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Abstract. Shelves have been estimated to account for more

than one-fifth of the global marine primary production. It

has been also conjectured that shelves strongly influence

the oceanic absorption of anthropogenic CO2 (carbon shelf

pump). Owing to their coarse resolution, currently applied

global climate models are inappropriate to investigate the im-

pact of climate change on shelves and regional models do not

account for the complex interaction with the adjacent open

ocean. In this study, a global ocean general circulation model

and biogeochemistry model were set up with a distorted grid

providing a maximal resolution for the NW European shelf

and the adjacent northeast Atlantic.

Using model climate projections we found that already

a moderate warming of about 2.0 K of the sea surface is

linked with a reduction by ∼ 30 % of the biological produc-

tion on the NW European shelf. If we consider the decline of

anthropogenic riverine eutrophication since the 1990s, the re-

duction of biological production amounts is even larger. The

relative decline of NW European shelf productivity is twice

as strong as the decline in the open ocean (∼ 15 %). The un-

derlying mechanism is a spatially well confined stratification

feedback along the continental shelf break. This feedback re-

duces the nutrient supply from the deep Atlantic to about

50 %. In turn, the reduced productivity draws down CO2 ab-

sorption in the North Sea by ∼ 34 % at the end of the 21st

century compared to the end of the 20th century implying

a strong weakening of shelf carbon pumping. Sensitivity ex-

periments with diagnostic tracers indicate that not more than

20 % of the carbon absorbed in the North Sea contributes to

the long-term carbon uptake of the world ocean. The rest re-

mains within the ocean’s mixed layer where it is exposed to

the atmosphere.

The predicted decline in biological productivity, and de-

crease of phytoplankton concentration (in the North Sea by

averaged 25 %) due to reduced nutrient imports from the

deeper Atlantic will probably affect the local fish stock neg-

atively and therefore fisheries in the North Sea.

1 Introduction

Because of their high biological productivity shelves have

been proposed to play a major role in the absorption of at-

mospheric CO2 by fixing dissolved inorganic carbon (DIC)

into organic soft tissue which lowers sea water pCO2 and

draws CO2 from the atmosphere into the water. Therefore,

most mid- and high-latitude shelves have been recognized

to be significant sinks for atmospheric CO2 (e.g. Chen and

Borges, 2009). Part of the carbon is exported to the open

ocean. Therefore, Tsunogai et al. (1999) proposed the term

“continental shelf pump” to describe an additional carbon

pump mechanism besides the carbonate and the soft tissue

pumps (Raven and Falkowski, 1999). From local case stud-

ies in the East China Sea and the North Sea it has been es-

timated that the shelf pump may account for 30 to 50 % of

the global ocean’s net annual carbon uptake (Tsunogai et al.,

1999; Thomas et al., 2004). The North Sea, which constitutes

a significant area within the NW European shelf, has like-

wise been intensely monitored during the last decades and

was found to be a significant sink for atmospheric carbon

(e.g. Thomas et al., 2004).

Besides its role in the carbon cycle, continental shelves

are also important for economic fisheries as they support over

90 % of global fish catches (Pauly et al., 2002). There is much
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evidence that some fish populations and fish recruitment are

highly vulnerable to climate due to changing water tempera-

ture and planktonic ecosystems (Beaugrand, 2004). In recent

years additional evidence was provided that changes in pri-

mary production and phytoplankton abundance can influence

fish stocks (Chassot et al., 2010; Friedland et al. 2012).

Biological production depends on the availability of nu-

trients, which are supplied to the shelf by upwelling and lat-

eral advection from the deep ocean, and by continental runoff

(Moll and Radach, 2003). The nutrient supply from the deep

ocean depends strongly on the wind driven vertical mixing

on the adjacent continental slope (Huthnance et al., 2009)

and on the slope-current driven downward Ekman transport

(Holt et al., 2009).

In most regional modelling studies the important processes

on the adjacent open ocean are not sufficiently accounted for

as the respective model domains do not include the conti-

nental slope (e.g. Paetsch and Kühn, 2008; Adlandsvik, B.,

2008; Kühn et al., 2010; Skogen et al., 2011; Lorkowski et

al., 2012). Global models on the other hand do not resolve

the shelf seas sufficiently.

In this paper we address the future evolution of nutrient

transport from the Atlantic into the North Sea and subse-

quent changes in biological productivity in response to the

anthropogenic climate change as predicted for the 21st cen-

tury. To overcome the aforementioned specific problems as-

sociated with both regional and global models, in this study

a global ocean general circulation model (OGCM) with grad-

ually increased resolution on the NW European shelf coupled

to a marine biogeochemistry and carbon cycle model is es-

tablished and applied for future climate projections.

1.1 Modelling approach

A principal problem in regional modelling is associated with

the choice of appropriate domain borders and lateral bound-

ary climatologies.

To account for variabilities at the domain margins, either

data from ocean reanalysis or from ocean models driven by

atmospheric reanalysis data have been used widely (e.g. Win-

ter and Johanessen, 2009; Prowe et al., 2009; Kühn et al.,

2010; Wakelin et al., 2012; Holt et al., 2009; Lorkowski et

al., 2012, Artioli et al., 2012). These data are often bias cor-

rected and they are not available for future scenarios.

For studies focusing on climate change usually the out-

put of climate models is used (e.g. Holt et al., 2010; Olbert

et al., 2011; Holt et al., 2012; Wakelin et al., 2012). How-

ever, regional models have to resolve much more small-scale

dynamics compared to global models and, with particular

regard to biogeochemistry models, they also include more

processes which makes these models computationally more

expensive. Therefore, most studies investigating climate im-

pact on the NW European shelf had to concentrate on specific

time slices of only a few years (e.g. Holt et al., 2010, 2012;

Wakelin et al., 2012). Given the fast adaption time of shal-

low shelves compared to the open ocean this is appropriate

but makes it difficult to analyse the full transient behaviour

of dynamical processes at the shelf–open ocean boundary. So

far, only few studies have carried out transient simulations

for the full historical period and future scenarios for the 21st

century. For the Baltic Sea, an enclosed sea with limited ex-

change with the rest of the ocean, transient simulations from

1961 to 2099 have been conducted (Meier et al., 2012)

Here we apply a global ocean and marine biogeochem-

istry general circulation model (OGCM) for a simulation of

the full historical period and the SRES (Special Report on

Emissions Scenarios) A1B scenario from 1860 to 2100. The

advantage of this approach is that it resolves the full tran-

sient behaviour of dynamic processes at the shelf edge with-

out applying any static boundary conditions for temperature,

salinity, and nutrients.

Our approach is not the first attempt to apply a global

model on shelves. An early attempt to take shelves into the

focus of a global model was undertaken by Yool and Fasham

(2001). The authors implemented into a physical OGCM a

simple parameterization for carbon uptake on shelves based

on observations in the East China Sea (Tsunogai et al., 1999)

and investigated the carbon export to the open ocean in order

to test the carbon shelf pumping hypothesis.

There are of course some structural limitations associated

with our approach. Due to the long internal timescale of the

global carbon cycle the model has to be spun up for sev-

eral thousand years. Thus, this approach is computationally

very expensive. As applying the forcing from any different

global atmospheric model would require a new spin up, ap-

plying this downscaling technique to multiple global atmo-

spheric models is hardly feasible. Our approach has the ad-

vantage of a proper treatment of the exchange between the

shelves and the rest of the ocean and thus reduces this uncer-

tainty. However, the disadvantage is that it becomes rather

difficult to deal with the uncertainties arising from the choice

of only one specific global climate model. The present model

study is a first attempt to apply such a set-up to downscaling

of anthropogenic climate change including a biogeochemi-

cal model. The focus of this paper lies more on the principal

mechanisms involved rather than on an exact prediction of

the effects of anthropogenic climate change for the ecosys-

tem of the North Sea.

Furthermore, there are some small-scale processes con-

trolled by the topography along the shelf break, which is

marked by abrupt depth changes, steep ridges and deep chan-

nels, that are not sufficiently resolved by our model. Here,

tidally induced internal waves and turbulent eddies stimulate

intense upward mixing of dissolved nutrients (New and Pin-

gree, 1990). Such processes are characteristic for the NW

European shelf (e.g. Pingree and Mardell, 1981; Joint et al.,

2001; Green et. al., 2008; Bergeron and Koueta, 2011) and

thus, may influence nutrient supply to the shelf.

Likewise, our model does not include the process of sed-

iment laden dense water cascading flows (DSWC), which
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have the potential to efficiently transport organic matter from

the upper continental shelf to deeper layers. Thus, they may

be important for the efficiency of the shelf carbon pump.

Such processes have been shown to be locally important in

the Gulf of Lion (Canals et al., 2006). However, we assume

that in the North Sea DSWCs will play only a minor role,

since the North Sea is a relatively vast and flat shelf com-

pared to the narrow and small shelf in the Gulf of Lion. Even-

tually such processes might play a role along the Norwegian

trench.

2 Model description

2.1 The physical global ocean circulation model

The physical model is the Max Planck Institute for Mete-

orology global primitive equation OGCM (MPIOM). It is

a z-level model with a free surface. The model assumes

the hydrostatic and Boussinesq approximations. It includes

a dynamic thermodynamic sea ice model following Hibler

(1979). Tracer and momentum advection follows a second-

order total variation diminishing scheme after Sweby (1984).

The model’s equations are discretized on a bipolar orthogo-

nal curvilinear C grid. The water column is subdivided by

30 levels, eight of which lie within the uppermost 100 m.

MPIOM includes no explicit turbulence closure. The vertical

eddy viscosity and tracer diffusion follows the parameteriza-

tion of Pacanowski and Philander (1981, PP hereafter). Since

this scheme underestimates mixing close to the surface an ad-

ditional parameterization for wind stirring is included (Jung-

claus et al., 2006). A detailed model description and valida-

tion of physical properties is given in Marsland et al. (2003).

For the specific application on the NW European shelf the

model’s grid has been set up with a resolution of nominal

1.5◦ and the grid poles are placed over central Europe (49◦ N,

8◦ E) and North America (44◦ N, 89◦ W) in order to maxi-

mize the resolution for the NW European shelf (10 km in the

German Bight) and for the adjacent North Atlantic. Figure 1

shows the model domain of the applied grid set-up focus-

ing on the NW European shelf/North Atlantic. As the tidal

movement is important both, for vertical mixing, and for the

transport by the residual currents on continental shelves, the

full potential of lunisolar tidal forces is prescribed according

to Thomas et al. (2001). The appropriate simulation of tidal

effects requires a relatively short time step of 45 min. A de-

tailed and comprehensive description of the physical set-up

will be given in Sein et al. (2013).

2.2 The carbon cycle and biogeochemistry model

Embedded in the physical model is the biogeochemical mod-

ule HAMOCC (HAMburg Ocean Carbon Cycle model, Wet-

zel et al., 2005), i.e. it uses the same grid configuration as

MPIOM and the advection and diffusion of biogeochemical

tracers are identical to temperature and salinity.
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Fig. 1. Model domain. The zero meridian is indicated by the thick

line. Also shown: surface circulation averaged over 1990–1999.

Only every fourth vector is shown. EC is English Channel, NT is

Norwegian Trench, PF is Pentland Firth, FI is Faire Island, NC is

Norwegian Current, LC is Labrador Current, GS is Gulf Stream.

HAMOCC is a modified nutrient, phytoplankton, zoo-

plankton, detritus (NPZD-type) biogeochemistry model. In

case of sufficient light, phytoplankton growth is limited by

dissolved phosphate (PO4), nitrate (NO3), or iron, which

are fixed into organic soft tissue together with DIC fol-

lowing Redfield stoichiometry during photosynthesis. The

growth rate is further dependent on water temperature (Ep-

pley, 1972). The detritus pool is formed by dead phyto- and

zooplankton and fecal pellets. Besides these biomass groups,

dissolved organic matter is formed from excretion of liv-

ing biomass. All organic matter is remineralized to inorganic

constituents by consumption of oxygen or alternatively, by

reduction of nitrate (denitrification) or eventually sulphate

when not enough oxygen is available. At the sea floor the

model is closed by a 12 layer sediment model following

Heinze et al. (1999). Within the sediment, organic matter is

further decomposed by consuming either oxygen or nitrate.

Porewater phosphate, nitrate, and DIC is exchanged with the

bottom layer using constant diffusion coefficients. Air–sea

gas exchange for oxygen, nitrogen, and carbon dioxide is cal-

culated from the local air–sea difference of respective partial

pressures according to Wanninkhof (1992) with an improved

temperature dependency (Gröger and Mikolajewicz, 2011).

A technical model description is provided by Maier-Reimer

et al. (2005). A comprehensive and detailed description of

the model’s organic and inorganic carbon cycle as well as

the included nitrogen and sulphur cycle along with a pro-

found validation of global climatologies is given in Ilyina et

al. (2013).

We also implemented global riverine inputs of PO4, NO3,

DIC, Fe, and Si in the model. Mean values for riverine inputs

were prescribed based on the estimates from a global data set

(Meybeck and Ragu, 1995). With this configuration the cou-

pled ocean-biogeochemistry model provides a resolution in

www.biogeosciences.net/10/3767/2013/ Biogeosciences, 10, 3767–3792, 2013
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Fig. 2. Prescribed average concentration of riverine nutrient supply

to the North Sea. Grey lines indicate monthly mean values. Red line

indicates yearly mean values.

the area of interest which is comparable with many regional

models (e.g. Moll and Radach, 2003).

In order to improve the model’s performance in simulating

the seasonal cycle of nutrients and phytoplankton we had to

modify the light penetration scheme of the biogeochemistry

model HAMOCC. Details of this light penetration scheme

are given in the appendix.

3 Experiments

The model was spun up for several thousand years by forcing

the model repeatedly with 6-hourly atmospheric fields taken

from the ECHAM5/MPIOM IPCC AR 4 preindustrial con-

trol run (Roeckner et al., 2006). For the atmospheric forcing

data no bias correction has been applied.

The experiments listed in Table 1 are designed to inves-

tigate the effects of climate warming, rising atmospheric

pCO2, and anthropogenic eutrophication separately. For

this, experiments CWE (climate warming effect), CWE-

CEE (CWE-carbon emission effect), and CWE-CEE-AES

(CWE-CEE-anthropogenic eutrophication scenario) were

started and forced by the atmospheric output from the MPI-

ECHAM5 IPCC AR 4 20th century and A1B scenario sim-

ulations between 1860 and 2100. In experiment CWE the

pure effect of climate warming was tested by keeping the

atmospheric pCO2 fixed at 288 ppm for the biogeochemistry

model. Experiment CWE-CEE includes also the rise of atmo-

spheric pCO2 for the biogeochemistry model and run CWE-

CEE-AES includes both, rising atmospheric pCO2 and an

anthropogenic eutrophication scenario for the NW European

shelf which today receives riverine nutrients from industrial

agriculture. Thus, river concentrations of dissolved phospho-

rous and nitrate were exponentially increased between 1860

and 1976 to match observations available between 1976 and

2006 (updated data from Paetsch and Lenhart, 2004, Fig. 2).

After 2006, monthly mean values from the last 5 years were

repeated until 2100. Thus, there is no trend in riverine nutri-

ent supply during the 21st century. We further note that our

assumption of riverine eutrophication does not consider the

changes during the two world wars. Thus, the period before

1976 is not analysed here. Run CTRL (control integration)

continues the spin-up simulation, which allows the separa-

tion between real signals and residual model drift.

In addition, two sensitivity experiments were conducted

to investigate the efficiency of the carbon shelf pump exem-

plary for the North Sea and the adjacent Atlantic (Table 1).

In run CO2-NS atmospheric pCO2 was locally set to only

1112 ppm over the North Sea, in order to study the effect on

the global carbon cycle. Experiment MARKER was carried

out to study the fate of North Sea water after it leaves the

North Sea, i.e. does it really reach the deep ocean or does it

remain within the ocean’s mixed layer, where it is exposed

to the atmosphere and subject to air–sea gas exchange. In en-

semble experiment MARKER, 10 model runs were restarted

from experiment CWE at the first of July in subsequent years

from 1975 to 1984. In these experiments the North Sea water

was homogeneously initialized with a tracer concentration

of 1, whereas outside the North Sea the tracer was initialized

with a concentration of 0. The tracer concentration in subsur-

face layers was subject to advection and diffusion only. In the

model’s surface layer the tracer concentration was addition-

ally altered by a simple air–sea gas exchange using a fixed

air tracer concentration of 0 and a characteristic piston ve-

locity of 100 myr−1. The tracer inventory found outside the

North Sea is thus an approximate measure for the potential of

the North Sea shelf to really enrich the ocean with the tracer.

We chose the 1st of July for starting the ensemble members

because at this time the water column in the North Sea is

strongly stratified. Thus, tracer rich-bottom waters are shel-

tered from exposure to the atmosphere at this time and have

the highest potential to reach the open ocean.

4 Model performance and validation

Before applying the model to the IPCC A1B climate pro-

jection, the model’s performance must be tested for both the

global climatology, and the regional climatology in the area

of interest in order to determine the extent to which the con-

trol period reproduces recent climate/ecosystem conditions.

In the following section we validate the results of experiment

CWE-CEE-AES as it includes both, the effects of rising at-

mospheric pCO2 and the anthropogenic eutrophication in the

North Sea. Thus, this set-up is closest to reality. We concen-

trate primarily on the modelled distributions of dissolved nu-

trients since these variables integrate the different processes

related to advection, diffusion, biological consumption and

production, decomposition, remineralization, and tempera-

ture.

In the first part of the following section we compare the

modelled global distributions with observation-based esti-

mates from the World Ocean Atlas (WOA, Garcia et al.,

2010). In the second part we test the model’s performance

particularly in the North Sea by visual and quantitative com-

parison to observations (Radach and Moll, 2006).

Biogeosciences, 10, 3767–3792, 2013 www.biogeosciences.net/10/3767/2013/
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Fig. 3. Seasonal cycle of surface phosphate from observations from the World Ocean Atlas (left, Garcia et al., 2010), compared to model

results (average for years 1993–2008, middle column), and modelled minus observed surface phosphate (right).

Table 1. Model experiments. CWE is climate warming effect, CEE is carbon emission effect, AES is anthropogenic eutrophication scenario.

Experiment pCO2 Eutroph. Period

CTRL 288 no without climate warming

1860–2100

CWE 288 no 1860–2100

CWE-CEE 288–700 ppm no 1860–2100

CWE-CEE-AES 288–700 ppm yes 1860–2100

CO2-NS 288 ppm but NS: 1112 ppm no 1980–2000

MARKER 288 ppm no 10 runs of 5 yr integration1

1 Ensemble runs were started on 1 July 1975, 1 July 1976, ...1 July 1979.

4.1 Global ocean

The global patterns of dissolved nitrate and phosphate are

very similar since HAMOCC models’ biological nutrient up-

take strictly according to the Redfield ratio and nitrogen spe-

cific processes such as N2 fixation and denitrification are tied

to local environments. We here therefore concentrate primar-

ily on the modelled distribution of dissolved phosphate. The

global distribution of nutrients is similar to the one validated

in Ilyina et al. (2013). Therefore, for nitrate the reader is re-

ferred to the paper mentioned above.

In general, the modelled surface phosphate concentration

compares well with observed patterns (Fig. 3). Highest con-

centrations are located in the northernmost Pacific, where

nutrient rich abyssal waters rise, and in the high latitude

Southern Ocean where deep convection around Antarctica

maintains nutrient supply from deeper layers (Maier-Reimer,

www.biogeosciences.net/10/3767/2013/ Biogeosciences, 10, 3767–3792, 2013
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Fig. 4. Modelled annual mean distributions for phosphate (a) and

nitrate (b) along 35◦ W (Atlantic, left) and 180◦ E (Pacific, right)

compared to observations from the World Ocean Atlas (Garcia et

al., 2010).

1993). In these two regions the model clearly underesti-

mates phosphate concentrations, which results probably from

an overestimation of biological consumption due to a too-

weak iron limitation (Ilyina et al., 2013). Enhanced con-

centrations are also associated with the wind-driven eastern

Pacific equatorial divergence, and the upwelling along the

coasts of western Africa and western South America (Maier-

Reimer, 1993). The northern North Atlantic is marked by

a pronounced seasonal cycle, which is mainly caused by the

nutrient-consuming biological production during spring and

summer and nutrient accumulation during winter (Fig. 3).

Lowest concentrations are seen in the subtropical gyres

which are marked by downward Ekman pumping and a thin

mixed layer (Maier-Reimer, 1993; Wetzel, 2004).

The vertical nutrient distributions are shown in Fig. 4.

The main deep and intermediate waters can be well recog-

nized by their nutrient content. Along the Atlantic section

North Atlantic Deep Water (NADW) causes low nutrient

concentrations between 1800 and 4000 m water depths. This

water mass is formed with a large component of nutrient-

depleted surface water originating from the subtropical At-

lantic (Broecker and Peng,1982; Maier-Reimer, 1993). The

meridional overturning circulation of the model (14 Sv de-

picted at 26.5◦ N) is in the lower range of published mod-

elled values (10 to 20 Sv, e.g. Persechino et al., 2012; Jung-

claus et al., 2013) and from a 4-year observational cam-

paign (18.7 Sv Kanzow et al., 2010). Below the NADW,

Antarctic Bottom Water can be recognized by higher phos-

phate concentrations. This is an older, poorly ventilated wa-

ter mass which has gained a lot of nutrients by remineral-

ization of organic matter (Broecker and Peng, 1982; Maier-

Reimer, 1993). In the Southern Ocean at deeper layers the

nutrient content is slightly underestimated. Pronounced fea-

tures of the Atlantic section are the nutrient rich Antarctic In-

termediate Water which gains nutrients by remineralization

of organic matter (Maier-Reimer, 1993), and the North At-

lantic where nutrient-depleted surface waters are transferred

to depth due to deep convection (Maier-Reimer, 1993) and

spread southward as NADW. Due to the conveyor belt circu-

lation the Pacific ocean is generally nutrient richer compared

to the Atlantic (Broecker, 1991). This feature is is well repro-

duced by the model. The highest nutrient concentrations are

reached in the North Pacific at intermediate depths between

1000 and 2000 m. This is underestimated by the model. In

both, the Atlantic and Pacific Ocean, Ekman pumping in the

subtropical gyres transfers nutrient depleted surface waters

to depths (Maier-Reimer, 1993). In the Pacific, the Southern

Hemisphere’s subtropical convergence cell extents deeper

than the one in the Northern Hemisphere, which compares

well with observations from the WOA. Globally integrated

fluxes of CO2, primary production, and export production are

well within the range of published values (Table 3).

4.2 North Sea

For a realistic simulation of biogeochemical cycles it is es-

sential to model a realistic flow pattern not only for the

North Sea but for the adjacent open Atlantic as well. Atlantic

waters enter the North Sea mainly at its northern bound-

ary through the straits of Fair Isle and Pentland Firth and

through the English Channel in the southwest (Fig. 1). Wa-

ters leave the North Sea along the Norwegian trench and

are further transported towards the Arctic via the Norwegian

Current. The modelled water mass net exchange along the

Biogeosciences, 10, 3767–3792, 2013 www.biogeosciences.net/10/3767/2013/
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Fig. 5a. North–south transect of simulated and observed state variables as vertical profiles through the North Sea along the marked boxes.

Climatological monthly means are shown for the period 1993–2008. Observations from MUDAB (Große and Moll, 2011) are indicated by

crosses together with minimum and maximum bars. Simulations are indicated by the solid line. Variability is indicated by the 17 and 83 %

percentiles as shading around the solid line. The profiles begin with the most northern box in the top left corner and end in the most right

subplot at the bottom. Vertical profiles with data observed deeper than 50 m are separated into two plots for a better resolution. The lower

part of the profile is always positioned directly below the upper part. Concentration on the x-axis is mmol m−3. (a) Dissolved phosphate in

winter.
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Fig. 5b. Continued. Same as (a) but for dissolved phosphate in spring.
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Fig. 5c. Continued. Same as (a) but for dissolved phosphate in summer.
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Fig. 5d. Continued. Same as (a) but for dissolved nitrate in winter.
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Fig. 5e. Continued. Same as (a) but for dissolved nitrate in spring.
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Fig. 5f. Continued. Same as (a) but for dissolved nitrate in summer.
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M. Gröger et al.: NW European shelf under climate warming 3779

��
�
�
��
�
	
��
�
�
��
�
	
�

��
�

��
�
�

�
	

�

��
�

��
�
�

�
	

��
�
	

��
�
	

Fig. 6. (a) Annual mean of surface temperature (red) and salinity (blue) averaged over the North Sea. Dotted lines indicate the control

integration CTRL, (b) annual mean bottom-surface salinity difference averaged over the North Sea, (c) 0–100 m (black) and 614–713 m

(red) water temperature averaged over the continental slope northwest of the North Sea (12◦ W–6◦ W; 56◦ N–61◦ N, indicated by the red

box in Fig. 7), (d) same as (c) but for salinity, (e) yearly primary production integrated over the North Sea. Dotted lines indicate the control

integration CTRL, (f) carbon absorption of the North Sea (Mt C). Dotted lines indicate the control integration CTRL, (g) winter gross mass

transports of nitrate into the North Sea calculated from experiment CWE, (h) same as (g) but for phosphate. Note: hydrographic properties

in (a–d) are the same in all scenario experiments.

Table 2. Budgets of absorption (defined as net C flux into the water column in million tons of carbon) and biological production (million

tons of carbon) for the North Sea calculated over the last two decades of the 20th and 21st centuries. Numbers in brackets indicate budgets

calculated for the entire NW European shelf (all areas between 37◦ N and 65◦ N adjacent to the North Atlantic and shallower than 200 m).

Last two columns indicate the relative change from 1980–1999 to 2080–2099. PP is primary productivity.

Experiment 1980–1999 2080–2099 Relative change (%)

PP Absorption PP Absorption PP Absorption

CWE 31.07 9.3 21.68 7.15 −30.22 −23.11

(84.74) (18.29) (60.81) (16.05) (−28.24) (−12.25)

CWE-CEE 31.66 9.89 21.66 6.53 −31.58 −33.97

(85.76) (21.16) (60.02) (16.61) (−30.01) (−21.50)

CWE-CEE-AES 40.04 11.80 25.82 7.43 −35.51 −37.03

(130.29) (29.52) (79.04) (20.03) (−39.34) (−32.15)

northern boundary and through the English Channel com-

pares well with the observation based estimate of Thomas

et al. (2005, see Table 3). Likewise, the net mass trans-

ports of carbon across the boundaries are in good agreement

with observations. With the exception of the net carbon ex-

port across the northern boundary, differences between the

modelled transports and the observations are clearly smaller

than the model’s standard deviation. The modelled absorp-

tion of atmospheric carbon amounts to 0.9 Teramol per

year (Tmolyr−1). This corresponds to a mean absorption of

1.5 molcm−2, which is close to the estimate of 1.3 molcm−2

given by Lorkowski et al. (2012) and the observation based

estimate of Thomas et al. (2005) (1.4 molcm−2).

The model’s annually integrated primary production

amounts to 6.5 molcm−2. This is clearly lower compared to

estimates by the HAMSOM/ECOHAM model which range

between 12 and 18 molm−2 (Moll, 1998; Moll and Radach,

2003; Kühn et al., 2010; Lorkowski et al., 2012). The lower

biological production results from low benthic remineraliza-

tion rates in the sediment. The remineralization rates have

been originally parameterized to fit the vertical nutrient dis-

tribution in the open ocean. Thus, in the shallow North Sea

too much organic detritus is deposited in the sediment. Like-

wise we did not include the atmospheric nitrogen deposition

in our simulations (Paetsch and Kühn, 2008). Including the

atmospheric nitrogen input would have enhanced the produc-

tivity strongly on the outer shelf which in our model is lim-

ited by nitrate whereas near the coast it is limited by phos-

phorous.
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Fig. 7. (a) Position of red and green boxes used for averaging profiles in (b) and (c). (b) and (c) area-averaged vertical distribution of

hydrographic parameters for the regions indicated by the red and green boxes in (a). Only those grid cells were considered where the water

depth exceeds 500 m. δρ denotes the difference in potential density between subsequent model levels.
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Table 3. Modelled global and regional mass fluxes averaged for the last decade of the 20th century. Mass fluxes for the North Sea refer to

Thomas et al. (2005). NB is northern boundary, EC is English Channel, ATM is atmosphere, P–E is precipitation–evaporation.

Global Other models Model

Primary production (Pg C yr−1) 24–491 54

Export production (Pg C yr−1) 5.0–9.91 7.2

Carbon uptake 1990–1999 (Pg C yr−1) 1.5–2.22 1.55

North Sea Observation Model

VolumeNB (Sv) −0.18 −0.19 (± 0.05)

VolumeEC (Sv) 0.15 0.17 (± 0.04)

P-E (Sv) −0.02 (± 0.004)

CarbonNB (Tmol yr−1) −13.3 −9.9 (± 3.1)

CarbonEC (Tmol yr−1) 10.7 9.0 (± 3.9)

CarbonATM (Tmol yr−1) 0.8 0.9 (± 0.008)

1 Steinacher et al. (2010).
2 Orr et al. (2001).

Table 4. Statistics for a quantitative comparison of simulated and observed state variables derived from Taylor diagrams (Taylor, 2001). rms

is root mean squared, corr is Pearson’s correlation, stddev is standard deviation, N is number of observations. The statistics have been derived

from all 155 boxes shown in Fig. 5. See text for details about data set and data handling.

State variable rms corr stddev observation stddev simulation N

Phosphate 0.25 0.58 0.29 0.24 3529

Nitrate 6.10 0.43 6.00 5.50 2536

Temperature 1.20 0.94 3.40 2.90 5537

Salinity 0.75 0.76 1.10 1.10 5740

4.2.1 Quantitative results

In the following we validate the model’s spatial and tempo-

ral variability of temperature, salinity and dissolved nitrate

and phosphate. For this we use observational data derived

from the Marine Environmental Data Base (MUDAB) and

the CANOBA (carbon and nutrient cycling in the North Sea

and the Baltic Sea) data set.

MUDAB is a joint project of the Federal Maritime

and Hydrographic Agency (BSH) in Hamburg and of

the Federal Environmental Agency (UBA) in Berlin. It

is managed by the German Oceanographic Data Cen-

ter (www.bsh.de/en/marine data/environmental protection/

mudab database/). CANOBA is a data set of carbon and nu-

trient measurements on a regular 1◦ × 1◦ station grid for all

four seasons between 2001–2002 (Thomas, 2002; Thomas et

al., 2004) and additional data from other years.

We here validate a historical experiment. Therefore, in

contrast to hindcast simulations forced by reanalysis data,

we cannot compare individual years between observed and

simulated quantities. The ECHAM atmosphere model used

for forcing has its own short-term oscillations (such as the

North Atlantic Oscillation) which are realistic by means of

amplitudes and frequencies. However, they cannot be ex-

pected to be in phase with reanalysis data that assimilated ob-

servations. Therefore, for the following quantitative valida-

tion we consider here salinity, temperature, and nutrient data

for the period 1993–2008. For this period all available mea-

surements for temperature (n = 5537), salinity (n = 5740),

phosphate (n = 3529), and nitrate (n = 2536) were used. For

the analysis, the North Sea was subdivided into single boxes

of 1◦ × 1◦ extension. Where appropriate, boxes were further

subdivided for depths deeper and shallower than 30 m result-

ing in a total number of 155 boxes.

The distribution of available observations throughout the

year, the boxes, and depth levels are given in the Supple-

ment S1. The majority of observations originate from the up-

per 50 m and over 20 % are sampled from the surface. The

samples are nearly uniformly distributed over the 155 boxes.

Nutrient data was built-up in temporal clusters in February,

May, and August. Physical data are concentrated mainly in

January, February, July, and August. The fewest data are

available for autumn and from depths greater than 100 m.

For each month, box and depth level the following statisti-

cal parameters have been calculated from observational and

modelled data: mean value, standard deviation, the 17 and

83 % percentiles. In a first step we compare the statistical re-

sults along a south–north transect with the best data coverage

www.biogeosciences.net/10/3767/2013/ Biogeosciences, 10, 3767–3792, 2013
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Fig. 8. (a) and (b) average winter (DJF) mixed layer depth at the

end of the 20th and 21st centuries. (c) and (d) same as (a) and (b)

but for average dissolved surface phosphate concentration. (e) and

(f) same as (a) and (b) but for vertically integrated yearly mean

primary production.

from shallow waters off the Rhine river to the boundary with

the North Atlantic near the Norwegian trench. For this, we re-

stricted the comparison to available data for winter-, spring-,

and summer-representing conditions before, during, and af-

ter the spring bloom. Depending on the availability of ob-

servations we use either February or March data (winter), or

July or August data (summer) for comparison of observa-

tions and modelled data in the respective boxes. The results

are presented as mean profiles for the respective months in

Fig. 5fa–f for phosphate and nitrate. In addition, winter and

summer mean profiles for temperature and salinity are pro-

vided in the Supplement S2. Further details on the observa-

tional data sets and quantitative methods are given in Große

and Moll (2011).

4.2.2 February

The winter situation is characterized by well-mixed condi-

tions along the entire transect resulting in overall low verti-

cal gradients seen in temperature, salinity, and nutrient con-

centrations (Supplement S2, Fig. 5fa, d). The model tends to

slightly underestimate phosphate concentrations in the north-

ern boxes (132, 6, 15, 23, 34). Further south, the deviation

from observations is more pronounced, which is probably

linked to the uncertainty in applied river runoff that was cal-

culated from the atmospheric forcing fields which cannot be

expected to be in phase with observed data.

Nitrate concentrations are generally too high except for the

deeper boxes (Fig. 5fd) below 50 m where they fit well with

or even slightly exceed observations. Observed and modelled

data are most congruent for salinity and temperature where

the modelled values are mostly within the range of obser-

vations (indicated by the 17 and 83 % percentiles). In most

boxes the temperature is slightly too low (Supplement).

4.2.3 May

In the northern North Sea both phosphate, and nitrate concen-

trations are substantially diminished in the upper 50 m com-

pared to the winter situation (Fig. 5fb, e). Below the euphotic

zone the changes are less pronounced and nitrate concentra-

tions are even substantially higher than in winter. This pattern

clearly reflects the spring bloom in the euphotic zone and the

onset of stratified conditions in the northern North Sea and

is well reproduced in the simulation. In the central North

Sea (boxes 57, 66, and 75) the modelled phosphate and ni-

trate concentrations are different. While simulated phosphate

shows in agreement with observations, very-low to zero gra-

dients (except box 66 which has a very large range), simu-

lated nitrate is nearly depleted near the surface but exhibits

(contrary to observations), still, winter concentrations at 40

to 50 m depth (Fig. 5fe). This may reflect the fact that nitrate

is already limiting production at the surface in the simulation

and the model’s subsurface production is too weak. Observed

nitrate concentrations are close to zero (while phosphate is

concentrations are relatively high), which indicates that ni-

trate is a nutrient limiting factor. In the southernmost boxes

81 and 85 the water column is well mixed in agreement with

observations (Fig. 5fe). Modelled concentrations are clearly

too high in box 81 but match well in box 85.

4.2.4 August

Both observations and model data indicate thermal stratifi-

cation with a pronounced thermocline between 20 and 40 m

(Supplement S2). Absolute temperatures and positition of the

thermocline match very well with observations. Thermocline

intensity and the depth of the thermocline increase towards

the shallower southern region. Stratified conditions extend

to approximately 54◦ N (box 66). With regard to salinity the

Biogeosciences, 10, 3767–3792, 2013 www.biogeosciences.net/10/3767/2013/
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Fig. 9. (a) Sea–air carbon flux in experiment CO2-NS. A 10 yr average of 1990–1999 is shown. Positive flux indicates degassing. (b) Relative

change of dissolved inorganic carbon at 95 m depth between experiments CO2-NS minus experiment CWE. Positive values indicate higher

concentrations in experiment CO2-NS. An average over the years 1995–1999 is shown.
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Fig. 10. Inventory of marked North Sea water in experiment

MARKER. An average over all ensemble members is shown. The

red line indicates the total ocean inventory. The blue line indicates

open ocean inventory without the North Sea and green line indi-

cates the deep ocean inventory below 1000 m water depth. The inter-

ensemble variability is very low compared to the mean signal.

model reproduces vertical mean gradients seen in observa-

tions in most cases. However, the variability is clearly under-

estimated. In the southern North Sea modelled mean values

are too low.

The nutrient profiles reflect the stratified conditions with

widespread depletion near the surface and high concentra-

tions below the euphotic zone. Below the euphotic zone

concentrations do not differ much from the winter situation

(Fig. 5fc, e). The model performs better for phosphate con-

centration. In case of nitrate it overestimates the concentra-

tions in boxes 15, 23, 47, and 57. In the northernmost boxes

nitrate concentrations fit well with observations.

4.2.5 Overall performance

We showed that the model reproduces fairly well the hydro-

graphic and biogeochemical conditions before, during, and

after the spring bloom. Thus, the main physical and biogeo-

chemical processes, i.e. summer stratification, winter deep

mixing and biological consumption, that are characteristic

for the North Sea are sufficiently covered by the model es-

pecially in the northern North Sea, which is the key region

for the exchange with the open NE Atlantic. Near the coasts

the model bias for nitrate and salinity is larger, which is

most likely related to the uncertainties in the prescribed river

runoff calculated from the atmospheric forcing fields.

To roughly asses the overall model’s performance we com-

pare physical parameters and nutrients by means of root

mean squared error, standard deviation and Pearson’s corre-

lation. These parameters are calculated using data from all

155 boxes. The results are summarized in Table 4.

The model is able to represent the physical variables of the

North Sea, either in terms of the bulk property (root mean

square difference) and variability (correlation, and standard

deviation). The correlation for nutrients is generally lower

(0.58/0.43) compared to temperature and salinity (0.94/0.96).

For temperature and salinity rms is far below the standard

deviation of the corresponding observations. Nutrient rms

lies roughly within the variability of observations. Hence,

the model performs better for the physical parameters. But

this is expected because in addition to the processes influ-

encing salinity, i.e. precipitation, evaporation, advection, and

diffusion, the nutrient distribution is strongly modulated by

complex biological processes such as consumption, reminer-

alization, etc. In conclusion the model represents the relevant

physical and biogeochemical processes well enough to repro-

duce the seasonal characteristics of North Sea hydrography

www.biogeosciences.net/10/3767/2013/ Biogeosciences, 10, 3767–3792, 2013
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Fig. 11. (a) Available photosynthetic active short-wave radiation averaged over the North Sea south of 54◦ N using standard light scheme. (b)

Seasonal cycles of phytoplankton (in P units) concentration using standard light scheme. (c) and (d) same as (a) and (b) but using modified

light scheme.

and biogeochemistry. Thus, we consider it to be adequate for

addressing the questions on which this paper focuses.

5 Climate change during the 21st century

5.1 Stratification on the shelf and along the shelf break

The NW European shelf warms between 1.6 K in off-shore

areas and 3.2 K near the coasts in response to the IPCC ARC4

A1B warming scenario. In the North Sea the annually av-

eraged surface temperature increases by nearly 2 K in the

course of the 21st century (Fig. 6a). This is somewhat lower

than the model’s global average warming of 2.5 K. The atmo-

spheric forcing is also marked by an intensifying hydrologi-

cal cycle, which leads to enhanced moisture transports from

the tropics to high latitudes. This intensification of the hydro-

logical cycle is seen in most global warming scenarios (Allen

and Ingram, 2002; Heldt and Soden, 2006; Mikolajewicz et

al., 2007; Wentz et al., 2007). Thus, the global atmospheric

pattern of evaporation minus precipitation is enhanced by in-

creased surface fluxes. Due to this, most models predict a

substantial freshening of the North Atlantic under climate

warming. Additional evidence for an ongoing freshening has

been/is also supported by observations (Durack et al., 2012).

North of 40◦ N the entire Atlantic freshens considerably in

our simulation (not shown). The North Sea as a shelf basin

which is widely surrounded by land is also strongly affected

by continental runoff. The enhanced river runoff results in

a considerably stronger freshening in comparison with the

open Atlantic and the sea surface salinity decreases by 0.75

in the North Sea (Fig. 6a) at the end of the 21st century.

The freshening of the bottom layer is weaker than at the sur-

face since the North Sea still receives saltier waters from the

adjacent North Atlantic. Accordingly, the bottom to surface

salinity difference increases by 0.1 (or 25 %) (Fig. 6b) in the

course of the 21st century. The shelf, thus, undergoes consid-

erably enhanced stratification.

The stratification is accompanied by a strong decline of

nutrient transports from the Atlantic into the North Sea dur-

ing the second half of the 21st century (Fig. 6g, h). The nu-

trient supply take places mainly during winter when vertical

mixing is strongest throughout the year and nutrients are not

consumed by biological activity due to limitation of biolog-

ical production by light. In all climate change experiments

the transport of dissolved phosphate and nitrate at the north-

ern boundary of the North Sea is nearly halved (Fig. 6g, h)

compared to preindustrial levels.

The decline in winter nutrient supply in the second half of

the 21st century (Fig. 6g, h) is not caused by a weaker in-

flow of Atlantic water masses northeast of Scotland. Instead,

Atlantic water masses entering the North Sea have lower nu-

trient concentrations compared to the 20th century. This nu-

trient depletion is caused by weaker vertical mixing along the

shelf break and the continental slope which, in turn, is caused

by hydrographic changes.

To illustrate the changes in winter hydrography along the

continental slope we show area-averaged profiles for the re-

gions indicated by the red and green boxes shown in Fig. 7a.

Biogeosciences, 10, 3767–3792, 2013 www.biogeosciences.net/10/3767/2013/
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Northeast of the North Sea the surface waters become fresher

and warmer (red box in Fig. 7b). The surface freshening is

seen in the entire Atlantic north of 40◦ N (not shown). Further

south, in the subtropics (not shown), salinities show over-

all positive anomalies in the upper few hundred metres. Be-

cause of this, subsurface waters from the subtropics, which

are advected northward via the North Atlantic drift, become

warmer and saltier, which causes higher salinities and tem-

peratures at a depth of approximately 500 m in the region in-

dicated by the red box (Fig. 7b). The changes in salinity and

temperature result in an enhanced vertical density gradient

within the upper 1000 metres (red box in Fig. 7b). The layer

to layer gradients of potential density are overall increased in

the upper 1000 m (Fig. 7b, lower panel middle plot) which

weakens effectively the upward volume transport (Fig. 7b,

lower panel left hand) which, in turn, lowers nutrient con-

centrations in the euphotic zone (Fig. 7b, lower panel right

hand).

Directly north of the North Sea (green box) the hydro-

graphic changes in the surface properties are similar to those

described for the red box (Fig. 7c). The pycnocline at around

600 m strengthens. The profound decline in surface nutri-

ent concentrations cannot be directly attributed to changes in

the mean upward transport at deeper levels. As for this re-

gion upward and downward transports are roughly balanced

in the upper 500 m, we have to note that the gross up- and

downward transports do not change as well at the end of the

21st century. However, between 100 and 400 m the turbulent

vertical mixing (not shown) is nearly halved, which indicates

a weakening of tidally induced mixing. Of course, part of the

nutrient depletion is advected from the adjacent NE Atlantic

which is affected by a widespread thinning of the mixed layer

(Fig. 8a, b).

The temporal evolution of hydrographic changes is shown

in (Fig. 6c, d). Here we compare the upper 100 m of the

water column with water from intermediate depth between

810 and 1060 m. For the red box the upper 100 m of the

Atlantic has warmed by 1.5 K and freshened by 0.25 per

mille at the end of the 21st century, whereas at intermedi-

ate depths only slight changes of temperature and salinity

are seen (Fig. 6c, d). As a result of this enhanced stability

of the water column, the mixing along the shelf break and

in the neighbouring NE Atlantic reduces. Accordingly, the

winter mixed-layer depth shallows by up to several hundred

metres along the shelf break (Fig. 8a, b). As a result, the up-

ward mixing of nutrient-rich waters from below the photic

zone to shallower water depths is essentially reduced. These

wide areas of the NW European shelf have been virtually cut

off from the mid-depth Atlantic nutrient source. As a result,

the on-shelf nutrient supply from the Atlantic breaks down

and the nutrient inventory of the North Sea diminishes. In

the northern North Sea the nutrient concentrations are low-

ered locally by up to 50 % compared to the end of the 20th

century (Fig. 8c, d), which has widespread negative effect on

primary production (Fig. 8e, f). The lowered nutrient concen-

trations are clearly the result of lowered imports from the NE

Atlantic because no significant changes in the winter mixed-

layer depth are seen in the North Sea. The southern North

Sea is less affected as the nutrient-rich water masses from

the north are usually diverted eastward when they reach the

central North Sea. Here, nutrient concentrations are reduced

due to the prescribed strong reduction of riverine phosphate

inputs in the early 1990s.

5.2 Decline in biological productivity

Due to the reduced winter nutrient import from the Atlantic,

which is caused by the stronger stratification, the nutrient in-

ventory of the North Sea diminishes by 33 % at the end of

the 21st century in the experiments without anthropogenic

eutrophication, CWE and CWE-CEE. This results in lower

biological production in the North Sea, which is reduced by

∼ 31 % in experiments CWE and CWE-CEE from the last

two decades of the 20th century to end of the 21st century

(Fig. 6e, Table 2). The reduction of North Sea productiv-

ity is of similar magnitude as for the entire NW European

shelf, where the reduction varies between 30 and 39 % in

the respective experiments (Table 2). Remarkably, the pro-

ductivity decline on the shelf is much stronger than in the

open ocean. For the open North Atlantic and the global ocean

our model predicts a productivity reduction of only 17 and

15 %, respectively, which agrees well with results from other

models which predict reductions between 2 and 20 % result-

ing from stronger open ocean stratification (Steinacher et al.,

2010). We thus conclude that the NW European shelf pro-

ductivity is much more vulnerable to climate warming than

the open ocean in our model. The higher vulnerability arises

from the above described stratification feedback along the

shelf which acts in addition to the well-known stratification

impact on marine productivity in the open ocean (Steinacher

et al., 2010). Due to the area-wide nutrient depletion, produc-

tion lowers likewise in the adjacent NE Atlantic (Fig. 8e, f).

Enhanced production is seen only in regions suffering from

reduced sea ice coverage, which promotes a longer growing

season. However this effect becomes important only in the

Arctic Ocean where productivity increases substantially.

In experiment CWE-CEE-AES the evolution of produc-

tion is strongly modified by the prescribed anthropogenic

eutrophication. In the course of the 20th century the river-

ine nutrient discharges from industrial agriculture and de-

tergents strongly increased (Paetsch and Lenhart, 2004) and

stimulated productivity. Between 1975 and 1985, when pre-

scribed discharges were highest, biological production in the

North Sea was enhanced by 38.5 % compared to the simu-

lations CWE-CEE and CWE without this effect (Fig. 6e).

The anthropogenically enhanced productivity is mainly re-

stricted to the coastal regions of the southern and southeast-

ern North Sea. In the early 1990s, the prescribed anthro-

pogenic riverine nutrient input strongly declined, which ex-

plains the large drop in productivity at the end of the 20th

www.biogeosciences.net/10/3767/2013/ Biogeosciences, 10, 3767–3792, 2013
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century in experiment CWE-CEE-AES. In this experiment

the stratification feedback along the shelf edge leads to a de-

cline of North Sea productivity in the course of the 21st cen-

tury as well (Fig. 6e). Here, uncertainties are associated with

the chosen scenario for 21st century nutrient discharges.

5.3 Impact of rising pCO−2 and declining productivity

on carbon absorption

Consistent with many studies based on observations

(e.g. Frankignoulle and Borges, 2001; Thomas et al., 2005)

our simulations show that the North Sea is a sink for atmo-

spheric CO2. The yearly integrated carbon absorption varied

between 9.3 and 11.8 million tons of carbon (Mt C, here-

after) in the last two decades of the 20th century (Table 2)

in agreement with published values based on observations

(9.5 Mt C, Thomas et al., 2005). Interestingly, the rising at-

mospheric pCO2 in experiment CWE-CEE has nearly no

effect on carbon absorption in the North Sea (Fig. 6f, blue

line). In this experiment carbon absorption is hardly higher

than in experiment CWE without rising atmospheric pCO2.

As the air–sea exchange for CO2 can be characterized – in-

cluding the buffering of the carbonate system – by a piston

velocity of 100 myr−1, the North Sea is almost in equilib-

rium with rising atmospheric levels of CO2. In experiment

CWE-CEE carbon absorption in the last two decades of the

20th century is higher only by 0.59 Mt C (= 6.3 %) than in

experiment CWE (Table 2) although the atmospheric pCO2

has risen by 22 %. At the end of the integrations carbon ab-

sorption in experiment CWE is even higher than in CWE-

CEE although the atmospheric pCO2 was kept fixed at the

preindustrial level in run CWE. In all experiments, the At-

lantic water masses entering the North Sea decrease in DIC

because the rising water temperatures lower the solubility of

CO2 and enhanced stratification reduces the upward mixing

of DIC-rich water masses from the deep Atlantic. This lowers

the DIC imports from the Atlantic which, in turn, will lower

the local water pCO2 in the North Sea and thus enhance car-

bon absorption. In experiments CWE-CEE and CWE-CEE-

AES, however, the DIC decrease in the adjacent Atlantic is

relatively small compared to experiment CEE as the upper-

ocean pCO2 in the former two experiments adapts rapidly to

the rising atmospheric pCO2.

Changes in biological productivity have a stronger impact

on carbon absorption of the North Sea than the rising at-

mospheric pCO2. Thus, in experiment CWE-CEE-AES ab-

sorption is enhanced by about 25 % between 1975 and 1985

compared to run CWE-CEE (Fig. 6f). In all experiments

the decreasing biological productivity in the course of the

21st century strongly reduces atmospheric carbon absorption

(Fig. 6f). The relative reductions in carbon absorption range

between 23 and 37 % for the North Sea and 12 and 32 %

for the entire NW European shelf (Table 2). The strongest

decline is simulated in experiment CWE-CEE-AES (37 %

in the North Sea) which likewise exhibits the strongest de-

cline in productivity. Part of this decrease is a direct conse-

quence of the assumed reduction in anthropogenic eutroph-

ication. However, in the experiment CWE-CEE without an-

thropogenic nutrient input, the net uptake of anthropogenic

CO2 is still reduced by 34 %.

6 Does continental shelf pumping really enhance the

oceanic storage of carbon?

Strong absorption on the shelf does not necessarily result in

long-term oceanic carbon sequestration since a large portion

of the shelf water exported to the open ocean remains within

the mixed layer and does not reach the deep ocean. In the

following we describe two experiments that were designed

to estimate how much anthropogenic carbon absorbed in the

North Sea has the potential for long-term sequestration.

6.1 Experiment CO2-NS

In experiment CO2-NS we repeated the period 1980–2000

from experiment CWE (Table 1) but fixed the atmospheric

pCO2 to 1112 ppm over the North Sea whereas for the rest

of the ocean the atmospheric pCO2 is as in experiment CWE

(Table 1). As expected, experiment CO2-NS is marked by im-

mediately high carbon fluxes into the North Sea in response

to the sudden increase of atmospheric pCO2. After the ini-

tial adaptation period of about 2 months only those areas are

marked by strong carbon absorption where low pCO2 waters

from outside enter the North Sea (Fig. 9a) like in the English

Channel and east of Scotland. Waters leaving the North Sea

via the Norwegian coastal current are marked by vigorous

degassing. Along the pathway of North Sea water a plume of

pronounced DIC enrichment is visible (Fig. 9b). Most of this

water enters the Barents Sea via the Norwegian Current at

a core depth of around 100 m. There is no significant portion

that reaches directly the deep convection sites in the Green-

land Sea.

Already after 20 yr of integration the air–sea carbon fluxes

are in equilibrium and show no significant trend in exper-

iment CO2-NS. In experiment CO2-NS the North Sea still

absorbs 6.03 MtCmonth−1 more compared to experiment

CWE. If all of the carbon absorbed over the North Sea would

be sequestered in the deep open ocean, then the globally in-

tegrated oceanic carbon uptake should be enhanced by the

same amount.

However, the global ocean uptake rises by only

1.2 MtCmonth−1 along the Norwegian Current (Fig. 9a).

This means that only 19.9 % of the anthropogenic carbon ab-

sorbed in the North Sea has the potential for longer-term se-

questration in the open ocean. The first-order effect of higher

absorption over the North Sea is thus enhanced degassing

in the open Atlantic. The efficiency of shelf carbon pump-

ing is thus very low. Moreover, we repeated this experiment

but simulated the period 2080–2100 instead of 1980–2000

Biogeosciences, 10, 3767–3792, 2013 www.biogeosciences.net/10/3767/2013/
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to find out whether or not the carbon shelf pumping is also

very vulnerable to the climate warming in the course of the

21st century. From this experiment we calculate that at the

end of the 21st century only 13.6 % of carbon absorbed over

the North Sea is being stored longer in the open ocean. This

means that the efficiency of carbon shelf pumping is also de-

creasing in case of climate warming.

6.2 Experiment MARKER

In order to explain the mechanism behind the low effi-

ciency of the carbon shelf pump, we carried out experi-

ment MARKER (Table 1). This experiment was designed

to quantify the amount of North Sea water that reaches the

open ocean without undergoing intense modification by air–

sea gas exchange. For this, we marked the North Sea water

stock with an artificial tracer (see Sect. 3) and integrated the

model for four years. From the resulting tracer distribution

we calculated the volume of water originating from the North

Sea in the open ocean. We note that the uniform initialization

of the tracers in the North Sea in this experiment differs from

realistic conditions, since tracers (such as, e.g. DIC) are usu-

ally higher concentrated below the pycnocline during sum-

mer. Hence, the cross-pycnocline gradients in the northern

North Sea are likely a bit too low during the first few weeks

of the experiment. However, since the adaption time of the

water layers above the pycnocline to the atmospheric bound-

ary layer due to air–sea gas exchange is much faster than the

turbulent mixing across the pycnocline in the water column,

we do not believe this has significant influence on the calcu-

lated tracer export to the open ocean.

The results of experiment MARKER show that already

within the first year the marked North Sea water stock is re-

duced to less than 15 % of the initial volume of 37 494 km3

(Fig. 10, red line). After this steep decline the marked North

Sea water stock is further reduced at low rates between 2

and 3 km3 d−1. With the beginning of the next cold sea-

son (after abount 500 days of integration) the mixed layer

thickens again which results in slightly enhanced decompo-

sition rates in the range of 10 to 15 km3 d−1. After four years

a stock of only 955 km3 (2.6 % of the initial stock) exists

which is decomposed at rates between 0.2 km3 d−1 in sum-

mer and 0.7 km3 d−1 in winter. About 98 % of this stock is

located outside the North Sea in the open ocean (Fig. 10c,

blue line). However, at the end of experiment MARKER only

188 km3 are stored at depths below 1000 m (Fig. 10, green

line) though this stock still is slightly growing at a rate of ap-

proximately 0.1 km3 yr−1. In conclusion, the rapid decompo-

sition of the North Sea stock as well as the very low amount

of North Sea water stored at depths below 1000 m clearly in-

dicates that most of the water exported from the North Sea

remains in the ocean’s mixed layer, where it is still exposed

to the atmosphere.

7 Discussion of model results and potential

uncertainties

Since our biogeochemistry model was originally designed

for the open ocean, it includes some simplifications com-

pared to regional models and may lack important processes

which may become important for biological production in

the shelf environment. This imposes some uncertainties on

the model’s results on productivity and carbon absorption. In

the following, we address the uncertainties associated with

the model and experimental set-up.

7.1 Biological production

Our model predicts a substantial weakening of primary pro-

duction and carbon absorption for the NW European shelf.

These changes are caused by a widespread thinning of the

mixed layer along the shelfbreak and the adjacent continen-

tal slope in the NE Atlantic which diminishes the on-shelf

nutrient transport. This raises two questions: how robust are

the results with regard to the fact that we have used only

one specific warming scenario and forced our model with

the output from only one atmospheric model? To address

these questions we evaluated the response of the North At-

lantic mixed layer in available scenario simulations carried

out in the frame of the Max Planck Institute’s contribution

to the Climate Model Intercomparison Project (CMIP5). In

particular we compare the historical experiments for the 20th

century with the representative concentration pathway (RCP)

warming scenarios 4.5 and 8.5. All model runs were con-

ducted using the state of the art coupled atmosphere–ocean

GCM ECHAM6/MPIOM/HAMOCC (MPI-ESM) with two

different model resolutions (Jungclaus et al., 2013). The sce-

narios were carried out in ensembles of respectively three re-

alizations, each of them initialized from three different restart

files of the preindustrial control run (see Giorgetta et al., 2013

for details).

In all these scenarios we see a substantial shallowing of

the ocean’s mixed layer depth in the North Atlantic north of

40◦ N. Although none of these model set-ups resolves the

North Sea satisfactoryly, we note that there is a strong shal-

lowing of the mixed layer around the north of Scotland es-

pecially along the Scotland–Faroer channel from which wa-

ters enter the North Sea. Hence, from these ensemble sim-

ulations we can conclude that the mixed layer thinning ap-

pears to be a robust feature throughout the different versions

of the MPI-ESM and throughout the different warming sce-

narios. Moreover, we note that the mixed layer thinning is

stronger in the high emission scenario RCP 8.5 compared

to the moderate scenario RCP 4.5. It is very likely that the

mixed layer thinning in these simulations is also associated

with a stronger stratification as this is the case in this study.

Additional evidence for a likely shallowing of the North At-

lantic mixed layer depth is derived from a multi-model study

according to the SRES A2 scenario (Steinacher et al., 2010).
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Indeed, all four state-of-the-art coupled atmosphere–ocean–

ecosystem models applied in this study showed the charac-

teristic increase in stratification together with a profound de-

cline in productivity. From this we conclude that the strati-

fication feedback is not a phenomenon specific only to our

model, but is a rather characteristic feature of warming sce-

narios seen in most coupled climate models.

Our finding of reduced on-shelf nutrient transports is in

good agreement with recent modelling results of Holt et

al. (2012) who found a reduction of nitrogen transports onto

the NW European shelf by 20 % at the end of the 21st cen-

tury. However, in their model they found only a small effect

on primary production which decreased by only 5 % on av-

erage. In fact the authors found several temperature related

effects stimulating production. However, the temperature ef-

fect on biological production is very complex as it influences

a number of biological processes with opposing effects on

production such as the remineralization of organic matter, the

growth and mortality rates of phytoplankton and zooplank-

ton, etc. Therefore the response of biological production to

elevated temperatures is subject to considerable uncertainty.

We note that our model’s organic matter remineralization is

not temperature dependent, and thus it lacks the potential

positive effect of enhanced nutrient recycling on biological

production. Therefore, the strong decline in production pre-

dicted by our model may be slightly overestimated.

7.2 Carbon absorption and shelf pumping

Our results agree with observational and modelling studies

indicating the NW European shelf and the North Sea in par-

ticular a net sink for atmospheric carbon (e.g. Frankignoulle

et al., 2001; Bozec et al., 2005; Thomas et al., 2005; Borges

et al., 2006; Prowe et al., 2009; Kühn et al., 2010’ Lorkowski

et al., 2012). Based on extensive observational campaigns in

the North Sea Thomas et al. (2004) could show that much

of the carbon absorbed reaches the open NE Atlantic. This

agrees with tracer experiments indicating that 40 % of car-

bon sequestered in the North Sea is exported to the NE At-

lantic (Holt et al., 2009). However, only about 50% of this

are injected at below the pycnocline (Wakelin, et al., 2012)

yielding an efficiency for the carbon shelf pump of 20%. This

agrees very well with our estimation of likewise 20% effi-

ciency. In our model, much of the carbon exported to the

open ocean through the Norwegian trench gets exposed to

the atmosphere when it joins the Norwegian Current north

of 60◦ N (Fig. 9). Here, the water column’s stabilizing influ-

ence of the fresher surface waters originating from the Baltic

Sea, which predominates along the Norwegian coast to the

North Sea, gradually ceases due to mixing with higher saline

Atlantic waters within the Norwegian Current. This region is

not included in most regional model set-ups (e.g. Prowe et

al.; 2009, Holt et al., 2012; Wakelin et al., 2012; Lorkowski

et al., 2012). The region directly north of the North Sea is of

minor importance in this respect.

An early attempt to asses the efficiency of the carbon shelf

pump was undertaken by Yool and Fasham (2001). The au-

thors used a global physical ocean GCM and implemented

DIC and dissolved organic carbon (DOC) as passive tracers.

Using a simple piston velocity for air–sea gas exchange they

found the North Sea carbon pump to be 30 % efficient, which

is somewhat higher than estimated by Wakelin et al. (2012)

and our study. Within the world’s shelf area the North Sea

efficiency appears low (ranked as 25 out of 32 shelf seas in

Yool and Fasham, 2001). On the other hand, the strength of

shelf pump is not only determined by its efficiency to ex-

port carbon to subpycnocline depths but also by the uptake

of atmospheric carbon which is on the NW European shelf

largely driven by biological processes (e.g. Gypens et al.,

2004; Huthnance et al., 2009; Lorkowski et al., 2012).

8 Summary and conclusions

Here we have shown results from a novel approach to simu-

late biogeochemical changes on the NW European shelf with

a global model with enhanced resolution on the NW Euro-

pean shelf. This approach avoids the problem of prescrib-

ing boundary conditions in the interior of the ocean for dy-

namical downscaling simulations of anthropogenic climate

change.

Most global models (Steinacher et al., 2010) predict a de-

crease between 2 and 20 % in open ocean productivity in re-

sponse to climate warming. We have shown that on the NW

European shelf the relative reduction in productivity is much

stronger due to the suppression of lateral nutrient input re-

sulting from the weakening of vertical mixing along the shelf

break. This process is essential for both the nutrient supply

to the outer shelf and productivity, and can be considered as

most vulnerable under climate warming. In case of the North

Sea the nutrient transport from the deep Atlantic declines by

up to ∼ 50 % in the 21st century and productivity decreases

by ∼ 35 % assuming current rates of anthropogenic nutrient

eutrophication. Even if we neglect anthropogenic eutrophi-

cation in our simulations (experiments CWE and CEE) the

shelf productivity is reduced by about ∼ 30 % in the North

Sea and on the entire NW European shelf (Table 2). This is

twice as strong as the reduction in open ocean productivity.

A decline of North Atlantic primary production over the

last century has been already reported by Boyce et al. (2010).

Shelf productivity has been assumed to be stable or rather to

increase with an intensification of river runoff (Boyce et al.,

2010), thus providing rather stable conditions for the eco-

logical food web and for fisheries. This study provides a

first hint that also the on-shelf ecological food web could be

threatened by global warming. However, more modelling ef-

forts involving a broader range of tested scenarios and atmo-

spheric models are necessary.

Due to the declining biological production during the 21st

century, the absorption of carbon dioxide in the North Sea
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(on the NW European shelf) likewise is reduced by 34 %

(21 %) or 37 % (32 %) when anthropogenic eutrophication

is considered in the simulations.

This study supports observational evidence that the NW

European shelf is an active sink for atmospheric CO2

(e.g. Frankignoulle and Borges, 2001). However, our results

do not support the hypothesis that this leads to a substantially

enhanced open ocean storage due to shelf sea pumping as

proposed by Thomas et al. (2004). Water tracer experiments

clearly indicate that most of the carbon dioxide absorbed on

the shelf is not removed permanently from the atmosphere

because most of the shelf water does not reach the deep ocean

but remains within the ocean’s mixed layer where it is still

exposed to the air–sea gas exchange. We estimate that only

∼ 20 % of the carbon absorbed in the North Sea contributes

to the long-term oceanic carbon uptake. This fraction will be

further reduced as a consequence of anthropogenic climate

change.

Appendix A

Light extinction scheme

A pronounced feature of the North Sea is the strong sea-

sonal cycle of nutrient concentration and primary production.

During winter, photosynthesis and phytoplankton growth are

strongly limited by light resulting in lower productivity and

higher nutrient concentrations compared to summer when

primary production is limited by nutrients due to strong strat-

ification. In spring increasing short-wave radiation stimulates

the characteristic spring phytoplankton bloom in the North

Sea (e.g. Moll, 1998). Light intensity in the water column

is further reduced due to absorption and scattering. Hence,

for a realistic simulation of the timing and intensity of the

spring bloom, a proper and physically consistent formulation

of light penetration into the water column is necessary.

We therefore had to adopt a more elaborated scheme for

light penetration that considers the variation of light intensity

within individual grid cells. In Maier-Reimer et al. (2005) it

was assumed that the light reaching the top of a box be effec-

tive over the whole box. For the open ocean this turned out to

be a tolerable approximation. For our present model config-

uration with large regions of shallow water and the increased

thickness of the surface layer it turned out to be no longer ac-

ceptable. As the mixing transport of light-absorbing particles

to depth is blocked by the bottom, it favoured a substantial

bloom in the southern North Sea already in February.

Light intensity is calculated from downward short-wave

radiation at the surface I (0) which is attenuated with depth z

by applying the attenuation coefficient atten in the following

form:

I (Z) = I (0) × exp(−atten × Z) (A1)

because atten is variable to changing concentrations of

chlorophyll in space and time, in the standard version of

HAMOCC Eq. A1 is discretized onto the vertical z(k) lay-

ers as

I (k) = I (k − 1) × exp(−atten × dz(k − 1)), (A2)

hence, the light intensity at the top of the water column i(0)

is assumed for the entire layer thickness z(1). Over the first

16 m of the surface layer no light attenuation is assumed.

For clear waters in the open ocean this assumption has been

proven to well-reproduce global fields of nutrients and pri-

mary production. Under the turbid conditions on shallow

shelfs and near the coasts where high loads of suspended

matter from rivers can reduce most of radiation already after

a few metres this assumption is no longer realistic. As a con-

sequence, the standard model simulates a first phytoplank-

ton bloom already in early February in the southern North

Sea (Fig. 11b), which is contrary to other studies (e.g. Moll,

1998; Paetsch and Kühn, 2008; Prowe et al., 2009).

For the present study we calculated an effective light in-

tensity for all euphotic layers by integrating Eq. A1 in the

following way:

Ieff(k) =
I (k − 1)

atten × dz(k)
× (1 − exp(−atten × dz(k))). (A3)

The second change we implemented refers to the fact that

near the coasts light is attenuated additionally by resus-

pended silt due to vigorous tidal currents (Heath et al., 2002;

Paetsch and Kühn, 2008). The process of resuspension fol-

lows the empirical approach for the North Sea as per Do-

brynin (2009). The photosynthetic active radiation (PAR,

Fig. 11) is then calculated as the sum of red and blue frac-

tions and by expanding atten for the blue fraction according

to

PAR(z) = PAR(0)(

red fraction
︷ ︸︸ ︷

r exp(−zkr) (A4)

+

blue fraction
︷ ︸︸ ︷

(1 − R)exp(−zkw − kchl

z∫

0

chl(z′)dz′
− ks

z∫

0

s(z′)dz′))

with the attenuation coefficients for sea wa-

ter scattering kw = 0.03 m−1, chlorophyll α

kchl = 0.04 (24.4gchlm−3)−1 m−1 (where we adopted

a relationship of 60 between phytoplankton-bound carbon

and chlorophyll), and silt ks = 0.06 (gm−3)−1 m−1. The

strongly attenuating red fraction r = 0.4 is calculated using

kr = 0.35 m−1.

The representation of the characteristic spring phytoplank-

ton bloom substantially benefits from the improved light

scheme (Fig. 11a, c). The unrealistically high light inten-

sity of the standard light scheme forces a first phytoplank-

ton bloom already in February (Fig. 11b). This is in strong
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contrast to observations which indicate that the main spring

bloom occurs not before April (e.g. Moll, 1998). While the

total productivity is nearly unchanged when using the im-

proved light scheme instead of the standard scheme, the sea-

sonal cycle is substantially improved.

Supplementary material related to this article is

available online at: http://www.biogeosciences.net/10/

3767/2013/bg-10-3767-2013-supplement..zip.
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