
NVMKV: A Scalable and Lightweight Flash Aware Key-Value Store

Leonardo Mármol‡, Swaminathan Sundararaman†, Nisha Talagala†, Raju Rangaswami‡,

Sushma Devendrappa∗, Bharath Ramsundar∗, Sriram Ganesan∗

† FusionIO ‡ Florida International University ∗work done at FusionIO

Abstract

State-of-the-art flash-optimized KV stores frequently

rely upon a log structure and/or compaction-based strat-

egy to optimally organize content on flash. However,

these strategies lead to excessive I/O, beyond the write

amplification generated within the flash itself, with both

the application and the flash device constantly rearrang-

ing data. In this paper, we explore the other extreme

in the design space: minimal data management at the

KV store and heavy reliance on the Flash Translation

Layer (FTL) capabilities. NVMKV is a scalable and

lightweight KV store that leverages advanced capabili-

ties that are becoming available in modern FTLs. We

demonstrate that NVMKV (i) performs KV operations

at close to native device access speeds for get oper-

ations, (ii) outperforms state of the art KV stores by

50%-300%, (iii) significantly improves performance pre-

dictability for the YCSB KV benchmark when compared

with the popular LevelDB KV store, and (iv) reduces

data written to flash by as much as 1.7X and 29X for

sequential and random write workloads relative to Lev-

elDB, thereby dramatically increasing device lifetime.

1 Introduction

Key-value (KV) stores are ubiquitous, having become

the default data management software for many Inter-

net services [8, 10, 21, 22, 32]. They serve application

needs in a variety of different domains that demand high-

throughput and low-latency data access [1, 3].

The performance, capacity, and power consumption

mix of flash-based storage makes it an attractive medium

for KV stores [12, 15, 19, 20, 27]. To get the best perfor-

mance from both HDDs and low-end SSDs, many KV

stores use some form of log structured writing to op-

timize data layout on media. Since log structured up-

dates require eventual compaction or garbage collection,

the consequence is auxiliary write amplification, i.e., ad-

ditional write amplification introduced at the KV store

besides the write amplification introduced by the Flash

Translation Layer (FTL). For instance, the SILT work in-

troduces an auxiliary write amplification of 5.4 [27]. The

recent LevelDB KV store from Google [22] also exhibits

rather dramatic auxiliary write amplification. Figure 1

reveals a minimum of 2.5x auxiliary write amplification

for sequential asynchronous writes and a maximum of

43x for random synchronous writes. Prior research on

130

150

170

W
ri
tt
e
n
 D

a
ta

 (
G
B
)

Input Data size: 1GB

Input Data Size: 4GB

32

36

40

44

Le
ve

lD
B:
RW

Le
ve

lD
B:
RW

-S

Le
ve

lD
B:
SW

Le
ve

lD
B:
SW

-S

NV
M
KV

:W

Le
ve

lD
B:
RW

Le
ve

lD
B:
RW

-S

Le
ve

lD
B:
SW

Le
ve

lD
B:
SW

-S

NV
M
KV

:W
0

4

8

Figure 1: A comparison of write amplification. LevelDB

variants are RW: Random asynchronous writes, RW-S: random

synchronous writes, SW: sequential asynchronous writes, SW-

S: sequential synchronous writes.

auxiliary write amplification in caching application data

in flash demonstrates that the cumulative write amplifi-

cation is multiplicative, causing even a small user update

to result in massive writing to the flash over time [33].

Three trends force us to rethink KV store design

choices. First, NAND flash endurance is getting poorer

with every new media generation [25]. With fewer Pro-

gram/Erase cycles to begin with, the auxiliary write am-

plification further reduces the device lifetime and in-

creases the KV store’s total cost of ownership. Sec-

ond, the gap between sequential and random write per-

formance has significantly narrowed in state of the art

SSDs today [26], calling into question the need for ap-

plication level log structuring and compaction. Third,

modern FTLs are much more powerful than the tradi-

tional block devices. New FTL interfaces have recently

been developed to provide advanced capabilities to ac-

cess data to (or from) NAND Flash [7, 9, 26, 29, 30].

In this paper, we explore a new design for a KV store

— one that relies upon cooperative design with an FTL

to minimize auxiliary write amplification and maximize

application-level performance. The resulting KV store,

NVMKV, is lightweight and fully exploits native charac-

teristics of the FTL to achieve get performance equiv-

alent to raw device read speeds and put operations that

are significant fractions of raw device write speeds.

NVMKV makes several novel contributions. While

many flash and disk optimized KV stores exist (see

1

NVMKV

FTL-Optimized

Flash-OptimizedDisk-Optimized

RocksDB[10]

LevelDB[22]

SILT[27]

FAWN-KV[12]

SkimpyStash[20]

BerkeleyDB[28]

HashCache[15]

MemcacheDB[5]

MongoDB[8]

FlashStore[19]

Figure 2: Categorizing Existing KV stores. This figure

shows a broad categorization of existing KV stores based on

primarily being hard-disk- or flash-optimized and on leverag-

ing capabilities surfaced by modern FTLs.

Figure 2), NVMKV is the first to leverage native FTL

layer primitives such as atomic multi-block write, atomic

multi-block persistent trim, exists, and iterate to im-

plement KV functionality. NVMKV demonstrates how

strong consistency and atomic guarantees provided by

the underlying FTL can be used to achieve atomicity and

isolation, low write amplification, and performance close

to that of the raw device. NVMKV is also the first KV

store that uses a small (close to zero), constant, amount

of in-memory metadata that is independent of both the

number of keys stored and the workload intensity.

Our evaluation of NVMKV reveals the following.

NVMKV performs get operations at close to the native

device access speeds. Relative to LevelDB, a popular

KV store in wide use today, NVMKV reduces auxiliary

write amplification by as much as 1.7X and 29X for se-

quential and random write workloads respectively. For

the YCSB KV benchmark, NVMKV outperforms Lev-

elDB by 50%-300% besides significantly reducing the

variance of KV operation latencies when compared with

LevelDB. Finally, NVMKV provides significantly bet-

ter performance when using a fourth of the user-level

DRAM cache size compared to LevelDB and unlike Lev-

elDB, without using any OS-level DRAM caching.

2 Leveraging Flash Devices

Modern FTLs are powerful software layers that include

functions such as log-structuring, dynamic data remap-

ping, indexing, transactional updates, and thin provision-

ing [26, 29], which are superficially similar to the func-

tionality being built into many KV stores. For instance,

FTLs implement an indirection map to manage the log-

ical to physical block address mapping and write log-

ging to guarantee durability on a medium that implic-

itly forces out-of-place writes. There is ongoing effort to

surface these advanced capabilities through standardized

primitives for use by operating systems and user space

software [7, 9]. Table 1 lists some of the primitives that

can be surfaced by a modern FTL. Recent work has uti-

lized such primitives for implementing efficient file sys-

tems [26], databases [29], and caching [30].

API Description

EXISTS queries if an address is populated

ATOMIC-WRITE writes an address range as ACID tx.

ATOMIC-TRIM deletes an address range as ACID tx.

ITERATE returns all populated addresses

Table 1: FTL Primitives. These primitives can be used for ei-

ther individual or ranges of (both sparse and non-sparse) locations.

Additionally, batch operations of ATOMIC-WRITE, ATOMIC-TRIM,

and combinations are also possible, allowing the write of some loca-

tions and the deletion of other locations as a single transaction.

2.1 Dynamic Mapping

FTLs maintain an indirection map translating logical

block addresses to physical locations. This mapping is

required to organize data for minimal write amplification

and best wear leveling. Most KV stores also maintain a

mapping engine that converts keys to storage addresses

where the values are stored.

To leverage an FTL based remapping engine for map-

ping key-value pairs, we extend the FTL indirection

map to a sparse map, similar to that used in previous

work [26]. A sparse map provides a few orders of mag-

nitude more addressable logical addresses (LBAs) for the

same physical capacity, thinly provisioning physical lo-

cations only for LBAs that have been written. Leverag-

ing the underlying sparse addressing, NVMKV replaces

the indirection maps found in most KV stores with hash-

ing functions over the sparse address space. Through this

approach, put and get operations are simply mapped to

write and read operations in the FTL, respectively. A

delete of a key removes the KV pair from the storage

device using the trim operation.

2.2 Persistence and Transactional Support

FTLs maintain both data and metadata, and in particular,

persistent indirection maps to recover data upon restart.

Since FTLs operate as copy-on-write, they can provide

high performance transactional write semantics [29]. KV

stores can leverage this capability to ensure that puts of

KV pairs are atomic without additional journaling, and

providing nearly the same performance as that of conven-

tional writes. Access to the transactional persistence ca-

pabilities of the FTL can be provided through two prim-

itives, ATOMIC-WRITE and ATOMIC-TRIM.

2.3 Highly parallel operations

FTLs support highly parallel read/write operations to

match the parallelism available inside the NAND die of

most flash devices. By utilizing the atomic operations,

we can minimize locking within the KV store and better

leverage the inherent parallelism within the flash device.

3 NVMKV Design

NVMKV is designed as a user space library that exports

a KV API and leverages the publicly available FTL prim-

2

Addr1

Addr2

keyz,value

keyy, value

LBA = hash (key)
i i

get (keyx)

put (keyy, value)

re
a

d
 (

 L
B

A
X

,…
)

Addr3

w
ri
te

 (
 L

B
A

y
 ,
…

)

NVMKV
FTL SPARSE

ADDRESS

NAND PHYSICAL

ADDRESS

keyx,

value

{fixed sized slot

Figure 3: NVMKV Hash model. How NVMKV retrieves

and stores KV pairs in a flash device. First, for both get and

put operations, a hash function computes the starting LBA

(i.e., slot number) in the FTL’s sparse address space. Second,

NVMKV issues a read or write operation to the LBA range,

which in turn gets translated (via the FTL) to the mapped phys-

ical address(es). On put operations, NVMKV adds metadata

to each KV pair to help identify and resolve collisions.

itives (see Table 1) to access flash devices [9]. These

primitives are implemented within Fusion-io’s ioMem-

ory FTL [23] and exported as a set of IOCTLs.

3.1 Sparse Addressing

Leveraging sparse addressing is central to NVMKV

since it allows minimizing I/O amplification during both

get and put operations. In the absence of collisions,

each get or put operation translates into exactly one I/O

to flash. The elimination of an indirection map results in

fixed (nearly zero) metadata at the KV store.

To effectively utilize the sparse address space,

NVMKV divides the sparse address into two parts: the

Key Bit Range (KBR) and the Value Bit Range (VBR).

By default, NVMKV uses 36 bits for the KBR and 12

bits for the VBR in a 48 bit address space, with alter-

natives configurable by the user when the KV store is

created. The VBR defines the amount of contiguous ad-

dress space (i.e., maximum value size) reserved for each

KV pair, ensuring that KV pairs mapped into the sparse

address space to not overlap each other in logical ad-

dress space. The KBR determines the maximum num-

ber logical hash slots that each KV pair can be placed

into. User supplied keys are mapped to LBA addresses

through a simple hash model (Figure 3). Keys can be

variable length up to the maximum supported key size

(2MB for a 12 bit VBR).

3.2 Hashing and Collision Handling

Since each VBR will contain exactly one KV pair, hash

conflicts only occur in the KBR. The design of NVMKV

assumes that the KBR is kept sufficiently large, relative

to the number of keys that can be stored in a flash device,

to reduce the chances of a hash collision. For example,

1TB of flash can contain a maximum of 2 billion 512B

1 2 3 4 5 6 7 8

Threads

0

10

20

30

40

50

60

T
h
ro
u
g
h
p
u
t
(x
1
0
0
0
 o
p
s/
se
c)

Reads

1 2 3 4 5 6 7 8

Threads

0

20

40

60

80

100

120

140

160
Writes

LevelDB

LevelDB-Sync

NVMKV

FIO

Figure 4: Microbenchmark comparing LevelDB,

NMVKV and Raw Block Device (FIO).

KV pairs. With the default KBR of 36 bits which sup-

ports 64 billion hash slots, and uniform hashing of KV

pairs across KBR space, the chances of a new KV pair

inserted into even a full device causing a collision is 3̃%.

Collisions are handled within the library by deter-

ministically computing an alternate hash location (via

polynomial probing) within the KBR. Up to eight

hash locations are tried before the KV Store refuses

to accept a new key. Assuming that the hash func-

tion uniformly distributes keys, the probability of a

PUT failing in the above example equals the proba-

bility of 8 consecutive collisions and is approximately

(1/(64 billion / 2 billion)8 = 1/240 is vanishingly

small. The sparse address bits can be increased propor-

tionately as device capacities increase to maintain low

hash collision probability.

3.3 KV Storage and Caching

The minimum unit of storage in NVMKV is a sector

where keys and values smaller than 512B will consume

a full 512B sector. Each KV pair will also contain some

metadata in a header stored on media. NVMKV packs

and stores the metadata, the key, and the value in a sin-

gle sector if the sum of their individual sizes is less than

or equal to the sector size. Our instance of NVMKV

implements a DRAM cache which can be used to hold

KV pairs. Separately, a collision cache holds informa-

tion about recent hash collisions, reducing the need for

additional flash lookups at collision time.

4 Evaluation

We evaluated the performance, overhead, and auxiliary

write amplification of NVMKV, comparing it to the raw

device and LevelDB 1.14 [22]. We used the FIO bench-

mark, the YCSB KV benchmark [17], and the LevelDB

suite of micro-benchmarks for our workloads. Our ex-

periments were performed on a system with a Quad-Core

2.5 GHz AMD Opteron(tm) Processor, 8GB of DDR2

RAM, and a 825GB Fusion-io ioScale2 drive running

Linux Ubuntu 12.04 LTS.

3

Load A B C D F
0

2000

4000

6000

8000

10000
T
h
ro
u
g
h
p
u
t(
o
p
s/
se
c)

LevelDB (C:256MB)

LevelDB (C:1GB)

NVMKV (C:256MB)

NVMKV (C:1GB)

Figure 5: LevelDB vs. NVMKV for built-in YCSB

workloads A-F. Load populates data and precedes all work-

loads. A is a mix of 50/50 reads and writes. B is 95/5

reads/write mix. C is read only. D is a read latest workload,

and F is a read-modify-write workload.

4.1 Raw Device Performance Comparison

Our first experiment evaluates the overhead of the

NVMKV stack and LevelDB relative to the raw flash de-

vice. Get and put used 512B values and key sizes rang-

ing from 1 byte to 128 bytes and for these sizes, NVMKV

issues I/O operations of size 1KB. The FIO tool was con-

figured to generate 1KB I/Os to the raw device. Figure 4

shows that as the thread count increases, the through-

put for NVMKV’s get operations tracks the FIO bench-

mark’s read rate. For put operations, NVMKV sig-

nificantly outperforms both the asynchronous and syn-

chronous versions of LevelDB. Additional overheads in

NVMKV such as checking for collisions cause perfor-

mance to be lower than the underlying native device

write performance extracted by FIO.

4.2 LevelDB Comparison using YCSB

YCSB is a framework for comparing the performance

of KV stores and implements six workload personalities

A-F [17]. The YCSB dataset size was 10GB and we

evaluated both KV stores with caches of size 256MB (C:

256 MB) and 1GB (C: 1 GB). LevelDB implements write

buffering and utilizes the OS page cache (both active dur-

ing the experiment) while NVMKV does neither. Lev-

elDB was configured to perform asynchronous writes.

Figure 5 demonstrates throughput performance gains

of 50%-300% with NVMKV relative to LevelDB when

running the YCSB workloads. These performance gains

are even more significant when we consider that Lev-

elDB does not provide durability while NVMKV does,

and that LevelDB uses both a write buffer and the OS

buffer cache for additional DRAM caching/buffering,

while NVMKV does neither. We do not report results

for YCSB-E because it performs short range scans (short

sequential scans at randomly chosen locations), an oper-

ation not currently supported by the YCSB Java binding

for NVMKV.

We measured how KV operation latencies varied over

102

103

104

W
ri
te
 L
a
t.
 (
µ
s)

LevelDB LevelDB-Sync NVMKV

0 1000 2000 3000 4000 5000 6000
Time (s)

102

103

104

R
e
a
d
 L
a
t.
 (
µ
s)

Figure 6: KV operation latency over time for YCSB-

A. The two charts depict the update (top), and read (bottom)

phases of the workload.

time for each of the workloads (Figure 6). We include

data for both async (default) and sync modes for Lev-

elDB writes. There are a few interesting insights here.

First, NVMKV, which delivers atomic and durable up-

dates, significantly outperforms even the LevelDB’s best

performing, but weaker, async mode. Second, we note

that the performance variance in LevelDB is greater rela-

tive to NVMKV with significant latency spikes. We mea-

sured average/maximum KV read latencies of 0.33/1.38

and 0.33/1.39 ms for LevelDB and LevelDB-S respec-

tively, relative to 0.14/0.66 ms for NMVKV. Since the

LevelDB latency spikes seem to occur periodically, we

believe these are correlated with the internal compaction

mechanism. On the other hand, NVMKV offers much

more consistent latency performance over time.

Revisiting Figure 1, we see that for the LevelDB suite

of microbenchmarks [22], NVMKV incurs 1.7X to 29X

lower auxiliary write amplification than LevelDB. The

performance gains in NVMKV can be attributed to this

reduction, as well as eliminating layers of indirection and

metadata management overhead.

5 Discussion and Future Work

Besides NVMKV’s performance improvements and en-

durance gains, atomic durability guarantees for KV op-

erations are an added benefit. The need for such guaran-

tees is a topic of debate within the NoSQL community

with KV stores implementing different levels of even-

tual to strict consistency and varying degrees of durabil-

ity. In NVMKV, we were able to provide strictly atomic

and synchronous durability guarantees by leveraging the

underlying FTL capability. Thus, rather than adding

complexity and sacrificing performance to achieve strict

guarantees (and thereby feeling pressurized to give them

up), we found that leveraging their presence in the under-

lying FTL helped us simplify the NVMKV design with-

out sacrificing performance. We also observed that by

extracting more of the native performance of the flash de-

vice, we were able to deliver more KV operation perfor-

mance than LevelDB while consuming less DRAM. We

4

believe that NVMKV represents a sound building block

on which scale-out KV stores can be built. This is an

area we intend to explore further in the future.

Due to lack of space, we did not include any de-

scriptions of how the FTL supported the primitives that

NVMKV relies upon. However, the implementations

of similar primitives have been discussed with descrip-

tions of possible FTL implementation designs [26, 29,

30]. In particular, FlashTier discusses sparse maps,

showing how an incremental extension to an existing

FTL data structure can enable dramatic DRAM reduc-

tions in applications while only causing moderate addi-

tional DRAM consumption at the FTL.

A limitation in our current design is the requirement to

map individual KV pairs to separate sectors. NVMKV

is best utilized for KV pairs which consume over 256

bytes. While many workloads fit this criterion, there are

also many that do not. For the second group of work-

loads, NVMKV will have poor capacity utilization. One

way to manage efficient storage of small KV pairs is to

follow a multi-level storage mechanism, as provided in

SILT [27], where small items are initially indexed sepa-

rately and later compacted into larger units such as sec-

tors. This is also a target area for future work.

6 Conclusions

We explored a novel concept of a KV store designed co-

operatively with an FTL to reduce redundant work across

the two layers. The result, NVMKV, is able to extract

significant fractions of the raw device performance and

outperform a state of the art KV store while minimizing

auxiliary write amplification. NVMKV is open source,

available at https://github.com/opennvm/nvmkv.

7 Acknowledgments

We thank the reviewers for their feedback and comments.

We also would like to thank the people who helped build

NVMKV and the FTL interface primitives.

References

[1] Aerospike: High performance KV Store use cases.

http://www.aerospike.com/.

[2] Cassandra. http://cassandra.apache.org/.

[3] Couchbase: NoSQL use cases. http://www.couchbase.com.

[4] fio performance measurement tool.

http://freecode.com/projects/fio.

[5] memcachedb. http://memcachedb.org/.

[6] Native Flash Support for Applications.

http://www.flashmemorysummit.com/.

[7] SBC-4 SPC-5 Atomic writes and reads. http://www.t10.org/cgi-

bin/ac.pl?t=d&f=14-043r2.pdf, 2013.

[8] MongoDB. http://mongodb.org, 2014.

[9] NVM Primitives Library. http://opennvm.github.io/nvm-

primitives-documents/, 2014.

[10] RocksDB. http://rocksdb.org, 2014.

[11] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse,

and R. Panigrahy. Design Tradeoffs for SSD Performance. In

Proc. of USENIX ATC, 2008.

[12] D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,

and V. Vasudevan. FAWN: A fast array of wimpy nodes. In Proc.

of ACM SOSP, 2009.

[13] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie. What con-

sistency does your key-value store actually provide? Proc. of

USENIX HotDep, 2010.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.

Workload analysis of a large scale key-value store. In Proc. of

ACM SIGMETRICS, 2012.

[15] A. Badam, K. Park, V. Pai, and L. Peterson. Hashcache: cache

storage for the next billion. In Proc. of USENIX NSDI, 2009.

[16] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele.

Many-core key-value store. In IGCC, 2011.

[17] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with ycsb. 2010.

[18] B. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up

inline storage deduplication using flash memory. In Proc. of

USENIX ATC, 2010.

[19] B. Debnath, S. Sengupta, and J. Li. Flashstore: high throughput

persistent key-value store. Proc. of VLDB Endow, 2010.

[20] B. Debnath, S. Sengupta, and J. Li. Skimpystash: Ram space

skimpy key-value store on flash-based storage. In Proc. of ACM

SIGMOD, 2011.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-

shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-

gels. Dynamo: Amazon’s highly available key-value store. Proc.

of ACM SIGOPS, 2007.

[22] S. Ghemawat et al. LevelDB. https://code.google.com/p/leveldb/.

[23] Fusion-io, Inc. ioMemory Virtual Storage Layer (VSL).

http://www.fusionio.com/overviews/vsl-technical-overview.

[24] R. Geambasu, A. Levy, T. Kohno, A. Krishnamurthy, and

H. Levy. Comet: An active distributed key-value store. Proc.

of USENIX OSDI, 2010.

[25] L. Grupp, J. Davis, and S. Swanson. The bleak future of nand

flash memory. In Proc. of USENIX FAST, 2012.

[26] W. Josephson, L. Bongo, K. Li, and D. Flynn. Dfs: A file system

for virtualized flash storage. In Proc. of USENIX FAST, 2010.

[27] H. Lim, B. Fan, D. Andersen, and M. Kaminsky. SILT: A

memory-efficient, high-performance key-value store. In Proc. of

ACM SOSP, 2011.

[28] M. Olson, K. Bostic, and M. Seltzer. Berkeley db. In Proc. of

USENIX ATC, 1999.

[29] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. Panda. Be-

yond block i/o: Rethinking traditional storage primitives. In Proc.

of IEEE HPCA, 2011.

[30] M. Saxena, M. Swift, and Y. Zhang. Flashtier: A lightweight,

consistent and durable storage cache. In Proc. of ACM ECCS,

2012.

[31] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: reliable trans-

actional p2p key/value store. In Proc. of ACM SIGPLAN, 2008.

[32] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and

S. Shah. Serving large-scale batch computed data with project

voldemort. In Proc. of USENIX FAST, 2012.

[33] J. Yang, N. Plasson, G. Gillis, N. Talagala, S. Sundararaman, and

R. Wood. Hec: Improving endurance of high performance flash-

based cache devices. In Proc. SYSTOR, 2013.

5

