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Abstract 
The  robotics  group  of the  Stanford  Artificial  Intelligence 

Laboratorg is  currently  developing  a  new  computational  system  for 
robotics  applications.  Stanford’s NYMPH system  uses  multiple 
NSC 32016 processors  and  one MC68010 based processor,  sharing  a 
common  Intel  hfultbbus.  The 32K processors  provide  the  raw 
computational  power needed for  advanced  robotics  applications,  and 
the 68K provides  a  pleasant  interface  with  the  rest  of  the  world. 
Software  has been  developed to  provide  useful  communications  and 
synchronization  primitives,  without  consuming  excessive  processor 
resources or bus bandwidth. NYMPH provides  both  large  amounts 
of computing  power  and  a good programming  environment,  making 
it an  effective  research  tool. 

Introduction 
The  real  time  requirements of modern  applications in robotics 

control  require  large  amounts of computing power.  Multiprocessor 
machines  are well suited  for  these  applications  because  they  can 
economically  and  flexibly  provide the  large  amounts of computing 
power  required. Single  processors of a  multiprocessor  system  can 
manage single time  critical  tasks. By coordinating  these  processors, 
real  time  systems  can  be  constructed.  NYMPH  (Not  Your  average 
Multiprocessor  Hack) is a system being  developed by the  robotics 
group of the  Stanford  Artificial  Intelligence  Laboratory  to  meet  the 
computational  requirements of present  and  future  robotics  control 
applications. 

The  computational  requirements of creating a pleasant  and 
functional  software  environment  for a robotics  control  processor  are 
in direct  opposition to  the  primary  goal of keeping  the  computing 
power  available to  the  servo loop  calculations.  In  previous  control 
systems,  programmers  have suffered  immeasurable  grief  searching  for 
clever ways  to  prevent  servo  calculations  from  being  interrupted by 
1 / 0  requests  and  other  operating  system  tasks.  Such  interrupt 
mechanisms  are  good  for  systems  in  which  the  first  concern is to 
communicate  with people, but in  real time  robotics  applications  they 
often  prevent  the  computers  from  keeping  pace  with  the  machines. 

IJsing a  multiprocessor  architecture  further  complicates  the 
problem of creating a pleasant user environment.  It would be 
convenient t o  be  able to  control  arbitrary  applications  running on  all 
the processors  from  a  single  program  or  a  single  terminal,  but  the 
communications  and  synchronization  problems  involved in creating 
such an  environment  mandate  large  and complex structures  to 
coordinate  them,  making  the  pleasant  programming  environment 
inefficient  and  difficult to build.  Because of the  inherent  complcxif,y 
of multiprocessor  environments,  and  the  need  to  preserve  available 
computing resources  for  the  application  programs,  manipulation 
multiprocessors  tend  to  have  somewhat uncivilized  user interfaces. 

In  KY-MPH, multiprocessor  control  structures  have been 
integrated  into  an  existing  system,  adding  the  processing  power 

necessary for  robotics  applications  to  an  already  cxistmg 
programming  environment. While  NYMPH’S  32K  computers  provide 
real time  computing power and high  speed  floating  point 
computation,  the  68K  manages  user  interaction.  The  68K is part of 
a Sun  120  computer,  with  an  800 by 1024 bitmapped  display  and 
high  speed  graphics  capabilities. The 68K runs  the  V-System  with 
the  Virtual  Graphics  Terminal  Server  (VGTS)  window  system, 
developed by the  Distributed  Systems  Group of Stanford LJniversity 
(Cheriton  1982). Using the  V-Syskm  with t.he VGTS,  the  NYMPH 
programmer  can  have  interaction  windows  for  each  processor,  plus 
editors,  t,erminal  emulators,  graphics  capabilities,  network  access,  and 
other useful  facilities  provided by the  V-System.  The  researcher  can 
edit files, test  software on the  multiprocessor,  and  analyze  output 
with  the aid of graphics,  quickly  and  conveniently,  all  from  the  same 
console. 

Previous Work 
Computers using multiple  microprocessors  are  becoming 

important as a  cost effective  solut.ion to  the  computational  demands 
of real time  robotics  applications.  The 32K one  board  computers 
used in NYMPH  provide 40% of t.he floating  point  speed of a  Vas 
11/780  (with  a  floating  point  accelerator)  at 1% of the  cost. 

Much work  has  been  done in the  area of the feasibility and 
efficiency of manipulation  multiprocessors  (Nigam  and  Lee  1985, 
Zhcng and  Chen  1985).  Research  has also been  directed  towards  the 
development of special system  software  to  run on  such  machines 
(Schwan et .  al. 1985, Siegel et.  al.  1986). 

A  group of researchers a t  MIT (Siegel e t  a1 1985)  used  five 
MC68010s  with a DMA link to  a DEC  Vax 11/750 to  control  the 
UtahlhlIT  Hand. In this system,  the  Vax is used for user and file 
1 / 0  and  program  development.  This  system  also  utilized a message- 
style  communication  system  and  synchronization by means of a 
servo-loop-scheduler  routine. 

Ozguner  and  Kao  (1985)  have  designed  a  reconfigurable 
multiprocessor  to  control  the  Ohio  State  University  hexapod  walking 
machine.  This  multiprocessor  uses 4 Intel  86/30  single  board 
computers  with  fault  detectlon  and  correction  hardware, 
communicating  on  four busses. Error  recovery  using  redundancy  was 
investigated  with  this  machine. 

Architecture 
NYMPH uses  seven  32K  single  board computers  to  provide  the 

bulk of its  computing power. The  32K  boards  run  at  10MHz  and 
each  board  includes  32K  bytes of ROhl, 5i2k bytes of RAM, a 
floating  point  co-processor,  an 825512 Programmable  Peripheral 
Interface,  and  two  serial  ports.  The  32081  floating  point  co-processor 
greatly  enhances  the  performance of the  system,  enabling  the 32K to  
do  a  floating  point  multiply in 6 microseconds. 
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Figure 1: The  Nymph  System 

The  68K  provides  the  interface  between  NYMPH  and  the  rest of 
the  world.  Since  the  68K  and  the  32Ks  are  on  the  same  Multibus, 
communication  between  the  machines is as  fast as a  bus  transaction. 
A 10MB/second  Ethcrnet  links  the  68K  to  the  Vax  computers  used 
for  remote file 1 / 0  and  program  development.  The  dual  ported 
memory of the  32K  boards  enables  the  68K  to  load  programs 
received  over t.he Ethernet  directly  into  the local  memory of the 
32Ks. 

The  onboard  parallel  port of the  32K  boards is used to  interrupt 
the  68K  processor.  The 32Ks’ ability to interrupt  the  68K helps the 
68K to respond  quickly t o  service  requests.  Since  the  68K  does  not 
get  any  resources  from  the  32K,  and  since  it is desirable for the 32K 
to  be able t o  respond  quickly to  the  demands of real t.ime 
applications,  the  68K  can  not  int.errupt  the 32Ks. 

N Y h P H  also  has 2M bytes of EDC RAM, parallel 1 / 0  controllers 
to  communicate  with  robot  controllers, A-D converters  to  process 
force  and  tactile  sensor  data,  and D-A converters to drive  motors. 

Software 
NYMPH  software is designed to  avoid  system  overhead  on  the 

39K processors.  Their  role is to control  the  arms  and  hands,  and  to 
bog  them  down  with  interrupts or a sophisticated  operating  system 
would  deny  processing  power to  the  applications. For this  reason, 
there is not  an  operating  system  that  runs  on  each  32K,  but  rather a 
collection of runtime  library  routines.  Two  libraries which  greatly 
improve  the  ease of programming NYMPH are  the  Communications 
library  and  the  Synchronization  library. 

Communications 
The 68K  processor in the  NYMPH  system  exists to service  the 

runtime  interact,ion  requests of the  32Ks. In bhe NYMPH  system, 
the  32K  processors  act as clients,  and  the  68K is the  server, fulfilling 
the  requests of the  32Ks. 

Communication in NYMPH is  based  on a synchronous,  typed, 
dependable  message  passing  system,  with  which  a  32K  procejsor  can 
send a 32 byte  message  to B V-System  process  running  on the  68K, 
and  receive a reply.  The  32K uses the messages to make  resource 
requests  from  servers  running  on  the  68K.  Since  the  68K  never  needs 
to  make a request of the  32Ks,  the  68K  cannot  send a messages to 
them. 

The message  passing  system  used in NYMPH relies  on the 
message  passing  primitives  provided by the V-System. Each  message 
sent by a 32K  contains a V-System  type  message,  in  addition t o  
other fields  such as  sender  machine  id, receiver  process  id,  and 
message state.  

A message  transaction  involves  the  following: A process  on a 
Nat,ional  allocates  memory for the  message  from  its own local 
memory, usually  compiled in as a variable  declaration.  Alter filling 
in the  appropriate fields,  including the  type of the  message  and  the 
contents of the 32 byte V message  field, it  calls  Send(Message, 
Receiver) ,  where  Message is a  pointer  to  the  message  and Receiver 
is the V process id  of the  process  to receive the  message.  The Send 
routine fills other necessary fields of t.he message,  stores  the  address 
of the  message in a global  Message  List,  and  increments  the  global 
variable NextMsg, an  index  into  the  Message  List which s!~orvs where 
the  address of the  last  message  was  written. To prevent  collisions 
from  multiple  processors  trying to send  messages at  the  same  time, 
the  index  variable NextMsg is protected  with a global  boolean 
protection  varisble  using a test-and-set  instruction.  Access  to  the 
protection  variable is arbitrated by the  Multibus. AMer Mextlsg is 
incremented,  the  32K  exerts  an  interrupt  on  the  68K.  The 32K then 
polls in local  memory,  waiting for the V system  message  transaction 
to  complete.  Polling in local  memory  helps  minimize  bus  ntilization. 

The  interrupt  from  the  32K  causes a V-System  user  process,  the 
message  srrver, to be readied. The  message  server  compares  the 
global  variable NextMsg to  an  internal  variable  Lastlsg, which  is an 
index  into  the  Message  List  that  shows  the  last  message  deal?  with. 
If they  are  the  same,  the  message  server  goes  back to sleep. If they 
are not, the  same,  the  message  server  sends  the  address of the 
message to the  handler  process  corresponding  to  the  sending 
processor.  Separate  processes for each  processor  promote a high level 
of concurrency.  This is beneficial  in a multiprogramming 
environment  such as the V-System,  especially  since many of the 
messages are  commonly 1/0 requests.  The  message  handler  performs 
byte  and w x d  order  translations,  then  sends  the  message  to  the 
intended  receiver  and  waits for a reply.  Alter  the V message 
transaction is complete,  the  message  handler  process  notifies t,he 32K 
that  its reply is ready  by  setting a ‘replyed’  bit  in  the  message,  and 
then  blocks,  awaiting a new  message.  Baek at   the  32K,  the  Send0 
call returns  with  the reply  message  where the  original  message  had 
been,  completing  the  message  transaction.  Figure  2  illustrates  some 
basic  mechanisms of the  communication  system. 

Typed  messages  are  necessary  because of the  different  byte  and 
word  order  conversions  required.  Several  simple  types  are  available 
including  types for messages  composed of bytes,  words,  and  longs. 
There is also an  “untyped”  type, in the  case  that  existing  types  are 
not  suitable  for  the  intended  application. 

One of the  strengths OF the  system is  efficiency.  In the  present 
implementation, a concerted  effort  was  made to avoid  unnecessary 
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Figure 2: Message  Passing  Communication. This   i igure  

illustrates  two  possible  message  states.  Messages 1 and 2 have been 
sent by the  92Ks, received by V-System  processes,  and  are  pending 
reply.  Message 3 h a s  been added to   the  Message  Lis t ,   and  NextMsg 
has  been inmemented,  and  the 32K i s  now  intmrupting  the 68K t o  
let the  message  serum  know  that  a  new  message  is  ready.  When  the 
message  server  wakes  up,  it  will  see  that  LastMsg  is  not  equal to  
Ne'eztMsg, and  create  a  child  to  manage  the  new  mewage. 
copying  of  messages,  though  some  copying is unavoidable  because of 
the necessity of byte  and  word  order  translations.  Interrupts  between 
the processors  also contribute to the speed and efficiency of the 
system. 

One of the weaknesses of the message system is the need to  do so 
much  byte  and  word  swapping.  However,  this is less of a problem in 
the  message  passing  system,  where  the  amount of da ta  passed is 
relatively  small,  than in the  applications  that will  be  using it, such  as 
the file 1/0 system.  The  heterogeneous  processors  were  chosen 
because of the processing  power of the 32K, with  floating  point  speed 
which is very  useful in manipulation  applications,  and  for  the  good 
user  interface  and 1/0 support  available  with  the 68K and  the V- 
Kernel.  However, if a  second  machine  were to be built,  it  would 
likely  use processors  with  the  same  byte  ordering. 

Synchronlestion 
To  support  determinist  execution of procedures  distributed  across 

several  processors,  synchronization  primitives  are  included in the 
NYMPH  programming  environment.  These  primitives, 
synch-signal  (n)  and  synch-wait (n ,pa t i ence ) ,  provide dynamic 
synchronization, da t a  collection  for  critical  path  analysis,  and  a 
limited  channel  for  message  passing. 

The  central  objective of the  synchronization  design  was to  
provide a means  for  dynamically  coordinating  processes  at  run  time: 
the  programmer  should  not  have  to  work  out  and  embody  in  the 
programs  a  schedule of synchronization  events. A processor  indicates 
its  desire  to  participate  in a synchronization  event by executing  the 
command  synch-signal  (n),  where  n specifies the  synchronization 
event in which  process wants  to  participate. A process  may  signal a t  
any  time.  Each  process that  signals  must  eventually  wait.  The 
synchronization  method is dynamic in the sense that  neither prior  nor 
global  knowledge is required  regarding  which  processes will 
participate in  a  synchronization  events.  When  a  process  executes 
synch-wait(n,patience) it checks to  see  whether  all of the  signaling 
processes have  waited. If not,  the  waiting processes  blocks.  In a 
multitasking  environment,  a  context  switch  to a background  job 

signal (1) 

would  be  possible  here. If the  waiting  process is the  last  signaling 
processes to  wait, it readies  all of the blocked  processes. Figure 3 is 
an  illustration  of how such a sequence might  take place. 

Program 1 Program 2 Program 3 

signal (1) signal (2) 
signal (2) 

wait (1, -1) 
{blocked} 

wait (2,O) 
{continues, 

{readied) wait (1, -2)  patience-) 
{readies p-l} 
{continues) 

wait (2 ,  -1) 
{continues} 

Figure 3: Three :.:ograms synchronized at  two  points 

The  patience  parameter  makes it possible for  a  process to  execute 
synch-wait()  and  yet  not  block. If synch-wait0 is called  with 
patience  equal  to  zero,  the  process will not  block. If synch-wait0 is 
called  with  patience  equal t o  a positive  value,  the process  will  block 
until  the final wait  occurs,  or for  a  period  proportional to  the  value 
of  patience.  Thus,  with  the  patience  parameter,  a  process  can 
indicate:  'wait  until  all  synchronizing  processes  complete',  with 
patience < 0; 'don't  wait',  with  patience = 0; and  'wait  until  all 
synchronizing  processes  complete,  but  no  longer  than  patience',  with 
patience > 0. It is possible that  some processes might  not need to 
block. For  example  the  data  produced by program 3 above  might be 
required by program 1 after  program 1 executes  synch_aait(2,-1); 
so program 1 must block to  provide  for  the  possibility  that  program 
3 takes  longer.  But  program 3 might  require  nothing  of  program 1; 
so program 3 should  execute  synch-wait(2.0)  and  continue 
execution. 

By recording  a  history of the  time  each  synchronlzations 
completed  and  the  completing  process  number,  the  synch-wait0 
primitive  can  compile  the  data necessary to  perform a critical  path 
analysis.  This  tool  should  aid  the  programmer  in  spreading  tasks 
across  processors  and  achieving  a  balanced  load. 

The  synch-signal0  and  synch-wait0  primitives  operate by 
writing  into  statically  declared  data  spaces in global  memory  and  the 
local  memory  of  each  processor. The  static  declaration  reduces  the 
runtime  overhead  of  passing  pointers.  Within  this  mechanism,  at 
negligible additional  cost,  the  synch-wait0  primitive is made  to 
return  the  patience  value of the  waiting process that  completes  the 
synchronization  event.  Thus, if program 1 had  executed: 

result = synch-wait(] ,-l); 

resuming  execution,  result  would  have  the  value of -2, the  patience 
value  passed by program  2 in  synch-wait(1, -2). This  feature 
might be used diagnostically,  or  to  communicate  simple  messages. 

Programmlng  Environment 
The C standard 1/0 library  has  been  implemented  using  the 

communications  system described  above. The  1/0 library is a 
buffered I/O system,  with  server  processes  on  the 68K filling and 
emptying  the buffers.  In  addition to  the file 1/0 capabilities,  stdin, 
stdout,  and  stderr  have been  defined to  be  the  input  and  output 
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streams of windows of the  VGTS, allowing  user  interaction  through 
the V-System. 

Applicaf' Jlans 

Multiprocessor  System for the  Stanford/JPL Hand 
The  StanfordjJPL  hand  has  three fingers  with  three  degrees of 

frerdom  each.  actuated by a coupled  pulley  system  with  4  tendons 
and  motors for  each  finger,  for a total of twelve  motors.  Each  tendon 
has  a  tension  sensor  mounted  near  the  finger t o  allow  control of joint 
torque,  and  motor  shaft  encoders  to  determine  motor  position.  This 
hand  has  the necessary  dexterity  for  fine  motion  and  force  control of 
grasped  objects,  and  for  regrasping  operations  where  objects  are 
reoriented  within  the  hand. 

Force  control  st,rategies  have  been  developed  and  implemented  on 
a PDP-11/60 minicomput,er  that  enable  control of object  oricntation 
and  allow the  object t,o be  regrasped  in  new  orientations  (Fearing, 
1886). The  control  program is divided  into  high  2nd low level  servos. 
At  t.he lowest  level, a joint  torque  servo  runs at 100 Hz fur  all three 
fingers,  servoing  motor Lorques based  on  desired  and  sensed  tendon 
tensions  and  motor velocities. At  the high  level,  desired  forces in a 
spherical  reference  frame  based  on  the  task  geometry  are  specified at 
33 Hz. These  servo  programs  saturated  the  computational power of 
the PDP-I1/60. For  improved  performance in motion  velocity  and 
force  accuracy,  higher  servo  rates  are  required. 

Tactile  sensor  arrays  (8x8) in cylindrical  finger  tips  have  been 
fabricated  here  for  incorporation  on  the 3 finger  hand.  Each  sensor 
will be  scanned at between 10-30 Hz rate, so approximately 5000 

Multiprocessor System 
for Stanford/SPL Hand 

Finger 

Flgure 4: Multiprocessor  System  for  Stanford/JPL  Hand 

samples  per  second will need to  be  analyzed to determine  essential 
information  for  object  manipulation  such as contact  location,  object 
orientation,  and  contact forces. In addition, a program  with  global 
knowledge of the  s ta te  OF all  three  fingers  and  the  object,  and  with 
an  overall plan for the  manipulation  operation  must  be  executing 
concurrently. 

The  computational  requirements of this  hand  control  system  are 
beyond the  capabilities of even  large  miriicomputers like the  Vax 
11/780. Luckily,  each  finger's  servo  control  can  be  run  independently 
from the  other  fingers, which  allows  three  separate  parallel 
computations to be  done.  Figure 4 shows bhe proposed  structure of 
the  hand  control  system,  where  each  box  represents  a  separate CPU. 
T o  eliminate IO contention at the  hand  interface,  the  joint  servo 
processing is done by one CPU for all three  fingers.  Each  finger will 
have a dedicated  processor  for  tactile  processing,  and  one for 
implementing  the  force  cont,rol  loop.  This  totals 2 and  one  third 
equivalent CPLJs per  finger.  The  tactile  and  force  control  processors 
will share  responsibility for correcting  finger  forces to   ge t  desired 
object  motion, to prevent  unwanted  slip,  and  to  recover  from  errors 
in object  attitude.  Benchmark  studies  suggest  that  with  this 
architecture, we will be  able t o  achieve  joint  servo  rates of 200 Hz, 
and  spherical  force  servo  rates of about 100 H z  if required. 

An  important  consideration in parallel  processing is the 
communications  cost of passing  parameters  between  processors.  With 
the  servo  rates  above, a conservative  estimate is a bus  bandwidth 
requirement of less than 200K bytes/second,  which is only 10% of 
the  typical 2 MB/s bandwidth of the  Multibus. 

cosmos 
COSMOS is an  experimental  programming  system  designed to 

facilitate  experiments  in  manipulator  position  and  force  control. 
COSMOS was  originally  implemented in a PDP 11/45  minicomputer, 
and  subsequently  implemented in a PDP 11/45  and PDP 11/60 
multiprocessor  configuration.  However,  these  computers  werc  found 
to be  unsuitable for manipulator  control  research. A versatile  and 
useful  manipulator  control  computer  system  should have the 
following attributes: 

1. Large  computational power. The  natural frequencies  involved 
during  force  control  operation  are  much  higher  than  encountered 
during  position  control,  and  thus  require  greater  servo  bandwidth, 
and  consequently  greater  computational  power. 

2. Large  amounts of memory. In order to evaluate  and  contrast 
control  algorithms in a quantitative  way, it is necessary to store  large 
amounts of da t a  in real  time  for  later  analysis. 

3. Graphics Capablikies. Display  facilities for graphical  analysis 
of the  run  time  to  enable  quick  evaluation of experimental  results. 

The NYMPH multiprocessor  system fulfills these  requirements, 
enabling a vastly  improved  implementation of COSMOS. 

The  control  scheme used in the COSMOS system  (Khatib  and 
Burdick 198F) is  based on  the  operation  space  approach, which. 
employs  an  operational  space  dynamic  model of the  the  manipulator 
being  controlled (a PUMA 560 manipulator in this  case).  The  real 
time  control  algorithm  can be  divided into two levels: 

1.  A "high level' system  which  computes  the  configuration 
dependent  kinematic  and  dynamic  models at a relatively  lower  rate. 

2. A "low  level"  servo  syst,em  which  computes  the  servo  equations 
a t  a faster  rate using  sensor data  and  the  dynamic  data  from  the 
"high 3evel- . 
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In  essence, the low level system  measures  the  manipulator 
position and  forces,  and  then  computes  joint  torques  using a series of 
vector  and  matrix  operations.  The  vector  and  matrix  elements used 
in these  computations  are  dependent  on  the  configuration of the 
manipulator,  and  are  updated by the high  level. A third level, the 
'programming  level'  interacts  with  the  manipulator  programmer, 
and  performs  run  time  program  execution. 

Each of these  levels  can be further  divided to extract  more 
parallelism.  Since the  control  algorithm used  in COSMOS is not 
based on a joint level control,  but  rather  on  direct  and decoupled 
control of the  task  coordinates,  each  level of the  run  time  system  can 
be  further  decomposed  into  sub-systems  that  control  the position 
degrees of freedom of the  manipulator,  and  the  orientation  degrees of 
freedom. 

Cosmos Sys tem  Archi tec ture  
High Level Low  Level 

32K I Kincmalin It 
Dynamics 

Position 

r-----l 
Orientation 

Dynamics 

1 

32K 

32K 

Figure 5: Multiprocessor  System  for COSMOS. 

Figure 5 represents  how  the  computational  burdell  in  COSMOS 
might  be  spread  across  five  processors.  Two  processors could 
perform  the low  level  position and  orientation  servo (as well as sensor 
processing); two processors  could compute  the position  and 
orientation  kinematics  and  dynamics,  and  a  fifth  processor could 
handle  programming  and  run  time  execution.  These  tasks  could  be 
further broken down  into  smaller  computational  units,  and  allocated 
to more  processors.  However,  the  extra  overhead  for  interprocessor 
communication  and  synchronization  would  minimize  the  extra 
computational power  gained by further  parallelization. 

The  current  COSMOS  implementation using the  NYMPH  system 
is distributed in a  three  processor  configuration,  in  which  the  "high 
level"  position and  orientation  kinematics/dynamics  algorithms  and 
'programming level" are  implemented  in a single  processor. With 
this  configuration,  a low level servo  rate of 220 Hz and a high  level 
dynamics  computation  rate of 110 Hz h a s  been  achieved.  With  the 
five  processor implementation  (under  progress), we expect to  have a 
300 Hz servo  rate,  300 Hz rate  for position  kinematics  and  dynamics, 
and a 150 Hz rate  for  orientation  kinematics  and  dynamics. 

Performance 
With  the  32Ks  and  the  68K all on  the  same bus,  communication 

between  the  processors is very  fast.  Data  can  be passed as  fast  as 
lOOOk bytes per  second  between  the 32I<s, and as fast as 490k bytes 
per  second  between the  68K  and  a  32K. 

NYMPH's  message  passing  system is also  very  efficient. The  
average  time for  a  message  transaction  on  NYMPH is 4 milliseconds, 
compared to 2  milliseconds  for the  V-System  message  alone. 

The C library  performance is reasonable,  with file transfers 
occurring at   rates as  high as 10k bytes per  second,  compared to   the 
V-System file I/O rate of 20k bytes per  second. At  this  rate,  it  takes 
about  one  minute for  a  32K to  fill all  512k bytes of its  RAM.  This  is 
not  surprising if one  considers  the  circuitous  path  the  data  takes  to 
get  to  32K  from  Vax,  via  Ethernet  link, buffered in the  V-System 
1/0 system,  then  buffered  again  in  the  NYMPH 1/0 system. 

The speed of the  32K/Vax link is much  slower  than  the  link 
between  the 32Ks and  the 68K. This would  be a problem if NYMPH 
depended  on  the  Vax  for  processing, but  NYMPH uses the  Vax only 
as  a file server.  Since  NYMPH  applications do file 1/0 primarily 
during  initializations  at  the  beginning of programs  and before time 
critical  sections  begin,  and at the end of programs for postmortem 
information,  the  relative  speed of the  32K/Vax link has  little  bearing 
on the  overall  performance of the  system. 

Figure 6: NYMPH  running  COSMOS. 

Conclusion 
NYMPH'S  st,rengths  are in the  large  amount of computing 

resources  available,  and  the  familiarity  and  ease of use of the 
programming  environment. In the  present  configuration,  it is not 
anticipated  that any  applications will run  short of computing power. 
All of our  applications will run  much  faster t h m  they  did in the  past. 
Applications  such as Cosmos will not  need  all 7 processors,  and thus 
will  leave  some  processors  idle.  NYMPH will be  well  able to  meet 
our  present  computational  requirements. 

NYMPH'S  user  interface will  simplify the  programming of the 
applications  programs.  The  multi-window  editors  available a t   the  
NYMPH console  allow  minor  changes to  source  code  conveniently 
with  minimal  interruption of work.  The  graphics  capabilities of 
NYMPH allow researchers  to  easily  analyze  date  with  graphs  and 
plots,  without  leaving  the  console.  The  familiar  programming 
environment of NYMPH,  with  the C runtime  library,  reduces  the 
amount of special  routines the  programmer  must  learn  to use 
NYMPH.  KYMPH's user interface  provides  ample  tools  for  making 
research  efforts  efficient.  Overall,  NYMPH  has  combined  ample 
computing  power  and  a  good  programming  environment  to  make  an 
effective  research tool. 
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