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16)J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 18223 Prague 8,

Czech Republic
17)Department of Chemistry and Physics, University of Tennessee at Martin, Martin, TN 38238,

USA
18)Service de Chimie Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, B-1050 Brussels,

Belgium
19)Facebook, Menlo Park, CA 94025, USA
20)Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region, 142290,

Russia
21)Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis,

MN 55455, USA
22)SKAO, Jodrell Bank Observatory, Macclesfield, SK11 9DL, United Kingdom
23)Department of Chemistry, University of Washington, Seattle, WA 98195, USA
24)Dirac Solutions, Portland, OR 97229, USA
25)Chemistry Division, U. S. Naval Research Laboratory, Washington, DC 20375,

USA
26)School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332,

USAb)

27)EaStCHEM and School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST,

United Kingdom
28)Departamento de Quı́mica, División de Ciencias Básicas e Ingenierı́a, Universidad Autónoma Metropolitana-Iztapalapa,

Col. Vicentina, Iztapalapa, C.P. 09340 Ciudad de México, Mexico
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Specialized computational chemistry packages have permanently reshaped the landscape of

chemical and materials science by providing tools to support and guide experimental efforts

and for the prediction of atomistic and electronic properties. In this regard, electronic structure

packages have played a special role by using first-principle-driven methodologies to model

complex chemical and materials processes. Over the last few decades, the rapid development of

computing technologies and the tremendous increase in computational power have offered a

unique chance to study complex transformations using sophisticated and predictive many-body

techniques that describe correlated behavior of electrons in molecular and condensed phase

systems at different levels of theory. In enabling these simulations, novel parallel algorithms

have been able to take advantage of computational resources to address the polynomial scaling

of electronic structure methods. In this paper, we briefly review the NWChem computational

chemistry suite, including its history, design principles, parallel tools, current capabilities,

outreach and outlook.

I. INTRODUCTION

The NorthWest Chemistry (NWChem) modeling soft-

ware is a popular computational chemistry package that has

been designed and developed to work efficiently on mas-

sively parallel processing supercomputers1–3. It contains

an umbrella of modules that can be used to tackle most

electronic structure theory calculations being carried out

today. Since 2010, the code is distributed as open-source

under the terms of the Educational Community License

version 2.0 (ECL 2.0).

Electronic structure theory provides a foundation for our

understanding of chemical transformations and processes in

complex chemical environments. For this reason, accurate

electronic structure formulations have already permeated

several key areas of chemistry, biology, biochemistry, and

materials sciences, where they have become indispensable

elements for building synergies between theoretical and

experimental efforts and for predictions. Over the last few

decades, intense theoretical developments have resulted

in a broad array of electronic structure methods and their

implementations, designed to describe structures, interac-

tions, chemical reactivity, dynamics, thermodynamics, and

spectral properties of molecular and material systems. The

success of these computational tools hinges upon several

requirements regarding the accuracy of many-body mod-

els, reliable algorithms for dealing with processes at var-

ious spatial and temporal scales, and effective utilization

of ever-growing computational resources. For instance,

a)Electronic mail: karol.kowalski@pnnl.gov
b)Current Affiliation: Schrödinger, Inc, New York, NY 10036, USA
c)Current Affiliation: Max Planck Institute für Kohlenforschung, 45470

Mülheim an der Ruhr, Germany
d)Current Affiliation: Gaussian Inc., Wallingford, CT 06492, USA

the predictive power of computational chemistry requires

sophisticated quantum mechanical approaches that system-

atically account for electronic correlation effects. Therefore,

the design of versatile electronic structure codes is a major

undertaking that requires close collaboration between ex-

perts in theoretical and computational chemistry, applied

mathematics, and computer science.

NWChem 2–8, like other widely used electronic structure

programs, was developed to fully realize the potential of

computational modeling to answer key scientific questions.

It provides a wide range of capabilities that can be deployed

on supercomputing platforms to solve two fundamental

equations of quantum mechanics9–11 - time-independent

and time-dependent Schrödinger equations:

H|Ψ〉= E|Ψ〉 , (1)

ih̄
∂ |Ψ〉

∂ t
= H|Ψ〉 , (2)

and a fundamental equation of Newtonian mechanics

miai = Fi , (3)

where forces Fi include information about quantum effects.

Given the breadth of electronic structure theory, it does

not come as a surprise that equations (1)-(2) can be solved

using various representations of quantum mechanics em-

ploying wavefunctions (|Ψ〉), electron densities (ρ(~r)), or

self-energies (Σ(ω)), which comprise the wide spectrum of

NWChem’s functionalities to compute the electronic wave-

functions, densities, and associated properties of molec-

ular and periodic systems. These functionalities include

Hartree-Fock12–15 self-consistent field (SCF) and post-SCF

correlated many-body approaches that build on the SCF

wavefunction to tackle static and dynamic correlation ef-

fects. Among correlated approaches, NWChem offers

second-order Møller-Plesset perturbation theory; single-

mailto:karol.kowalski@pnnl.gov
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and multi-reference, ground- and excited-state, and linear-

response coupled-cluster (CC) theories; multi-configuration

self-consistent field (MCSCF); and selected and full config-

uration interaction (CI) codes. NWChem provides exten-

sive density functional theory16–18 (DFT) capabilities with

Gaussian and plane-wave basis set implementations. Within

the Gaussian basis set framework, a broad range of DFT

response properties, ground and excited-state molecular

dynamics, linear-response (LR) and real-time (RT) time-

dependent density functional theory (TDDFT) are available.

The plane-wave DFT implementations offer the capability

to run scalable ab initio and Car-Parrinello molecular dy-

namics19, and band-structure simulations. The plane-wave

code supports both norm-conserving20–22 and projector aug-

mented wave (PAW)23 pseudopotentials.

For all DFT methods outlined above, both analytical

or numerical gradients and Hessians are available for ge-

ometry optimization and vibrational analysis. Addition-

ally, NWChem is capable of performing classical molec-

ular dynamics (MD) simulations using either AMBER or

CHARMM force fields. Through its modular design, the ab

initio methods can be coupled with the classical MD to per-

form mixed quantum mechanics and molecular mechanics

simulations (QM/MM). Various solvent models and rela-

tivistic approaches are also available, with the spin-orbit

contribution being only supported at the Hartree-Fock (HF)

and DFT levels of theory and associated response proper-

ties. The NWChem functionality described is only a subset

of its full capabilities. We refer the reader to the NWChem

website8 to learn about the full suite of functionalities avail-

able to the user community.

Currently, NWChem is developed and maintained pri-

marily by researchers at the Department of Energy (DOE)

Pacific Northwest National Laboratory (PNNL), with help

from researchers at other research institutions. It has a

broad user base, and it is being used across the national

laboratory system and throughout academia and industry

around the world. In this paper, we provide a high-level

overview of NWChem’s core capabilities, recent devel-

opments in electronic methods, and a short discussion of

ongoing and future efforts. We also illustrate the strengths

of NWChem stemming from the possibility of seamless

integration of methodologies at various scales and review

scientific results that would not otherwise be obtainable

without using its highly-scalable implementations of elec-

tronic structure methods.

II. BRIEF HISTORY

The NWChem project1–7,24,25 started in 1992. It was

originally designed and implemented as part of the con-

struction project associated with the EMSL user facility

at PNNL. Therefore, the software project started around

four years before the EMSL computing center was up and

running. This raised challenges for the software develop-

ers working on the project, such as predicting the features

of future hardware architectures and how to deliver high

performing software, while maintaining programmer pro-

ductivity. Overcoming these challenges led to a design

effort that strove for flexibility and extensibility, as well as

high-level interfaces to functionality that hid some of the

hardware issues from the chemistry software application

developer. Over the years, this design and implementation

have successfully advanced multiple science agendas, and

NWChem’s extensive code base of more than 2 million

lines provides high-performance, scalable software code

with advanced scientific capabilities that are used through-

out the molecular sciences community.

NWChem is an example of a co-design effort harnessing

the expertise of researchers from multiple scientific disci-

plines to provide users with computational chemistry tools

that are scalable both in their ability to treat large scientific

computational chemistry problems efficiently and in their

use of computing resources from high-performance parallel

supercomputers to conventional workstation clusters. In

particular, NWChem has been designed to handle

• biomolecules, nanostructures, interfaces, and solid-

state,

• chemical processes in complex environments,

• hybrid quantum/classical simulations,

• ground and excited-states and non-linear optical prop-

erties,

• simulations of UV-Vis, photo-electron, X-ray spec-

troscopies,

• Gaussian basis functions or plane-waves,

• ab-initio molecular dynamics on the ground and ex-

cited states,

• relativistic effects.

The scalability of NWChem has provided a computa-

tional platform to deliver new scientific results that would

be unobtainable if parallel computational platforms were

not used. For example, NWChem’s implementation of a

non-orthogonally spin adapted CCSD(T) method has been

demonstrated to scale to 210,000 processors available at the

Oak Ridge National Laboratory’s (ORNL) Leadership Com-

puting Facilities,26–28 whereas the plane-wave DFT code

has been able to utilize close to 100,000 processor cores

on NERSC’s Cray-XE6 supercomputer.29 Although imple-

mented only for the perturbative part of coupled-cluster

with singles and doubles (CCSD)30 and triples correction

(CCSD(T)),31 NWChem was one of the first computational

chemistry codes to have been ported to utilize graphics pro-

cessing units (GPUs).32 Several parts of the code have also

been rewritten to take advantage of the Intel Xeon Phi fam-

ily of processors - good scalability and performance have

been demonstrated for the ab initio molecular dynamics

plane-wave DFT code on the most recent Knights Landing

version of the processor.33,34 The non-iterative triples part

of the CCSD(T) method has been demonstrated to scale to

55,200 Intel Phi threads and 62,560 cores through concur-

rent utilization of CPU and Intel Xeon Phi Knights Corner

accelerators.35

III. DESIGN PRINCIPLES

NWChem has a five-tiered modular architecture. The

first tier is the Generic Task Interface. This interface (an

abstract programming interface, not a user interface) serves
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as the mechanism that transfers control to the different

modules in the second tier, which consists of the Molecular

Calculation Modules. The molecular calculation modules

are the high-level programming modules that accomplish

computational tasks, performing particular operations using

the specified theories defined by the user in the input file.

These independent modules of NWChem share data only

through a disk-resident database, which allows modules

to share data or to share access to files containing data.

The third tier consists of the Molecular Modeling Tools.

These routines provide basic chemical functionality such

as symmetry, basis sets, grids, geometry, and integrals. The

fourth tier is the Software Development Toolkit, which is

the basic foundation of the code. The fifth tier provides

the Utility Functions needed by nearly all modules in the

code. These include such functionality as input processing,

output processing, and timing. The Generic Task Interface

controls the execution of NWChem. The flow of control

proceeds in the following steps:

1. Identify and open the input file.

2. Complete the initialization of the parallel environ-

ment.

3. Process start-up directives.

4. Summarize start-up information and write it to the

output file.

5. Open the run-time database.

6. Process the input sequentially (ignoring start-up di-

rectives), including the first task directive.

7. Execute the task.

8. Repeat steps 6 and 7 until reaching the end of the

input file or encountering a fatal error condition.

The input parser processes the user’s input file and trans-

lates the information into a form meaningful to the main

program and the driver routines for specific tasks.

As mentioned in step 5 of the task flow control,

NWChem makes use of a run-time database to store the

main computational parameters. This is in the same spirit

of check-pointing features available in other quantum chem-

istry codes. The information stored in the run-time database

can be used at a later time in order to restart a calcula-

tion. Restart capabilities are available for most modules.

For example, SCF generated files (run-time database and

molecular orbitals) can be used either to continue a geome-

try optimization or to compute molecular properties. The

important second and fourth tiers are discussed as part of

the subsequent sections.

IV. PARALLEL TOOLS

The design and early development of Global Arrays36–39

(GA) toolkit occurred in the same period when the

NWChem project started. The GA toolkit, which is the

central component of the Software Development Toolkit,

was adopted by the NWChem developers as the main ap-

proach for the parallelization of the dense matrices present

in quantum chemistry methods that make use of local basis

functions. In current computer science parlance, Global Ar-

rays can be viewed as a Partitioned Global Address Space

(PGAS) model that provides a high level of abstraction for

the programmer to the dense distributed arrays. In contrast

to message passing constructs such as MPI, where the de-

veloper has to worry about coordinating send and receive

operations, the use of Global Arrays in NWChem requires

so-called single-sided functions (e.g. put, get, accumulate)

to manipulate data structures in a single operation. The

choice of distribution model for sharing a given global ar-

ray among the memory available to the processes in use

plays a crucial role in efficient parallelization at large scale.

The GA toolkit has been ported to a variety of parallel

computer architectures. The porting process has focused in

the past in optimizing the ARMCI40 library. The Aggregate

Remote Memory Copy (ARMCI) library optimizes perfor-

mance by fully exploiting network characteristics such as

latency, bandwidth, and packet injection rate through the

use of low-level network protocols (e.g. Infiniband Verbs).

More recent porting options make use either of ComEx41

or of the ARMCI-MPI42 communication runtimes. Both

ComEx and ARMCI-MPI make use of MPI libraries, in-

stead of low-level network protocols, albeit with different

approaches.

V. MAIN METHODOLOGIES

In this section, we describe the key methods that

comprise the Molecular Calculation Modules. We first

describe the Gaussian basis HF and DFT implementa-

tions for molecular systems. This is followed by the

post-SCF wavefunction-based perturbative (MP2), multi-

configuration SCF, and high-accuracy (coupled-cluster the-

ory) approaches for molecules, including the tensor con-

traction engine (TCE). Molecular response properties and

relativistic approaches are then described. The plane-wave

based DFT implementation for Car-Parrinello molecular dy-

namics and periodic condensed phase systems is described

next, followed by classical molecular dynamics and hybrid

methods.

A. Hartree-Fock

The NWChem SCF module computes closed-shell re-

stricted Hartree-Fock (RHF) wavefunctions, restricted high-

spin open-shell Hartree-Fock (ROHF) wavefunctions, and

spin-unrestricted Hartree-Fock (UHF) wavefunctions. The

Hartree-Fock equations are solved using a conjugate gradi-

ent method with an orbital Hessian based preconditioner43.

The most expensive part to compute in the SCF code

is the two-electron contribution to the matrix element of

the Fock operator (resulting from the sum of Coulomb and

Exchange operators). To compute these matrix elements,

NWChem developers have implemented parallel algorithms

using either a distributed data approach44 (where the Fock

matrix is distributed among the aggregate memory of the

processes involved in the calculation) or a replicated data

approach (where an entire copy of the Fock matrix is stored

in memory of each process).

Several options are available for the initial guess of the
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SCF calculations. The default choice uses the eigenvectors

of a Fock-like matrix formed from a superposition of the

atomic densities. Other options include the use of eigen-

vectors of the bare-nucleus Hamiltonian or the one-electron

Hamiltonian, the projections of molecular orbital from a

smaller basis to a larger one, or molecular orbitals formed

by superimposing the orbitals of fragments of the molecule

being studied. Symmetry can be used to speed up the Fock

matrix construction via the petite-list algorithm. Molec-

ular orbitals are symmetry adapted as well in NWChem.

The resolution of the identity (RI) four-center, two-electron

integral approximation has also been implemented.45

In order to avoid full matrix diagonalization, the SCF

program uses a preconditioned conjugate gradient (PCG)

method that is unconditionally convergent. Basically, a

search direction is generated by multiplying the orbital

gradient (the derivative of the energy with respect to the

orbital rotations) by an approximation to the inverse of

the level-shifted orbital Hessian. In the initial iterations,

an inexpensive one-electron approximation to the inverse

orbital Hessian is used. Closer to convergence, the full

orbital Hessian is used, which should provide quadratic

convergence. For both the full or one-electron orbital Hes-

sians, the inverse-Hessian matrix-vector product is formed

iteratively. Subsequently, an approximate line search is

performed along the new search direction.

Both all-electron basis sets and effective core potentials

(ECPs) can be used. Effective core potentials are a use-

ful means of replacing the core electrons in a calculation

with an effective potential, thereby eliminating the need

for the core basis functions, which usually require a large

set of Gaussians to describe them. In addition to replacing

the core, they may be used to represent relativistic effects,

which will be discussed later.

B. Density Functional Theory

The NWChem DFT module for molecular systems uses

a Gaussian basis set to compute closed- and open-shell den-

sities and Kohn-Sham orbitals in the local density approxi-

mation (LDA), generalized gradient approximation (GGA),

τ-dependent and Laplacian-dependent meta-generalized

gradient approximation (metaGGA), any combination of

local and non-local approximations (including exact ex-

change and range-separated exchange), and asymptotically

corrected exchange-correlation potentials. NWChem con-

tains energy-gradient implementations of most exchange-

correlation functionals available in the literature, includ-

ing a flexible framework to combine different functionals.

However, second derivatives are not supported for meta-

functionals and third derivatives are supported only for a

selected set of functionals. For a detailed description, we

refer the reader to the online documentation46.

The DFT module reuses elements of the Gaussian ba-

sis SCF module for the evaluation of the Hartree-Fock

exchange and of the Coulomb matrices by using 4-index

2-electron electron repulsion integrals; the formal scaling

of the DFT computation can be reduced by choosing to use

auxiliary Gaussian basis sets to fit the charge density47 and

use 3-index 2-electron integrals, instead.

The DFT module supports both a distributed data ap-

proach and a mirrored arrays48 approach for the evaluation

of the exchange-correlation potential and energy. The mir-

rored arrays option, used by default, allows the calculation

to hide network communication overhead by replicating

the data between processes belonging to the same network

node.

In analogy with what is available in the SCF module,

the DFT module can perform restricted closed-shell, unre-

stricted open-shell, and restricted open-shell calculations.

However, in contrast to the SCF module that uses PCG to

solve the SCF equation, the DFT module implements di-

agonalization with parallel eigensolvers.49–54 DIIS (direct

inversion in the iterative subspace or direct inversion of the

iterative subspace)55, level-shifting56,57 and density matrix

damping can be used to accelerate the convergence of the

iterative SCF process. Another technique that can be used

to help SCF convergence makes use of electronic smearing

of the molecular orbital occupations, by using a gaussian

broadening function following the prescription of Warren

and Dunlap58. Additionally, calculations with fractional

numbers of electrons can be performed to analyze the be-

havior of exchange-correlation functionals and their impact

on molecular excited states and response properties.59–66

The Perdew and Zunger67 method to remove the self-

interaction contained in many exchange-correlation func-

tionals has been implemented68 within the Optimized Ef-

fective Potential (OEP) method69,70 and within the Krieger-

Li-Iafrate (KLI) approximation.71,72

The asymptotic region of the exchange-correlation po-

tential can be modified by the van-Leeuwen-Baerends

exchange-correlation potential that has the correct − 1
r

asymptotic behavior. The total energy is then computed

using the definition of the exchange-correlation functional.

This scheme is known to tend to over-correct the deficiency

of most uncorrected exchange-correlation potentials73,74

and can improve TDDFT-based excitation calculations,

but it is not variational. A variationally consistent ap-

proach to address this issue is via range-separated exchange-

correlation functionals and the recently developed nearly

correct asymptotic potential or NCAP75, which are imple-

mented in NWChem.

To describe dispersion interactions, both the exchange-

hole dipole moment dispersion model (XDM)76 and

Grimme’s DFT-D3 dispersion correction (both zero-

damped and BJ-damped variants) for DFT functionals77,78

are available. In many cases, one can obtain reasonably

accurate non-covalent interaction energies at van der Waals

distances with meta-functionals in NWChem even without

adding extra dispersion terms.79

Numerical integration is necessary for the evaluation of

the exchange-correlation contribution to the density func-

tional when Gaussian basis functions are used. The three-

dimensional molecular integration problem is reduced to a

sum of atomic integrations by using the approach first pro-

posed by Becke80. NWChem implements a modification of

the Stratmann algorithm81, where the polynomial partition

function wA(r) is replaced by a modified error function erfn

(where n can be 1 or 2).
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wA(r) = ∏
B6=A

1

2

[

1 − er f (µ ′
AB)

]

µ ′
AB =

1

α

µAB

(1−µ2
AB)

n

µAB =
rA − rB

|rA − rB|

The default quadrature used for the atomic centered nu-

merical integration is an Euler-MacLaurin scheme for the

radial components (with a modified Mura-Knowles82 trans-

formation) and a Lebedev83 scheme for the angular compo-

nents.

On top of the petite-list symmetry algorithm used in the

same fashion as in the SCF module, the evaluation of the

exchange-correlation kernel incurs additional time savings

when the molecular symmetry is a subset of the Oh point

group, exploiting the octahedral symmetry of the Lebedev

angular grid.

NWChem also has an implementation of a variational

treatment of the one-electron spin-orbit operator within the

DFT framework. Calculations can be performed either with

an all-electron relativistic approach (for example, ZORA)

or with an ECP and a matching spin-orbit (SO) potential.

Other capabilities built on the DFT module include the

electron transfer (ET)84,85, constrained DFT (CDFT)86–88,

and frozen density embedding (FDE)89–91 modules, respec-

tively.

1. Time-Dependent Density Functional Theory

a. Linear-Response Time-Dependent Density Func-

tional Theory: NWChem supports a spectrum of single

excitation theories for vertical excitation energy calcula-

tions, namely, configuration interaction singles (CIS)92,

time-dependent Hartree-Fock (TDHF or also known as

random-phase approximation RPA), time-dependent den-

sity functional theory (TDDFT)93–95, and Tamm-Dancoff

approximation96 to TDDFT. These methods are imple-

mented in a single framework that invokes Davidson’s trial

vector algorithm (or its modification for a non-Hermitian

eigenvalue problem). An efficient special symmetric Lanc-

zos algorithm and kernel polynomial method has also been

implemented.97

In addition to valence vertical excitation energies, core-

level excitations98 and emission spectra99,100 can also be

computed. Analytical first derivatives of vertical excitation

energies with a selected set of exchange-correlation func-

tionals can also be computed,101 which allows excited-state

optimizations and dynamics. Origin-independent optical

rotation and rotatory strength tensors can also be calculated

with the LR-TDDFT module within the gauge including

atomic orbital (GIAO) basis formulation.62,102–104 Exten-

sions to compute excited-state couplings are currently

underway and will be available in a future release.

b. Real-Time Time-Dependent Density Functional The-

ory: Real-time time-dependent density functional theory

(RT-TDDFT) is a DFT-based approach to electronic ex-

cited states based on integrating the time-dependent Kohn-

Sham (TDKS) equations in time. The theoretical underpin-

nings, strengths, and limitations are similar to traditional

linear-response (LR) TDDFT methods, but instead of a

frequency domain solution to the TDKS equations, RT-

TDDFT yields a full time-resolved, potentially non-linear

solution. Real-time simulations can be used to compute

not only spectroscopic properties (e.g., ground and excited-

state absorption spectra, polarizabilities, etc.)98,105–108, but

also the time and space-resolved electronic response to arbi-

trary external stimuli (e.g., electron charge dynamics after

laser excitation)105,109 and non-linear spectroscopies.110,111

RT-TDDFT has the potential to be efficient for computing

spectra in systems with a high density of states112 as, in

principle, an entire absorption spectrum can be computed

from only one dynamics simulation.

This functionality is developed on the Gaussian basis

set DFT module for both restricted and unrestricted cal-

culations and can be run with essentially any combina-

tion of basis set and exchange-correlation functional in

NWChem. A number of time propagation algorithms have

been implemented113 within this module, with the default

being the Magnus propagator.114 Unlike LR-TDDFT, which

requires second derivatives, RT-TDDFT can be used with

all the functionals since only first derivatives are needed for

the propagation. The current RT-TDDFT implementation

assumes frozen nuclei and no dissipation.

2. Ab Initio Molecular Dynamics

This module leverages the Gaussian basis set methods

to allow for seamless molecular dynamics of molecular

systems. The nuclei are treated as classical point parti-

cles and their motion is integrated via the velocity Verlet

algorithm.115,116 In addition to being able to perform sim-

ulations in the microcanonical ensemble, we have imple-

mented several thermostats to control the kinetic energy of

the nuclei. These include the stochastic velocity rescaling

approach of Bussi, Donadio, and Parrinello117, Langevin

dynamics according to the implementation of Bussi and

Parrinello118, the Berendsen thermostat119, and simple ve-

locity rescaling.

The potential energy surface upon which the nuclei move

can be provided by any level of theory implemented within

NWChem, including DFT, TDDFT, MP2, and the corre-

lated wavefunction methods in the TCE module. If analyt-

ical gradients are implemented for the specified method,

these are automatically used. Numerical gradients will be

used in the event that analytical gradients are not available

at the requested level of theory. This module has been used

to demonstrate how the molecular dynamics based deter-

mination of vibrational properties can complement those

determined through normal mode analysis, therefore allow-

ing to achieve a deeper understanding of complex dynamics

and to help interpret complex experimental signatures.120

Extensions to include non-adiabatic dynamics have been

implemented in a development version and will be available

in a future release.
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C. Wavefunction Formulations

The wavefunction-based methods play a special role in

all electronic structure packages. Their strengths origi-

nate in the possibility of introducing, using either various

orders of perturbation theory or equivalently through the

linked cluster theorem (for example, see Refs. 121 and 122)

various ranks of excitations, a systematic hierarchy of elec-

tron correlation effects. NWChem offers implementations

of several correlated wavefunction approaches including

many-body perturbation theory approaches and coupled-

cluster methods.

1. Perturbative Formulations

a. MP2: Three algorithms are available in NWChem

to compute the Møller-Plesset (or many-body) perturbation

theory second-order correction123 to the Hartree-Fock en-

ergy (MP2). They vary in capability, the size of the system

that can be treated and use of other approximations

• Semi-direct MP2 is recommended for most large ap-

plications on parallel computers with significant disk

I/O capability. Partially transformed integrals are

stored on disk, multi-passing as necessary. RHF and

UHF references may be treated including computa-

tion of analytic derivatives. The initial semi-direct

code was later modified to use aggregate memory

instead of disk to store intermediate, therefore not

requiring any I/O operation.

• Fully-direct124 MP2. This is of utility if only lim-

ited I/O resources are available (up to about 2800

functions). Only RHF references and energies are

available.

• The resolution of the identity (RI) approximation

MP2 (RI-MP2)125 uses the RI approximation and is,

therefore, only exact in the limit of a complete fitting

basis. However, with some care, high accuracy may

be obtained with relatively modest fitting basis sets.

An RI-MP2 calculation can cost over 40 times less

than the corresponding exact MP2 calculation. RHF

and UHF references with only energies are available.

2. Multi-configurational Self-Consistent Field
(MCSCF)

A large-scale parallel multi-configurational self-

consistent field (MCSCF) method has been developed in

NWChem by integration of the serial LUCIA program of

Olsen126,127. The generalized active space approach is used

to partition large configuration interaction (CI) vectors

and generate a sufficient number of nearly equal batches

for parallel distribution. This implementation allows the

execution of complete active space self-consistent field

(CASSCF) calculations with non-conventional active

spaces. An unprecedented CI step for an expansion

composed of almost one trillion Slater determinants has

been reported127.

3. Coupled-Cluster Theory

The coupled-cluster module of NWChem contains two

classes of implementations (a) parallel implementation of

the CCSD(T) formalism31 for closed-shell systems, and

(b) a wide array of CC formalisms for arbitrary reference

functions. The latter class of implementations automati-

cally generated by Tensor Contraction Engine128,129 is an

example of a successful co-design effort.

a. Closed-Shell CCSD(T): The coupled-cluster

method was introduced to chemistry by Čı́žek130 (see also

Ref. 131), and is a post-Hartree-Fock electron correlation

method. Development of the canonical coupled-cluster

code in NWChem commenced in 1995 under a collab-

oration with Cray Inc to develop a massively parallel

coupled-cluster program designed to run on a Cray T3E.

Full details of the implementation are given in Kobayashi

and Rendell132.

The coupled-cluster wavefunction is written as an expo-

nential of excitation operators acting on the Hartree-Fock

reference:

|ΨCC〉= eT |Φ〉 (4)

where T = T1+T2+ ... is a cluster operator represented as a

sum of its many-body components, i.e., singles T1, doubles

T2, etc. and |Φ〉 is the so-called reference function (usually

chosen as a reference determinant). In practical applications

the above sum is truncated at some excitation rank. For ex-

ample, the CCSD method30 is defined by including singles

and doubles, i.e., T ≃ T1 +T2. Introducing the exponential

ansatz (4) into the Schrödinger equation, premultiplying

both sides by e−T , using the Hausdorff formula, and pro-

jecting onto the subspace of excitation functions, gives a set

of coupled non-linear equations that are solved iteratively

to yield the coupled-cluster energy and amplitudes. For

example, for the CCSD formulation one obtains

〈Φ|(HNeT1+T2)C|Φ〉= ∆ECCSD (5)

〈Φa
i |(HNeT1+T2)C|Φ〉= 0 , (6)

〈Φab
i j |(HNeT1+T2)C|Φ〉= 0 , (7)

where HN is the electronic Hamiltonian in normal product

form (HN = H −〈Φ|H|Φ〉), subscript C represents a con-

nected part of a given operator expression, and ∆ECCSD is

CCSD correlation energy. The closed-shell CCSD imple-

mentation employs the optimized form of the CC equations

discussed by Scuseria et al.133 as was programmed in the

TITAN program134. The nature of the Cray T3E hardware

required significant rewriting of earlier coupled-cluster al-

gorithms to take into account the limited memory available

per core (8 MW) and the prohibitive penalty of I/O oper-

ations. Of the various four indexed quantities, those with

four occupied indices were replicated in local memory (i.e.

the memory associated with a single core), and those with

one or two virtual indices were distributed across the global

memory of the machine (i.e. the sum of the memory of

all the processors), and accessed in computational batches.

The terms involving integrals with three and four virtual or-

bital indices still proved too costly for the available memory

and to circumvent this problem, these terms were evaluated
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in a ”direct” fashion. This structure distinguishes NWChem

from most other coupled-cluster programs. Thus, to make

effective use of the available memory, as much as possible

should be allocated, by using global arrays, with the bare

minimum for the arrays replicated in local memory.

The canonical CCSD implementation in NWChem also

contains the perturbative triples correction, denoted (T),

of Raghavachari et al.31. This correction is an estimate

from Møller-Plesset perturbation theory123 and evaluates

the triples contribution to MP4 using the optimized cluster

amplitudes at the end of a CCSD calculation. The CCSD(T)

method is commonly referred to as the gold standard for

ab initio electronic structure theory calculations. Its com-

putational cost scales as n7, making it considerably more

expensive than a CCSD calculation. However, the triples

are non-iterative and only require two-electron integrals

with at most three virtual orbital indices, hence avoiding

the previous memory and I/O issues and so the correction

was easily adapted from the ”aijkbc algorithm” of an earlier

work by Rendell et al135.

In recent years, a great deal of effort was invested to

enhance the performance of the iterative and non-iterative

parts of the CCSD(T) workflow. Performance tuning of

the iterative part resulted in scaling the code up to 223,200

processors of the ORNL Jaguar computer.26,136 Significant

speedups for the CCSD iterative part were achieved by

introducing efficient optimization techniques to alleviate

the communication bottlenecks caused by a copious amount

of communication requests introduced by a large class of

low-dimensionality tensor contractions. This optimization

provided a significant 2- to 5-fold performance increase in

the CCSD iteration time depending on the problem size

and available memory, and improved the CCSD scaling to

20,000 nodes of the NCSA Blue Waters supercomputer137.

b. Tensor Contraction Engine and High-Accuracy For-

mulations: NWChem implements a large number of high-

rank electron-correlation methods for the ground, excited,

and electron-detached/attached states as well as for molec-

ular properties. The underlying ansatzes span configuration

interaction (CI), coupled-cluster (CC), many-body pertur-

bation theories (MBPT), and various combinations thereof.

A distinguishing feature of these implementations is their

uniquely forward-looking development strategy. These

parallel-executable codes, as well as their formulations and

algorithms, were computer-generated by the symbolic alge-

bra program138 called Tensor Contraction Engine (TCE).128

TCE was one of the first attempts to provide a scalable

tensor library for parallel implementations of many-body

methods, which extends the ideas of automatic CC code

generation introduced by Janssen and Schaefer,139 Li and

Paldus,140 and Nooijen and co-workers.141,142

The merits of such a symbolic system are many: (1)

It expedites otherwise time-consuming and error-prone

derivation and programming processes; (2) It facilitates

parallelization and other laborious optimizations of the syn-

thesized programs; (3) It enhances the portability, main-

tainability, extensibility, and thus the lifespan of the whole

program module; (4) It enables new or higher-ranked meth-

ods to be implemented and tested rapidly which are practi-

cally impossible to write manually. TCE is, therefore, one

of the earliest examples139 of an expert system that lifts

the burden of derivation/programming labor so that com-

putational chemists can focus on imagining new ansatz—a

development paradigm embraced quickly by other chem-

istry software developers.143–145

The working equations of an ab initio electron-

correlation method are written with sums-of-products of

matrices, whose elements are integrals of operators in the

Slater determinants. For many methods, the matrices have

the general form:146

〈Φi|L̂
†
j Ĥ exp(T̂k) R̂l |Φm〉C/L, (8)

where Φi is the whole set of the i-electron excited (or

electron-detached/attached) Slater determinants, Ĥ is the

Hamiltonian operator, T̂k is a k-electron excitation oper-

ator, R̂l is an l-electron excitation (or electron detach-

ment/attachment) operator, and L̂
†
j is a j-electron de-

excitation (or electron detachment/attachment) operator.

Subscript ‘C/L’ means that the operators can be required

to be connected and/or linked diagrammatically. For exam-

ple, the so-called T2-amplitude equation of coupled-cluster

singles and doubles (CCSD) is written as

0 = 〈Φ2|Ĥ exp(T̂1 + T̂2)|Φ0〉C. (9)

With the ansatz of a method given in terms of Eq. (8),

TCE first (1) evaluates these operator-determinant expres-

sions into sums-of-products of matrices (molecular inte-

grals and excitation amplitudes) using normal-ordered sec-

ond quantization and Wick’s theorem, second (2) trans-

forms the latter into a computational sequence (algorithm),

which consists in an ordered series of binary matrix mul-

tiplications and additions, and third (3) generates parallel-

execution programs implementing these matrix multipli-

cations and additions, which can be directly copied into

appropriate directories of the NWChem source code and

which are called by a short, high-level driver subroutine

humanly written (see Fig. 1).

In step (2), TCE finds the (near-)minimum cost path

of evaluating sums-of-products of matrices by solving the

matrix-chain problem (defining the so-called “intermedi-

ates”) and by performing common subexpression elimi-

nation and intermediate reuse. In step (3), the computer-

generated codes perform dynamically-load-balanced paral-

lel matrix multiplications and additions, taking advantage

of spin, spatial, and index-permutation symmetries. The

parallelism, symmetry usage, and memory/disk space man-

agement are all achieved by virtue of TCE’s data structure:

every matrix (molecular integrals, excitation amplitudes,

intermediates, etc.) is split into spin- and spatial-symmetry-

adapted tiles, whose sizes are determined at runtime so

that the several largest tiles can fit in core memory. Only

symmetrically-unique, non-zero tiles are stored gapless

(with their storage addresses recorded in hash tables which

are also auto-generated by TCE) and used in parallel tile-

wise multiplications and additions, which are dynamically

distributed to idle processors on a first-come, first-served

basis. NWChem’s parallel middleware, especially Global

Arrays, was essential for making the computer-generated

parallel codes viable.

TCE is a part of the NWChem source-code distribution,

and a user is encouraged to implement their own ansatzes
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Figure 1. A schematic representation of TCE workflow (see text

for details).

into high-quality parallel codes. Therefore TCE has paved

the way for quick development of various implementations

of coupled-cluster methods that would take disproportion-

ately longer time if hand-coded. Additionally, TCE pro-

vided a new testing ground for several novel parallel al-

gorithms for accurate many-body methods and has been

used to generate a number of canonical implementations of

single reference CC methods for ground- and excited-state

calculations for arbitrary reference function including: RHF,

ROHF, UHF, and multi-reference cases. Below we listed

basic components of the TCE infrastructure in NWChem:

• various perturbative methods ranging from second

(MBPT(2)/MP2) to fourth-order (MBPT(4)/MP4) of

Møller-Plesset perturbation theory,

• single reference iterative (CCD,130 CCSD,30

CCSDT,147–149 CCSDTQ150,151) and non-iterative

(CCSD(T),31 CR-CCSD(T),152 LR-CCSD(T),153

CCSD(2),154–156 CCSD(2)T ,156 CCSDT(2)Q)156 CC

approximations for ground-state calculations,

• single reference iterative ( EOMCCSD,157,158

EOMCCSDT,159,160 EOMCCSDTQ146,161 ) and

non-iterative (CR-EOMCCSD(T)162) Equation-of-

motion CC (EOMCC) approximations163 for excited-

state calculations,

• Ionization potential and electron affinity EOMCC

(IP/EA-EOMCC) methods,164–170

• linear-response CC (LR-CC) methods for calculating

static and frequency-dependent polarizabilities and

static hyperpolarizabilities at the CCSD and CCSDT

levels of approximation,171

• state-specific multi-reference CC (MR-CC) methods

for quasi-degenerate systems.172–178

The TCE infrastructure has also been used in exploring new

parallel algorithms and algorithms for emerging computer

architectures. The most important examples include:

• parallel algorithms for excited-state CR-

EOMCCSD(T) calculations with demonstrated

scalability across 210,000 cores of Jaguar Cray XT5

system at the Oak Ridge Leadership Computing

Facility (OLCF)28,

• new CC algorithms for GPU and Intel MIC

architectures (single-reference CC and MR-CC

theories),32,34,35,179,180

• new algorithms for multi-reference CC methods uti-

lizing processor groups and multiple levels of paral-

lelism (the so-called reference-level of parallelism

of Refs.181,182) with demonstrated scalability across

80,000 cores of Jaguar Cray XT5 system,182

• new execution models for the iterative CCSD and

EOMCCSD models.28

With TCE, one can perform CC calculations for closed-

and open-shell systems characterized by 1,000-1,300 or-

bitals. Some of the most illustrative examples of TCE

calculations are (1) static and frequency-dependent polariz-

abilities for the C60 molecule,183 excited state simulations

for π-conjugated chromophores,184 and IP-EOMCCSD cal-

culations for ferrocene with explicit inclusion of solvent

molecules. One cutting edge application of TCE CC was

the early application of EOMCC methodologies in excited-

state studies of functionalized forms of porphyrin28. Ad-

ditionally, TCE has also served as a development plat-

form for early implementations of the coupled-cluster

Green’s function formalism.185–188 The TCE development

has since been followed by several other efforts towards

enabling scalable tensor libraries. This includes Super In-

struction Assembly Language SIAL,144,189 Cyclop Ten-

sor Framework (CTF),190 TiledArray framework,191 and

Libtensor,192 which have been used to develop scalable

implementations of CC methods.

D. Relativistic Methods

Methods which include treatment of relativistic effects

are based on the Dirac equation193, which has a four-

component wavefunction. The solutions to the Dirac equa-

tion describe both positrons (the “negative energy” states)

and electrons (the “positive energy” states), as well as

both spin orientations, hence the four components. The

wavefunction may be broken down into two-component
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functions traditionally known as the large and small com-

ponents; these may further be broken down into the spin

components.194–197

The implementation of approximate all-electron rela-

tivistic methods in quantum chemical codes requires the

removal of the negative energy states and the factoring out

of the spin-free terms. Both of these may be achieved us-

ing a transformation of the Dirac Hamiltonian known in

general as a Foldy-Wouthuysen (FW) transformation. Un-

fortunately, this transformation cannot be represented in

closed form for a general potential, and must be approxi-

mated. One popular approach is the Douglas and Kroll198

method developed by Hess199,200. This approach decou-

ples the positive and negative energy parts to second-order

in the external potential (and also fourth-order in the fine

structure constant, α). Other approaches include the zeroth

order regular approximation (ZORA)201–204, modification

of the Dirac equation by Dyall205, which involves an ex-

act FW transformation on the atomic basis set level206,207

and the exact 2-component (X2C) formulation, which is

a catch-all for a variety of methods that arrive at an ex-

actly decoupled two-component Hamiltonian using matrix

algebra.197,208–211 NWChem contains released implementa-

tions of the DKH, ZORA, and Dyall approaches, while the

X2C method is available in a development version.209,211

Since these approximations only modify the integrals,

they can, in principle, be used at all levels of theory. At

present, the Douglas-Kroll, ZORA and X2C implementa-

tions can be used at all levels of theory, whereas Dyall’s

approach is currently available at the Hartree-Fock level.

a. Douglas-Kroll Approximation: NWChem contains

three second-order Douglas-Kroll approximations termed

as FPP, DKH, and DKHFULL. The FPP is the approxima-

tion based on free-particle projection operators199, whereas

the DKH and DKFULL approximations are based on

external-field projection operators200. The latter two are

considerably better approximations than the former. DKH

is the Douglas-Kroll-Hess approach and is the approach

that is generally implemented in quantum chemistry codes.

DKFULL includes certain cross-product integral terms ig-

nored in the DKH approach (see for example, Häberlen

and Rösch212). The third-order Douglas-Kroll approxi-

mation (DK3) implements the method by Nakajima and

Hirao213,214.

b. Zeroth Order Regular Approximation (ZORA):

The spin-free and spin-orbit versions of the one-electron ze-

roth order regular approximation (ZORA) have been imple-

mented. Since the ZORA correction depends on the poten-

tial, it is not gauge invariant. This is addressed by using the

atomic approximation of van Lenthe and coworkers.215,216

Within this approximation, the ZORA corrections are cal-

culated using the superposition of densities of the atoms in

the system. As a result, only intra-atomic contributions are

involved, and no gradient or second derivatives of these cor-

rections need to be calculated. In addition, the corrections

need only to be calculated once at the start of the calculation

and stored. The ZORA approach is implemented in two

ways in NWChem, one where the ZORA potential compo-

nents are directly computed on an all-electron grid204 and a

second approach, where the ZORA potential is computed

using the model potential approach due to van Wüllen and

co-workers.217,218

c. Dyall’s Modified Dirac Hamiltonian Approximation:

The approximate methods described in this section are all

based on Dyall’s modified Dirac Hamiltonian. This Hamil-

tonian is entirely equivalent to the original Dirac Hamil-

tonian, and its solutions have the same properties. The

modification is achieved by a transformation on the small

component. This gives the modified small component the

same symmetry as the large component. The advantage of

the modification is that the operators now resemble those of

the Breit-Pauli Hamiltonian, and can be classified in a sim-

ilar fashion into spin-free, spin-orbit, and spin-spin terms.

It is the spin-free terms which have been implemented in

NWChem, with a number of further approximations. Nega-

tive energy states are removed by a normalized elimination

of the small component (NESC), which is equivalent to

an exact Foldy-Wouthuysen (EFW) transformation. Both

one-electron and two-electron versions of NESC (NESC1E

and NESC2E, respectively) are available, and both have

analytic gradients.205–207

E. Molecular Properties

A broad array of simple and response-based molecular

properties can be calculated using the HF and DFT wave-

functions in NWChem. These include: natural bond analy-

sis, dipole, quadrupole, octupole moments, Mulliken pop-

ulation analysis and bond order analysis, Löwdin popula-

tion analysis, electronic couplings for electron transfer,84,85,

Raman spectroscopy,219,220, electrostatic potential (dia-

magnetic shielding) at nuclei, electric field and field gra-

dient at nuclei, electric field gradients with relativistic

effects221, electron and spin density at nuclei, GIAO-based

NMR properties like shielding, hyperfine coupling (Fermi-

Contact and Spin-Dipole expectation values), indirect spin-

spin coupling,222–224 G-shift,225 EPR, paramagnetic NMR

parameters,226,227 and optical activity.102,103,228,229 Note

that only linear-response is supported and for single fre-

quency, electric field, and mixed electric-magnetic field per-

turbations. Ground state and dynamic dipole polarizabilities

for molecules can be calculated at the CCSD, CCSDT, and

CCSDTQ levels using the linear-response formalism.230

For additional information, we refer the reader to the online

manual.8

F. Periodic Plane-Wave Density Functional Theory

The NWChem plane-wave density functional theory

(NWPW) module contains two programs:

• PSPW - A pseudopotential and projector augmented

(PAW) plane-wave Γ-point code for calculating

molecules, liquids, crystals, and surfaces,

• BAND - A pseudopotential plane-wave band struc-

ture code for calculating crystals and surfaces with

small band gaps (e.g. semi-conductors and metals),

These programs use a common infrastructure for carrying

out operations related to plane-wave basis sets that is paral-
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lelized with the MPI and OpenMP libraries29,33,34,231–235

The NWPW module can be used to carry out many

different kinds of simulations. In addition to the standard

simulations implemented in other modules, e.g. energy,

optimize, and freq, there are additional capabilities

specific to PSPW and BAND that can be used to carry

out NVE and NVT236 Car–Parrinello19 and Born-

Oppenheimer molecular dynamics simulations, hybrid

ab initio molecular dynamics and molecular mechanics

(AIMD-MM) simulations234,237, Gaussian/Fermi/Marzari-

Vanderbilt smearing, Potential-of-Mean-Force

(PMF)238/Metadynamics239,240/Temperature-Accelerated-

Molecular-Dynamics (TAMD)241,242/Weighted-Histogram-

Analysis-Method (WHAM)243 free energy simulations,

AIMD-EXAFS simulations using open-source versions

of the FEFF software244–246 that have been parallelized,

electron transfer calculations247, unit cell optimization, op-

timizations with space group symmetry, Monte-Carlo NVT

and NPT simulations, phonon calculations, simulations

with spin-orbit corrections, Wannier248 and rank reducing

density matrix249 localization calculations, Mulliken250 and

Blöchl251 charge analysis, Gaussian cube file generation,

periodic dipole and infrared (AIMD-IR) simulations,

band structure plots, density of states. Calculations can

also be run using a newly developed i-PI252 interface,

and more direct interfaces to ASE253, nanoHUB254, and

EMSL Arrows255 simulation tools are currently being

implemented.

A variety of exchange-correlation functionals have been

implemented in both codes, including the local den-

sity approximation (LDA) functionals, generalized gradi-

ent approximation (GGA) functionals, full Hartree-Fock

and screened exchange, hybrid DFT functionals, self-

interaction correction (SIC) functionals256, localized ex-

change method, DFT+U method, and Grimme dispersion

corrections77,78, as well as recently implemented vdW dis-

persion functionals257, and meta-generalized gradient ap-

proximation (metaGGA) functionals. The program contains

several codes for generating pseudopotentials, including

Hamann20 and Troulier-Martin21, and PAW23 potentials.

These codes have the option for generating potentials with

multiple projectors and semi-core corrections. It also con-

tains codes for reading in HGH258, GTH259, and norm-

conserving pseudopotentials in the CPI and TETER formats.

Codes for reading Optimized Norm-Conserving Vanderbilt

(ONCV) pseudopotentials260,261 and USPP PAW potentials

will become available in future releases of NWChem.

The pseudopotential plane-wave DFT methods im-

plemented in NWChem are a fast and efficient way

to calculate molecular and solid-state properties using

DFT16,17,19,29,235,262–270. In these approaches, the fast vary-

ing parts of the valence wavefunctions inside the atomic

core regions and the atomic core wavefunctions are re-

moved and replaced by pseudopotentials20–22,271–274. Pseu-

dopotentials are chosen such that the resulting pseudoatoms

have the same scattering properties as the original atoms.

The rationale for this approach is that the changes in the

electronic structure associated with making and breaking

bonds only occur in the interstitial region outside the atomic

core regions (see Fig. 2). Therefore, removing the core re-

gions should not affect the bonding of the system. For this

approach to be useful, it is necessary for the pseudopoten-

tials to be smooth in order for plane-wave basis sets to be

used. As the atomic potential becomes stronger the core re-

gion becomes smaller and the pseudopotential grows steep.

As a result, the pseudopotential can become very stiff, re-

quiring large plane-wave basis sets (aka cutoff energies),

for the first-row transition metals atoms, the lanthanide

atoms, and towards the right-hand side of the periodic table

(fluorine).

Figure 2. Illustration of the atomic core and interstitial regions in

a valence wavefunction. Bonding takes place in the interstitial re-

gion and the atomic core regions change very little from molecule

to molecule. Figure from Bylaska et al.234.

The projected augmented plane-wave method

(PAW)23,232,275–277 is another related approach that

removes many of the problems of the somewhat ad hoc

nature of the pseudopotentials approach. However, in the

PAW approach, instead of discarding the rapidly varying

parts of the electronic functions, these are projected onto a

local basis set (e.g., a basis of atomic functions), and no

part of the electron density is removed from the problem.

Another key feature of PAW is that by maintaining a

local description of the system, the norm-conservation

condition (needed for proper scattering from the core) can

be relaxed, which facilitates the use of smaller plane-wave

basis sets (aka cutoff energies) then for many standard

pseudopotentials. Historically, the PAW method was

implemented as a separate program in the NWPW module,

rather than being fully integrated into the PSPW and

BAND codes. This separation significantly hindered

its development and use. As of NWChem version 6.8

(released in 2017), the PAW approach has been integrated

into the PSPW code, and it is currently being integrated

into the BAND code. It will become available in future

releases of NWChem.

In recent years, with advances in High-Performance

Computing (HPC) algorithms and computers, it is now

possible to run AIMD simulations up to ∼1 ns for non-

trivial system sizes. As a result, it is now possible to effec-

tively use free-energy methods with AIMD and AIMD/MM

approaches. Free energy approaches are useful for simu-

lating reactions where traditional quantum chemistry ap-

proaches can be difficult to use and often require the exper-

tise of a very experienced quantum chemist, e.g. reactions

that are complex with concerted or multi-step components

and/or interact strongly with the solvent. Recent examples

include solvent coordination and hydrolysis of actinides

metals197,278–281 (see Fig. 3), hydrolysis of explosives234,

and ion association in AlCl3
237. To help users learn how

to use these new techniques, we developed a tutorial on
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Figure 3. Snapshots from a metadynamics simulation of the

hydrolysis of the U4+ aqua ion278. During the simulation a proton

jumps from a first shell water molecule to a second shell water

molecule and then subsequently to other water molecules via a

Grotthuss mechanism.

carrying out finite temperature free energy calculations in

NWChem282.

The NWPW module continues to be actively developed.

There are on-going developments for RPA and GW-RPA

methods, an electron transfer MCSCF method, Raman and

Mössbauer spectroscopy, and a hybrid method that inte-

grates classical DFT283 into ab initio molecular dynamics

(AIMD-CDFT). In addition to these developments, we are

actively developing the next generation of plane-wave codes

as part of the NWChemEx project. These new codes, which

are being completely written from scratch, will contain all

the features currently existing in the NWPW module. Be-

sides implementing fast algorithms to use an even larger

number of cores and new algorithms to run efficiently on

GPUs, it includes a more robust infrastructure to facilitate

the implementation of an O(N) DFT code based on the

work of Fattebert et al.284

G. Optimization, Transition State, and Rate theory
Approaches

A variety of drivers and interfaces are available in

NWChem to perform geometry minimization and transition

state optimizations. The default algorithms in NWChem

for performing these optimizations are quasi-Newton meth-

ods with line searches. These methods are fairly robust,

and they can be used to optimize molecules, clusters, and

periodic unit cells and surfaces. They can also be used in

conjunction with both point group and space group sym-

metries, excited state TDDFT surfaces, as well as with a

variety of external fields, such as external point charges,

COSMO285 or SMD286 Model. The default methods also

work seamlessly with electronic structure methods that do

not have nuclear gradients implemented by automatically

using finite difference gradients. NWChem also contains

default methods for calculating harmonic vibrational fre-

quencies and phonon spectra for periodic systems. These

methods are able to make use of analytic Hessians if they

are available, otherwise a finite difference approach is used.

A vibrational self-consistent field287 (VSCF) method is

also available in NWChem and it can be used to calculate

anharmonic contributions to specified vibrational modes.

There is also an interface called DIRDYVTST288 that uses

NWChem to compute energies, gradients, and Hessians for

direct dynamics calculations with POLYRATE289.

A variety of external packages, such as ASE253,290 and

Sella291,292, can also be used for finding energy minima,

saddle points on energy surfaces, and frequencies using

either python scripting or a newly developed i-PI252 in-

terface. Python programs may be directly embedded into

the NWChem input and used to control the execution of

NWChem. The python scripting language provides useful

features, such as variables, conditional branches, and loops,

and is also readily extended. Other example applications

for which it could be used include scanning potential en-

ergy surfaces, computing properties in a variety of basis

sets, optimizing the energy with respect to parameters in

the basis set, computing polarizabilities with a finite field,

simple molecular dynamics, and parallel in time molecular

dynamics293.

NWChem also contains an implementation of the

nudged elastic band (NEB) method of Jónsson and co-

workers294–297 and the zero-temperature string method of

vanden Eijden et al.298 Both these methods can be used to

find minimum energy paths. Currently, a quasi-Newton

algorithm is used for the NEB optimization. A better

approach for this kind of optimization is to use a non-

linear multi-grid algorithm, such as the Full Approximation

Scheme (FAS)299. A new implementation of NEB based on

FAS is available on Bitbucket300, and an integrated version

will soon be available in NWChem.

H. Classical Molecular Dynamics

The integration of a molecular dynamics (MD) module

in NWChem enables the generation of time evolution

trajectories based on Newton’s equation of motion of

molecular systems in which the required forces can origi-

nate from a classical force field, any implemented quantum

mechanical method for which spatial derivatives have been

implemented, or hybrid quantum mechanical/molecular

mechanical (QM/MM) approaches. The method is based

on the ARGOS molecular dynamics software, originally

designed for vector processors,301 but later redesigned for

massively parallel architectures.25,302–304
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a. System Preparation: The preparation of a molecu-

lar system is done by a separate prepare module that reads

the molecular structure and assembles a topology from

the databases with parameters for the selected force field.

The topology file contains all static information for the

system. In addition, this module generates a so-called

restart file with all dynamic information. The prepare

module has a wide range of capabilities that include the

usual functions of placing counter-ions and solvation

with any solvent defined in the database. The prepare

module is also used to define Hamiltonian changes for

free energy difference calculations, and the definition of

those parts of the molecular systems that will be treated

quantum mechanically in QM/MM simulations. Some

of the more unique features include setting up a system

for proton hopping (QHOP) simulations,305,306 and the

setup of biological membranes from a single lipid-like

molecule. This last capability has been successfully

used for the first extensive simulation studies of complex

asymmetric lipopolysaccharide membranes of Gram-

negative microbes307–311 and their role in the capture of

recalcitrant environmental heavy metal ions,312 microbial

adhesion to geochemical surfaces,313–316 and the structure

and dynamics of trans-membrane proteins including ion

transporters317–319(Fig. 4).

b. Force Fields: The force field implemented in

NWChem consists of harmonic terms for bonded, angle

and out of plane bending interactions, and trigonometric

terms for torsions. Non-bonded van der Waals and elec-

trostatic interactions are represented by Lennard-Jones and

Coulombic terms, respectively. Non-bonded terms are eval-

uated using charge groups and subject to a user-specified

cutoff radius. Electrostatic interaction corrections beyond

the cutoff radius are estimated using the smooth particle

mesh Ewald method.320 Parameter databases are provided

for the AMBER321 and CHARMM322 force fields.

Even for purely classical MD simulations, the integration

with the electronic structure methods provides a convenient

way of determining electrostatic parameters for missing

fragments in standard force field databases, through the use

of restrained electrostatic potential fitting323,324 to which

a variety of additional constraints and restraints can be

applied.

c. Simulation Capabilities: Ensemble types available

in NWChem are NVE, NVT, and NPT, using the Berendsen

thermostat and barostat.119 Newton’s equations of motion

are integrated using the standard leap-frog Verlet or velocity

Verlet algorithms. A variety of fundamental properties

are evaluated by default during any molecular dynamics

simulation. Parallel execution time analysis is available to

determine the parallel efficiency.

The MD module has extensive free energy simulation

capabilities,325–330 which are implemented in a so-called

multi-configuration approach. For each incremental change

of the Hamiltonian to move from the initial to the final

state, sometimes referred to as a window, a full molecular

simulation is carried out. This allows for a straightforward

evaluation of statistical and systematic errors where needed,

including a correlation analysis.331 Based on the ARGOS

code301 it has some unique features, such as the separation-

shifted scaling technique to allow atoms to appear from or

disappear to dummy atoms.332 One of the advantages of

the integration of MD into the electronic structure methods

framework in NWChem is the ability to carry out hybrid

QM/MM simulations (discussed in the next section). The

preparation of molecular systems for the MD module allows

for flexibly specifying parts of the molecular system to

be treated by any of the implemented electronic structure

methods capable of evaluating positional gradients.

A unique feature in the NWChem MD module is

the optional specification of protonatable sites on both

solute and solvent molecules. Pairs of such sites can

dynamically change between protonated or unprotonated

state, effectively exchanging a proton. Transitions are

governed by a Monte Carlo type stochastic method to

determine when transitions occur. This so-called QHOP

approach was developed by the research group of Helms.306

d. Analysis Capabilities: The NWChem MD

capability includes two analysis modules. The original

analysis module, analyze, analyzes trajectories in a way

that reads individual structures one time step at a time and

distributes the data in a domain decomposition fashion as

in the molecular simulation that generated the data. The

second data-intensive analysis module, diana, reads entire

trajectories and distributes the data in the time domain. This

is especially effective for analyses that require multiple

passes through a trajectory, but requires the availability of

potentially large amounts of memory.333,334 An example

of such analyses is the Essential Dynamics Analysis, a

principal component analysis (PCA) based calculation to

determine the dominant motions in molecular trajectories.

e. Parallel Implementation Strategy: The most effec-

tive way of distributing a system with large numbers of

particles is through the use of domain decomposition of

the physical space. The implementation in NWChem, fa-

cilitated through the use of the Global Arrays (GA) toolkit,

partitions the simulation space into rectangular cells that

are assigned to different processes ranks or threads. Each of

these ranks carries out the calculation of intra-cell atomic

energies and forces of the cells assigned. Inter-cell ener-

gies and forces are evaluated by one of the ranks that was

assigned one or the other of the cell pairs.

Two load balancing methods have been implemented

in NWChem, both based on measured computation time.

In the first one, the assignment of inter-node cell pair cal-

culations is redefined such that assignments move from

the busiest node to the less busy node. This scheme re-

quires minimal additional communication, and since only

two nodes are involved in the redistribution of work, the

communication is local, i.e. node to node. In the second

scheme, the physical size of the most time-consuming cell

is reduced, while all other cells are made slightly larger.

This scheme requires communication and redistribution of

atoms on all nodes. In practice, the first scheme is used until

performance no longer improves, after which the second

scheme is used once followed by returning to use the first

scheme. This approach has been found to improve load bal-

ancing even in systems with a very asymmetric distribution
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Figure 4. The NWChem MD Prepare utility facilitates the setup of trans-membrane proteins in complex asymmetric membrane

environments in a semi-automated procedure. Shown here are the top views of step 1 in which membrane lipopolysaccharide molecules

with the necessary counter ions are placed on a rectangular grid around a trans-membrane protein, in which each membrane lipid

molecule is randomly rotated around the principal molecular axis (left panel), step 2 in which each cluster of a lipid molecule is translated

towards the center of the transmembrane protein such that no steric clashed occur (center panel), and step 3 in which the system is

equilibrated using strict restraint potentials to keep the lipid molecules aligned along the normal of the membrane and the lipid head

groups in the plane of the membrane (right panel). After this procedure, the system would be solvated and equilibrated while slowly

removing the positional restraint potentials.

of computational intensity.335

VI. HYBRID METHODS

We define hybrid methods as those coupling different

levels of description to provide an efficient calculation of a

chemical system, which otherwise may be outside the scope

of conventional single-theory approaches. The physical mo-

tivation for such methods rests on the observation that, in

the majority of complex chemical systems, the chemical

transformation occurs in localized regions surrounded by an

environment, which can be considered chemically inert to

a reasonable approximation. Since hybrid methods require

the combination of multiple theoretical methods in a single

simulation, the diversity of simulation methodologies avail-

able in NWChem makes it a platform particularly apt for

this purpose.

One common example involves chemical transformations

in a bulk solution environment, forming the foundations of

wide variety of spectroscopic measurements (UV-vis, NMR,

EPR, etc.). The reactive region, referred to as the “solute”,

involves electronic structure degrees of freedom and thus

requires the quantum mechanical (QM) based description,

such as DFT or more complex wavefunction methods. In

the conventional approach, such QM description would be

necessarily extended to the entire system making the prob-

lem a heroic computational task. In a hybrid approach, the

treatment of a surrounding environment (”solvent”) would

be delegated to a much simpler description, such as the con-

tinuum model (CM), for example. The latter is supported

in NWChem via two models - COSMO285 (COnductor-like

Screening MOdel) and SMD286 (Solvation Model based on

Density) Model. The resulting QM/CM approaches are par-

ticularly well suited for accurate and efficient calculation

of solvation free energies, geometries in solution, and spec-

troscopy in solution. The SMD model employs the Poisson

equation with non-homogeneous dielectric constant for bulk

electrostatic effects, and solvent-accessible-surface tensions

for cavitation, dispersion, and solvent-structure effects, in-

cluding hydrogen bonding. For spectroscopy in solution,

the Vertical Excitation (or Emission) Model (VEM) has

also been implemented for calculating the vertical excita-

tion (absorption) or vertical emission (fluorescence) energy

in solution according to a two-time-scale model of solvent

polarization336.

For systems where an explicit solvation environment

treatment is needed (for example, heterogeneous systems

like a protein matrix), NWChem provides a solution in

terms of combined quantum mechanics/molecular mechan-

ics (QM/MM) approach.337,338 Here, the environment is

described at the classical molecular mechanics level. This

offers more fidelity compared with a continuum solvent de-

scription, while still keeping the computational costs down.

The total energy of the system in QM/MM approach can be

represented as a sum of the energies corresponding to QM

and MM regions:

E(r,R;ψ) = Eqm(r,R;ψ)+Emm(r,R) (10)

where ψ denotes electronic degrees of freedom, and r,R
refer to nuclear coordinates of QM and MM regions cor-

respondingly. The QM energy term can be further decom-

posed into internal and external parts

Eqm[r,R;ψ] = E int
qm[r;ψ]+Eext

qm [r,R;ρ] (11)
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where ρ is the electron density.

As a generic module, the QM/MM implementation can

utilize any of the Gaussian basis set based QM modules

available in NWChem and supports nearly all the task func-

tionalities. The calculation of QM energy remains the main

computational expense in the QM/MM approach. This

issue is more pronounced compared with the continuum

coupling case, because of the additional atomistic degrees

of freedom associated with MM description. The latter

comes into play because any change in the MM degrees

of freedom will, in general, trigger the recalculation of the

QM energy (Eqm(r,R;ψ)). To alleviate these issues during

the optimization, the QM/MM module offers the option of

alternating relaxation of QM and MM regions. During the

latter phase, the user may utilize an approximation where

the QM degrees of freedom are kept frozen until the next

cycle of QM region relaxation, offering significant com-

putational savings. A similar technique can be utilized in

the dynamical equilibration of the MM region and calcula-

tions of reaction pathways and free energies. In addition

to the native MD module, the NWChem QM/MM mod-

ule can also utilize the external AMBER MD code339 for

running the classical part of the calculations. In this case,

QM/MM simulations involve two separate NWChem and

AMBER calculations with data exchange mediated through

files written to disk.

Additionally, the QM/MM capability in NWChem has

resulted in the development and refinement of force-field

parameters, that can, in turn, be used in classical molecular

dynamics simulations. Over the last two decades, classi-

cal parameters obtained using NWChem have been em-

ployed to address the underlying mechanisms of a variety

of novel complex biological systems and their interactions

(e.g., lipopolysaccharide membranes, carbohydrate moi-

eties, mineral surfaces, radionuclides, organophosphorous

compounds)307,308,311–313,340–344 which has led to a signifi-

cant expansion of the database of AMBER- and Glycam-

compatible force fields and the GROMOS force field for

lipids, carbohydrates and nucleic acids.345–351

For cases where a classical description of the environ-

ment is deemed insufficient, NWChem offers an option to

perform an ONIOM type calculation.352 The latter differs

from QM/MM in that the lower level of theory is not re-

stricted to its region but also encompasses regions from all

the higher levels of description. For example, in the case of

the two-level description, the energy is written as

E(R) = EL(R)+(EH(RH)−EL(RH)) (12)

where subscripts H,L refer to high and low levels of theory

correspondingly. The high-level treatment is restricted to

a smaller portion of the system (RH), while the low level

of theory goes over the entire space (R). The second term

in the above equation takes care of overcounting. The

NWChem ONIOM module implements two- and three-

layer ONIOM models for use in energy, gradient, geometry

optimization, and vibrational frequency calculations with

any of the pure QM methods within NWChem.

A new development in hybrid method capabilities of

NWChem involves classical density functional theory

(cDFT).353–355 The latter represents a classical variant of

electronic structure DFT, where the main variable is the

classical density of the atoms.356,357 Conceptually, this type

of description lies between continuum and classical force

field models, providing orders of magnitude improvements

over classical MD simulations. The approach is based on in-

corporating important structural features of the environment

in the form of classical correlation functions. This allows

for efficient and reliable calculations of thermodynamical

quantities, providing an essential link between electronic

structure description at the atomistic level and phenomena

observed at the macroscopic scale.

VII. PARALLEL PERFORMANCE

The design and development of NWChem from the out-

set was driven by parallel scalability and performance to

enable large scale calculations and achieve fast time-to-

solution by using many CPUs where possible. The parallel

tools outlined in section IV provided the programming

framework for this.

The advent of new architectures such as the GPU358

platforms have required the parallel coding strategy within

NWChem to be revisited. At present, the coupled-cluster

code within TCE can utilize both the CPU and GPU hard-

ware at a massive scale32,359. The emergence of many-core

processors in the last ten years provided the opportunity for

starting a collaborative effort with Intel corporation to opti-

mize NWChem on this new class of computer architecture.

As part of this collaboration, the TCE implementation of

the CCSD(T) code was ported to the Intel Xeon Phi line

of many-core processors35 using a parallelization strategy

based on a hybrid GA-OpenMP approach. The ab initio

plane-wave molecular dynamics code (section V F) has

also been optimized to take full advantage of these Intel

many-core processors33,231.

In the rest of this section, we will discuss the paral-

lel scalability and performance of the main capabilities

in NWChem.

Figure 5. C240 DFT benchmark.
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a. Gaussian Basis Density Functional Theory: In

Fig. 5, we report the parallel performance of the Gaussian

basis set DFT module in NWChem. This calculation

involved performing a PBE0 energy calculation (four

SCF iterations in direct mode) on the C240 molecule

with the 6-31G* basis set (3600 basis functions) without

symmetry. These calculations were performed on the

Cascade supercomputer located at PNNL.

Figure 6. LR-TDDFT benchmark for the Au20 molecule in a neon

matrix.

b. Time-Dependent Density Functional Theory: In

Fig. 6, we report the parallel performance of the Gaussian

basis set LR-TDDFT module in NWChem. This calculation

involved computing 100 excitation energies, requiring 11

Davidson iterations, for the Au20 molecule surrounded by

a matrix of 80 Ne atoms360 (1840 basis functions) with D2

symmetry, using the B3LYP functional. These calculations

were performed on the Cascade supercomputer located at

PNNL.

c. Closed-shell CCSD(T): The parallel implemen-

tation of the CCSD(T) approach by Kobayashi and

Rendell132, employing the spin adaptation scheme based

on the unitary group approach (UGA)133 within NWChem,

was one of the first scalable implementations of the CC

formalism capable of taking advantage of several hundred

processors. This implementation was used in simulations

involving tera- and peta-scale architectures where chemical

accuracy is required to describe ground-state potential

energy surfaces. One of the best illustrations of the

performance of the CCSD(T) implementation is provided

by calculations for water clusters26. In the largest calcula-

tion, (H2O)24, sustained performance of 1.39 PetaFLOP/s

(double precision) on 223,200 processors of ORNL’s Jaguar

system was documented. This impressive performance

was mostly attributed to the (T)-part characterized by n3
on4

u

numerical overhead (where no and nu refer to the total

numbers of correlated occupied and virtual orbitals) and its

relatively low communication footprint.

Figure 7. Benchmark EOMCC scalability tests for : (a) beta-

carotene and (b) free-base porphyrin (FBP) fused coronene. Tim-

ings for CR-EOMCCSD(T) approach for the coronene fused free-

base porphyrin in the AVTZ basis set were determined from cal-

culations on the ORNL’s Jaguar Cray XT5 computer system.

d. Tensor Contraction Engine: The TCE has enabled

parallel CC/EOMCC/LR-CC calculations for closed- and

open-shell systems characterized by 1,000-1,300 orbitals.

Some of the most illustrative examples include calcu-

lations for static and frequency-dependent polarizabili-

ties for polyacenes and C60 molecule,183,361 excited state

simulations for π-conjugated chromophores,184 and IP-

EOMCCSD calculations for carbon nanotubes.362 A good

illustration of the scalability of the TCE module is provided

by the application of GA-based TCE implementations of

the iterative (CCSD/EOMCCSD) and non-iterative (CR-

EOMCCSD(T)) methods in studies of excited states of

β -carotene363 and functionalized forms of porphyrin28 (see

Fig.7(a) and (b), respectively). While non-iterative meth-

ods are much easier to scale across a large number of cores

(Fig.7 (b)), scalability of the iterative CC methods is less

easy to achieve. However, using early task-flow algorithms

for TCE CCSD/EOMCCSD methods28 it was possible to

achieve satisfactory scalability in the range of 1,000-8,000

cores.

e. Recent Implementation of Plane-Wave DFT AIMD

for Many-Core Architectures: The very high degree of

parallelism available on machines with many-core pro-

cessors is forcing developers to carefully revisit the im-

plementation of their programs in order to make use of
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this hardware efficiently. In this section, after a brief

overview of the computational costs and parallel strate-

gies for AIMD, we present our recent work33 on adding

thread-level parallelism to the AIMD method implemented

in NWChem3,29,364.

Figure 8. Operation count of Hψi in a plane-wave DFT simulation.

Figure from Ref. 231

The main computational costs of an energy minimization

or AIMD simulation are the evaluation of the electronic

gradient δEtotal/δψ∗
i = Hψi and algorithms used to main-

tain orthogonality. These costs are illustrated in Figure 8.

Due to their computational complexity, the electron gra-

dient Hψi and orthogonalization need to be calculated as

efficiently as possible. The main parameters that determine

the cost of a calculation are Ng, Ne, Na, and Npro j, where

Ng is the size of the three-dimensional FFT grid, Ne is the

number of occupied orbitals, Na is the number of atoms,

Npro j is the number of projectors per atom, and Npack is the

size of the reciprocal space.

The evaluation of the electron gradient (and orthogonal-

ity) contains three major computational pieces that need to

be efficiently parallelized:

• applying VH and Vxc, involving the calculation of 2Ne

3D FFTs;

• calculating the non-local pseudopotential, VNL, dom-

inated by the cost of the matrix multiplications W =
PTY , and Y2 = PW , where P is an Npack×(Npro j ·Na)
matrix, Y and Y2 are Npack ×Ne matrices, and W is

an (Npro jNa)×Ne matrix;

• enforcing orthogonality, where the most expensive

matrix multiplications are S = Y TY and Y2 = Y S,

where Y and Y2 are Npack ×Ne matrices, and S is

an Ne ×Ne matrix. In this work, Lagrange multi-

plier kernels are used for maintaining orthogonality

of Kohn-Sham orbitals29,365–368.

In Fig. 9 the timing results for a full AIMD simulation

of 256 water molecules on 16, 32, 64, 128, 256, and 1024

KNL nodes are shown. The “Cori” system at NERSC was

used to run this benchmark. This benchmark was taken

from Car Parrinello simulations of 256 H2O with an FFT

grid of Ng = 1803 (Ne=2056) using the plane-wave DFT

module (PSPW) in NWChem. In these timings, the number

of threads per node was 66. The size of this benchmark sim-

ulation is about 4 times larger than many mid-size AIMD

simulations carried out in recent years, e.g. in recent work

N=16
C=1088

N=32
C=2176

N=64
C=4352

N=128
C=8704

N=256
C=17408

N=1024
C=69632

Number of nodes/cores (66 used threads per node)

100

101

T
im
e
(s
ec
)

AIMD step

non-local pseudopotentials

queue fft

Lagrange multipliers

Figure 9. Scalability of major components of an AIMD step on

the Xeon Phi partition for a simulation of 256 H2O molecules.

Figure from Bylaska et al.33.

by Bylaska and co-workers.279,280,369–372 The overall tim-

ings show strong scaling up to 1024 KNL nodes (69632

cores) and the timings of the major kernels, the pipelined

3D FFTs, non-local pseudopotential, and Lagrange multi-

plier kernels all displayed significant speedups.

f. Classical Molecular Dynamics: The molecular dy-

namics module in the current NWChem release is based

on the distribution of cells over available ranks in the cal-

culation. Simulations exhibit good scalability when cells

only require communication with immediately neighboring

cells. When the combination of cell size and cutoff radius is

such that interactions with atoms in cells beyond the imme-

diate neighbors are required, performance is significantly

affected. This limits the number of ranks that can effectively

be used. For example, a system with 500,000 atoms will

only scale well up to 1000 ranks. In future implementations,

the cell-cell pair-list will be distributed over the available

ranks. While this leads to additional communication for

ranks that do not “own” a cell, the implementation of a new

communication scheme that avoids global communication

has been demonstrated to improve scalability by at least an

order of magnitude.304

VIII. OUTREACH

Given the various electronic structure methods available

in NWChem, it does not come as a surprise that many of

these functionalities have been integral to various projects

focused on extensions of quantum chemical capabilities to

exa-scale architectures and emerging quantum computing

(see Fig. 10 for a pictorial representation of recent

developments). Below we describe several examples of

such a synergy.

a. Interfacing with Other Software: Over the years,

many open-source and commercial developers have

been using NWChem as a resource for their capability

development, and building add-on tools to increase the

code’s usability. Various open-source and commercial
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platforms provide user interface capabilities to set up and

analyze the results of calculations that can be performed

with NWChem.253,255,373–380 NWChem initially developed

its own graphical user interface called the Extensible

Computational Chemistry Environment381, which is cur-

rently supported by a group of open-source developers. In

addition, multiple codes use quantities from the NWChem

simulation, such as wavefunctions as input for the

calculation of additional properties not directly available in

the code.382–391 NWChem is able to export electrostatic

potential and charge densities with the Gaussian cube

format392 and can use the Molden format393 to write or

read molecular orbitals. This allows codes394–398 to utilize

NWChem’s data to, for example, display charge densities

and electrostatic potentials. NWChem can also generate

AIM wavefunction files that have been used by a variety

of codes to calculate various properties.76,399–401 Recently,

NWChem has also been interfaced with the SEMIEMP

code402, which can be used to perform real-time electronic

dynamics using the INDO/S Hamiltonian.403,404

b. Common Component Architecture: It is an attrac-

tive idea to encapsulate complex scientific applications as

components with standardized interfaces. The components

interact only through these well-defined interfaces and can

be combined into full applications. The main motivation

is to be able to reuse and swap components as needed and

seamlessly create complex applications. There have been

a few attempts to introduce this approach to the scientific

software development community. The most notable DOE-

led effort was the Common Component Architecture (CCA)

Forum405, which was launched in 1998 as a scientific com-

munity effort to create components designed specifically

for the needs of high-performance scientific computing. A

more recent development is the rise of Simulation Develop-

ment Environment (SDE) framework406, which has features

that are related to the components of CCA.

NWChem developers have participated in CCA and SDE

effort resulting in the creation of the NWChem component.

As an example, the NWChem CCA component was used

in the building applications for molecular geometry opti-

mization from multiple quantum chemistry and numerical

optimization packages407, combination of multiple theoret-

ical methods to improve multi-level parallelism408, demon-

stration of multi-level parallelism409, and standardization

of integral interfaces in quantum chemistry410. In the end,

the CCA framework was too cumbersome to use for de-

velopers, requiring significant efforts to develop interfaces

and making components to work together. It resulted in

the retirement of CCA Forum in 2010, but the work done

on standardization of interfaces is continuing to benefit the

quantum chemistry community to this day.

c. NWChemEx: The NWChemEx project is a

natural extension of NWChem to overcome the scalability

challenges associates with migrating the current code base

to exa-scale platforms. NWChemEx is being developed

to address two outstanding problems in advanced biofuels

research: (i ) development of a molecular understanding of

proton controlled membrane transport processes and (ii)

development of catalysts for the efficient conversion of

Figure 10. A “connected diagram” describing ongoing efforts to

extend computational chemistry models to exa-scale and quantum

computing. In each case, NWChem provides a testing and devel-

opment platform. A significant role in these projects is played by

Tensor Algebra for Many-body Methods (TAMM) library. The

ECC acronym stands for the Exa-scale Catalytic Chemistry project

supported by BES.411 The QDK-NWChem interface with the lib-

DUCC library is used for downfolding electronic Hamiltonians.412

biomass-derived intermediates into biofuels, hydrogen, and

other bioproducts; therefore the main focus is on enabling

scalable implementations of the ground-state canonical

CC formalisms utilizing Cholesky decomposed form of

the two-electron integrals413–418 as well as linear scaling

CC formulations based on the domain-based local pair

natural orbital CC formulations (DLPNO-CC).419–421 and

embedding methods.

d. Scalable Predictive methods for Excitations and

Correlated phenomena (SPEC): The main focus of the

SPEC software project is to provide the users with a new

generation of methodologies to simulate excited states and

excited-state processes using existing peta- and emerging

exa-scale architectures. These new capabilities will play

an important role in supporting the experimental efforts at

light source facilities, which require accurate and reliable

modeling tools. The existing NWChem capabilities are

being used to verify and validate SPEC implementations

including excitation energy, ionization potential, and

electron affinity variants of the EOMCC theory as well

as hierarchical Green’s function formulations ranging

from the lower order GW+Bethe-Salpeter equation

(GW+BSE)422 to hierarchical coupled-cluster Green’s

function (GFCC) methods185–188,423 and multi-reference

CC methods.

e. Quantum Information Sciences: Quantum comput-

ing not only offers the promise of overcoming exponential

computational barriers of conventional computing but also

in achieving the ultimate level of accuracy in studies of chal-

lenging processes involving multi-configurational states in

catalysis, biochemistry, photochemistry, and materials sci-

ence to name only a few areas where quantum information

technologies can lead to the transformative changes in the

way how quantum simulations are performed. NWChem,

with its computational infrastructure to characterize second-

quantized forms of electronic Hamiltonians in various basis



NWChem: Past, Present, and Future 21

sets (Gaussian and plane-waves) and with wavefunction

methodologies to provide an initial characterization of the

ground- and excited-state wavefunctions, can be used as

a support platform for various types of quantum simula-

tors. The recently developed QDK-NWChem interface424

(QDK designates Quantum Development Kit developed

by Microsoft Research team) for quantum simulations and

libraries for CC downfolded electronic Hamiltonians for

quantum computing412 are good illustrations of the utiliza-

tion of NWChem in supporting the quantum computing

effort.

IX. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are avail-

able from the corresponding author upon reasonable re-

quest.

X. CONCLUSIONS

The NWChem project is an example of a successful co-

design effort that harnesses the expertise and experience of

researchers in several complementary areas, including quan-

tum chemistry, applied mathematics, and high-performance

computing. Over the last three decades, NWChem has

evolved into a code that offers a unique combination of

computational tools to tackle complex chemical processes

at various spatial and time scales.

In addition to the development of new methodologies,

NWChem is being continuously upgraded, with new algo-

rithms, to take advantage of emerging computer architec-

tures and quantum information technologies. We believe

the community model of NWChem will continue to spur

exciting new developments well into the future.

SUPPLEMENTARY MATERIAL

See supplementary material for tutorial slides showing

examples of NWChem input files.
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34E. J. Bylaska, E. Aprà, K. Kowalski, M. Jacquelin, W. A. de Jong,

A. Vishnu, B. Palmer, J. Daily, T. P. Straatsma, and J. R. Hammond,

“Transitioning NWChem to the Next Generation of Manycore Ma-

chines,” in Exascale Scientific Applications: Scalability and Perfor-

mance Portability (CRC Press, 2017) p. 165.
35E. Apra, M. Klemm, and K. Kowalski, in Proceedings of the Inter-

national Conference for High Performance Computing, Networking,

Storage and Analysis (IEEE Press, 2014) pp. 674–684.
36J. Nieplocha, R. Harrison, and R. Littlefield, SIAM News 28, 12

(1995).
37J. Nieplocha, R. J. Harrison, and R. J. Littlefield, The Journal of

Supercomputing 10, 169 (1996).
38J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
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