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Abstract

Patella aspera and Patella candei are two abundant limpet species commercially exploited and often used as a delicacy in 

the Madeira Archipelago, but there is a lack of scientific knowledge about these species. This study investigated the nutri-

tional value and fatty acids of this species across the coast of Madeira Archipelago. The lipid content (7.71–12.60% dw), 

proteins (48.22–64.09% dw), ashes (11.12–23.12% dw) and carbohydrates (4.5–10.9% dw) were determined in P. aspera and 

P. candei at different collection sites. In the fatty acid composition, a total of 23 fatty acids (FAs) were identified. P. aspera 

showed the highest amount of monounsaturated FAs (MUFAs, 35.02%) and eicosapentaenoic acid (EPA, 12.59%), and P. 

candei presented the highest level of oleic acid (OA, 28.25%), polyunsaturated FAs (PUFAs, 27.26%) and arachidonic acid 

(AA, 11.38%). The Σω3/Σω6 dietary ratio presented levels > 0.25 suggesting that these marine molluscs are a good source 

of ω3 for dietary intake. Within each specie significant differences (p < 0.05) across sites were observed. High amounts of 

essential nutrients were shown in Patella species collected at Selvagens site while poorest levels were shown in Patella col-

lected at Lido. The evaluation of the nutritional traits of P. candei and P. aspera shows that these limpets are good sources of 

essential fatty acids for human health and that the distribution of limpets is a key factor when determining its dietary value.
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Introduction

The global consumption of seafood has been increasing 

steadily in the last few years, presenting an average 9.01 kg 

per capita in 1960 to 18.98 kg per capita in 2013 [1]. In 

Madeira Archipelago (Portugal), limpets are typically found 

on the rocky shores and form part of the staple diet of the 

local population. In this region, Patella aspera and Patella 

candei are two abundant limpet species commercially 

exploited and often used as a delicacy in the regional gas-

tronomy [2, 3]. However, despite their great consumption, 

a lack of scientific work is found regarding these species 

dietary value and nutritional status.

The marine resources represent one of the most nutritious 

foods and are acknowledged as excellent sources of essential 

nutrients—such as high-quality proteins (amino acids), min-

erals, vitamins and lipids, that positively affect the human 

health [4–7]. For instance, the essential fatty acids (LA and 

ALA) and the long chain polyunsaturated fatty acids (LC-

PUFA) are essential components of the biological mem-

branes and precursors of a variety of signalling molecules 

(e.g. leukotrienes, eicosanoids, thromboxanes) responsible 

for multiple physiological and pathological responses [6, 

8–11]. Nevertheless, humans do not have the ability to syn-

thesize them and thus their intake through diet is crucial. 

Moreover, research regarding the relations between diet and 

disease have linked the intake of these fatty acids with the 

prevention of cardiovascular diseases and cancer, reduction 

of coronary heart disease, decrease of mild hypertension and 

alleviation of the symptoms of rheumatoid arthritis [8–13].

Although the scientific community has already pointed 

dietary benefits of consuming other limpet species, such as 

P. depressa, P. ulyssiponensis, P. vulgate, P. rustica and P. 

peroni, scarce information is available about P. aspera and 

P. candei as important natural sources of essential nutrients 
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to human health [14, 15]. Also, it is known that the dietary 

value of seafood is affected by a wide range of factors, such 

as water temperature, maturity, season, genetics and diet 

[13]. In Madeira Archipelago the characteristics of seafood 

is strongly conditioned by geological and environmental 

conditions [16], that influences the food availability, which, 

in turn, affects the nutritional value of marine invertebrates, 

including the limpets species [17]. Therefore, the aims of the 

present study were to evaluate the dietary value of P. candei 

and P. aspera across the coast of Madeira Archipelago, as 

potential sources of MUFAs and PUFAs.

Materials and methods

Chemicals

All chemicals were of analytical grade. Heptane, meth-

anol, anhydrous sodium sulphate was supplied by 

Sigma-Aldrich (Missouri, USA) and ethyl acetate were 

acquired from Merck (Darmstadt, Germany). Chloroform 

and sodium chloride were bought from VWR (Carnaxide, 

Portugal).

Samples collection

This study was carried out in Madeira, a volcanic island 

(32°38′N, 16°54′W) located southwest of continental Europe 

in the subtropical North Atlantic. Two species of Patella 

with commercial size (≥ 4 cm) were collected at a depth of 

1–4 m from seven different sites of coastal Madeira Archi-

pelago (Fig. 1), namely Selvagens, Garajau, Ponta de São 

Lourenço, Lido, Desertas, Rocha do Navio and Porto Moniz. 

In the total, 20 individuals per site and specie were caught 

and the species of Patella aspera (Röding 1798) and Patella 

candei (d’Orbigny, 1840) were identified according to Weber 

and Hawkins [3] and Weber and Hawkins [2], respectively. 

All species were washed and the edible portion was stored 

Fig. 1  Map with the location of Madeira Archipelago and the sampling locations reported in the text
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in a freezer at − 20 °C, for a period no longer than 3 months, 

after homogenization and pooling according to collection 

site and specie. All pooled samples were then freeze-dried 

at − 60 °C and 0.1 mbar in a Savant freeze-dryer. Samples 

were considered dried when the residual water content was 

less than 0.4% (w/w), using a Gibertini Eurotherm electronic 

moisture balance (Gibertini Elettronica, Novate Milanese 

MI, Italy).

Proximate composition

The water content of Patella species was determined in fresh 

edible portion, with samples to be oven dried at 105 °C, 

The FAMEs were identified through comparison of reten-

tion times and mass spectra obtained with two standard sam-

ples: “bacterial acid methyl esters CP mix” and “Supelco 

37 component FAME mix” from Supelco (Missouri, USA). 

To quantify the FA of the limpet sample, heneicosanoic 

acid from Sigma-Aldrich (Missouri, USA) was used as an 

internal standard. The results were expressed in mg  g− 1 dry 

weight and in percentage of total FA, with the quantification 

made according to the response factor determined for each 

FA present in the standards, in comparison with the henei-

cosanoic acid (internal standard).

The hypocholesterolaemic/hypercholesterolaemic fatty 

acids ratio (H/H) was determined according to Fernandes, 

Vasconcelos [23]:

Statistical analysis

Data are reported as mean of five replicates ± SD and differ-

ences between sites were assessed by one-way analysis of 

variance (ANOVA), followed by a B-Tukey post hoc analy-

sis, p values of < 0.05 were considered statistically signifi-

cant. Principal component analysis (PCA) was applied to 

summarize the information in a reduced number of princi-

pal components. Varimax rotation was selected to represent 

the planar projection of the loadings (variables) for the two 

18 ∶ 1�9 + 18 ∶ 2�6 + 20 ∶ 4�6 + 18 ∶ 3�3 + 20 ∶ 5�3 + 22 ∶ 5�3 + 22 ∶ 6�3

14 ∶ 0 + 16 ∶ 0

until a constant weight. The ashes content was determined in 

freeze-dried samples through a muffle furnace, as described 

by Kalogeropoulos, Chiou [18]. The protein content was 

determined through an elemental analyser Truspec 630-200-

200, by multiplying the nitrogen content per 6.25. The lipid 

content was determined according to modified Bligh and 

Dyer [19] as described in Fernandes, Fernandes [20]. The 

amount of carbohydrates was estimated from the difference 

between the ashes, protein and lipid content. The energetic 

value was determined according to the following equation:

Fatty acid analysis

Total lipid extracts were analysed for their fatty acid com-

position as fatty acid methyl esters (FAMEs) as previously 

described by Lepage and Roy [21], modified by Cohen, Von-

shak [22]. Briefly, the fatty acids were converted to FAMEs 

by adding a mixture of ethyl acetate–methanol (1:19 v/v) 

to total lipid aliquots which was then kept at 80 °C for 1 h. 

FAMEs were analysed by gas chromatography (Agilent HP 

6890—California, USA) equipped with a mass selective 

detector (Agilent 5973—California, USA) and a fused silica 

capillary column Supelcowax™ 10 (30 m × 0.25 mm inner 

diameter, 0.25 µm film thickness) from Supelco (Missouri, 

USA). The chromatographic conditions were: initial tem-

perature, 40 °C for 5 min; temperature gradient, 2 °C  min− 1; 

final temperature, 250 °C for 5 min; injector temperature, 

260 °C; transfer-line temperature, 260 °C; split ratio, 1:100. 

Helium was used as the carrier gas with a flow of 1.0 mL 

 min− 1.

Energetic value

(

kcal

100g

)

= 4 ×
[

(%)carbohydrates + (%)protein
]

+ 9 × [(%)lipids]

principal components. All statistical analyses were per-

formed using SPSS. v 23 for Windows.

Results and discussion

Proximate composition

It is known that the proximate composition determines food 

palatability and dietary value. Despite the high consumption 

of Patella candei and Patella aspera, scarce or non-existent 

information is found with respect to their biochemical com-

position. The proximate compositions for P. candei and P. 

aspera are shown in Tables 1 and 2, respectively. The traits 

analysed for the two limpets showed significant differences 

(p < 0.05) across sites. Moisture contents varied between 

41.06% and 53.59%, with P. candei displaying the highest 

amount quantified. The species under study, presented much 

lower amounts than other molluscs of Pacific Sea, such as, 
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clams (79.4–91.8%), oysters (85.4% and 88.3%) and scallops 

(77.8–78.8%) [24].

Lipid contents of P. aspera and P. candei ranged from 

7.71 to 12.60% (dry weight basis) with P. aspera compris-

ing slight higher amounts of this macromolecular pool than 

P. candei. According to Ackman [25] these species can be 

considered as a high fat resource for human diet, since the 

values found for the lipid content are higher than 8% in 

dry weight. However, some exceptions can be found, for 

instance P. aspera collected at Selvagens and Desertas, and 

P. candei collected at Selvagens and Ponta de São Lourenço, 

where the fat content is lower and/or equal to 8%. In the 

literature similar lipid levels have been reported for other 

molluscs, namely two species of oysters in offshore aquacul-

ture (Crassostrea gigas, Ostrea edulis; 6.9–14.4%) [26] and 

other species of oyster captured in Pacific Sea (Crassostrea 

virginica; 7.74% and 9.06%) [24]. Moreover, Karakoltsi-

dis, Zotos [27] and Miletic, Miric [29] reported contents 

of lipids in mussel bivalve (Mytilus galloprovincialis) from 

Mediterranean between 5.56 and 15.38% and in two marine 

shellfish (Venus verrucosa, Mytilus galloprovincialis) from 

the Adriatic Sea levels between 5.43 and 9.61%. Other stud-

ies in Pacific sea revealed lowest lipids levels in scallops 

(0.78–0.95%) and clams (1.65–7.60%) [24] and, highest 

lipid contents in sea urchin (Paracentrotus lividus) from 

Sardinia (15.52–19.26%).

The levels of crude protein (> 22% wet basis) observed 

for the two limpet species studied were higher than to gen-

eral seafood (e.g. fish between 15–20% wet basis) [28]. 

Therefore, these limpets can be considered as a rich natu-

ral source of protein for human consumption. The highest 

amount of protein was verified for P. aspera collected in 

Selvagens (64.09% dw), whereas the lowest was found in 

P. candei collected in Ponta de São Lourenço (48.22% dw). 

Nevertheless, these limpets showed similar amounts when 

compared to other marine molluscs, namely clams, oysters 

and mussels [24, 27, 30]. Likewise, lower levels of crude 

protein were found in other aquaculture oysters and bivalves 

from Adriatic Sea [26, 29], while highest levels were found 

in scallops captured in Pacific Sea [24].

Table 1  Proximate composition and energetic value (kcal/100 g, wet basis) of edible mollusc P. candei in different collection sites

Different letters in the same column have significant differences (p < 0.05)

Data presented as mean ± standard deviation (n = 5)
1 Values expressed in % (g/100 g of wet basis)
2 Values expressed in % (g/100 g of dry weight basis)
3 Values expressed in kcal/100 g of wet basis

Site Moisture1 Total  lipid2 Crude  protein2 Total  carbohydrate2 Total  ashes2 Energetic  value3

Selvagens 44.05 ± 2.38a 8.26 ± 0.35a 57.14 ± 0.98a 15.22 ± 1.28a 19.38 ± 0.05a 203.55 ± 1.11a

Garajau 41.30 ± 1.73b 11.63 ± 0.54b 57.28 ± 2.00a 16.06 ± 2.60a 15.02 ± 0.07b 233.68 ± 1.41b

Ponta de São Lourenço 53.59 ± 0.16c 7.98 ± 0.34a 48.22 ± 1.32b 23.07 ± 1.03b 20.73 ± 0.05c 165.67 ± 0.88c

Lido 50.38 ± 1.29c,d 9.84 ± 0.10c 59.74 ± 1.76a 9.66 ± 1.51a,c 20.76 ± 0.35c 181.69 ± 0.93d

Desertas 47.94 ± 0.66a,d 9.17 ± 0.19a,c 59.88 ± 2.44a 7.84 ± 2.66c 23.12 ± 0.02d 183.95 ± 0.45d

Rocha do Navio 43.94 ± 0.25a,b 9.61 ± 0.46c 61.98 ± 0.62a 11.66 ± 1.00a 16.76 ± 0.08e 213.59 ± 1.47e

Table 2  Proximate composition and energetic value (kcal/100 g, wet basis) of edible mollusc P. aspera in different collection sites

Data presented as mean ± standard deviation (n = 5)

Different letters in the same column have significant differences (p < 0.05)
1 Values expressed in % (g/100 g of wet basis)
2 Values expressed in % (g/100 g of dry weight basis)
3 Values expressed in kcal/100 g of wet basis

Site Moisture1 Total  lipid2 Crude  protein2 Total  carbohydrate2 Total  ashes2 Energetic  value3

Selvagens 49.97 ± 1.80ª 7.75 ± 0.27ª 64.09 ± 0.36ª 15.17 ± 0.65a 12.99 ± 0.01ª 193.53 ± 0.64a

Garajau 45.90 ± 2.94ª,b 11.05 ± 0.15b 60.85 ± 1.94ª 16.98 ± 2.16a 11.12 ± 0.07b 222.21 ± 0.25b

Ponta de São Lourenço 41.06 ± 1.95b 12.60 ± 0.54c 58.42 ± 0.11ª 15.83 ± 0.58a 13.15 ± 0.08ª 241.86 ± 1.78c

Lido 47.22 ± 0.47ª,b 11.45 ± 0.56b,c 57.20 ± 3.81ª 13.04 ± 2.95a 18.31 ± 0.31c 202.67 ± 0.82d

Desertas 45.33 ± 0.87ª,b 7.71 ± 0.38ª 58.98 ± 0.28ª 16.38 ± 0.50a 16.92 ± 0.40d 202.77 ± 0.17d

Rocha do Navio 44.40 ± 1.69ª,b 10.30 ± 0.14b 60.64 ± 2.32ª 16.57 ± 2.84a 12.49 ± 0.66a,e 223.27 ± 1.85b

Porto Moniz 47.18 ± 2.79ª,b 10.21 ± 0.62b 59.73 ± 1.78ª 18.38 ± 2.49a 11.69 ± 0.09b,e 213.56 ± 1.43e
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There are significant differences (p < 0.05) in the 

amount of carbohydrate among the samples collected from 

different locations. In general, the contents of this nutri-

tional trait in samples were higher (4.1–10.7% wet basis) 

than to common nutritional composition presented in sea-

food (e.g. < 2% wet basis; general fish) [28]. These levels 

of carbohydrate might be due to the storage of glucose as 

glycogen, since it is known that some molluscs contain 

up to 5% of this storage carbohydrate [28]. P. candei in 

Ponta de São Lourenço (23.07%) comprised larger levels 

of this component than the P. candei collected in Desertas 

(7.84%). The Mediterranean mussel (Mytilus galloprovin-

cialis; 15.38–27.78%) [27] and European oyster (Ostrea 

edulis; 6.6–23.2%) [26] presented similar amounts of car-

bohydrate that those found in the present study. Still, the 

Linehan, O’Connor [30] studied the seasonal variation of 

oysters (Crassostrea gigas) in Pacific Sea and obtained 

higher amounts of carbohydrate between February and 

June (31.6–38.9%).

Minerals are essential for the correct functioning of the 

human body, with seafood being considered a good source 

of these components (< 2% wet basis, edible portion) [28, 

31]. Among species higher values of ashes were observed 

for P. candei, namely those collected in Desertas (23.12% 

dw), in contrast to P. aspera which presented the lowest 

amount determined (11.12% dw) at Garajau. All samples 

showed higher levels of ash, when compared to other marine 

molluscs, such as oysters (5.56% and 7.60%) and scallops 

(6.70–8.06%) of Pacific Sea [24], sea shellfish to the Adri-

atic Sea (8.14% and 12.09%) [29], mussel bivalves captured 

in Mediterranean (5.38–11.11%) [27] and Pacific oysters 

captured in different months (4.0–12.1%). Although, Sid-

well, Bonnet [24] reported similar ash content in three dif-

ferent species of clams that found in Pacific Sea (Marcenaria 

mercenaria, 24.02%; Mya arenaria, 7.13%; Spisula solidis-

sima 11.12%). In this study, the limpets investigated reveal-

ing the largest content of minerals (6.0–12.0% dry weight 

basis), may be considered as excellent sources of minerals 

for human consumption.

The energetic values found in limpets are directly related 

to the lipids, crude protein and carbohydrates contents of 

samples. Only P. candei in Ponta de São Lourenço presented 

lower levels of energetic values, < 170 kcal/100 g wet basis, 

which may be recommended to the energy-restricted diets. 

The other samples that exhibited higher levels of this trait 

can be suitable for energy-rich diets.

Fatty acid profile

The FA compositions of P. candei and P. aspera at different 

rocky shores of Madeira Archipelago are found in Tables 3 

and 4, respectively. A total of 23 FAs were identified. The 

most important saturated fatty acids (SFA) were 14:0, 16:0, 

18:0, the monounsaturated fatty acids (MUFAs) 16:1ω7, 

18:1ω9, 20:1ω9, and the polyunsaturated fatty acids 

(PUFAs) 18:2ω6, 18:3ω3, 20:4ω6, 20:5ω3. With respect to 

the total fatty acids (TFA) quantified, the highest contents 

were found in P. aspera (36.38 mg/g dry weight basis) and 

lowest contents were found in P. candei (17.17 mg/g dry 

weight basis).

Saturated fatty acids

The SFA levels found in the molluscs of all sites examined 

varied between 39.79% (P. candei, Selvagens) and 60.03% 

(P. candei, Lido) of TFA (Tables 2, 3). The major SFA 

was palmitic acid (PA, 16:0), with the highest concentra-

tion observed in P. aspera (Lido, 41.36%) and the low-

est in P. candei (Selvagens, 26.93%). The lower levels of 

PA observed in P. candei were similar to those previously 

obtained by Brazão, Morais [14] for other limpets collected 

in the Portuguese coast, namely P. depressa (16.30–24.49%) 

and P. ulyssiponensis (19.35–25.72%). Higher levels of PA 

were found in other marine gastropods, such as the Ostrea 

edulis (flat oyster, 10.35–32.91%), the Mytilus galloprovin-

cialis (black mussel, 9.10–33.76%), the Modiolus barbatus 

(bearded horse mussel, 4.89–36.57%) and the Arca noae 

(Noah’s ark shell, 4.67–32.05%) whose maximum levels 

are within the average values of PA found in both P. candei 

and P. aspera [17].

The sum of the major SFAs (stearic acid—SA, 18:0; 

myristic acid—MA, 14:0; PA) accounted 37.27–55.75% of 

the TFA detected. The lowest value observed (37.27% in P. 

candei, Selvagens) for this set of fatty acids constitutes an 

advantage for dietary intake, since high levels of these fatty 

acids are related to the promotion of hypercholesterolae-

mia, formation of thrombus and atheromatous deposits [23]. 

Moreover, similar levels of MA and SA have been reported 

for different species of oyster, mussel, limpets, sea snail and 

nudibranchs [14, 15, 17, 32–36].

Having in account the energetic value previously dis-

cussed, it is possible to note that the main contributor for 

this trait in limpets was mostly protein, in contrast to, lipids 

were SFAs are included. This constitutes a positive factor 

since the international dietary guidelines have recommended 

that SFAs should contribute no more than 10% of the dietary 

energy, in order to reduce the prevalence of coronary hearth 

diseases [37].

Monounsaturated fatty acids

The substitution of SFAs for MUFAs in manufactured 

foods for human consumption has been shown to have 

beneficial effect in health [37]. The MUFAs content in 

Patella species analysed were about one-third of the 
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TFAs detected, which is similar to that observed for other 

Patella species described in the literature (P. depressa, 

26.78–33.83%; P. ulyssiponensis, 22.12–27.13%; P. vul-

gate, 28.35–32.92%; P. rustica, 30.68–32.23%; Patella 

peroni, 25.5%) [14, 15]. However, Ezgeta-Balić, Najdek 

[17] reported lower levels of MUFAs in other marine 

molluscs, namely in oyster (Ostrea edulis, 6.78–20.05%), 

mussels (Mytilus galloprovincialis, 7.70–16.46%; Modi-

olus barbatus, 6.26–23.26%) and ark shell (Arca noae, 

6.71–22.60%). In this class of FAs, oleic acid (OA, 

18:1ω9) was the major FA found in both limpets col-

lected at the several littoral zones studied, with the high-

est amounts verified in P. candei collected in Selvagens 

(28.25% of TFA). The limpets under study presented much 

Table 3  Fatty acid composition of the edible mollusc P. candei at several collection sites, expressed as % of the total FA detected

The amount of TFA is expressed in mg/g of dry weight basis

Data presented as mean ± standard deviation (n = 5)

Limit of detection for all fatty acids: 0.001%; different letters in the same line have significant differences (p < 0.05)

nd not detected, FA fatty acids, SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, AA arachidonic 

acid, EPA eicosapentaenoic acid, ω3 HUFA Σ of ω3 highly unsaturated fatty acids (20:3ω3, 20:4ω3, 20:5ω3, 22:3ω3, 22:4ω3, 22:5ω3, 22:6ω3), 

EPA/AA eicosapentaenoic acid/arachidonic acid, ω3/ω6 Σ of the fatty acids ω3/Σ of the fatty acids ω6, H/H fatty acids hypocholesterolaemic/

hypercholesterolaemic ratios

*TFA: total fatty acids in g per 100 g of dry weight basis
1 4,8,12-trimethyltridecanoic acid

Fatty acid (% of TFA) Selvagens Garajau Ponta de São lourenço Lido Desertas Rocha do Navio

13:01 1.22 ± 0.03a 3.35 ± 0.04b 2.11 ± 0.05c 2.37 ± 0.06c 2.85 ± 0.22d 2.72 ± 0.10d

14:0 2.56 ± 0.10a 7.41 ± 0.13b 2.99 ± 0.18a 7.92 ± 0.11b 7.96 ± 0.34b 5.15 ± 0.22c

15:0 0.58 ± 0.03a 1.25 ± 0.01b 0.90 ± 0.00c 1.08 ± 0.02d 1.52 ± 0.07e 1.32 ± 0.05b

16:0 26.93 ± 0.08a 32.10 ± 0.36b 37.24 ± 0.76c 36.76 ± 0.30c 37.19 ± 0.61c 35.25 ± 0.94b,c

17:0 0.27 ± 0.00a 0.74 ± 0.00b 0.61 ± 0.01c 0.75 ± 0.02b 0.84 ± 0.00d 1.20 ± 0.01e

18:0 7.78 ± 0.15a 10.53 ± 0.14b,c 10.55 ± 0.01b,c 11.07 ± 0.19c 8.58 ± 0.13d 10.18 ± 0.05b

20:0 0.34 ± 0.01a 0.23 ± 0.01b 0.23 ± 0.01b 0.07 ± 0.00c 0.18 ± 0.01d 0.41 ± 0.01e

22:0 0.13 ± 0.02a 0.06 ± 0.00b nd nd nd 0.02 ± 0.00c

Σ SFA 39.79 ± 0.12a 55.68 ± 0.39b,c 54.63 ± 0.99b 60.03 ± 0.27c 59.11 ± 1.08b,c 56.27 ± 1.26b,c

16:1ω7 1.22 ± 0.07a 3.73 ± 0.02b 0.47 ± 0.01c 3.58 ± 0.01b,d 1.47 ± 0.01e 3.38 ± 0.07d

18:1ω9 28.25 ± 0.18a 19.33 ± 0.09b 20.01 ± 0.29b,c 19.84 ± 0.13b,c 21.73 ± 0.22d 20.73 ± 0.22c,d

20:1ω9 3.47 ± 0.04a 5.27 ± 0.07b,c 4.97 ± 0.35a,b 6.32 ± 0.09b,c 6.70 ± 0.32c 6.40 ± 0.44b,c

Σ MUFA 32.95 ± 0.10a 28.33 ± 0.14b 25.45 ± 0.65c 29.74 ± 0.22b 29.90 ± 0.53b 30.52 ± 0.59a,b

18:2ω6 4.92 ± 0.01a 0.73 ± 0.00b 2.19 ± 0.10c 0.05 ± 0.00d 0.59 ± 0.03b,e 0.42 ± 0.02e

18:2ω3 nd 0.33 ± 0.01a nd 0.28 ± 0.02b nd 0.04 ± 0.00c

18:3ω3 1.79 ± 0.04a 0.46 ± 0.00b 1.90 ± 0.09a nd 0.33 ± 0.02b 0.32 ± 0.01b

18:4ω3 0.15 ± 0.01a 0.04 ± 0.00b nd nd nd 0.01 ± 0.00c

20:2ω9 3.00 ± 0.01a 1.20 ± 0.03b 2.23 ± 0.08c 0.53 ± 0.03d 1.55 ± 0.09e 1.19 ± 0.09b

20:3ω6 0.14 ± 0.02a 0.10 ± 0.01a nd nd nd 0.04 ± 0.00b

20:4ω6—AA 11.38 ± 0.07a 3.58 ± 0.06b 8.42 ± 0.02c 2.61 ± 0.02d 4.43 ± 0.22e 4.37 ± 0.22e

20:4ω3 0.12 ± 0.02a 0.08 ± 0.01a nd nd nd 0.02 ± 0.00b

20:5ω3—EPA 5.71 ± 0.05a 9.13 ± 0.10b 5.18 ± 0.05a 6.66 ± 0.03c 4.08 ± 0.18d 6.62 ± 0.32c

22:4ω6 0.02 ± 0.00a 0.02 ± 0.00a nd nd nd 0.05 ± 0.00b

22:5ω3 0.03 ± 0.00a 0.30 ± 0.02b nd 0.10 ± 0.01c nd 0.14 ± 0.01c

Σ PUFA 27.26 ± 0.03a 15.99 ± 0.24b 19.92 ± 0.34c 10.23 ± 0.05d 10.99 ± 0.54d 13.21 ± 0.67e

Σ TFA* 21.53 ± 0.01a,b 34.78 ± 0.81c 17.17 ± 0.62a 25.59 ± 0.27b 24.28 ± 0.77b 25.29 ± 2.08b

ω3 HUFA 5.86 ± 0.03a,d 9.52 ± 0.12b 5.18 ± 0.05a 6.77 ± 0.02c,d 4.08 ± 0.18e 6.78 ± 0.33c

Σω3 7.80 ± 0.03a 10.35 ± 0.14b 7.08 ± 0.14a 7.04 ± 0.01a 4.41 ± 0.20c 7.14 ± 0.34a

Σω6 16.47 ± 0.07a 4.44 ± 0.07b 10.61 ± 0.12c 2.66 ± 0.02d 5.03 ± 0.25b 4.88 ± 0.24b

Σω3/Σω6 0.47 ± 0.00a 2.33 ± 0.01b 0.67 ± 0.01c 2.64 ± 0.02d 0.88 ± 0.00e 1.46 ± 0.00f

EPA/AA 0.50 ± 0.00a 2.55 ± 0.01b 0.61 ± 0.00c 2.55 ± 0.03b 0.92 ± 0.00d 1.51 ± 0.00e

H/H 1.77 ± 0.00a 0.85 ± 0.01b 0.94 ± 0.01c 0.65 ± 0.00d 0.69 ± 0.00e 0.81 ± 0.01f
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larger amounts of OA (about two or three times higher) 

than other limpets described in literature, namely P. peroni 

collected Southeast of Melbourne (8.3%) [15]; P. depressa 

(5.04–8.29%), P. ulyssiponensis (5.04–6.91%), P. vulgata 

(6.97–11.60%) and P. rustica (4.22–7.01%) collected at 

different shores of Portuguese coast [14]; as well as, Lepe-

todrilus spp. collected in hydrothermal vent field of the 

East Pacific (10.3%) [35]. Likewise, Ezgeta-Balić, Najdek 

[17] reported much lower amounts of OA in other com-

mercially important molluscs species, such as European 

Table 4  Fatty acid composition of the edible mollusc P. aspera at several collection sites, expressed as % of the total FA detected. The amount 

of TFA is expressed in mg/g of dry weight basis

Data presented as mean ± standard deviation (n = 4)

Limit of detection for all fatty acids: 0.001%; different letters in the same line have significant differences (p < 0.05)

nd not detected, FA fatty acids, SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, AA arachi-

donic acid, EPA eicosapentaenoic acid, DHA docosahexaenoic acid, ω3 HUFA Σ of ω3 highly unsaturated fatty acids (20:3ω3, 20:4ω3, 20:5ω3, 

22:3ω3, 22:4ω3, 22:5ω3, 22:6ω3), EPA/AA eicosapentaenoic acid/arachidonic acid, DHA/EPA docosahexaenoic acid/eicosapentaenoic acid, ω3/

ω6 Σ of the fatty acids ω3/Σ of the fatty acids ω6, H/H fatty acids hypocholesterolaemic/hypercholesterolaemic ratios

*TFA: total fatty acids in g per 100 g of dry weight basis
1  4,8,12-trimethyltridecanoic acid

Fatty acid (% of 

TFA)

Selvagens Garajau Ponta de São 

Lourenço

Lido Desertas Rocha do Navio Porto Moniz

13:01 2.36 ± 0.07a 3.18 ± 0.14b,c 2.52 ± 0.00a,b 1.37 ± 0.04d 4.00 ± 0.31e 3.51 ± 0.36c,e 2.84 ± 0.29a,b,c

14:0 4.54 ± 0.09a 7.61 ± 0.36b 7.02 ± 0.05b,c 6.64 ± 0.23b,c 5.42 ± 0.47a,c 8.13 ± 0.54b 8.02 ± 0.22b

15:0 1.40 ± 0.03a 1.50 ± 0.06a 1.46 ± 0.00a 0.97 ± 0.01b 1.14 ± 0.08b 1.51 ± 0.08a 1.77 ± 0.11c

16:0 34.92 ± 0.11a 34.12 ± 0.47a 32.49 ± 0.02a 41.36 ± 1.12b 34.13 ± 1.47a 33.37 ± 1.18a 34.34 ± 0.10a

17:0 1.25 ± 0.01a 0.89 ± 0.01b 0.58 ± 0.01c 0.64 ± 0.01d 0.61 ± 0.00c,d 0.84 ± 0.02e 1.05 ± 0.00f

18:0 10.09 ± 0.07a 9.53 ± 0.38a,b 7.20 ± 0.04c,d 6.42 ± 0.01d 7.52 ± 0.03c,d,e 8.30 ± 0.66b,c,e 9.07 ± 0.08a,b,e

20:0 0.35 ± 0.01a 0.09 ± 0.00b 0.53 ± 0.04c 0.54 ± 0.01c 0.22 ± 0.00d 0.19 ± 0.00d 0.18 ± 0.01d

22:0 0.03 ± 0.00a 0.09 ± 0.00b 0.07 ± 0.00b 0.12 ± 0.00c 0.28 ± 0.00d 0.19 ± 0.00e 0.02 ± 0.00a

Σ SFA 54.94 ± 0.25a 57.01 ± 0.64a 51.88 ± 0.03a 58.06 ± 1.38a 53.32 ± 2.37a 56.05 ± 1.47a 57.28 ± 0.44a

16:1ω7 1.80 ± 0.10a 3.59 ± 0.10b,c 1.54 ± 0.03a 3.86 ± 0.10c 3.17 ± 0.17b 6.12 ± 0.18d 3.52 ± 0.03b,c

18:1ω9 17.07 ± 0.10a 18.36 ± 0.03b 21.92 ± 0.01c 24.55 ± 0.34d 19.22 ± 0.43b 18.60 ± 0.11b 16.81 ± 0.18a

20:1ω9 3.71 ± 0.01a 5.24 ± 0.23abc 6.00 ± 0.16bc 6.61 ± 0.61c 4.83 ± 0.63abc 5.94 ± 0.52abc 3.96 ± 0.03ab

Σ MUFA 22.58 ± 0.02a 27.19 ± 0.10b 29.46 ± 0.13bc 35.02 ± 0.85d 27.21 ± 0.89b 30.66 ± 0.45c 24.29 ± 0.13a

18:2ω6 0.46 ± 0.03a 0.52 ± 0.01a,b 1.02 ± 0.00c 0.05 ± 0.00d 0.81 ± 0.03e 0.64 ± 0.05b 0.28 ± 0.02f

18:2ω3 nd 0.27 ± 0.00a nd 0.17 ± 0.01b nd 0.21 ± 0.03b 0.08 ± 0.00c

18:3ω3 0.65 ± 0.03a 0.30 ± 0.01b 1.20 ± 0.01c nd 1.56 ± 0.06d 0.77 ± 0.09a 0.05 ± 0.00e

18:4ω3 0.12 ± 0.01a 0.04 ± 0.00b 0.09 ± 0.00c nd 0.13 ± 0.00a 0.08 ± 0.00c 0.05 ± 0.00b

20:2ω9 1.04 ± 0.00a,b 1.11 ± 0.07b 2.12 ± 0.02c 0.70 ± 0.08a 1.91 ± 0.25c 1.17 ± 0.10b 0.83 ± 0.02a,b

20:3ω6 0.06 ± 0.00a 0.13 ± 0.02b,c 0.18 ± 0.01c nd 0.08 ± 0.00a,b 0.10 ± 0.01a,b 0.09 ± 0.01a,b

20:4ω6—AA 7.17 ± 0.05a 4.36 ± 0.17b 7.34 ± 0.05a 1.67 ± 0.15c 8.73 ± 0.69a 4.09 ± 0.41b 4.70 ± 0.06b

20:4ω3 0.12 ± 0.02a,b 0.07 ± 0.00a,c 0.17 ± 0.01b nd 0.05 ± 0.00c,d 0.04 ± 0.00c,d 0.05 ± 0.01c,d

20:5ω3—EPA 12.59 ± 0.28a 8.75 ± 0.25b 6.29 ± 0.03c 4.24 ± 0.28d 6.19 ± 0.43c 5.93 ± 0.35c 12.12 ± 0.32a

22:4ω6 0.10 ± 0.00a 0.04 ± 0.00b 0.15 ± 0.00c nd 0.02 ± 0.00d nd nd

22:5ω3 0.17 ± 0.01a 0.20 ± 0.02a 0.11 ± 0.01b 0.08 ± 0.00b nd 0.08 ± 0.00b 0.17 ± 0.01a

22:6ω3—DHA nd 0.02 ± 0.00a nd nd nd 0.19 ± 0.02b nd

Σ PUFA 22.48 ± 0.24a 15.81 ± 0.54b,c 18.66 ± 0.16a,b 6.92 ± 0.53d 19.47 ± 1.47a,b 13.30 ± 1.01c 18.43 ± 0.31a,b

Σ TFA* 18.01 ± 0.65a 28.66 ± 1.20b,c 36.38 ± 0.37d 32.67 ± 2.51c,d 19.64 ± 2.14a 27.40 ± 1.75b,c 25.93 ± 0.47b

ω3 HUFA 12.88 ± 0.26a 9.04 ± 0.27b 6.57 ± 0.05c 4.32 ± 0.28d 6.23 ± 0.43c 6.23 ± 0.34c 12.35 ± 0.30a

Σω3 13.65 ± 0.22a 9.65 ± 0.27b 7.86 ± 0.07b,c 4.50 ± 0.30d 7.92 ± 0.49b,c 7.29 ± 0.46c 12.52 ± 0.30a

Σω6 7.78 ± 0.02a 5.05 ± 0.20b 8.68 ± 0.07a 1.72 ± 0.16c 9.65 ± 0.73a 4.83 ± 0.46b 5.08 ± 0.03b

Σω3/Σω6 1.75 ± 0.02a 1.91 ± 0.02a 0.91 ± 0.00b 2.61 ± 0.06c 0.82 ± 0.01b 1.51 ± 0.05d 2.47 ± 0.05c

EPA/AA 1.76 ± 0.03a 2.01 ± 0.02b 0.86 ± 0.00c 2.54 ± 0.07d 0.71 ± 0.01c 1.45 ± 0.06e 2.58 ± 0.04d

DHA/EPA – – – – – 0.03 ± 0.01 –

H/H 0.97 ± 0.01a 0.78 ± 0.01b,c 0.96 ± 0.00a 0.66 ± 0.05d 0.92 ± 0.01a 0.73 ± 0.01b 0.81 ± 0.01c
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flat oyster (Ostrea edulis, 2.12–6.34%), black mussel 

(Mytilus galloprovincialis, 1.22–16.95%), bearded horse 

mussel (Modiolus barbatus, 1.67–3.28%) and Noah’s ark 

shell (Arca noae, 1.95–5.38%).

The ingestion of OA has been related to the level of low-

density proteins in blood, the prevention of arteriosclerosis 

and the stimulation of bile secretion (necessary for digestion 

and absorption of fats) [5, 38]. Therefore, the high levels 

of OA, verified in the samples analysed, suggest that the 

introduction of P. aspera and P. candei in human diet can 

bring health benefits.

The other MUFAs characteristic of Patella species were 

gondoic acid (GA, 20:1ω9; 3.47–6.70%) and palmitoleic 

acid (PAA, 16:1ω7; 1.22–6.12%), whose contents are in 

agreement with limpet P. peroni described by Johns, Nichols 

[15] and to different limpet species found by Brazão, Morais 

[14] in the Portuguese coast.

Polyunsaturated fatty acids

The two limpets under study presented remarkable differ-

ences across sites in their PUFAs contents, ranging among 

6.92–22.48% and 10.23–27.26% of TFA in P. aspera and P. 

candei, respectively. Eicosapentaenoic acid (EPA, 20:5ω3) 

and arachidonic acid (AA, 20:4ω6) were the major PUFAs 

found in samples. The highest levels of EPA (ω3 LC-PUFAs) 

were found in P. aspera collected at Selvagens (12.59%), 

while P. candei exhibited highest contents of AA (11.38%, 

ω6 LC-PUFAs) at the same site. The other important ω3 LC-

PUFA identified, only in P. aspera, was docosahexaenoic 

acid (DHA. 22:6ω3), but in lower quantities (< 1% of TFA) 

compared to AA and EPA contents. Brazão, Morais [14] 

reported similar levels of LC-PUFAs, EPA (6.35–19.74%), 

AA (5.20–14.21%) and DHA (0.11–1.03%), in other limpets 

species collected in Portuguese coast, namely, P. depressa, P. 

ulyssiponensis, P. vulgata and P. rustica. Although, in limpet 

P. peroni from littoral zone of Australia, Johns, Nichols [15] 

did not detect AA and DHA, high amounts of EPA were 

found (24.9%). Still, Zhukova [34] in other molluscs, namely 

nudibranchs from South China Sea, reported very low levels 

of EPA (0.6%), slightly lower values of AA (6.5–8.9%) and 

similar amounts of DHA (1%). In addition, Ezgeta-Balić, 

Najdek [17] found in commercial important bivalves (oys-

ter, mussels and ark shell) from eastern Adriatic Sea similar 

levels of EPA (2.72–28.25%) and AA (0.30–8.82%), while 

the levels of DHA were highest (2.98–41.37%) than those 

reported in the present study.

The introduction of PUFAs in human nutrition through 

the consumption of molluscs, namely through limpets, may 

have health benefits, since the consumption of PUFAs is 

indicated for the reduction of total cholesterol in blood 

and plasma LDL cholesterol levels [31]. Besides, the high-

est ingestion of ω3 LC-PUFAs (EPA and DHA) promotes 

reduction of plasma triglyceride levels by decreasing hepatic 

synthesis of VLDL cholesterol and may have other cardio-

vascular effects, such as reduced blood viscosity, increased 

endothelium relaxation and antiarrhythmic effects [31]. 

Moreover, these PUFAs alleviate symptoms of relation in 

rheumatoid arthritis, decreasing of mild hypertension, low-

ering the incidence of diabetes and prevent some cancers [9]. 

However, the highest ingestion of ω6 LC-PUFAs (AA) can 

suppress and stimulate immune response [31].

Linoleic acid (LA, 18:2ω6) and α-linolenic acid (ALA, 

18:3ω3) are two other PUFAs that were detected in the fatty 

acid profile of both P. aspera and P. candei. These two fatty 

acids are considered essential for human diet since their 

intake through PUFA-rich sources is mandatory. The great-

est amounts of essential fatty acids in P. candei were found 

in Selvagens (6.71%) and in P. aspera collected at Desertas 

(2.37%).

Western diets are characterized by lower ω3 fatty acids 

intake and higher ω6 FA (1:20) [39, 40]. A balanced ratio 

of Σω3/Σω6 FA (around 1:1) is known to be important for 

health and in the prevention and management of inflamma-

tory, autoimmune and neurodegenerative diseases [39, 40]. 

This balance can best be accomplished by the consumption 

of products with high levels of ω3 PUFAs and small amounts 

of ω6 PUFAs [39, 40]. In the present study, all samples of 

limpets analysed contained a good Σω3/Σω6 (Tables 3, 4), 

with emphasis on both P. candei and P. aspera collected 

in Lido that comprised the highest ratio of 2.64 and 2.61, 

respectively. This suggests that these marine molluscs pos-

sess a good nutritional ratio for dietary intake.

The Σ hypocholesterolaemic/Σ hypercholesterolaemic 

fatty acids ratio (H/H) is associated to cholesterol metabo-

lism and high values of this ratio is considered a positive 

aspect for human health [23]. In this study, the marine mol-

luscs studied exhibited high values of H/H index, greater 

than 0.65 (Tables 3, 4), with the highest value found for P. 

candei in Selvagens (1.77).

Principal component analysis

The quality of lipids is known to vary with environmental 

factors such as distribution, temperature and food availabil-

ity. Therefore, the principal component analysis (PCA) was 

performed to study the biochemical changes triggered by 

geographical distribution of the limpet species. Figure 2a 

represents the distribution of the loadings in a two-com-

ponent model for P. candei. The first component (PC1) 

accounted for 49%, whereas the second component (PC2) 

accounted for 29% of the total variance, which together 

explained 78% of the total variance. The loadings are 

widely distributed in the factorial plan, and it is possible 

to detect some groups of variables in different zones of the 

plot. The palmitoleic acid (PAA) and MA along with SFA 
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are positively correlated to principal component 1, whereas 

ω6, OA, LA, ALA, AA and PUFAs are strongly associated 

to negative values of factor 1. The ω3, ω3 HUFA and EPA, 

located on the upper-right quadrant of the factorial plan, 

are strongly correlated to the positive values of principal 

component 2.

With respect to P. aspera, the first component (PC1) 

accounted for 42%, whereas the second component (PC2) 

accounted for 26% of the total variance, which together 

explained 68% of the total variance (Fig. 3a). The cluster 

ω3, ω3 LC-PUFA, EPA and SA are positively associated to 

factor 1, as well as, the levels of PUFA, despite its location 

on the lower-right quadrant of the factorial plan. Moreo-

ver, the variables ω6, LA, ALA and AA are negatively 

associated to factor 2, while the levels of SFA are strongly 

correlated to positive values to the same factor.

Figures 2b and 3b show the projection of the factor 

scores on the two principal component models for the two 

patella species collected at different sites. Comparing the 

loadings with their corresponding score plots, it is clear 

that the distribution of the limpets studied had influence 

on their biochemical composition, which, in turn, is con-

nected with their dietary value. This might indicate which 

environmental factors are needed to fulfil these marine 

invertebrates’ requirements to enhance their biochemical 

composition to the final consumer.

In P. candei (Fig. 2b), higher amounts of PA and SFA 

cause the scores of Lido and Desertas to be located on 

the lower-right quadrant of the factorial plan. While high 

contents of ω3 fatty acid, namely EPA, led the separation 

of Garajau to the upper-right quadrant of the scores plot. 

Furthermore, the positioning of Selvagens in the upper-left 

quadrant, which is strongly associated to negative values of 

Fig. 2  Principal component analysis (PCA) of the most important 

fatty acid composition of P. candei samples in different sites, includ-

ing the ratio

Fig. 3  Principal component analysis (PCA) of the most important 

fatty acid composition of P. aspera samples in different sites, includ-

ing the ratio
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PC1, confirm that this limpet specie at this site had a richer 

diet in ω6 and ω9 fatty acids, namely LA, AA and OA.

In P. aspera (Fig. 3b), Lido and Rocha do Navio are 

located in the upper-left quadrant, which is positively 

associated to PC1 and negatively associated to PC2 val-

ues, denoting highest levels of PA. There are some mac-

roalgal taxa that have been reported to have a frequent 

abundance in the intertidal zone of both North and South 

of Madeira Island (e.g. Colpomenia sinuosa and Dasycla-

dus vermicularis) [41]. This fact might explain the similar 

strong correlations to PA in limpets from Lido (South) 

and Rocha do Navio (North). Moreover, Rocha do Navio 

is strongly negatively related to PC2 values, confirming 

highest amounts of DHA. The location of Desertas in the 

lower-right quadrant (strongly associated to negative val-

ues of PC1) might reflect a richer diet in ω6 fatty acid, in 

particular LA and AA. The strong correlation of Selvagens 

with the positive values of PC1 confirms highest levels of 

ω3 PUFA, namely in EPA (ω3 LC-PUFA), in limpet spe-

cies collected at this site.

The quality and quantity of algal lipids is very important 

in marine molluscs diet, because they cannot efficiently syn-

thesize PUFA by de novo synthesis, acquiring the essential 

fatty acids (AA, EPA and DHA) through diet [13]. In this 

study, the highest proportions of PA and the lowest levels of 

essential fatty acids verified in both Patella species collected 

in Lido suggest that the diet composition was poor in algae, 

this might be a consequence of the excessive anthropogenic 

activity that occurs in this location [14, 41]. On the other 

hand, the highest proportions of ω6 LC-PUFAs, particularly 

AA, in P. candei from Selvagens and P. aspera from Desertas 

may reflect a rich diet in brown algae and diatoms (Bacillari-

ophyceae), which are known to be rich sources of AA and 

EPA, explaining the highest amounts of AA and the presence 

of good contents in EPA [14]. Regarding the highest propor-

tions of ω3 LC-PUFAs, namely EPA, in Garajau (P. can-

dei) and Selvagens (P. aspera), it is concluded that the diet 

composition of limpet in this sites may be mostly constituted 

by red algae (Rhodophyta) and encrusting algae (rich in ω3 

PUFAs, mainly EPA) [14]. Moreover, the presence of DHA 

proportions in P. aspera from Rocha do Navio, although in 

low quantities, may suggest that this site contains dinoflagel-

lates (Dinophyceae), a rich source of DHA [14].

Conclusions

P. aspera and P. candei showed different proximate and fatty 

acid compositions. P. candei showed higher levels of mois-

ture and ashes, while P. aspera comprised higher amounts of 

lipids, proteins and carbohydrates. With regard to the fatty 

acid composition P. candei had higher content of PUFAs, 

OA and AA, while P. aspera presented higher levels of EPA. 

Through the principal component analysis it was possible to 

visualize the effect of the geographical distribution of lim-

pets in their dietary value and fatty acid composition. This 

study demonstrated that P. aspera and P. candei are good 

sources of long chain PUFAs, highlighting their potential 

health benefits through dietary intake.
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