurately predicted the observed changes of body composition

and fuel selection during both experimental under- and over-

feeding in adult humans when the measured food intake and total

energy expenditure were provided as inputs to the model. A

similar approach was also used to calculate fuel selection during

normal human infant growth and provided the first dynamic

picture of how metabolism adapts in concert with changes of diet

and energy expenditure to give rise to normal tissue deposition

over the first 2 y of life [69].

To better understand the complex interactions among meta-

bolic fluxes contributing to whole body fuel selection, a detailed

computational model of human macronutrient metabolism was

developed [70]. The model quantitatively tracks the metabolism of

all three dietary macronutrients and their interactions within the

human body. In particular, the model describes how diet

perturbations result in adaptations of whole body energy

expenditure, fuel selection, and various metabolic fluxes (e.g.,

lipolysis, lipogenesis, gluconeogenesis, ketogenesis, protein turn-

over, etc.) that ultimately give rise to changes of body weight and

composition on a time scale of days to years. The nonlinear

differential equation model was developed using published human

data from over 50 experimental studies and has been subsequently

validated using a wide variety of clinical data where the food

intake was controlled, including studies of over-feeding, under-

feeding, and isocaloric exchange of dietary macronutrients in lean

and obese men and women.

The computational model was designed with the specific goal of

helping to design, predict, and analyze the results of prospective

clinical studies and has been used to identify knowledge gaps and

thereby design a novel clinical research protocol currently

enrolling participants at the National Institutes of Health (NIH)

Clinical Center (ClinicalTrials.gov identifier NCT00846040).

Model simulations were instrumental for the design of the clinical

protocol to address questions about the length of time required to

detect a significant effect during the controlled diet intervention as

well as the required magnitude of the intervention and expected

sensitivity to interindividual participant differences and uncertain-

ties in measured parameters.

What is the cause of involuntary weight loss in patients

with advanced cancer? Often, patients with advanced cancer

experience debilitating involuntary weight loss. This wasting

condition, called cancer cachexia, is associated with a variety of

metabolic changes that affect macronutrient and energy balance.

A computational model of macronutrient balance was recently

used to integrate the available data on the metabolic changes in

patients with cancer cachexia. The resulting computer simulations

showed how the known metabolic derangements (e.g., increased

proteolysis, lipolysis, and gluconeogenesis) synergize with reduced
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energy intake to result in a progressive loss of body weight, fat

mass, and lean tissue [71]. The model was also used to quantify the

contribution of hepatomegaly to the elevated metabolic rate

observed in patients with advanced colon cancer [72]. The

computational model also provides a new tool to help predict the

effects of potential therapies. The model showed that the recently

suggested therapeutic approach of lipolysis inhibition could be

detrimental to cachexic patients because the simulations predicted

that fat preservation comes at the expense of further deterioration

of lean body mass due to increased reliance on body protein for

oxidation and gluconeogenesis. Importantly, the model helps

elucidate the mechanisms of body weight change in this complex

and serious disorder where it would be prohibitively difficult and

invasive to attempt a comprehensive clinical study.

Discussion

Here we will put the available modeling approaches into

perspective and work towards an approach for fully integrated

systems biology modeling applications in nutritional sciences.

Classification according to space–time scales. Classi-

fication and dimensions play a crucial role in comparing and

assessing the different model approaches. An excellent introduction

on different levels of mathematical modeling, especially on

multiscale modeling in biology, by Southern et al. [73] addresses

this point. In their publication, the authors divide the model

universe into 11 categories, according to levels of biological

organization. These range from the smallest scale at the quantum

level to the largest scale at the environment level.

Following this classification scheme, the nutritional models

discussed in this review span seven levels, from macromolecular to

organism. Armed with such a hierarchical view, one can also

distinguish between single level models, which are confined to one

level of organization, and multilevel models that span two or more

levels. In fact, to date, there are only a few examples of multilevel

models in biology. The most famous is the Virtual Heart,

developed by a large consortium formed along the Physiome

Project [74,75]. Another example is provided by the PhysioLab

platforms developed by Entelos to predict the efficacy and safety of

therapeutic interventions in areas such as metabolism, rheumatoid

arthritis, and atherosclerosis [76,77]. To visualize their level and

range, and for discussion purposes, we have positioned in Figure 3

an Entelos-type multilevel model together with the model

approaches presented in this review in a quantitative context. In

addition to the space dimension given by Southern, we also added

the time scale dimension of the models, as some approaches at the

same organizational level differ significantly with respect to their

characteristic time scale. Clearly, the Entelos model approach is

the most advanced multilevel approach among the given models.

It can also be appreciated from Figure 3 how far a signal

transduction model is removed from a whole body model. This

does not mean that a connection is a priori impossible, but simply

that in order to link these two models one has to bridge numerous

levels of time and space.

At this point we can ask the question, what class of models

should a nutritional scientist choose for her/his research? It is clear

that there is no right or wrong answer to this question, but each

modeling project should be designed fit the research questions it

should help to answer. Thus, a model constrained to a single level

is best suited to quickly integrate experimental data of that same

dimension. This helps to initiate and stimulate a collaboration

between wet lab and dry lab researchers, because results of such a

model can provide rapid feedback and develop new insights that

will lead to improved experimental designs. The models of

metabolism and body composition change discussed in this paper

are very good examples. Interestingly, these minimally parame-

terized models can predict endpoints of body composition and

energy metabolism reasonably well on time scales ranging from

days to years. An important conclusion from this observation is

that these models may provide ideal constraints and a framework

to embed smaller functional units. Working single level models can

be established in a matter of weeks as far as the basic equations are

concerned, but the careful parameterization and validation require

considerably more time and effort.

The modeling of cholesterol (models 3 and 4 in Figure 3)

provides examples for an approach that could be coined as

‘‘middle out’’ approach, where modeling is started from a single,

intermediate level and the model is subsequently extended

upwards to include more physiological constraints or downwards

to integrate molecular processes. Often, such an approach can be

helpful to integrate new experimental data within an existing

single level modeling framework.

Multilevel models are the most resource-intensive models and

will require a high level of ambition. As an example, the

PhysioLab platforms developed by Entelos are designed to

reproduce clinical observations in humans, based on detailed

mechanistic descriptions of processes from the cellular to the

organism level. Rather than attempting to include all aspects of

physiology, or all intracellular events, the design process identifies

the key biological processes and molecular players that are

necessary to answer the clinically relevant questions. Data are

gathered from the literature to quantitatively describe these

Figure 3. Overview of the time–space range of the diverse model types, which are discussed in this review.
doi:10.1371/journal.pcbi.1000554.g003
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processes by coupled ordinary differential equations, which are

solved numerically as a function of time. After calibrating the

model at various levels to be consistent with known in vitro and

physiological data, the final model predictions are validated

against clinical trial results for several existing therapies. While

these modeling platforms are developed for commercial purposes

in the field of pharmaceutical research and development, the

approach may also be suitable for a range of multilevel problems

in nutritional science and is likely better suited to producing

physiologically meaningful results than direct attempts to extend

detailed models at the signaling level ‘‘upward’’ to the multicellular

context.

A lack of overlap between existing models at different

space–time scales is a hurdle for the integration of existing

models. There are several areas in nutritional research (e.g.,

metabolic syndrome, weight management, or degenerative

diseases) that provide interesting candidates for building

multiscale models. To illustrate the issues involved, we return to

the example of insulin resistance as a central issue in nutrition-

related disease. In Figure 4A, we have tried to construct an

example of a multiscale model for the disease process of insulin

resistance by using existing models. On the top level, the organism

level, a body weight dynamics model [61,78] accounts for overall

energy and macronutrient balance of the body. This model has

been calibrated using data from controlled diet studies that

measured energy expenditure, respiratory quotient, oxidation rates

of fat, protein, and carbohydrates in conjunction with body weight

and composition changes. On a lower level, an insulin-glucose

model links changes in glucose and insulin levels. Such a model

(e.g., the ‘‘minimal model’’ of glucose metabolism [79]) uses

plasma data from glucose tolerance tests or glucose-insulin clamps.

This model is coupled with the top level model via the

carbohydrate energy flows. At the lowest level, a subcellular

model of the insulin signaling pathway [80] simulates the response

of pathways affecting glucose, protein, and fat metabolism

resulting from changing insulin concentrations. Signaling

pathway models are typically calibrated using data from in vitro

cell systems and in vitro enzyme kinetics. Such a multilevel model

would be able to connect insulin action at a cellular level with

insulin sensitivity represented by the minimal model and resulting

in shifts of whole body energy metabolism and body composition.

However, analyzing this model in the time–space plot

(Figure 4B), one can see a large gap between models 2 and 3

representing the gap between physiological modeling and cellular

Figure 4. Example of a future multiscale model in the area of insulin resistance, built from three existing models [78–80]. (A)
schematic overview of the different model layers. (B) Individual model layers plotted along their time–space dimensions. Model 4 denotes a new
model that enables the incorporation of tissue-specific gene expression data, which form an important data source from the nutritional wet lab.
doi:10.1371/journal.pcbi.1000554.g004
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modeling. We believe this to be a general phenomenon in

nutrition: knowledge and models with a high level of detail at the

cellular level, a physiological model spanning the levels of organ to

whole body that include the main regulatory mechanisms, and a

picture of general trends in resulting phenotypes that have been

obtained from nutritional intervention studies and/or statistical

population analyses. What is missing is a middle-out model from

the micrometer to centimeter range, which covers processes

between cells, and within and between tissues on a time scale from

minutes to days. However, it is also apparent from Figure 4B that

models targeted to one level can be used to inform and constrain

models at differing levels. To illustrate this point, the model that

predicts the proportion of weight loss from body fat as a function

of initial fat mass for different degrees of weight loss (Figure 2) [81]

has been used to provide a quantitative constraint on how the

body regulates metabolism of carbohydrate, fat, and protein [61].

This information was useful for the development of a detailed

computational model [78] that simulates the physiological

mechanisms of fuel selection at the whole body level underlying

the regulation of body composition change. The next step requires

adding further mechanistic detail at smaller space–time scales,

such as hormonal regulation of nutrient uptake and utilization

following meals [82]. Such a process demonstrates a logical path

towards generating models with the required level of detail for

nutritional research.

Experimental data has become increasingly available

at the intermediate level between microscopic and

macroscopic. Major sources of new insight in nutritional

sciences are generated on exactly the level missing in the

glucose-insulin example. For example, insights regarding insulin

resistance and the metabolic syndrome have been obtained by

investigating the function of macrophages in specific tissue [83], by

studying the function of adipocytes under various dietary

conditions [84], or by characterizing the effect of tissue-specific

gene knock-outs on metabolic status [85,86]. To integrate these

experimental data, the initial concept should be extended with a

missing fourth model that links gene-specific information from cell

systems with physiological processes on the tissue level; this would

lead to a functional embedding of cellular information.

In our glucose/insulin example we can develop models for both

endogenous glucose production (primarily a liver-based process)

and glucose utilization (dominated by neural tissues and the

musculature) as measured in response to glucose tolerance tests or

glucose-insulin clamps. Details on the molecular mechanisms

underlying the physiological responses of each tissue (derived from

‘‘-omics’’ studies) can then be added. Such efforts could help

explain how a complex organism such as the human reacts to the

dietary stress of, for example, meals with a high glycemic index, or

excess saturated fat. A model at this level would also provide a

platform for linking up with models of how imbalanced nutrition

interacts with processes involved in both metabolic health and

diet-induced disease development.

The need for models that can span levels from cells to tissues,

organs, and organism is further highlighted by the question of how

to translate studies done on humans versus studies done in cell

culture. For example, how would one try to connect the results of a

study using hepatocytes grown on media with very high saturated

fats with a person eating a high saturated fat diet? When one

considers that many experimental results obtained using tissue

cultures are often extrapolated to humans, any study related to

human nutrition requires models that tie the microscopic with the

macroscopic level.

The middle-out design strategy is a promising approach to

generate new multilevel nutritional models. Summarizing the

previous discussion, new multilevel nutritional systems biology models

are needed that should (a) be complete in a space–time dimension sense

and (b) include data and mechanisms to link adjacent levels. For the

development of such models, we propose the ‘‘middle-out’’ design

strategy, that focuses on the level at which the most experimental data

are available, and extends downward as well as upward. Going

downward, it is not necessary to include all possible details in the

model. Indeed, engineering models used to design integrated circuits or

airplanes do not model the condensed matter physics responsible for

the electrical properties of the circuit components. Rather, it is

important to identify the minimum set of players and mechanisms that

are essential to explain the known facts. Going upward, nutritional

models should preferably link to endpoints that can be quantified in

human intervention studies. Here, it is essential to at least include

biomarkers that can play the role of surrogate endpoints. These can

later be linked explicitly with true physiological readouts. Having

experimental data at two or more levels then allows one to build a

mechanistic model that effectively describes the higher aggregation

level as a consequence of the phenomena at the lower level, and is

consistent with all experimental data. In the Virtual Heart model, data

at the cellular level (ion transport) and at the organ level (heart

anatomy) thus provide the means to realistically describe cardiac

arrhythmias. In the PhysioLab platforms, in vitro data on cellular

behavior are synthesized to give an organ level description of, for

example, inflammation, that can then be calibrated against clinical

observations. Ideally, the model design strategy enables the

identification of knowledge gaps: areas where the model is incapable

of bridging between the levels thereby indicating that an essential

player or mechanism has been left out.

Generate phenotypic data to characterize both health and

disease states. In many disease conditions, subphenotypes

have only been poorly recognized. Model building for nutrition

research can only succeed to the extent that phenotypes have been

classified and characterized, especially if one is interested in

understanding transitions between health and disease.

Use the virtual patient concept to deal with variability. One

of the central emerging issues in interpreting experimental data is the

fact that an enormous natural variation occurs between individuals in

any nutritional study. This variability has to be dealt with in nutrition

models. In fact, the variation can be readily simulated by a multilevel

model because one single-model structure can lead to several

physiological outcomes and different phenotypes depending on the

lower level states. The latter may be characterized incompletely, thus

allowing for the variation of experimental data to be adequately

captured by the model. Basically there are two ways of handling this

situation: probabilistic modeling, or a deterministic description of

‘‘virtual patients’’ [76,77]. In the latter, multiple parameterizations of

the model are developed, each corresponding to an observed or

hypothesized individual patient (or patient group). Model simulations

are performed over cohorts of such virtual patients, and the results

(phenotypic readouts) can be matched to experimental observations in

cohorts of real patients, which are frequently only available as cohort

averages.

Use biomarkers to bridge microscopic and macroscopic

levels. In a multilevel nutritional model, going from the lowest

to the highest level in space–time, it does not seem feasible to

retain the full mechanistic detail of the lowest level simply because

data at the (sub) cellular level will generally not be available.

However, we may use the increasingly available ‘‘-omics’’ data to

develop biomarkers, or proxies of what is going on at this lowest

level.

So far, gene and pathway-directed modeling has been

developed in a subcellular to cellular dimension, and kinetic

modeling of intracellular phenomena may become more and more

PLoS Computational Biology | www.ploscompbiol.org 10 November 2009 | Volume 5 | Issue 11 | e1000554



routine (see above Cellular Modeling Approaches). At a higher

level, integrated genomics, proteomics, and metabolomics data

can potentially also be used to bridge between cellular and

physiological states and fill the modeling gap between the

microscopic and the macroscopic levels. One can envision that

through continued and massive experimentation signatures will be

developed that are characteristic of specific pathway perturbations

or disease states. These signatures can give a description of the

state of the transcriptome, proteome, and/or metabolome and

thus link to models developed on this level. The challenge here is

not the modeling (e.g., ‘‘-omics’’ data have been used in

conjunction with pharmacokinetic/pharmacodynamic models

[87]), but rather the choice of experiments. Which model systems

are most representative of the in vivo situation, which systems are

most accessible, and how many signatures can be defined?

Nevertheless, it has been shown that cellular signatures can

indeed be related successfully to ‘‘-omics’’ data obtained in vivo or

ex vivo [88,89], which demonstrates how model systems can be

used in a multilevel approach. On the other hand, the ‘‘-omics’’

signatures are linked to functionally characterized states, such as

the outcome of a drug treatment or a disease on a cellular,

supracellular (e.g., coculture assays as used by the profiling

company Bioseek [90]), or on the organism level. Omics

signatures, for example in the form of biomarker patterns, also

provide a means to characterize virtual patients and virtual patient

cohorts and link with the phenotype at the highest level.

Summary and Conclusion
From this review and discussion it is apparent that two issues in

computational modeling in nutritional sciences now need major

attention. First, the complex biological research questions, typical

for nutritional sciences, often require a multilevel modeling

approach. However, this is a time and resource intensive effort

that is best undertaken within a large research consortium.

Second, a central need exists for models and experimental data

that bridge the microscopic and the macroscopic levels. Most

animal disease models or human nutritional studies currently

provide tissue-specific ‘‘-omics’’ data, whereas cell–cell interaction

data is becoming increasingly available from in vitro systems. To

interpret this new hybrid of wet lab data, dedicated computational

models are required to deal with cell-specific expression data in a

physiological context.

We identified the middle-out strategy as a promising one for

generating the required nutritional computational models and the

virtual patient concept is a convenient way to deal with the large

individual variation typical of nutritional studies. To characterize

(sub) groups of individuals, much will be gained by a careful

classification and characterization of disease (sub) phenotypes.

Finally, the use of biomarker signatures derived from integrated

‘‘-omics’’ data has a potential to bridge the microscopic and

macroscopic levels. In conclusion, we have put available

computational modeling approaches for nutrition into perspective,

and we have suggested the essential elements of an approach for

future fully integrated systems biology models for application in

nutritional sciences.
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