
NYMPH: A Multiprocessor for Manipulation Applications

J. Bradley Chen, Ronald 9. Fearing, Brian 9. Armstrong, and Joel W. Burdick
Stanford ArtSflcial Intelllgence Laboratory

Department of Computer Science
Stanford university

Abstract
The robotics group of the Stanford Artificial Intelligence

Laboratorg is currently developing a new computational system for
robotics applications. Stanford’s NYMPH system uses multiple
NSC 32016 processors and one MC68010 based processor, sharing a
common Intel hfultbbus. The 32K processors provide the raw
computational power needed for advanced robotics applications, and
the 68K provides a pleasant interface with the rest of the world.
Software has been developed to provide useful communications and
synchronization primitives, without consuming excessive processor
resources or bus bandwidth. NYMPH provides both large amounts
of computing power and a good programming environment, making
it an effective research tool.

Introduction
The real time requirements of modern applications in robotics

control require large amounts of computing power. Multiprocessor
machines are well suited for these applications because they can
economically and flexibly provide the large amounts of computing
power required. Single processors of a multiprocessor system can
manage single time critical tasks. By coordinating these processors,
real time systems can be constructed. NYMPH (Not Your average
Multiprocessor Hack) is a system being developed by the robotics
group of the Stanford Artificial Intelligence Laboratory to meet the
computational requirements of present and future robotics control
applications.

The computational requirements of creating a pleasant and
functional software environment for a robotics control processor are
in direct opposition to the primary goal of keeping the computing
power available to the servo loop calculations. In previous control
systems, programmers have suffered immeasurable grief searching for
clever ways to prevent servo calculations from being interrupted by
1 / 0 requests and other operating system tasks. Such interrupt
mechanisms are good for systems in which the first concern is to
communicate with people, but in real time robotics applications they
often prevent the computers from keeping pace with the machines.

IJsing a multiprocessor architecture further complicates the
problem of creating a pleasant user environment. It would be
convenient t o be able to control arbitrary applications running on all
the processors from a single program or a single terminal, but the
communications and synchronization problems involved in creating
such an environment mandate large and complex structures to
coordinate them, making the pleasant programming environment
inefficient and difficult to build. Because of the inherent complcxif,y
of multiprocessor environments, and the need to preserve available
computing resources for the application programs, manipulation
multiprocessors tend to have somewhat uncivilized user interfaces.

In KY-MPH, multiprocessor control structures have been
integrated into an existing system, adding the processing power

necessary for robotics applications to an already cxistmg
programming environment. While NYMPH’S 32K computers provide
real time computing power and high speed floating point
computation, the 68K manages user interaction. The 68K is part of
a Sun 120 computer, with an 800 by 1024 bitmapped display and
high speed graphics capabilities. The 68K runs the V-System with
the Virtual Graphics Terminal Server (VGTS) window system,
developed by the Distributed Systems Group of Stanford LJniversity
(Cheriton 1982). Using the V-Syskm with t.he VGTS, the NYMPH
programmer can have interaction windows for each processor, plus
editors, t,erminal emulators, graphics capabilities, network access, and
other useful facilities provided by the V-System. The researcher can
edit files, test software on the multiprocessor, and analyze output
with the aid of graphics, quickly and conveniently, all from the same
console.

Previous Work
Computers using multiple microprocessors are becoming

important as a cost effective solut.ion to the computational demands
of real time robotics applications. The 32K one board computers
used in NYMPH provide 40% of t.he floating point speed of a Vas
11/780 (with a floating point accelerator) at 1% of the cost.

Much work has been done in the area of the feasibility and
efficiency of manipulation multiprocessors (Nigam and Lee 1985,
Zhcng and Chen 1985). Research has also been directed towards the
development of special system software to run on such machines
(Schwan et . al. 1985, Siegel et. al. 1986).

A group of researchers a t MIT (Siegel e t a1 1985) used five
MC68010s with a DMA link to a DEC Vax 11/750 to control the
UtahlhlIT Hand. In this system, the Vax is used for user and file
1 / 0 and program development. This system also utilized a message-
style communication system and synchronization by means of a
servo-loop-scheduler routine.

Ozguner and Kao (1985) have designed a reconfigurable
multiprocessor to control the Ohio State University hexapod walking
machine. This multiprocessor uses 4 Intel 86/30 single board
computers with fault detectlon and correction hardware,
communicating on four busses. Error recovery using redundancy was
investigated with this machine.

Architecture
NYMPH uses seven 32K single board computers to provide the

bulk of its computing power. The 32K boards run at 10MHz and
each board includes 32K bytes of ROhl, 5i2k bytes of RAM, a
floating point co-processor, an 825512 Programmable Peripheral
Interface, and two serial ports. The 32081 floating point co-processor
greatly enhances the performance of the system, enabling the 32K to
do a floating point multiply in 6 microseconds.

CH2282-2/86/0000/1731$01.00 0 1986 IEEE
1731

yste

I I r-----l

- I I r------

VAX 111780 File Scrvcr

Figure 1: The Nymph System

The 68K provides the interface between NYMPH and the rest of
the world. Since the 68K and the 32Ks are on the same Multibus,
communication between the machines is as fast as a bus transaction.
A 10MB/second Ethcrnet links the 68K to the Vax computers used
for remote file 1 / 0 and program development. The dual ported
memory of the 32K boards enables the 68K to load programs
received over t.he Ethernet directly into the local memory of the
32Ks.

The onboard parallel port of the 32K boards is used to interrupt
the 68K processor. The 32Ks’ ability to interrupt the 68K helps the
68K to respond quickly t o service requests. Since the 68K does not
get any resources from the 32K, and since it is desirable for the 32K
to be able t o respond quickly to the demands of real t.ime
applications, the 68K can not int.errupt the 32Ks.

N Y h P H also has 2M bytes of EDC RAM, parallel 1 / 0 controllers
to communicate with robot controllers, A-D converters to process
force and tactile sensor data, and D-A converters to drive motors.

Software
NYMPH software is designed to avoid system overhead on the

39K processors. Their role is to control the arms and hands, and to
bog them down with interrupts or a sophisticated operating system
would deny processing power to the applications. For this reason,
there is not an operating system that runs on each 32K, but rather a
collection of runtime library routines. Two libraries which greatly
improve the ease of programming NYMPH are the Communications
library and the Synchronization library.

Communications
The 68K processor in the NYMPH system exists to service the

runtime interact,ion requests of the 32Ks. In bhe NYMPH system,
the 32K processors act as clients, and the 68K is the server, fulfilling
the requests of the 32Ks.

Communication in NYMPH is based on a synchronous, typed,
dependable message passing system, with which a 32K procejsor can
send a 32 byte message to B V-System process running on the 68K,
and receive a reply. The 32K uses the messages to make resource
requests from servers running on the 68K. Since the 68K never needs
to make a request of the 32Ks, the 68K cannot send a messages to
them.

The message passing system used in NYMPH relies on the
message passing primitives provided by the V-System. Each message
sent by a 32K contains a V-System type message, in addition t o
other fields such as sender machine id, receiver process id, and
message state.

A message transaction involves the following: A process on a
Nat,ional allocates memory for the message from its own local
memory, usually compiled in as a variable declaration. Alter filling
in the appropriate fields, including the type of the message and the
contents of the 32 byte V message field, it calls Send(Message,
Receiver) , where Message is a pointer to the message and Receiver
is the V process id of the process to receive the message. The Send
routine fills other necessary fields of t.he message, stores the address
of the message in a global Message List, and increments the global
variable NextMsg, an index into the Message List which s!~orvs where
the address of the last message was written. To prevent collisions
from multiple processors trying to send messages at the same time,
the index variable NextMsg is protected with a global boolean
protection varisble using a test-and-set instruction. Access to the
protection variable is arbitrated by the Multibus. AMer Mextlsg is
incremented, the 32K exerts an interrupt on the 68K. The 32K then
polls in local memory, waiting for the V system message transaction
to complete. Polling in local memory helps minimize bus ntilization.

The interrupt from the 32K causes a V-System user process, the
message srrver, to be readied. The message server compares the
global variable NextMsg to an internal variable Lastlsg, which is an
index into the Message List that shows the last message deal? with.
If they are the same, the message server goes back to sleep. If they
are not, the same, the message server sends the address of the
message to the handler process corresponding to the sending
processor. Separate processes for each processor promote a high level
of concurrency. This is beneficial in a multiprogramming
environment such as the V-System, especially since many of the
messages are commonly 1/0 requests. The message handler performs
byte and w x d order translations, then sends the message to the
intended receiver and waits for a reply. Alter the V message
transaction is complete, the message handler process notifies t,he 32K
that its reply is ready by setting a ‘replyed’ bit in the message, and
then blocks, awaiting a new message. Baek at the 32K, the Send0
call returns with the reply message where the original message had
been, completing the message transaction. Figure 2 illustrates some
basic mechanisms of the communication system.

Typed messages are necessary because of the different byte and
word order conversions required. Several simple types are available
including types for messages composed of bytes, words, and longs.
There is also an “untyped” type, in the case that existing types are
not suitable for the intended application.

One of the strengths OF the system is efficiency. In the present
implementation, a concerted effort was made to avoid unnecessary

1732

d v Uwr Pme-

I
Figure 2: Message Passing Communication. This i igure

illustrates two possible message states. Messages 1 and 2 have been
sent by the 92Ks, received by V-System processes, and are pending
reply. Message 3 h a s been added to the Message Lis t , and NextMsg
has been inmemented, and the 32K i s now intmrupting the 68K t o
let the message serum know that a new message is ready. When the
message server wakes up, it will see that LastMsg is not equal to
Ne'eztMsg, and create a child to manage the new mewage.
copying of messages, though some copying is unavoidable because of
the necessity of byte and word order translations. Interrupts between
the processors also contribute to the speed and efficiency of the
system.

One of the weaknesses of the message system is the need to do so
much byte and word swapping. However, this is less of a problem in
the message passing system, where the amount of da ta passed is
relatively small, than in the applications that will be using it, such as
the file 1/0 system. The heterogeneous processors were chosen
because of the processing power of the 32K, with floating point speed
which is very useful in manipulation applications, and for the good
user interface and 1/0 support available with the 68K and the V-
Kernel. However, if a second machine were to be built, it would
likely use processors with the same byte ordering.

Synchronlestion
To support determinist execution of procedures distributed across

several processors, synchronization primitives are included in the
NYMPH programming environment. These primitives,
synch-signal (n) and synch-wait (n ,pa t i ence) , provide dynamic
synchronization, da t a collection for critical path analysis, and a
limited channel for message passing.

The central objective of the synchronization design was to
provide a means for dynamically coordinating processes at run time:
the programmer should not have to work out and embody in the
programs a schedule of synchronization events. A processor indicates
its desire to participate in a synchronization event by executing the
command synch-signal (n), where n specifies the synchronization
event in which process wants to participate. A process may signal a t
any time. Each process that signals must eventually wait. The
synchronization method is dynamic in the sense that neither prior nor
global knowledge is required regarding which processes will
participate in a synchronization events. When a process executes
synch-wait(n,patience) it checks to see whether all of the signaling
processes have waited. If not, the waiting processes blocks. In a
multitasking environment, a context switch to a background job

signal (1)

would be possible here. If the waiting process is the last signaling
processes to wait, it readies all of the blocked processes. Figure 3 is
an illustration of how such a sequence might take place.

Program 1 Program 2 Program 3

signal (1) signal (2)
signal (2)

wait (1, -1)
{blocked}

wait (2,O)
{continues,

{readied) wait (1, -2) patience-)
{readies p-l}
{continues)

wait (2 , -1)
{continues}

Figure 3: Three :.:ograms synchronized at two points

The patience parameter makes it possible for a process to execute
synch-wait() and yet not block. If synch-wait0 is called with
patience equal to zero, the process will not block. If synch-wait0 is
called with patience equal t o a positive value, the process will block
until the final wait occurs, or for a period proportional to the value
of patience. Thus, with the patience parameter, a process can
indicate: 'wait until all synchronizing processes complete', with
patience < 0; 'don't wait', with patience = 0; and 'wait until all
synchronizing processes complete, but no longer than patience', with
patience > 0. It is possible that some processes might not need to
block. For example the data produced by program 3 above might be
required by program 1 after program 1 executes synch_aait(2,-1);
so program 1 must block to provide for the possibility that program
3 takes longer. But program 3 might require nothing of program 1;
so program 3 should execute synch-wait(2.0) and continue
execution.

By recording a history of the time each synchronlzations
completed and the completing process number, the synch-wait0
primitive can compile the data necessary to perform a critical path
analysis. This tool should aid the programmer in spreading tasks
across processors and achieving a balanced load.

The synch-signal0 and synch-wait0 primitives operate by
writing into statically declared data spaces in global memory and the
local memory of each processor. The static declaration reduces the
runtime overhead of passing pointers. Within this mechanism, at
negligible additional cost, the synch-wait0 primitive is made to
return the patience value of the waiting process that completes the
synchronization event. Thus, if program 1 had executed:

result = synch-wait(] ,-l);

resuming execution, result would have the value of -2, the patience
value passed by program 2 in synch-wait(1, -2). This feature
might be used diagnostically, or to communicate simple messages.

Programmlng Environment
The C standard 1/0 library has been implemented using the

communications system described above. The 1/0 library is a
buffered I/O system, with server processes on the 68K filling and
emptying the buffers. In addition to the file 1/0 capabilities, stdin,
stdout, and stderr have been defined to be the input and output

1733

streams of windows of the VGTS, allowing user interaction through
the V-System.

Applicaf' Jlans

Multiprocessor System for the Stanford/JPL Hand
The StanfordjJPL hand has three fingers with three degrees of

frerdom each. actuated by a coupled pulley system with 4 tendons
and motors for each finger, for a total of twelve motors. Each tendon
has a tension sensor mounted near the finger t o allow control of joint
torque, and motor shaft encoders to determine motor position. This
hand has the necessary dexterity for fine motion and force control of
grasped objects, and for regrasping operations where objects are
reoriented within the hand.

Force control st,rategies have been developed and implemented on
a PDP-11/60 minicomput,er that enable control of object oricntation
and allow the object t,o be regrasped in new orientations (Fearing,
1886). The control program is divided into high 2nd low level servos.
At t.he lowest level, a joint torque servo runs at 100 Hz fur all three
fingers, servoing motor Lorques based on desired and sensed tendon
tensions and motor velocities. At the high level, desired forces in a
spherical reference frame based on the task geometry are specified at
33 Hz. These servo programs saturated the computational power of
the PDP-I1/60. For improved performance in motion velocity and
force accuracy, higher servo rates are required.

Tactile sensor arrays (8x8) in cylindrical finger tips have been
fabricated here for incorporation on the 3 finger hand. Each sensor
will be scanned at between 10-30 Hz rate, so approximately 5000

Multiprocessor System
for Stanford/SPL Hand

Finger

Flgure 4: Multiprocessor System for Stanford/JPL Hand

samples per second will need to be analyzed to determine essential
information for object manipulation such as contact location, object
orientation, and contact forces. In addition, a program with global
knowledge of the s ta te OF all three fingers and the object, and with
an overall plan for the manipulation operation must be executing
concurrently.

The computational requirements of this hand control system are
beyond the capabilities of even large miriicomputers like the Vax
11/780. Luckily, each finger's servo control can be run independently
from the other fingers, which allows three separate parallel
computations to be done. Figure 4 shows bhe proposed structure of
the hand control system, where each box represents a separate CPU.
T o eliminate IO contention at the hand interface, the joint servo
processing is done by one CPU for all three fingers. Each finger will
have a dedicated processor for tactile processing, and one for
implementing the force cont,rol loop. This totals 2 and one third
equivalent CPLJs per finger. The tactile and force control processors
will share responsibility for correcting finger forces to ge t desired
object motion, to prevent unwanted slip, and to recover from errors
in object attitude. Benchmark studies suggest that with this
architecture, we will be able t o achieve joint servo rates of 200 Hz,
and spherical force servo rates of about 100 H z if required.

An important consideration in parallel processing is the
communications cost of passing parameters between processors. With
the servo rates above, a conservative estimate is a bus bandwidth
requirement of less than 200K bytes/second, which is only 10% of
the typical 2 MB/s bandwidth of the Multibus.

cosmos
COSMOS is an experimental programming system designed to

facilitate experiments in manipulator position and force control.
COSMOS was originally implemented in a PDP 11/45 minicomputer,
and subsequently implemented in a PDP 11/45 and PDP 11/60
multiprocessor configuration. However, these computers werc found
to be unsuitable for manipulator control research. A versatile and
useful manipulator control computer system should have the
following attributes:

1. Large computational power. The natural frequencies involved
during force control operation are much higher than encountered
during position control, and thus require greater servo bandwidth,
and consequently greater computational power.

2. Large amounts of memory. In order to evaluate and contrast
control algorithms in a quantitative way, it is necessary to store large
amounts of da t a in real time for later analysis.

3. Graphics Capablikies. Display facilities for graphical analysis
of the run time to enable quick evaluation of experimental results.

The NYMPH multiprocessor system fulfills these requirements,
enabling a vastly improved implementation of COSMOS.

The control scheme used in the COSMOS system (Khatib and
Burdick 198F) is based on the operation space approach, which.
employs an operational space dynamic model of the the manipulator
being controlled (a PUMA 560 manipulator in this case). The real
time control algorithm can be divided into two levels:

1. A "high level' system which computes the configuration
dependent kinematic and dynamic models at a relatively lower rate.

2. A "low level" servo syst,em which computes the servo equations
a t a faster rate using sensor data and the dynamic data from the
"high 3evel- .

734

In essence, the low level system measures the manipulator
position and forces, and then computes joint torques using a series of
vector and matrix operations. The vector and matrix elements used
in these computations are dependent on the configuration of the
manipulator, and are updated by the high level. A third level, the
'programming level' interacts with the manipulator programmer,
and performs run time program execution.

Each of these levels can be further divided to extract more
parallelism. Since the control algorithm used in COSMOS is not
based on a joint level control, but rather on direct and decoupled
control of the task coordinates, each level of the run time system can
be further decomposed into sub-systems that control the position
degrees of freedom of the manipulator, and the orientation degrees of
freedom.

Cosmos Sys tem Archi tec ture
High Level Low Level

32K I Kincmalin It
Dynamics

Position

r-----l
Orientation

Dynamics

1

32K

32K

Figure 5: Multiprocessor System for COSMOS.

Figure 5 represents how the computational burdell in COSMOS
might be spread across five processors. Two processors could
perform the low level position and orientation servo (as well as sensor
processing); two processors could compute the position and
orientation kinematics and dynamics, and a fifth processor could
handle programming and run time execution. These tasks could be
further broken down into smaller computational units, and allocated
to more processors. However, the extra overhead for interprocessor
communication and synchronization would minimize the extra
computational power gained by further parallelization.

The current COSMOS implementation using the NYMPH system
is distributed in a three processor configuration, in which the "high
level" position and orientation kinematics/dynamics algorithms and
'programming level" are implemented in a single processor. With
this configuration, a low level servo rate of 220 Hz and a high level
dynamics computation rate of 110 Hz h a s been achieved. With the
five processor implementation (under progress), we expect to have a
300 Hz servo rate, 300 Hz rate for position kinematics and dynamics,
and a 150 Hz rate for orientation kinematics and dynamics.

Performance
With the 32Ks and the 68K all on the same bus, communication

between the processors is very fast. Data can be passed as fast as
lOOOk bytes per second between the 32I<s, and as fast as 490k bytes
per second between the 68K and a 32K.

NYMPH's message passing system is also very efficient. The
average time for a message transaction on NYMPH is 4 milliseconds,
compared to 2 milliseconds for the V-System message alone.

The C library performance is reasonable, with file transfers
occurring at rates as high as 10k bytes per second, compared to the
V-System file I/O rate of 20k bytes per second. At this rate, it takes
about one minute for a 32K to fill all 512k bytes of its RAM. This is
not surprising if one considers the circuitous path the data takes to
get to 32K from Vax, via Ethernet link, buffered in the V-System
1/0 system, then buffered again in the NYMPH 1/0 system.

The speed of the 32K/Vax link is much slower than the link
between the 32Ks and the 68K. This would be a problem if NYMPH
depended on the Vax for processing, but NYMPH uses the Vax only
as a file server. Since NYMPH applications do file 1/0 primarily
during initializations at the beginning of programs and before time
critical sections begin, and at the end of programs for postmortem
information, the relative speed of the 32K/Vax link has little bearing
on the overall performance of the system.

Figure 6: NYMPH running COSMOS.

Conclusion
NYMPH'S st,rengths are in the large amount of computing

resources available, and the familiarity and ease of use of the
programming environment. In the present configuration, it is not
anticipated that any applications will run short of computing power.
All of our applications will run much faster t h m they did in the past.
Applications such as Cosmos will not need all 7 processors, and thus
will leave some processors idle. NYMPH will be well able to meet
our present computational requirements.

NYMPH'S user interface will simplify the programming of the
applications programs. The multi-window editors available a t the
NYMPH console allow minor changes to source code conveniently
with minimal interruption of work. The graphics capabilities of
NYMPH allow researchers to easily analyze date with graphs and
plots, without leaving the console. The familiar programming
environment of NYMPH, with the C runtime library, reduces the
amount of special routines the programmer must learn to use
NYMPH. KYMPH's user interface provides ample tools for making
research efforts efficient. Overall, NYMPH has combined ample
computing power and a good programming environment to make an
effective research tool.

1735

Acknowledgments
The authors wish to gratefully acknowledge Professor Thomas

0. Binford for his guidance and support. We would also like to
thank Lance Berc of Stanford’s Distributed Systems Group for
making available his expertise on the V-System. This work was
funded by DARPA Contract F33615-82k-5108.

References
1.

2.

3.

4 .

5.

6.

7.

8.

9.

E. J. Berglund et. al.Computer Systems Laboratory, Stanford
University. V-System Reference Manual, 1985.

D. R. Cheriton, “The V Kernel: A software base for
distributed systems,” IEEE Software, April 1984, pp. 19-42.

R.S. Fearing, “Implementing a Force Strategy for Object Re-
orientation,” 1986 IEEE Internat ional Conference on
Robotics and Automation, April 1986.

Oussama Khatib and Joel W. Burdick, “Manipulator Motion
and Force Control,” 1986 IEEE International Conference on
Robotics and Automation, April 1986.

Ravi Nigam and C.S.G. Lee, “A Multiprocessor-Based
Controller for the Control of Mechanical Manipulator,” 1985
IEEE Internat ional Conference on Robotics and
Automation, March 1985, pp. 815-821.

F. Ozguner and M.L. Kao, “A Reconfigurable Multiprocessor
Architecture for Reliable Control of Robotic Systems,” 1985
IEEE International ConJerence on Robotics and
Automation, March 1985, pp. 802-806.

David M. Siege], Sundar Narasirnhan, John M. Hollerbach,
David J. Kriegman, George E. Gerpheide, “Computational
Architecture for the UtahlMIT Hand,” 1985 IEEE
International Conference on Robotics and Automation,
March 1985,%pp. 918-924.

Karsten Schwan, Tom Bihari, Bruce W. Weide and Gregor
Taulpbee, “GEM: Operating System Primitives for Robots
and Real-Time Control Systems,” 1985 IEEE In ternat ional
Conference on Robotics and Automation, March 1985, pp.

t :’

807-813.

Yuan F. Zheng and Ben R. Chen, “A Multiprocessor For
Dynamic Control of Multilink Systems,” 1985 IEEE
International Conference on Robotics and Automation,
March 1985, pp. 295-300.

