
NV-Group: Link-Efficient Reduction for Distributed Deep
Learning on Modern Dense GPU Systems

Ching-Hsiang Chu, Pouya Kousha, Ammar Ahmad Awan, Kawthar Shafie Khorassani
Hari Subramoni and Dhabaleswar K. (DK) Panda

The Ohio State University
Columbus, Ohio

{chu.368,kousha.2,awan.10,shafiekhorassani.1}@osu.edu
{subramon,panda}@cse.ohio-state.edu

ABSTRACT

The advanced fabrics like NVIDIA NVLink are enabling the deploy-
ment of dense Graphics Processing Unit (GPU) systems such as
DGX-2 and Summit. With the wide adoption of large-scale GPU-
enabled systems for distributed deep learning (DL) training, it is
vital to design efficient communication such as the Allreduce op-
eration to achieve near-ideal speedup at scale. In this paper, we
propose a link-efficient scheme through NVLink-aware coopera-
tive reduction kernels to significantly accelerate Allreduce oper-
ations for distributed deep learning applications. By overlapping
computation and communication and maximizing utilization of
all available NVLinks between CPU and GPU, as well as among
GPUs, we demonstrate 1.8X performance improvement of Allre-
duce on 1,536 GPUs compared to state-of-the-art GPU-Aware MPI
and NVIDIA NCCL libraries. Finally, we demonstrate 93.9% and
89.7% scaling efficiency (i.e., 15X and 172X speedup) for training
ResNet-50 models using TensorFlow on a 16-GPU DGX-2 node
and on 192-GPUs of the Summit system, respectively. To the best
of our knowledge, this is the first study that achieves near-ideal
scaling efficiency for distributed DL training and deals with designs
tailored for cutting-edge systems like DGX-2 and Summit clusters.

CCS CONCEPTS

· Computing methodologies → Parallel programming lan-

guages; · Computer systems organization → Interconnec-

tion architectures; Single instruction, multiple data.

KEYWORDS

Allreduce, Deep Learning, GPU, HPC, MPI, NVLink,

ACM Reference Format:

Ching-Hsiang Chu, Pouya Kousha, Ammar Ahmad Awan, Kawthar Shafie
Khorassani and Hari Subramoni and Dhabaleswar K. (DK) Panda. 2020. NV-
Group: Link-Efficient Reduction for Distributed Deep Learning on Modern
Dense GPU Systems . In 2020 International Conference on Supercomputing
(ICS ’20), June 29-July 2, 2020, Barcelona, Spain. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3392717.3392771

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392771

1 INTRODUCTION

Graphics Processing Units (GPUs) have become ever prevalent hard-
ware in modern high-performance computing (HPC) systems and
cloud platforms due to their high-bandwidth memory and mas-
sive parallelism. A broad spectrum of applications ranging from
traditional HPC applications to artificial intelligence (AI) enabled
applications have been significantly accelerated by exploiting GPU
platforms. As a result, more powerful HPC systems and cloud plat-
forms are being deployed with thousands of nodes [44], equipped
with cutting-edge CPU, GPU and high-speed interconnects. With
the increased deployment of large and dense GPU systems, efficient
data movement between GPUs within and across nodes is criti-
cal for HPC and AI applications. However, data movement among
GPUs, CPUs, and network devices using traditional PCIe has signif-
icantly stymied newer applications that demand higher bandwidth.
To this end, new proprietary interconnect architectures such as
NVIDIA NVLink [15], AMD Infinity Fabric, and Intel Xe link are
introduced to provide high-bandwidth data movement dedicated
for GPUs. Figure 1 depicts the logical view of a DGX-2 system with
NVIDIA Volta GPUs connected by NVLink2 and NVSwitch.

NVLinks are also empowering the latest OpenPOWER systems
with unprecedented intra-node bandwidth [9, 20] for GPU-based
communication. Furthermore, four out of the Top 10 supercomput-
ers [44] including Summit (#1), Sierra (#2), ABCI (#8), and Lassen
(#10) are all using the NVLink interconnect. In the emerging dis-
tributed Deep Learning (DL) training, Allreduce, one of the legacy
collective communication patterns defined in Message Passing In-
terface (MPI) standard [26], becomes the major bottleneck of GPU
communication at scale [3ś5, 7, 14]. As a result, many solutions
have been proposed to address the inefficiency of Allreduce with
a large amount of data on the emerging architectures [2, 6, 10ś
12, 34, 45, 47, 49]. However, the state-of-the-art Allreduce algo-
rithms on the emerging dense-GPU systems are still sub-optimal,

NVSwitch

6-lane NVLink
(150 GB/s)

Intel QuickPath Interconnect (QPI)
(~12.8GB/s)

16-lane PCIe Gen3
(16GB/s)

GPUGPUGPUGPU GPUGPUGPUGPU

GPUGPUGPUGPU GPUGPUGPUGPU

CPU PCIe Switch

PCIe Switch CPU

InfiniBand
Host

Channel
Adapters
(IB HCAs)

IB HCAs

Figure 1: Hardware configuration of NVIDIA DGX2 system

with cutting-edge GPU and interconnect architectures

ICS ’20, June 29-July 2, 2020, Barcelona, Spain C.-H. Chu et al.

especially for very large message sizes used frequently in the dis-
tributed deep learning training process [5]. Furthermore, link effi-
ciency of Allreduce schemes on the emerging dense-GPU systems
and its impact on performance have not been addressed in literature.

1.1 Motivation and Challenges

Achieving high-performance large-size Allreduce communication
on NVLink-enabled systems requires the designer of the commu-
nication library to account for several novel architectural features
available on these systems. 1) Direct LOAD/STORE capability:
Previous MPI-based solutions were performing the GPU-GPU re-
duction in a COPY-COMPUTE-COPY approach [3, 12, 24, 34], which
requires extra copies and memory allocations. As the new NVLink-
like architecture provides low-latency LOAD/STORE primitives
between GPUs, one can utilize this capability to perform GPU-GPU
reduction in an efficient LOAD-COMPUTE-STOREmanner. 2)Maxi-

mize utilization of NVLinks between CPUs and GPUs:When
performing communication at scale, data has to be moved between
CPU and GPU for inter-node communication [38]. Leveraging
LOAD/STORE capability on the NVLinks between CPU and GPU
can significantly improve the overall performance and load balance.
3) Overlap Reduction with communication: Allreduce algo-
rithm for large data sizes typically relies on multi-stage pipeline [37,
39, 49]. Therefore, it is important to achieve high overlap between
compute intensive portions of the reduction operations and com-
munication. Table 1 summarizes these properties for the state-of-
the-art GPU-based Allreduce schemes.

To get further insights into the link utilization, we conduct de-
tailed experiments using the state-of-the-art communication li-
braries performing Allreduce across 6 GPUs (refer to Section 5 for
experimental configuration). Figure 2 depicts the result of these
experiments. As we can see, none of state-of-the-art solutions nei-
ther achieve proper link utilization nor load balance communica-
tion through the available NVLinks. For instance, NVLink between
GPU1 to GPU3 (G1<->G3) almost remains mostly idle, i.e., less than
1GB/s, during Allreduce operations in all state-of-the-art libraries.
In fact, the state-of-the-art collective communication library (NCCL
v2.6 as of the paper is written), can only utilize 8 out of 12 NVLinks.

These observations leads to the following broad challenge: Is
it possible to design a link-efficient Allreduce algorithm that

can maximize the utilization of available hardware commu-

nication channels to provide the best possible performance for

0

2

4

6

8

10

12

14

16

G
1
<
->
C
P
U

G
2
<
->
C
P
U

G
3
<
->
C
P
U

G
4
<
->
C
P
U

G
5
<
->
C
P
U

G
6
<
->
C
P
U

G
1
<
->
G
2

G
1
<
->
G
3

G
2
<
->
G
3

G
4
<
->
G
5

G
4
<
->
G
6

G
5
<
->
G
6T

h
ro

u
g

h
p

u
t

(G
B

/s
)

NVLink Pairs

SpectrumMPI-10.3 OpenMPI-4.0.3 MV2-GDR-2.3 NCCL-2.6

Figure 2: Under-utilization and load imbalance of all

NVLinks in the state-of-the-art communication libraries on

Summit system, where it has 12 NVLinks (G1-6 represent

GPU1śGPU6)

IB HCAs

GPU1 GPU2 GPU3

CPU0

GPU4 GPU5 GPU6

CPU1

Port 0 Port 1

2-lane NVLink
(50 GB/s)

Data path of a single
unidirectional ring

IB HCAs

GPU
Group

CPU0

GPU
Group

CPU1

Port 0 Port 1

Aggregated NVLink
(150 GB/s)

With the proposed
NVgroup scheme

Performance factor: number of GPUs Performance factor: number of GPU Groups

Figure 3: Expected Benefit of the proposed design on Sum-

mit system: reducing the performance factor from number

of GPUs to number of GPU groups

DL training on emerging dense GPU systems with heteroge-

neous interconnect architectures?

1.2 Contributions

In this paper, we take up this challenge and we propose NVGroup
Ð a link-efficient scheme through NVLink-aware cooperative re-
duction kernels to significantly accelerate Allreduce operations for
distributed deep learning applications. As depicted in Figure 3, the
proposed NVGroup design with a ring-based algorithm expects to
reduce the dominant performance factor from the number of GPUs
(p) to the number of GPU groups (Nnv), where p > Nnv . The per-
formance evaluation and analysis demonstrate that the proposed
designs can intelligently orchestrate communication to utilize all
GPUs and NVLinks for performing collective operations. As a result,
the proposed designs reduce 48% of time in Allreduce benchmarks
up to 1,536 GPUs on the Summit system. Moreover, when perform-
ing distributed DL training using Tensorflow, the proposed design
yields 19% higher throughput than the state-of-the-art solutions
and it provides 172× speedup (over single GPU) using 192 GPUs,
i.e., 89% scaling efficiency, on the Summit system.

To the best of our knowledge, this is the first study that deals with
designs tailored for cutting-edge systems like DGX-2 and Summit-
like clusters with CPU-GPU NVLinks. The key contributions of this
paper are as follows.

• Provide an in-depth analysis and identify two major perfor-
mance issues, namely contention and link under-utilization,
for existing Allreduce solutions on modern NVLink-enabled
systems. (Section 3)
• Propose a cooperative collective kernel to leverage all avail-
able NVLinks while the state-of-the-art scheme such as
NCCL can only use 8 links (out of 12). (Section 4.2)
• Design a novel topology-aware Allreduce scheme on top of
the proposed cooperative collective kernel to achieve high
communication overlap among various interconnects such
as NVLink, X-bus, PCIe, and InfiniBand. (Section 4.3)
• Demonstrate the proposed designs can yield up to 48% lower
latency and 1.8X higher throughput for the Allreduce opera-
tion compared to state-of-the-art schemes and production
libraries, including NCCL and SpectrumMPI. (Section 5)
• Provide a comprehensive performance evaluation of the pro-
posed designs using micro-benchmarks as well as a real-
world application (TensorFlow) on NVLink-enabled systems,
including a DGX-2 and Summit systems. (Section 5)

NV-Group: Link-Efficient Reductions for Distributed Deep Learning ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Table 1: Comparison of state-of-the-art Allreduce Schemes for GPU-resident data in the literature

Bibliography

Reference
Noteworthy Designs

Contention

Aware

RDMA

Support

GPU/NVLink-Awareness Capability and Optimization

Load/Store

between GPUs

Utilize all NVLinks

between CPUs and GPUs

NVLink Load

Balance

Overlap Reduction with

Communication

[34] Kernel-based Reduction and Communication ✗ ✓ ✓ ✗ ✗ ✗

[12] Kernel-based Reduction for Recursive Doubling ✗ ✓ ✗ ✗ ✗ ✗

[3]
Kernel-based Reduction for Recursive Vector Halv-
ing and Doubling

✗ ✓ ✗ ✗ ✗ ✗

[24] Topology-Aware and Event-based comm. ✓ ✓ ✗ ✗ ✗ ✗

[47, 49] Hierarchical/Multi-level Schemes ✗ ✓ ✗ ✗ ✗ ✓

Baidu-Allreduce[2] GPU-based Ring Scheme ✓ ✓ ✗ ✗ ✗ ✗

Blink [50] Broadcast-based Scheme ✓ ✗ ✓ ✗ ✗ ✓

NCCL [31, 45] GPU-based Double Binary Tree + Ring ✓ ✓ ✓ ✗ ✗ ✓

BlueConnect [10, 11] Multi-level Allreduce decomposing ✗ ✓ ✓ ✗ ✗ ✗

Proposed (This paper) NVGroup: Link-Efficient and Cooperative ✓ ✓ ✓ ✓ ✓ ✓

2 BACKGROUND

In this section, we delve into background knowledge of cutting-edge
technologies relevant to this work.

2.1 NVLink, PCIe, and InfiniBand

PCIe is the standard bus connect for high-speed components be-
tween CPU and third-party devices such as GPU and IB Host Chan-
nel Adapters (HCAs). Every generation of PCIe witnessed a doubled
bandwidth, with generation-1 starting at 2GB/s and generation-
4 handling as high as 16 GB/s unidirectional bandwidth. Recent
architecture development shows that dense GPU systems offer
promising capabilities to significantly accelerate the Deep Neural
Network (DNN) training process [41]. NVIDIA has gone a step fur-
ther with systems like DGX-2, offering unprecedented bandwidth
of NVLink2, that provides 25GB/s unidirectional bandwidth, for
inter-GPU communication within a single node. InfiniBand is an
interconnect often used in the HPC community, characterized by its
high bandwidth and low latency. The latest InfiniBand EDR and up-
coming HDR adapters provide bidirectional bandwidth of 100Gbps
and 200Gbps, respectively. With the development of interconnect
technology, the next-generation HPC systems, including the #1 on
Top500 Summit are moving toward NVLink-enabled dense GPU
nodes with InfiniBand interconnects.

2.2 NVIDIA GPUDirect Technology

NVIDIA GPUDirect [30] enables direct reading and writing to
CUDA host and device memory by the CPU and GPU, minimiz-
ing the latency and overhead of multiple copies to memory. This
is advantageous for compute-intensive applications by providing
higher throughput and lower latency through pinned buffers shared
by the network and the devices. It also enables Peer-to-Peer (P2P)
transfers, copying data between the memories of devices on the
same PCIe bus. Aside from memory transfers between devices, it
also introduced the use of remote direct memory access (RDMA)
between GPUs and other PCIe devices.

2.3 CUDA-Aware Communication Libraries

MPI libraries like OpenMPI [35], SpectrumMPI [19], and MVA-
PICH2 [28] that can distinguish between host and GPU buffers are
known as CUDA-Aware MPI libraries. These libraries have been
designed with many optimized GPU-based point-to-point commu-
nication schemes such as staging, pipelining, CUDA Inter-Process

Communication (IPC), and GPUDirect RDMA. These schemes pro-
vide the best performance across various scenarios like intra-node,
intra-socket, inter-node, and several other communication paths.

NVIDIA Collective Communication Library (NCCL) is an opti-
mized GPU-based collective communication library geared towards
DL workloads [31]. NCCL’s API closely resembles the MPI interface
and provides communication primitives for the following: broad-
cast, all-gather, reduce, reduce-scatter, and all-reduce. However, the
NCCL APIs are not MPI-compliant and a vast number of MPI-based
applications need to be modified to use it.

3 ANALYSIS OF EXISTING SCHEMES

In this section, we cover the primary motivation of this work
through an in-depth analysis of the existing Allreduce approaches
for GPU-resident data. We also demonstrate the performance limi-
tation of the current approaches.

3.1 Existing Allreduce Schemes and Associated
Cost Models

The GPU-based reductions are mostly based on the legacy schemes
that have been widely discussed in the literature [37, 39, 46, 51, 52],
with various optimization schemes built on top of them [3, 12, 34].
Following analysis provides an insight into the performance issues
of mainstreamAllreduce schemes for large data sizes on the modern
NVLink-enabled multi-GPU systems. Table 2 lists notations used
for the models in this paper.

3.1.1 Ring-based Allreduce. In a Ring-based algorithm, processes
form a logical ring structure so that each process sends and receives
data to and from its logical neighbors. A naive ring-based Allreduce
algorithm takes p−1 steps to push reduced data to all the processes.

Table 2: Notations for the Analytical Models

Name Description

p Number of processes
N Number of nodes
NG Number of GPUs per node
Nnv Number of NVLink groups in the proposed design
NVG Number of GPUs in a NVLink group in the proposed design
ts Set up time for a single send/receive operation
M Message size (bytes)

TR (M) Time of launching a GPU kernel for reduction operation of a
M-byte data

B Bandwidth of slowest interconnect between processes
BNV Bandwidth of NVLink

ICS ’20, June 29-July 2, 2020, Barcelona, Spain C.-H. Chu et al.

An efficient ring-based Allreduce algorithm for large messages
is presented in [37], and implemented in NVIDIA NCCL, AMD
RCCL, and Baidu Allreduce [1, 2, 31] for GPU-resident data. It is
essentially a reduce-scatter (RS), followed by an Allgather operation.
Specifically, it divides the message into p smaller chunks. In the
reduce-scatter phase, each process sends one chunk to its neighbor.
Upon receiving a chunk from the neighbor, a process performs the
reduction operation on it and proceeds with the next step using the
reduced chunk. The reduce-scatter phase takes p − 1 steps, and all
processes will have a piece of the final reduced result. Similarly, the
Allgather phase would take p − 1 steps to propagate the final partial
results to all the processes in the ring. The cost can be defined as
follows.

T(RS_Rinд) = (p − 1) × (ts +
M

p × B
+TR (

M

p
)) (1)

T(Allдather_Rinд) = (p − 1) × (ts +
M

p × B
) (2)

T(Allred_Rinд) = T(RS_Rinд) +T(Allдather_Rinд) (3)

Although the proper chunking can amortize the communica-
tion cost, the cost of reduction operations in RS phase is inevitably
sequential and dominates the overall performance. Hierarchical
ring-based schemes [10, 31, 49] can be used to further reduce the
dominating factor in the flat ring algorithms for multi-GPU sys-
tems. A two-dimensional ring algorithm can perform intra-node
Allreduce first, followed by an inter-node Allreduce operation. As a
result, the domain factor becomes (N +N_G), where (N +N_G) ≤ p,
as shown in Equation 4.

T(Allred_2D_Rinд) = T(Intra−node_Rinд) +T(Inter−node_Rinд)

= 2 × (NG − 1) × (ts +
M

NG × B
) + (NG − 1) ×TR (

M

NG
)

+ 2 × (N − 1) × (ts +
M

N × B
) + (N − 1) ×TR (

M

N
) . (4)

Note that this can be extended to higher dimensions if applicable,
e.g., 3D Ring in [10, 11].

3.1.2 Tree-based Allreduce. In the ring-based algorithms, the num-
ber of steps it takes becomes the main performance bottleneck at a
large scale. To further reduce the communication cost while main-
taining the full bandwidth at scale, the state-of-the-art adopts a
tree-based design for GPU-based Allreduce [45]. The basic idea is to
adopt a double binary tree algorithm (DTree) proposed in [40] for
reduction and broadcast operations, which can be combined into
an Allreduce operation. By building two binary trees with each tree
responsible for Allreduce operations of half the data in different
directions, we can fully exploit the duplex interconnects. Ideally,
the dominant factor is expected to be reduced to logarithmic with
a proper pipeline, as shown in Equation 5.

T(Allred_DTree) ≃ 2 × (log2 p) × (ts +
M

2 × p × B
)

+ (log2 p) ×TR (
M

2 × p
) . (5)

3.1.3 Rabenseifner’s algorithm for Allreduce. Rabenseifner’s al-
gorithm, also known as Recursive vector halving and doubling
(RVHD), is a tree-like algorithm proposed as an alternative to the

ring-based described above for large messages at scale. RVHD can
be applied to Allreduce, which is again essentially reduce-scatter
followed by Allgather [39, 46, 51]. In the reduce-scatter phase, each
process first exchanges the data with a process that is a distant

p
2

away. Here, each process sends half of the message and receives
another half of the message, and then performs the reduction oper-
ation on the received message. In the following steps, the distance
and the message size to be exchanged are halved in each step. The
reduce-scatter phase takes log2 p steps. In contrast, in the Allgather
phase, the distance and the message size to be exchanged are dou-
bled in each step. Based on [46], the cost of RVHD Allreduce can
be represented as follows:

T(RS_RVHD) = log2 p × ts +
p

p − 1
×
M

B

+TR (
p

p − 1
×M)

T(Allдather_RVHD) = log2 p × ts +
p

p − 1
×
M

B

T(Allred_RVHD) = T(RS_RVHD) +T(Allдather_RVHD) (6)

Although RVHD is proven to achieve lower bound of Allreduce
when p is power of two [39], it may not be the case for modern
GPU systems such as Summit, which has 6 GPUs per node.

3.2 Performance Issues of Existing Allreduce
Algorithms on NVLink-enabled Systems

This section includes an analysis and discussion of the problems
with the existing Allreduce schemes on the NVLink-enabled multi-
GPU systems. Figure 4 illustrates an intermediate step of the tree-
based Allreduce schemes being applied to multi-GPU systems. Con-
tention can easily occur on the slower interconnects such as IB net-
works or X-bus while every GPU is exchanging data with another
process across the nodes or the sockets. This has been observed in
host-based Allreduce on symmetric multiprocessing (SMP) scenar-
ios as discussed in [37].

To address the contention problem, the ring-based Allreduce
schemes are proposed. Figure 5 shows an intermediate step of the
ring-based Allreduce scheme on a multi-GPU node. Although this
scheme is contention-free, it only utilizes all the links in one direc-
tion whereas all the modern interconnects support full-duplex links.
Current ring-based Allreduce designs mostly use the uni-directional
ring to avoid contention on traditional PCIe-based systems. With
the introduction of NVLink, researchers have started proposing
multiple rings to saturate the bandwidth of interconnects in both
directions. However, a maximum of two rings are used to avoid
contention in the slower interconnects. If there are more than two
GPUs connected to the CPU similar to the Summit system [33],
some NVLinks between the CPU and the GPU remain idle and are
never used, as shown in Figure 5. This leads to lower link utilization
and load imbalance among NVLinks as depicted in Figure 2.

In short, the state-of-the-art Allreduce schemes are suffering
from either contention or link under-utilization on high-performance
NVLink-enabled multi-GPU systems. There is a dearth of topology-
awareAllreduce schemes that are contention-freewhilemaximizing
the use of fast interconnects like NVLinks.

NV-Group: Link-Efficient Reductions for Distributed Deep Learning ICS ’20, June 29-July 2, 2020, Barcelona, Spain

IB HCAs

Port 0 Port 1

GPU1 GPU2 GPU3

CPU0

GPU4 GPU5 GPU6

CPU1

2-lane NVLink
(50 GB/s)

X-Bus
(64GB/s)

Data path

Figure 4: Flat Tree-based Allreduce algorithms. At any given

step, each GPU exchanges a vector with another GPU based

on a logic tree. Contention occurs on the slowest intercon-

nects like InfiniBand networks.

GPU GPU

IB HCAs IB HCAs

GPU

CPU

GPU GPUGPU GPU GPUGPU GPU GPUGPU

CPU CPU CPU

Figure 5: Contention-free Ring-based Allreduce but low

link-utilization. At any given step, each GPU sends and re-

ceives chunks to and from its neighbors. Links are either not

fully utilized on both directions or remain idle.

4 PROPOSED LINK-EFFICIENT DESIGNS ON
NVLINK-ENABLED GPU SYSTEMS

Based on the analysis presented in Section 3, three major chal-
lenges must be addressed to achieve the best possible performance
on emerging NVLink-enabled dense GPU systems: 1) utilizing all
NVLinks between CPU and GPU and between GPUs, 2) avoiding
contention on the slower interconnects, and 3) hiding the cost of
łreductionž as much as possible. In this section, we present our
proposed designs to address these challenges.

There are three main components: ➊ NVLink discovery and
grouping,➋Cooperative Collective communicationwithin aNVLink
group, and ➌ Communication across NVLink Groups.

4.1 NVLink Discovery and Grouping

The modern operating systems and CUDA drivers provide methods
such as NVIDIA Management Library (NVML) [29] to dynamically
query the information of the device (e.g., CPU, GPU or HCA) and
interconnect (e.g., NVLink or PCIe bus). NVML, combined with
tools such as the Portable Hardware Locality library (hwloc) [8],
help to determine the locality information for the CPU, GPU, and
HCA. These tools are useful in easily generating a topology graph.
An example of a topology graph we built with these tools is shown
in Figure 3. In principle, we group the CPU cores and GPUs that
are fully connected by NVLinks such that within an NVLink group
(NVGroup), any GPU can access other GPUs’ memory and system
memory via a dedicated NVLink without contention from commu-
nication operations originating from other GPUs. This grouping
provides an abstraction to the CPU processes that it connects with a
single powerful GPU via fast NVLink. Next, an Allreduce algorithm
can be built based on these groups instead of individual GPUs. Note
that this is different from the typical NUMA-aware or hierarchical

approaches [10, 24, 47] because NVLinks can be used to connect
GPUs across physical sockets. For instance, in TSUBAME3 [48]
and DGX-2, we will have one single NVLink group per node even
though two NUMA nodes exist because NVLink/NVSwitch fully
connects all GPUs.

4.2 Persistent GPU Kernels for Cooperative
Allreduce within an NVLink Group

To create an abstraction of a single powerful GPU for CPU pro-
cesses, GPUs must work cooperatively. In this work, we adopt a
persistent GPU kernel approach [13, 16, 17, 31] to avoid the over-
head of multiple CUDA kernel launches. The proposed collective
persistent kernel (COLL-PK) acts as a worker for CPU processes.
There are three primary design considerations for such a persistent
kernel: 1) Low-overhead signaling mechanism, 2) Efficient collec-
tive operations within NVGroup, and 3) High kernel occupancy
and NVLink utilization.

4.2.1 Signaling Mechanism. Since the CPU process is responsible
for orchestrating data transfer via the IB network, a signaling mech-
anism is required for the CPU to notify the GPU to work on new
requests and also to query the completion of the work requests. The
proposed design uses a pre-allocated circular buffer in the system
memory, shared by all CPU processes and GPUs in the same group,
as a work queue to store the work requests. In general, we create
one work queue for each Cooperative Thread Array (CTA) to avoid
additional synchronization between CTAs. If an advanced CUDA
cooperative group feature is used [25], only one work queue is
sufficient. Each work request contains four fields: request ID, col-
lective type, data offset, and data size. Furthermore, CPU maintains
a request counter to indicate the request number of the outstanding
work request. In the GPU kernel, each CTA maintains a response
counter to indicate the completion of the request number, similar
to the cumulative acknowledgment. To minimize synchronization
overhead between CPU and GPU, only one thread in each CTA
keeps polling the request counter and reads the request item to the
shared memory (within the CTA) if a new work request is ready as
show in Algorithm 1 (lines 10-12).

4.2.2 Collective Operations within NVGroup. To support Allreduce
operations, the proposed COLL-PK provides varieties of basic collec-
tive operations among GPUs: reduction and broadcast. To maximize
the GPU computing power and minimize synchronization between
GPUs, each GPU within a group is responsible for performing col-
lective operations on different portions of the data. Algorithm 1
highlights the main components of the COLL-PK running on the
GPU. To achieve this, the CPU process assigns a work request to
each GPU and its CTAs with a different offset in the work request.

Within one GPU, we further split the data and assign them to
different CTAs to get high occupancy and work balance as shown in
Figure 6. Most of the state-of-the-art communication libraries that
implement reduction and broadcast in a so-called Copy-Compute-
Forward fashion, which performs a copy of the whole buffer fol-
lowed by the reduction operation and finally forwards it to other
GPUs or CPU. However, explicit data transfer is expensive. The pro-
posed COLL-PK performs the reduction in a Load-Compute-Store
via NVLink. That is, each GPU thread loads an element, e.g., words

ICS ’20, June 29-July 2, 2020, Barcelona, Spain C.-H. Chu et al.

Algorithm 1 The proposed cooperative persistent reduction kernel

Definition of Variables
1: nvgroup : a set of GPUs in the NVGroup.
2: buf_gpu : the buffers of GPU memory within the NVGroup.
3: buf_shm : the buffers of shared system memory within the NVGroup.
4: req : request array for CTAs to perform communication.
5: groupID : group ID of current GPU in the NVGroup.
6: bid : block/CTA ID.
7: tid : thread ID.

KERNEL RUNNING ON EACH CTA:
8: has_more_req← 1
9: while has_more_req == 1 do
10: while tid==0 AND req[bid].request_cnt <= req[bid].response_cnt do
11: /* Wait for new request(s) from CPU process */
12: end while
13: _block_sync_();
14: switch req[bid].action do
15: case LOAD-REDUCE-STORE-TO-LOCAL:
16: // LOAD and REDUCE on buf_gpu within nvgroup
17: // STORE the result into buf_gpu[groupID]
18: ++req[bid].response_cnt;
19: break;

20: case LOAD-REDUCE-STORE-TO-CPU:
21: // LOAD and REDUCE within nvgroup
22: // STORE the result into buf_shm[groupID]
23: ++req[bid].response_cnt;
24: break;

25: case LOAD-REDUCE-STORE-TO-GROUP:
26: // LOAD and REDUCE on buf_gpu within nvgroup
27: // STORE the result into buf_gpu within nvgroup
28: ++req[bid].response_cnt;
29: break;

30: case GROUP-BCAST:
31: // LOAD data from buf_shm[groupID]
32: // STORE/broadcast the data to buf_gpu
33: ++req[bid].response_cnt;
34: break;

35: case TERMINATE:
36: has_more_req← 0
37: break;

38: end while

Persistent GPU Kernel on GPU0

Shared System memory

Chunk 0
From CPU

CTA 0CTA 1CTA 2

Chunk 1
From GPU1

Chunk 2
From GPU2

Work queues

Chunk 0
From GPU2

Chunk 1
From CPU

Chunk 2
From GPU1

Chunk 0
From GPU1

Chunk 1
From GPU2

Chunk 2
From CPU Timeline

Request item:
<ID, Type, offset, size> Chunk 0

Chunk 1

Chunk 2

Data received to
be reduced

Figure 6: Example of Persistent GPU kernel Performing Co-

operative Allreduce Operations among three GPUs

of size equal 16 bytes to maximize the memory access throughput,
from CPU and remote GPU via NVLink, and performs the reduc-
tion on the element, followed by a direct store instruction to move
the element to CPU or remote GPUs. In this way, the reduction
and broadcast operation can be highly overlapped, maximizing the
throughput. As an example shown in Figure 6, each CTA is working
on a different data chunk. Each CTA can concurrently LOAD data
from different GPUs in the NVGroup via different NVLinks, so that
all the collective operations are overlapped.

0

10

20

30

40

50

60

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of CTAs per GPU

Proposed NVGroup NCCL-2.6

Figure 7: Peak Allreduce throughput of the proposed per-

sistent kernel with various number of CTAs per GPU on a

POWER9 system with three GPUs in one group

4.2.3 GPUOccupancy andNVLink Utilization. Achieved occupancy,
łthe ratio of active warps/threads on an streaming multiprocessors
(SM) to the maximum number of active warps/threads supported
by the SMł, is a key factor for a high-performance GPU kernel.
The state-of-the-art communication library like NCCL builds the
ring structure inside the GPU kernel and uses CPU threads to act
as a worker to perform communication across nodes. However,
such a design consumes a vast amount of valuable GPU registers
in the SM and prevents us from utilizing more threads in parallel.
For example, the GPU reduction kernel of state-of-the-art NCCL
is limited by 256 threads per CTA. The proposed COLL-PK stores
the algorithm-related information on the system memory to enable
all the GPU threads, e.g., 1,024 threads per CTA in NVIDIA Volta
GPU, available for performing reduction and data movement op-
erations. Next, we need to ensure COLL-PK has enough working
threads to saturate the NVLink while preserving resources for the
applications. Figure 7 shows the peak throughput of 128-MByte
Allreduce operation with various numbers of CTAs per GPU on a
POWER9 system with two NVGroups and three GPUs per group.
The proposed COLL-PK can reach 60GB/s by using only 8 CTAs and
1024 threads per CTA. Note that the latest NVIDIA Volta GPU is
capable of scheduling up to 160 CTAs concurrently. There are two
significant benefits by having fewer CTAs. First, fewer CTAs brings
lower kernel launch and synchronization overhead due to the fewer
CTAs to be scheduled and synchronized. Second, it leaves more
GPU resources, i.e., SM, for applications to perform other useful
computations that can be overlapped with All-reduce operations.
As shown in Figure 7, the throughput of the proposed COLL-PK
kernel using 8 CTAs is sufficient to fully utilize all interconnects
such as NVLink, PCIe, X-bus, and InfiniBand. Therefore, we use
this setting for the rest of the paper.

4.3 Group-wise Allreduce Communication

If there is more than one group, we can perform allreduce algo-
rithms like ring-based or tree-based across groups. Here, we take a
ring-based algorithm to illustrate how to design the algorithm on
top of NVGroup. Within the NVGroup, all available NVLinks are
used to perform intra-group Allreduce cooperatively as described
in Section 4.2. The CPU orchestrates inter-group communication,
and multiple duplex HCAs can be used for data transfer without
contention to maximize the bandwidth. We elaborate on the various
phases of the algorithm in the following sections.

NV-Group: Link-Efficient Reductions for Distributed Deep Learning ICS ’20, June 29-July 2, 2020, Barcelona, Spain

4.3.1 Reduce-Scatter Phase. In the first step, each group computes
a łreducedž chunk within the group as described in Section 4.2 and
stores data directly on the system memory shared by the processes
within the group. Note that each GPU pushes data to system mem-
ory via their dedicated NVLink between GPU and CPU. The cost
of this step (Step 3 in Algorithm 2) can be formulated as follows:

2 ×
M

Nnv × NVG × BNV
+TR (

M

Nnv × NVG
) (7)

Next, the group leader starts łfilling the pipež of the ring by push-
ing the łreducedž chunk, which is M

Nnv
bytes, to the next neighbor

in the ring. Here, the communication cost can be represented as
M

Nnv×B
, which is bounded by the slowest interconnects such as IB

networks. Meanwhile, GPUs within the group remain busy prepar-
ing the reduced chunk in the GPU memory for the communication
in the next step. Note that the cost of preparing the reduced chunk
shown below is completely łhiddenž because the communication
cost is significantly higher than Allreduce operation across GPUs
via NVLink in the modern architectures. Also, each GPU is only
responsible for a portion of the chunk, which is M

Nnv×NVG
bytes.

Upon receiving a chunk from the neighbor, the group leader notifies
GPUs in the group by updating counters in the shared memory to
signal the persistent kernel as described in Section 4.2.1. Then, all
GPU threads perform LOAD-REDUCE-STORE via their individual
NVLinks without contention. Since the communication of the next
step is dependent on the same data chunk, this reduction operation
cannot be hidden. After (Nnv − 1) steps, each group leader holds
a different chunk with final reduced results in the system mem-
ory. In summary, the cost of the Reduce-Scatter phase (Step 4 in
Algorithm 2) can be formulated as follows:

T(RS_NVGroup−Rinд) =

(Nnv − 1) × (ts+
M

Nnv × B
+TR (

M

Nnv × NVG
)) (8)

4.3.2 Allgather Phase. The allgather phase is similar to the reduce-
scatter phase, but without any computation. Upon receiving a new
chunk, the group leader notifies GPUs in the group to pull the data
via NVLinks. Then, the group leader pushes the data to the next
neighbor over networks without synchronizing with the GPUs. The
cost of the allgather phase (Step 5 in Algorithm 2) can be expressed
as follows:

T(Allдather_NVGroup−Rinд) = (9)

(Nnv − 1) × (ts +
M

Nnv × B
)

Finally, the cost model of the proposed NVGroup with a ring
algorithm can be represented as follows. Note that it looks similar
to Equation 3, but the number of steps is reduced from the number
of processes p to the number of NVLink groups Nnv .

T(Allred_NVGroup−Rinд) = Eq 7 + Eq 8 + Eq 9 (10)

In this paper, we use the ring-based Allreduce algorithm as the
example to demonstrate the efficacy and benefit of the proposed
mechanisms of NVLink grouping and the persistent GPU kernel for
modern multi-GPU systems. Please note that the proposed design
can apply to other algorithms and collective operations as well.

Algorithm 2 Overview of NVGroup-Ring Allreduce

Definition of Variables
1: buf_gpu : the device buffers within the NVGroup.
2: buf_shm : the system memory shared within the NVGroup.
3: req : request array for CTAs to perform communication.
4: gID : group ID of current GPU in the NVGroup.

ROUTINE RUNNING ON EACH MPI PROCESS:
5: Step 1: NVLink Discovery and Grouping (Section 4.1).
6: chunkSize← M /Nnv ;
7: Step 2: Launches the persistent reduction kernel (Algorithm 1) on GPU.
8: Step 3: Signal kernel start performing reduction for the chunks about to send

9: for chunkID← 0 to Nnv do
10: req[gID].action← LOAD-REDUCE-STORE-TO-LOCAL;
11: req[gID].chunkID← chunkID;
12: req[gID].chunkSize← chunkSize;
13: ++req[gID].request_cnt;
14: end for
15: Step 4: /* Reduce-scatter phase for all chunks */

16: if isGroupLeader then
17: /* leader process posts receives for all chunks */
18: for chunkID← 0 to Nnv do
19: MPI_Irecv(buf_shm[chunkID], chunkSize, fromLeftGroup);
20: end for
21: end if
22: while Nnv chunks are not yet all reduced do
23: if chunki is received then
24: /* Signal GPU to perform local reduce for the chunk */
25: req[gID].action← LOAD-REDUCE-STORE-TO-CPU;
26: req[gID].chunkID← i ;
27: ++req[gID].request_cnt;
28: end if
29: if Any chunkj is received and reduced && isGroupLeader then
30: MPI_Isend(buf_shm[j], chunkSize, toRightGroup);
31: end if
32: end while
33: Step 5: /* Allgather phase for all chunks */

34: if isGroupLeader then
35: /* leader process posts receives for all chunks */
36: for chunkID← 0 to Nnv do
37: MPI_Irecv(buf_shm[chunkID], chunkSize, fromLeftGroup);
38: end for
39: end if
40: while Nnv chunks are not yet all reduced do
41: if chunki is received then
42: /* Signal GPU to broadcast the chunk within the group */
43: req[gID].action← GROUP-BCAST;
44: req[gID].chunkID← i ;
45: ++req[gID].request_cnt;
46: if isGroupLeader then
47: MPI_Isend(buf_shm[j], chunkSize, toRightGroup);
48: end if
49: end if
50: end while

4.4 Optimizations

4.4.1 Fine-grained Pipeline for High Communication Overlap. The
proposed topology-aware Allreduce scheme essentially consists
of three stages during the communication, 1) NVLink for LOAD-
COMPUTE-STORE between GPU to GPU, 2) NVLink for LOAD-
COMPUTE-STORE between CPU and GPU, 3) InfiniBand for pure
datamovement between GPU nodes. During the time this paper was
written, the throughput of the IB network is significantly slower
than NVLink, e.g., about 2-3X. To achieve optimal performance,
one needs to keep the slowest IB network busy. In general, the
reduce-scatter and allgather phases would divide the data into Nnv

in the proposed NVGroup scheme (p chunks in existing algorithms).
However, for a very large message size, the chunk size could be
large to keep NVLinks busy and delay the data transfer through IB
(i.e., IB remains idle). To avoid such a scenario, we add one more

ICS ’20, June 29-July 2, 2020, Barcelona, Spain C.-H. Chu et al.

layer of ‘chunking‘ to start ‘filling the pipe‘ earlier and improve the
overall performance.

4.4.2 CPU-driven Allreduce for Small Messages. Since the GPU-
based solution is throughput-optimized, it falls short when the
amount of data is small. When the message size is too small to
benefit from the ring-based algorithm and persistent kernels, e.g.,
GPU kernel launch overhead is greater than the GPU computation
time [12], we propose using a CPU-driven Allreduce scheme: 1) use
CPU to perform reduction operations on the shared systemmemory
when the data chunk is too small, e.g., <= 16KB, for each NVGroup
to saturate NVLink, and 2) CPU-based recursive doubling algorithm
for large-scale and small-message Allreduce where the CPU copies
the data between GPU to system memory using low-latency copy
schemes [43]. As a result, we can avoid the expensive kernel launch
overhead for reducing the latency of short-message reduction.

5 PERFORMANCE EVALUATION

In this section, we detail the performance evaluation and include
an analysis of the proposed designs.

5.1 Experimental Platforms and Setup

We conducted experiments on the following cutting-edge NVLink-
enabled GPU platforms:

• NVLink-based IBM OpenPOWER9 systems: Each node has
two POWER9 CPUs. Every socket has 22 IBM Power9 cores
with four hardware threads per core. The CPU sockets are
connected using X-bus interconnect. We evaluated the pro-
posed design on two types of POWER9 systems: 1) Summit
system [33]: three NVIDIA V100 GPUs per socket and 3-lane
NVLink is used to connect CPU and GPU and between GPUs
on the same socket, 2) Lassen system [23]: there are two
NVIDIA V100 GPUs per socket and 2-lane NVLink.
• NVIDIA DGX-2 AI system: The DGX-2 system is very differ-
ent compared to the POWER systems. It has an advanced
topology with up to 6 NVLink(s) between 16 NVIDIA Telsa
V100 GPUs connected using the NVSwitch.

We evaluated the proposed and existing Allreduce schemes as
follows: 1) NVGroup-Ring (Proposed), which is implemented in
MPI_Allreduce on top of the MVAPICH2-GDR library, 2) a GPU-
based Rabenseifner’s algorithm implemented in MVAPICH2-GDR
v2.3 [3] (MV2-GDR-2.3), 3) Ring- and tree-based implementations in
NCCL v2.6 [45] (NCCL-Ring and NCCL-Default) where double bi-
nary tree algorithm is used by default and for inter-node communi-
cation only. Note that previous academic work are only comparing
to NCCL-Ring [10, 11, 49]. We also compared the proposed design
with production libraries such as SpectrumMPI v10.3.1 that is only
available on POWER systems (SpectrumMPI), and OpenMPI v4.0.3
with UCX v1.8 (OpenMPI). Note that SpectrumMPI and OpenMPI
are production communication libraries that dynamically select the
best possible communication schemes for given system scales and
message sizes; we evaluated them when it is available.

5.2 Benchmark-level Evaluation

The evaluation and analysis are using micro-benchmark, which
is a modified benchmark suite from NCCL-test [32] to support

0.001

0.01

0.1

1

10

100

4

3
2

2
5
6

2
K

1
6
K

1
2
8
K

1
M

8
M

6
4
M

La
te

n
cy

 (
m

s)

Message Size (Bytes)

MV2-Kernel NCCL-Kernel Proposed

(a) Latency

0

10

20

30

40

50

60

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

B
a

n
d

w
id

th
 (

G
B

/s
)

Message Size (bytes)

MV2-Kernel NCCL-Kernel Proposed

(b) Peak Bandwidth

Figure 8: Performance Comparison of Allreduce kernel over

NVLink for Proposed vs. state-of-the-arts on Summit sys-

tem: Three GPUs and CPU are fully connected

0.001

0.01

0.1

1

10

4

3
2

2
5
6

2
K

1
6
K

1
2
8
K

1
M

8
M

6
4
M

La
te

n
cy

 (
m

s)

Message Size (Bytes)

MV2-Kernel NCCL-Kernel Proposed

(a) Latency

0

20

40

60

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

B
a

n
d

w
id

th
 (

G
B

/s
)

Message Size (Bytes)

MV2-Kernel NCCL-Kernel Proposed

(b) Peak Bandwidth

Figure 9: Performance Comparison of Allreduce kernel over

NVLink for Proposed vs. state-of-the-arts on DGX-2 system:

16 GPUs are fully connected

0

5

10

15

20

25

30

G
1
<
->
C
P
U

G
2
<
->
C
P
U

G
3
<
->
C
P
U

G
4
<
->
C
P
U

G
5
<
->
C
P
U

G
6
<
->
C
P
U

G
1
<
->
G
2

G
1
<
->
G
3

G
2
<
->
G
3

G
4
<
->
G
5

G
4
<
->
G
6

G
5
<
->
G
6T

h
ro

u
g

h
p

u
t

(G
B

/s
)

NVLink Pairs

SpectrumMPI OpenMPI MV2-GDR-2.3 NCCL Proposed

Figure 10: NVLink Utilization: Allreduce performance for

NVGroup-Ring (Proposed) vs. state-of-the-art communica-

tion libraries on Summit system (G1 represents GPU1 and

the same for others)

collectives using both NCCL and MPI primitives, i.e., ncclAllreduce
and MPI_Allreduce. The primary performance metrics are latency
and bandwidth of a single Allreduce operation. All the numbers
reported in this section are the averages of three runs and 100
iterations per run including ten warm-up iterations.

5.2.1 Cooperative Reduction Kernel over NVLink. To understand
the efficiency of the proposed cooperative reduction kernel over
NVLink, we conducted the experiments on the GPUs that are fully
connected by NVLink. Without interference from slower intercon-
nects, we can get insight into the NVLink utilization of different
Allreduce schemes. Here, we compared the proposed kernel to
existing GPU-enabled reduction schemes such as NCCL (NCCL-
Kernel) [31] and MVAPICH2-GDR (MV2-Kernel) [12] that have been
widely used in the literature [3, 11, 49, 50].

Figures 8(a) and 8(b) show the performance comparison of Allre-
duce operation on three GPUs on the Summit system. In this config-
uration, all GPUs and the CPU are fully connected by the dedicated

NV-Group: Link-Efficient Reductions for Distributed Deep Learning ICS ’20, June 29-July 2, 2020, Barcelona, Spain

0.001

0.01

0.1

1

10

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

La
te

n
cy

 (
m

s)

Message Size (Bytes)

MV2-GDR-2.3 NCCL-Ring

NCCL-Default Proposed

0

50

100

150

200

1
6
M

3
2
M

6
4
M

1
2
8
M

La
te

n
cy

 (
m

s)

Message Size (Bytes)

MV2-GDR-2.3 NCCL-Ring

NCCL-Default Proposed

(a) 1536 GPUs (6 GPUs/Node) on Summit

0.01

0.1

1

10

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

La
te

n
cy

 (
m

s)

Message Size (Bytes)

MV2-GDR-2.3 NCCL-Ring
NCCL-Default Proposed

0

20

40

60

80

100

120

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

La
te

n
cy

 (
m

s)

Message Size (Bytes)

MV2-GDR-2.3 NCCL-Ring

NCCL-Default Proposed

(b) 512 GPUs (4 GPUs/Node) on Lassen

Figure 11: Latency Comparison: Allreduce performance for the proposed vs. state-of-the-art schemes on NVLink-enabled

POWER systems

0

1

2

3

4

5

6

32M 64M 128M 256M

B
a

n
d

w
id

th
 (

G
B

s)

Message Size (Bytes)

MV2-GDR-2.3 NCCL-Ring NCCL-Default Proposed

(a) 1536 GPUs (6 GPUs Per Node) on Summit

0

1

2

3

4

16M 32M 64M 128M

B
a

n
d

w
id

th
 (

G
B

/s
)

Message Size (Bytes)

MV2-GDR-2.3 NCCL-Ring NCCL-Default Proposed

(b) 512 GPUs (4 GPUs/Node) on Lassen

Figure 12: Bandwidth Comparison: Allreduce micro-benchmark performance for NVGroup-Ring (Proposed) vs. state-of-the-

art schemes on NVLink-enabled POWER systems

NVLink. In Figure 8, we see that the proposed design outperforms
existing communication libraries in all message sizes as a result of
the efficient Allreduce kernels with high NVLink utilization. For
Allreduce operations of 128MB data, the proposed design has 1.9X
shorter latency (i.e., reduces 48%) and almost 2X higher bandwidth
compared to the NCCL-Kernel.

Figure 9 shows the micro-benchmark performance of Allreduce
operations for 16 GPUs on the DGX-2 system. The proposed design
can offer the best performance across the entire message range
compared to other MPI libraries, where the proposed kernel design
(Proposed) is up to 6X faster than the MV2-Kernel. Finally, the
proposed design outperforms NCCL-Kernel up to 2.5X for message
sizes smaller than 16-MByte because of the CPU-driven optimiza-
tions and the efficient GPU kernel. For large messages shown in
Figure 9(a), the proposed design can saturate the NVLink signifi-
cantly faster than existing schemes. For messages larger than 64
MB, both NCCL and the proposed designs are saturating all the
NVLinks; thus yielding comparable performance.

5.2.2 Link-Utilization and Load Balance. To address the key prob-
lem of link under-utilization and load imbalance, as illustrated in
Figure 2, Figure 10 presents new results derived from the proposed
design. The benefits observed for the proposed NVGroup-Ring are
corroborated by the fact that the proposed designs are aggressively
utilizing all the NVLinks, whereas other libraries significantly fall
behind. By profiling the NVLink counters with NVIDIA CUDA
Profiling Tools Interface (CUPTI) according to [21], we observe
that NVGroup-Ring (Proposed) can achieve 16GB/s and 25GB/s
on GPU-CPU and GPU-GPU NVLinks, respectively. Note that the
throughput is limited by the slower X-Bus interconnects.

5.2.3 Large-Scale Evaluation. The parallel applications usually per-
form collectives across large number of nodes to gain the best
possible acceleration. For the traditional HPC applications, Allre-
duce is typically used for small messages, e.g., from 4 to 32 bytes.
On the other hand, a large message Allreduce is highly demanded
by data-parallelism-based deep learning applications to exchange
and update gradients [3]. To understand the performance improve-
ment of the proposed designs for both HPC and DL applications at
scale, we report the performance comparison for small and extra-
large message ranges on POWER systems up to 1,536 GPUs as
shown in Figure 11. For Allreduce operations with small data as
shown in figures 11(a) and 11(b), the proposed design provides
lower latency as it uses the CPU-driven Allreduce as described in
Section 4.4. Figures 11(a) and 11(b) report the latency comparison
at scale and the proposed designs can achieve up to 3.3X, 1.8X,
and 2.1X faster Allreduce compared to MV2-GDR, NCCL-Ring, and
NCCL-Default, respectively. Note that BlueConnect [11], known as
IBM PowerAI solution, claims to outperform NCCL-ring by 1.6X
in a similar configuration, whereas the proposed design yields 20%
more performance, achieving 1.8X improvement over NCCL-ring.
Next, figures 12(a) and 12(b) demonstrate the bandwidth of Allre-
duce for large message sizes. Similar to the latency evaluation, we
also observe significant improvement for bandwidth. Note that
MVAPICH2-GDR uses the tree-based Allreduce algorithm [3] to
perform better for smaller messages at scale. However, as shown
in Figure 13, it performs worse due to a larger number of GPUs
existing per node on Summit. This leads to the severe contention
discussed in Section 3.2.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain C.-H. Chu et al.

0

2

4

6

8

10

12

24 48 96 192 384 768 1536

B
a

n
d

w
id

th
 (

G
B

/s
)

Number of GPUs (6 GPUs per node)

SpectrumMPI OpenMPI MV2-GDR-2.3

NCCL Proposed

Figure 13: Scalability Evaluation: Allreduce Bandwidth of

128MBytes data for Proposed vs. state-of-the-art communi-

cation libraries on Summit system. (A red łXž indicates cases

where the libraries failed to complete the experiments.)

Finally, we present the scalability evaluation by fixing the mes-
sage size in 128 MBytes, which is a typical use case for DL ap-
plications [3]. Here, we also compared the proposed design with
production communication libraries, including SpectrumMPI and
OpenMPI. As can be seen in Figure 13, the proposed NVGroup-Ring
design provides higher algorithm bandwidth in all system sizes. The
bandwidth of the all designs decreases as the GPU count increases
due to the factor that more steps are required to complete the com-
munication. The production libraries such as SpectrumMPI and
NCCL typically apply different algorithms, e.g., tree- or ring-based,
to enhance scalability. Yet, the proposed NV-Group design with
the ring can still outperform the these production libraries in all
configurations we have experimented with.

5.3 Application-level Evaluation

We now present the application level performance for our pro-
posed design using popular distributed DL frameworks includ-
ing TensorFlow (v1.14.0), PyTorch (v1.5.0), and Horovod (v0.19.1).
Horovod [42] is one of the most efficient and the most straightfor-
ward design to enable distributed training for DL frameworks such
as TensorFlow [3], PyTorch [36] and MXNet. It heavily relies on
Allreduce communication according to [5]. The feature of tensor
fusion in Horovod allows batching tiny Allreduce operations into
one Allreduce to better utilize high-speed interconnects [42]. In
this section, we show the performance of end-to-end DNN training
with a synthetic image dataset to prevent the effect from disk I/O
access. We conducted training using the ResNet-50 [18] model with
a fixed batch size, 64 per GPU, using Horovod with NCCL Allreduce
and Horovod with the proposed Allreduce kernel integrated into
MPI Allreduce. 1

Figures 14 shows the training performance on an NVIDIA DGX-
2 machine with 16 NVIDIA Volta GPUs fully connected by NVLink
and NVSwitch. The images/second in Figure 14(a) provides absolute
training performance numbers within 1% variation over five runs
where the proposed NVGroup-Ring offers 5,788 images/sec. This is

1Due to the instability of TensorFlow and PyTorch frameworks on OpenPOWER
systems, we could not obtain full set of performance numbers at the time this paper is
written. Any further updated graphs are planned to be reported on the project website
(http://hidl.cse.ohio-state.edu/) when available.

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16

Im
a

g
e

s/
se

c

Number of GPUs

NCCL-Ring Proposed Ideal

(a) Throughput

0

20

40

60

80

100

1 2 4 8 16

S
ca

li
n

g
 E

ff
ic

ie
n

cy
 (

%
)

Number of GPUs

NCCL-Ring Proposed Ideal

(b) Scaling Efficiency

Figure 14: ResNet-50 Training using TensorFlow on DGX-2

System: NCCL2 vs. Proposed

0

20

40

60

80

100

120

140

6 12 24 48 96 192 384T
h

o
u

sa
n

d
 Im

a
g

e
s/

se
c

Number of GPUs

SpectrumMPI MV2-GDR-2.3 Proposed

(a) Throughput

0

20

40

60

80

100

6 12 24 48 96 192 384

S
ca

li
n

g
 E

ff
ic

ie
n

cy
 (

%
)

Number of GPUs

SpectrumMPI MV2-GDR-2.3 Proposed

(b) Scaling Efficiency

Figure 15: ResNet-50 Training using TensorFlow on Summit

system (6 GPUs/node)1

0

20

40

60

80

100

6 12 24 48 96 192 384T
h

o
u

sa
n

d
 I

m
a

g
e

s/
S

e
c

Number of GPUs

MV2-GDR-2.3 NCCL Proposed

Figure 16: ResNet-50 Training using PyTorch on Summit sys-

tem (6 GPUs/node)1

8% higher than NCCL2’s 5,193 images/sec for ResNet-50 training
on 16 Volta GPUs. As shown in Figure 14(b), although both designs
perform similarly for 2 and 4 GPUs, the proposed design achieves
93.9% scaling efficiency (15X speedup) for 16 Volta GPUs on the
DGX-2 system, which is a significant improvement over NCCL’s
85.2% efficiency (13.6X speedup). The performance gains shown for
the proposed designs are further justified by the micro-benchmark
performance improvements reported earlier in Section 5.2.1 since
the message sizes used for Allreduce operations are ranging from
256-Byte to 256-MByte in the DL training phase.

Similarly, we can observe near 90% scaling efficiency (172X
speedup) on the Summit system, as shown in Figure 15(b). Fig-
ure 15(a) the proposed design is achieving 69,537.94 images/sec
over 192 NVIDIA Volta GPUs. In similar experiments with PyTorch,
as shown in Figure 16, we can see that the proposed design out-
performs NCCL by 1.28X in training ResNet-50 over 192 GPUs.
However, we note that only improving Allreduce communication
is not enough to achieve ideal scaling for the PyTorch framework
due to the different communication patterns being used. Further

NV-Group: Link-Efficient Reductions for Distributed Deep Learning ICS ’20, June 29-July 2, 2020, Barcelona, Spain

investigation and optimization are required for different DL frame-
works, and it is a part of our future work. Note that the MV2-GDR
scheme has poor scalability in both cases due to severe contention,
as discussed previously.

6 RELATED WORK AND DISCUSSION

Different research studies with a focus on improving large mes-
sage communication exist in the literature. Chu et al. [12] proposed
new MPI reduction collective designs that benefit from the CUDA
kernels and GPUDirect RDMA features for reduction and commu-
nication, respectively. However, the designs are COPY-COMPUTE-
COPY approach and do not take link utilization into account. Oden
et al. [34] suggested using a Global GPU Address Space to bypass
CPU involvement, enabling communication and computation to be
done on the GPU for Reduce and Allreduce operations. However,
it has significant driver overhead on address translation, and it
requires significant modifications for MPI applications to leverage
the design. Luo et al. [24] offered a new communication framework
on top of OpenMPI that relaxes synchronization dependencies by
using events and callbacks and utilize the CUDA kernel to speed up
reduction operations. Blink is a design protocol for collective com-
munication for obtaining better NVLink utilization on DGX-like
systems[50]. They propose using two-stage protocol: internal broad-
cast and cross-group forwarding to fully utilize NVLink within a
DGX machine. However, it does not handle communication across
multiple GPU nodes. In work done by Mojumder et al. [27], the
training of various DNNs is evaluated and compared based on two
different communication methods: peer-to-peer data transfer and
using NCCL based communication. They provide an outlook on the
bottlenecks and factors that are limited by the multi-GPU system
architecture.

In [22], gradient reduction strategies are applied into Horovod
framework to optimize the overlap between computation and Allre-
duce communication. The authors demonstrate a scalable training,
i.e., 93% scaling efficiency, usingmodified DNN segmentationmodel
on Summit system. This work and the proposed designs are orthog-
onal and complimentary. Thus, they can be applied at the same
time, which is part of our future work. Cho et al. [10] proposed a
communication library referred to as BlueConnect for DL training
that is optimized for GPU architectures. The central idea behind the
efficiency proposed by this library involves decomposing Allreduce
operations into multi-level reduce-scatter and All-gather opera-
tions that are parallelizable at each level. However, the operations
between different levels cannot be performed concurrently due to
the data dependency. The proposed NVGroup can concurrently
make progress of communication across groups and computation
within a group to yield performance improvement compared to
NCCL’s ring- and tree-based design, as shown in Section 5.

7 CONCLUDING REMARKS

As emerging GPU systems become denser with faster intercon-
nects like NVLink, it is challenging to achieve link-efficient and
contention-aware communication and to translate the performance
to the applications. In this paper, we took up the challenge of de-
signing efficient communication algorithms of the critical Allre-
duce collective operation for distributed deep learning training on

NVLink-enabled dense GPU systems. We analyzed the deficiencies
of existing algorithms for Allreduce and presented a comprehen-
sive theoretical model. Based on this model, we proposed link-
efficient, cooperative, and topology-aware algorithms for Allreduce.
Using CUPTI, we analyzed and demonstrated that the proposed
łNVGroupž approach can utilize the available bandwidth of NVLinks
much more efficiently than the state-of-the-art communication li-
braries like NVIDIA’s NCCL and CUDA-Aware MPI libraries. By
maximizing utilization of all available NVLinks we present 1.8X
faster Allreduce compared to the state-of-the-art NCCL at micro-
benchmark-level on Summit system with 1,536 GPUs. Furthermore,
we observe 93.9% scaling efficiency (15X speedup) and up to 8%
higher throughput for training deep learning models using Tensor-
Flow when comparing the proposed design to the existing scheme
on a DGX-2 system. A similar trend is also observed on the Summit
system, displaying 89.7% scaling efficiency (172X speedup) over 192
GPUs. With the PyTorch framework, the proposed NVGroup de-
sign also yields 1.27X higher throughput than NCCL when training
ResNet-50 on the Summit system over 192 GPUs. The proposed
designs have been made publicly available under MVAPICH2-GDR
project [28]. As part of future work, we plan to evaluate the tree-
based algorithm on top of the proposed NVGroup concept and
perform a similar analysis for other collective operations at scale.

8 ACKNOWLEDGMENT

This research is supported in part by NSF grants #1931537, #1450440,
#1664137, #1818253, and XRAC grant #NCR-130002.

The authors thank Drs. Olga Pearce and Kathryn Mohro for
providing access to Lassen system. We also thank our colleague
Mohammadreza Bayatpour for useful discussion and anonymous
reviewers for the valuable comments.

REFERENCES
[1] AMD. 2016. ROCm Communication Collectives Library. https://github.com/

ROCmSoftwarePlatform/rccl Accessed: May 1, 2020.
[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan

Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos,
Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Y.
Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Y.
Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao,
Dani Yogatama, Jun Zhan, and Zhenyao Zhu. 2015. Deep Speech 2: End-to-
End Speech Recognition in English and Mandarin. CoRR abs/1512.02595 (2015).
arXiv:1512.02595 http://arxiv.org/abs/1512.02595

[3] Ammar Ahmad Awan, Jeroen Bédorf, Ching-Hsiang Chu, Hari Subramoni, and
Dhabaleswar K. Panda. 2019. Scalable Distributed DNN Training using Ten-
sorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance
Evaluation. In The 19th Annual IEEE/ACM International Symposium in Cluster,
Cloud, and Grid Computing (CCGRID 2019).

[4] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and
Dhabaleswar K. Panda. 2017. S-Caffe: Co-designing MPI Runtimes and Caffe for
Scalable Deep Learning on Modern GPU Clusters. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’17). ACM, New York, NY, USA, 193ś205. https://doi.org/10.1145/3018743.3018769

[5] Ammar A. Awan, Arpan Jain, Ching-Hsiang Chu, Hari Subramoni, and Dha-
baleswar K. Panda. 2020. Communication Profiling and Characterization of
Deep-Learning Workloads on Clusters With High-Performance Interconnects.
IEEE Micro 40, 1 (Jan 2020), 35ś43. https://doi.org/10.1109/MM.2019.2949986

[6] Mohammadreza Bayatpour, Jahanzeb Maqbool Hashmi, Sourav Chakraborty,
Hari Subramoni, Robert S Oakes, and Dhabaleswar K. Panda. 2018. SALaR:
Scalable and Adaptive Designs for Large Message Reduction Collectives. (2018),
12ś23.

[7] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying Parallel and Distributed
Deep Learning: An In-Depth Concurrency Analysis. ACM Comput. Surv. 52, 4,
Article Article 65 (Aug. 2019), 43 pages. https://doi.org/10.1145/3320060

ICS ’20, June 29-July 2, 2020, Barcelona, Spain C.-H. Chu et al.

[8] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst. 2010. hwloc: A Generic Framework for Managing
Hardware Affinities in HPC Applications. In 2010 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing. 180ś186.

[9] Z. Sura W. Hwu C. Pearson, I. Chung and J. Xiong. 2018. NUMA-aware Data-
transfer Measurements for Power/NVLink Multi-GPU Systems,. In International
Workshop on OpenPOWER for HPC (IWOPHâĂŹ19) at the 2018 ISC High Perfor-
mance Conference.

[10] Minsik Cho, Ulrich Finkler, and David Kung. 2018. BlueConnect: Novel Hierar-
chical All-Reduce on Multi-tired Network for Deep Learning. In 32nd Conference
on Neural Information Processing Systems (NeurIPS 2018).

[11] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter. 2019. BlueConnect:
Decomposing all-reduce for deep learning on heterogeneous network hierarchy.
IBM Journal of Research and Development 63, 6 (2019), 1:1ś1:11.

[12] Ching-Hsiang Chu, K. Hamidouche, A. Venkatesh, A. A. Awan, and D. K. Panda.
2016. CUDA Kernel Based Collective Reduction Operations on Large-scale GPU
Clusters. In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid). 726ś735. https://doi.org/10.1109/CCGrid.2016.111

[13] Ching-Hsiang Chu, Sreeram Potluri, Anshuman Goswami, Manjunath
Gorentla Venkata, Neena Imam, and Chris J. Newburn. 2019. Designing High-
Performance In-Memory Key-Value Operations with Persistent GPU Kernels and
OpenSHMEM. In OpenSHMEM and Related Technologies. OpenSHMEM in the Era
of Extreme Heterogeneity. Springer International Publishing, Cham, 148ś164.

[14] Z. Dong, Y. L. Fang, X. Huang, H. Yan, S. Ha, W. Xu, Y. S. Chu, S. I. Campbell, and
M. Lin. 2018. High-Performance Multi-Mode Ptychography Reconstruction on
Distributed GPUs. In 2018 New York Scientific Data Summit (NYSDS). 1ś5.

[15] Denis Foley and John Danskin. 2017. Ultra-Performance Pascal GPU and NVLink
Interconnect. IEEE Micro 37, 2 (March 2017), 7ś17. https://doi.org/10.1109/MM.
2017.37

[16] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. 2017. APUNet: Revitalizing GPU as Packet
Processing Accelerator. In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17). USENIX Association, Boston, MA, 83ś96.
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go

[17] K. Gupta, J. A. Stuart, and J. D. Owens. 2012. A study of Persistent Threads style
GPU programming for GPGPU workloads. In 2012 Innovative Parallel Computing
(InPar). 1ś14. https://doi.org/10.1109/InPar.2012.6339596

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770ś778.

[19] IBM. 2018. IBM Spectrum MPI: Accelerating high-performance application par-
allelization. https://www.ibm.com/us-en/marketplace/spectrum-mpi. Accessed:
May 1, 2020.

[20] Kawthar Shafie Khorassani, Ching-Hsiang Chu, Hari Subramoni, and Dha-
baleswar K. Panda. 2018. Performance Evaluation of MPI Libraries on GPU-
enabled OpenPOWER Architectures: Early Experiences. In International Work-
shop on OpenPOWER for HPC (IWOPH 19) at the 2019 ISC High Performance
Conference.

[21] Pouya Kousha, Bharath Ramesh, Kaushik Kandadi Suresh, Ching-Hsiang Chu,
Arpan Jain, Nick Sarkauskas, Hari Subramoni, and Dhabaleswar K. Panda. 2019.
Designing a Profiling and Visualization Tool for Scalable and In-depth Analysis
of High-Performance GPU Clusters. In 2019 IEEE 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC). 93ś102.

[22] Nouamane Laanait, Joshua Romero, Junqi Yin, M. Todd Young, Sean Treichler,
Vitalii Starchenko, Albina Borisevich, Alex Sergeev, and Michael Matheson. 2019.
Exascale Deep Learning for Scientific Inverse Problems. arXiv:cs.LG/1909.11150

[23] Lawrence Livermore National Laboratory. 2018. Lassen | High Performance
Computing. https://hpc.llnl.gov/hardware/platforms/lassen. Accessed: May 1,
2020.

[24] Xi Luo, Wei Wu, George Bosilca, Thananon Patinyasakdikul, Linnan Wang,
and Jack Dongarra. 2018. ADAPT: An Event-based Adaptive Collective Com-
munication Framework. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’18). ACM, New
York, NY, USA, 118ś130. https://doi.org/10.1145/3208040.3208054

[25] Mark Harris and Kyrylo Perelygin . 2017. Cooperative Groups: Flexible CUDA
Thread Programming. https://devblogs.nvidia.com/cooperative-groups/ Ac-
cessed: May 1, 2020.

[26] Message Passing Interface Forum. 2014. http://www.mpi-forum.org/ Accessed:
May 1, 2020.

[27] S. A. Mojumder, M. S. Louis, Y. Sun, A. K. Ziabari, J. L. AbellÃăn, J. Kim, D. Kaeli,
and A. Joshi. 2018. Profiling DNN Workloads on a Volta-based DGX-1 System.
In 2018 IEEE International Symposium on Workload Characterization (IISWC).
122ś133. https://doi.org/10.1109/IISWC.2018.8573521

[28] Network-Based Computing Laboratory. 2001. MVAPICH: MPI over InfiniBand,
Omni-Path, Ethernet/iWARP, and RoCE. http://mvapich.cse.ohio-state.edu/. Ac-
cessed: May 1, 2020.

[29] NVIDIA. 2005. NVIDIA Management Library (NVML). https://developer.nvidia.
com/nvidia-management-library-nvml Accessed: May 1, 2020.

[30] NVIDIA. 2011. NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect
Accessed: May 1, 2020.

[31] NVIDIA. 2016. NCCL. https://github.com/NVIDIA/nccl. Accessed: May 1, 2020.
[32] NVIDIA. 2017. NCCL Tests. https://github.com/NVIDIA/nccl-tests Accessed:

May 1, 2020.
[33] Oak Ridge National Laboratory. 2018. Summit: America’s Newest and Smartest

Supercomputer. https://www.olcf.ornl.gov/summit/. Accessed: May 1, 2020.
[34] L. Oden, B. Klenk, and H. Froning. 2014. Energy-Efficient Collective Reduce and

Allreduce Operations on Distributed GPUs. In Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International Symposium on. 483ś492.

[35] Open MPI. 2004. Open MPI: Open Source High Performance Computing.
https://www.open-mpi.org/. Accessed: May 1, 2020.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024ś8035. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[37] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel and Distrib. Comput. 69, 2 (2009), 117 ś
124. https://doi.org/10.1016/j.jpdc.2008.09.002

[38] Sreeram Potluri, Khaled Hamidouche, Akshay Venkatesh, Devendar Bureddy,
and Dhabaleswar K Panda. 2013. Efficient Inter-node MPI Communication
Using GPUDirect RDMA for InfiniBand Clusters With NVIDIA GPUs. In Parallel
Processing (ICPP), 2013 42nd International Conference on. IEEE, 80ś89.

[39] Rolf Rabenseifner. 2004. Optimization of Collective Reduction Operations. In
Computational Science - ICCS 2004, Marian Bubak, Geert Dick van Albada, Pe-
ter M. A. Sloot, and Jack Dongarra (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1ś9.

[40] Peter Sanders, Jochen Speck, and Jesper Larsson TrÃďff. 2009. Two-tree algo-
rithms for full bandwidth broadcast, reduction and scan. Parallel Comput. 35, 12
(2009), 581 ś 594. https://doi.org/10.1016/j.parco.2009.09.001 Selected papers
from the 14th European PVM/MPI Users Group Meeting.

[41] Jürgen Schmidhuber. 2015. Deep Learning in Neural Networks: An Overview.
Neural networks 61 (2015), 85ś117.

[42] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

[43] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, and D. K. Panda.
2014. Designing Efficient Small Message Transfer Mechanism for Inter-node MPI
Communication on InfiniBand GPU Clusters. In 2014 21st International Conference
on High Performance Computing (HiPC). 1ś10.

[44] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. 1993. TOP
500 Supercomputer Sites. http://www.top500.org. Accessed: May 1, 2020.

[45] Sylvain Jeaugey. 2019. Massively Scale Your Deep Learning Training with NCCL
2.4. https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-
4/. Accessed: May 1, 2020.

[46] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
Collective Communication Operations in MPICH. Int. J. High Perform. Comput.
Appl. 19, 1 (Feb. 2005), 49ś66. https://doi.org/10.1177/1094342005051521

[47] T. Thao Nguyen, M. Wahib, and R. Takano. 2018. Hierarchical Distributed-
Memory Multi-Leader MPI-Allreduce for Deep Learning Workloads. In 2018 Sixth
International Symposium on Computing and Networking Workshops (CANDARW).
216ś222. https://doi.org/10.1109/CANDARW.2018.00048

[48] Tiffany Trader. 2017. TSUBAME3.0 Points to Future HPE Pascal-
NVLink-OPA Server. https://www.hpcwire.com/2017/02/17/
tsubame3-0-points-future-hpe-pascal-nvlink-opa-server/ Accessed: May 1,
2020.

[49] Y. Ueno and R. Yokota. 2019. Exhaustive Study of Hierarchical AllReduce Pat-
terns for Large Messages Between GPUs. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). 430ś439.

[50] Guanhua Wangt, Amar Phanishayee, Shivaram Venkataraman, and Ion Stoicat.
2018. Blink: A fast NVLink-based collective communication library. (2018). https:
//rise.cs.berkeley.edu/wp-content/uploads/2018/01/blink-2-page-11_50.pdf Ac-
cessed: May 1, 2020.

[51] Udayanga Wickramasinghe and Andrew Lumsdaine. 2016. A Survey of Methods
for Collective Communication Optimization and Tuning. CoRR abs/1611.06334
(2016). arXiv:1611.06334 http://arxiv.org/abs/1611.06334

[52] Hao Zhu, David Goodell, William Gropp, and Rajeev Thakur. 2009. Hierarchical
Collectives inMPICH2. In Recent Advances in Parallel VirtualMachine andMessage
Passing Interface, Matti Ropo, Jan Westerholm, and Jack Dongarra (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 325ś326.

	Abstract
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Contributions

	2 Background
	2.1 NVLink, PCIe, and InfiniBand
	2.2 NVIDIA GPUDirect Technology
	2.3 CUDA-Aware Communication Libraries

	3 Analysis of Existing Schemes
	3.1 Existing Allreduce Schemes and Associated Cost Models
	3.2 Performance Issues of Existing Allreduce Algorithms on NVLink-enabled Systems

	4 Proposed Link-Efficient Designs on NVLink-enabled GPU Systems
	4.1 NVLink Discovery and Grouping
	4.2 Persistent GPU Kernels for Cooperative Allreduce within an NVLink Group
	4.3 Group-wise Allreduce Communication
	4.4 Optimizations

	5 Performance Evaluation
	5.1 Experimental Platforms and Setup
	5.2 Benchmark-level Evaluation
	5.3 Application-level Evaluation

	6 Related Work and Discussion
	7 Concluding Remarks
	8 Acknowledgment
	References

