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Abstract
Host-defense peptides inhibit bacterial growth but show little toxicity toward mammalian cells. A
variety of synthetic polymers have been reported to mimic this antibacterial selectivity; however,
achieving comparable selectivity for fungi is more difficult because these pathogens are
eukaryotes. Here, we report nylon-3 polymers based on a novel subunit that display potent
antifungal activity (MIC = 3.1 μg/mL for C. albicans) and favorable selectivity (IC10 > 400 μg/
mL for 3T3 fibroblast toxicity; HC10 > 400 μg/mL for hemolysis).

Natural strategies to fend off microbial infection include production of relatively small
peptides that manifest antimicrobial activity, part of the innate immune response.1 These
“host-defense peptides” have diverse sequences and bioactive conformations, and their
biological effects appear to arise from multiple mechanisms.2 Many host-defense peptides
can adopt amphiphilic structures in which lipophilic and hydrophilic (usually cationic) side
chains are segregated to distinct regions of the molecular surface.3 This global
amphiphilicity is widely believed to underlie the ability of host-defense peptides to
compromise bacterial membrane barrier function and thereby inhibit the growth of or kill
prokaryotes.4 Numerous reports describe synthetic peptides or peptidomimetic oligomers
designed to be globally amphiphilic that can serve as tools to elucidate the origins of host-
defense peptide function and as candidates for therapeutic application.5 The evaluation of
synthetic systems has recently expanded to include random copolymers that contain both
hydrophilic and lipophilic subunits, which are much more readily prepared than are
sequence-specific peptides or other oligomers.6

Antimicrobial agents have the highest potential for application when their deleterious effects
are specific for microbial cells relative to human cells. Such selectivity has been achieved
with a variety of compounds for bacterial growth inhibition vs. human cell
destruction;6h,6m,7 the latter property is often assessed as lytic activity toward red blood cells
(“hemolysis”).5e,8 Fundamental differences between prokaryotic and eukaryotic cellular
membranes, including lipid composition and external surface charge density, seem to
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facilitate this selectivity.2,8b In contrast, it is difficult to target fungal pathogens selectively
relative to human cells, because fungi are eukaryotes.9 For example, many host-defense
peptides are not effective inhibitors of fungal growth at physiological ionic strength,10 and
only modest antifungal vs. hemolytic selectivity has been achieved with sequence-specific
oligomers.11 Here we describe a new family of nylon- 3 polymers (poly-β-peptides) that
display significant and selective toxicity toward the most common fungal pathogen among
humans, Candida albicans.12

Nylon-3 materials are readily prepared via ring-opening polymerization of β-lactams,13 and
we have previously reported that sequence-random co-polymers that contain a lipophilic and
a cationic subunit can manifest significant antibacterial activity but low hemolytic activity if
the subunit identities, lipophilic-cationic subunit proportion and other parameters are
optimized.6h,6m,14 The co-polymer shown in Figure 1, for example, displays a particularly
favorable antibacterial activity profile.6h However, antifungal activity among previously
reported nylon-3 copolymer families proved to be inseparable from hemolytic activity
(unpublished). The present studies began with the preparation of a new β-lactam, NM (“no
methyl”; Figure 2), which provides a cationic subunit at or below neutral pH. We were
drawn to this subunit because it contains fewer saturated carbon atoms and therefore should
have a lower hydrophobicity than previously examined cationic nylon-3 subunits derived
from β-lactams MM and DM (“monomethyl” and “dimethyl”).6m The synthesis of NM
(Figure 3) involves cycloaddition of chlorosulfonylisocyanate to an alkene, as in previous
cases, but this route differs from the precedents in that the side chain nitrogen is introduced
after β-lactam formation.6h,13f,15 Although the yield of the iodo-β-lactam is only modest,
this potentially versatile molecule can easily be prepared on a multi-gram scale.15–16 The β-
lactam bearing a Boc-protected amino group in the side chain was readily incorporated into
nylon-3 co-polymers via the base-catalyzed process we have previously employed, in which
the N-terminal group on each polyamide chain is specified by the choice of polymerization
co-initiator.13f All polymers discussed below were prepared with 20-mer average length
because previous work indicated that this size range is generally favorable in terms of
maximizing antimicrobial activity and minimizing hemolytic activity.6m

The antifungal activity of new NM-containing co-polymers (Figure 4) was evaluated with a
clinically isolated strain of C. albicans (K1).17 The minimum inhibitory concentration (MIC)
was measured using a protocol suggested by the Clinical and Laboratory Standard Institute
(previously known as the National Committee for Clinical Laboratory Standard)18. In order
to assess the effects of the new polymers on mammalian cells, we determined the
concentration necessary for 10% lysis of human red blood cells (HC10), and the
concentration necessary to induce 10% cell death in NIH 3T3 fibroblasts (IC10). Previously
we have used the minimum hemolytic concentration (MHC) as a metric of red blood cell
disruption, but we shifted to HC10 for the present studies because it was sometimes difficult
to identify the lowest polymer concentration that displayed a non-zero extent of
hemolysis.6h,6m The fibroblast assays provide an alternative measure, relative to hemolysis,
of toxicity toward mammalian cells. Amphotericin B (AmpB), which is used clinically for
C. albicans infections but associated with high toxicity toward mammalian cells, served as a
positive control in these studies.19 Results are summarized in Table 1.

We began by examining random co-polymers (Figure 4) formed from new β-lactam NM
and cyclohexyl β-lactam CH, because the latter had given rise to selective antibacterial
copolymers when paired with the cationic subunit derived from MM (Figure 1).6h All of the
new polymers bore a p-t-butylbenzoyl group at the N-terminus, as in previous antibacterial
examples. The maximum proportion of the cyclohexyl subunit that could be used without
compromising aqueous solubility, 60:40 CH:NM, led to weak antifungal activity and weak
hemolytic activity (MIC and HC10 ~ 100 μg/mL). Antifungal activity steadily increased

Liu et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2014 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(i.e., MIC decreased) as the proportion of the lipophilic subunit declined, and no co-polymer
containing > 50% of the cationic subunit manifested detectable hemolytic activity. Members
of this polymer family were generally not toxic toward mouse fibroblasts. The activity levels
observed for CH:NM co-polymers with ≥ 80% of the cationic subunit, on a μg/mL basis,
approached that of AmpB, but were accompanied by substantially less fibroblast
cytotoxicity than AmpB. Replacing the p-t-butylbenzyol end-group with an acetyl end-group
did not alter the biological activity of poly-NM. The NM homopolymer displayed antifungal
activity comparable to that of the most active CH:NM copolymers. Follow-up studies
showed that poly-NM is fungicidal at the MIC, rather than merely inhibitory toward fungal
growth.20

The excellent activity profile observed for poly-NM contrasts with the behavior observed
for two other cationic nylon-3 homopolymers, poly-MM and poly-DM (Table 1). Poly-MM
shows very little antifungal activity, and this homopolymer is also not hemolytic or toxic
toward 3T3 fibroblasts. Poly-DM, on the other hand, approximately matches poly-NM in
activity against C. albicans, but poly- DM is hemolytic and moderately toxic toward 3T3
fibroblasts.

Poly-NM was evaluated for antibacterial activity against a panel of four species that we
have previously used to assess poly-MM and poly-DM as well as cationic-hydrophobic
copolymers (Table 2).6m The antibacterial effects of poly-NM were generally comparable to
those of the other two cationic nylon-3 homopolymers: significant activity was observed for
Bacillus subtilis, which seems to be highly susceptible to a wide array of peptides and
peptidomimetic oligomers and polymers, but all three homopolymers were considerably less
active against Escherichia coli, Enterococcus faecium and Staphylococcus aureus. The
generally low antibacterial activity of poly-MM and poly-DM has previously been
rationalized in terms of their lack of hydrophobic subunits (e.g., the subunit derived from
CH), which may limit their ability to disrupt bacterial membranes.6m,14 From this
perspective, the relatively low antibacterial activity of poly- NM is not surprising. The
potent antifungal activity of poly- NM is noteworthy in the context of this limited
antibacterial activity.

The data we have presented show that nylon-3 polymers containing subunits derived from
the new β-lactam NM display potent antifungal activity without a strong tendency to disrupt
human red blood cell membranes or strong toxicity toward 3T3 fibroblasts. It is particularly
intriguing that poly-NM displays such profound differences in biological activity relative to
the structurally similar cationic nylon-3 homopolymers poly-MM and poly-DM. There are
several differences among the subunits of these three polymers: (1) the added side-chain
carbons in poly-MM and poly-DM relative to poly-NM cause a modest increase in
hydrophobicity;20 (2) the added carbons alter backbone flexibility; (3) the point of
attachment of the aminomethyl side chain in NM differs from that in MM and DM (α-
carbon vs. β-carbon). Further studies will be necessary to determine the mechanism by
which these seemingly subtle molecularlevel changes exert such a substantial influence on
biological activity. We have previously proposed that nylon-3 copolymers exert antibacterial
effects via disruption of prokaryotic cell membranes, and this hypothesis has been supported
by studies of the 40:60 CH:MM co-polymer (Figure 1) with synthetic vesicles of varying
lipid composition.14 However, our finding that maximal antifungal activity is manifested by
poly-NM, the least hydrophobic nylon-3 polymer we have examined to date, raises the
possibility that NM-containing polymers act via a mechanism that does not involve
disturbance of lipid bilayers. The surprising biological activity profile discovered for NM-
based nylon-3 suggests that antifungal applications of these new materials be pursued.
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Figure 1.
Representative sequence- and stereo-random nylon- 3 co-polymer containing subunits
derived from racemic cis-cyclohexyl β-lactam (CH) and racemic monomethyl aminomethyl
β-lactam (MM). R represents the side chain group for either CH or MM. This co-polymer
inhibits the growth of several bacterial species at relatively low concentrations but is only
weakly hemolytic.6h
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Figure 2.
β-Lactams and corresponding hydrophilic (cationic) subunits within the nylon-3 polymer
chain. All β-Lactams are racemic, and the resulting polymers are heterochiral.
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Figure 3.
The synthesis of racemic β-lactam NM.

Liu et al. Page 9

J Am Chem Soc. Author manuscript; available in PMC 2014 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The structure of CH:NM co-polymers. All copolymers are heterochiral and sequence-
random. x + y = 100, y = 40, 50, 60, 70, 80, or 90. R represents the side chain group of
either CH or NM.
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Table 2

Antibacterial activities of cationic nylon-3 homopolymers

MIC,a μg/mL

polymer E. coli B. subtilis E. faecium S. aureus

NM 50 6.3 > 200 100

MM > 200 6.3 > 200 100

DM 100 3.1 100 50

a
MIC is the minimum inhibitory concentration for bacterial growth.
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