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Abstract

Motivation: Protein O-GlcNAcylation (O-GlcNAc) is an important post-translational modification of

serine (S)/threonine (T) residues that involves multiple molecular and cellular processes. Recent

studies have suggested that abnormal O-G1cNAcylation causes many diseases, such as cancer

and various neurodegenerative diseases. With the available protein O-G1cNAcylation sites ex-

perimentally verified, it is highly desired to develop automated methods to rapidly and effectively

identify O-GlcNAcylation sites. Although some computational methods have been proposed, their

performance has been unsatisfactory, particularly in terms of prediction sensitivity.

Results: In this study, we developed an ensemble model O-GlcNAcPRED-II to identify potential O-

GlcNAcylation sites. A K-means principal component analysis oversampling technique (KPCA) and

fuzzy undersampling method (FUS) were first proposed and incorporated to reduce the proportion

of the original positive and negative training samples. Then, rotation forest, a type of classifier-

integrated system, was adopted to divide the eight types of feature space into several subsets

using four sub-classifiers: random forest, k-nearest neighbour, naive Bayesian and support vector

machine. We observed that O-GlcNAcPRED-II achieved a sensitivity of 81.05%, specificity of

95.91%, accuracy of 91.43% and Matthew’s correlation coefficient of 0.7928 for five-fold cross-valid-

ation run 10 times. Additionally, the results obtained by O-GlcNAcPRED-II on two independent

datasets also indicated that the proposed predictor outperformed five published prediction tools.

Availability and implementation: http://121.42.167.206/OGlcPred/

Contact: cangzhijia@dlmu.edu.cn or zouquan@nclab.net

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

GlcNAcylation is an O-linked b-N-acetylglucosamine (OGlcNAc)

moiety linked to the side chain hydroxyl of a serine (S) or threonine

(T) residue (Torres and Hart, 1984). GlcNAcylation was first dis-

covered in 1984 by Hart (Torres and Hart, 1984) and was later

found on numerous cytoplasmic and nuclear proteins. The addition

of O-GlcNAc to proteins is catalyzed by O-GlcNActransferase

(OGT) and its removal is catalyzed by O-GlcNAc–selectiveN-acetyl-

b-D-glucosaminidase (O-GlcNAcase, OGA). This dynamic and

reversible post-translational modification, which is analogous to

phosphorylation, is emerging as a key regulator of protein function

by regulating protein activity, protein-protein interaction, local-

ization or protein degradation (Comer et al., 1999). Recent studies

have suggested that abnormal O-G1cNAcylation causes many
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diseases, such as cancer and various neurodegenerative diseases.

Accumulating evidence has shown that the expression of

O-G1cNAcylation is significantly altered after Taxol treatment of

breast cancer cells. Thus, it is crucial that O-G1cNAcylation sites

are identified accurately.

Although the identification of O-G1cNAcylated using mass spec-

trometry technology has demonstrated great improvement, the pre-

cise identification of O-G1cNAcylation sites remains a challenge

because of the following reasons: (i) it is highly dynamic in cells;

(ii) the small molecular weight of O-G1cNAcylation; and (iii) the

weak signal of the O-G1cNAc glycopeptide (Wang et al., 2010).

Because of an interest in better identifying O-G1cNAcylation sites,

the computational prediction of O-G1cNAcylation sites has become

an essential auxiliary tool.

During the last few years, many bioinformatics tools have been

developed for identifying various PTM sites in proteins (Jia et al.,

2014, 2016; Liu et al., 2017b; Qiu et al., 2014, 2015, 2016a,b,

2017; Xu et al., 2013a,b, 2014a,b, 2017; Zhang et al., 2014). For

O-linked glycosylation, several computational predictive techniques

have been developed to identify protein O-G1cNAcylation sites in

recent years. The first prediction tool, YinOYang (Gupta et al.,

2002), was built based on an artificial neural network system. The

second prediction tool, OGlcNAcScan, based on a support vector

machine (SVM) and trained using annotated O-GlcNAcylation sites

from dbOGAP (Wang et al., 2011). Chauhan et al. (2013) developed

an SVM-based tool, GlycoEP, based on eukaryotic proteins of C-,

N- and O-linked glycosylation collected from SWISS-PROT June

2011 release. Particularly, GlycoEP yielded a Sn of 35.75%, and Sp

of 90.26% for O-linked glycosylation sites.The prediction model

O-GlcNAcPRED was developed by Jia et al. (2013), and was also

based on an SVM and the application of the adapted normal distri-

bution bi-profile Bayes (ANBPB) feature encoding scheme. Zhao

et al. (2015) built the predictor tool PGlcS based on using a k-means

cluster to reduce the number of negative training samples, and two-

step feature selection to reduce the dimension of the features. In

2014 and 2015, Lee’s research group successively released two pre-

dictor tools (Kao et al., 2015; Wu et al., 2014), and the most current

predictor tool adopted a two-layered machine learning method (i.e.

the first layer is a profile hidden Markov model and the second layer

uses an SVM), and the predictor tool significantly outperformed

existing predictor tools. Li et al. (2015) constructed a model,

GlycoMine, for predicting C-, N- and O-linked glycosylation sites.

GlycoMine improve the prediction performance by coupling the RF

algorithm with effective features selected by information gain (IG)

and minimum redundancy maximum relevance (mRMR). More re-

cently, Li et al. (2016) proposed GlycoMinestruct through consider-

ing protein-structural features. From another hand, Trost et al.

(2016) described DAPPLE 2 for prediction of 20 different types of

PTM sites by searching homology sequences, which is the update

version of DAPPLE. Wang et al. (2017) applied the combination of

multiple kernel support vector machines (SVM) for predicting PTM

sites including phosphorylation, O-linked glycosylation, acetylation,

sulfation and nitration. However, compared with approaches that

predict other post-translation modification sites, the performance of

these predictors remains unsatisfactory, and there remains consider-

able potential for improvement.

In this study, four strategies are used to improve the prediction ac-

curacy of protein O-G1cNAcylation sites. First, we propose a K-means

principal component analysis oversampling technique (KPCA) and

fuzzy undersampling method (FUS) to reduce the proportion of the ori-

ginal positive and negative training samples. Second, eight types of fea-

ture are extracted and selected to encode each protein peptide. Third,

four types of classifiers, random forest (RF), k-nearest neighbour

(KNN), naive Bayesian (NB) and SVM, are used as the sub-classifiers

of rotation forest. Fourth, majority voting is used to obtain a good

ensemble classifier. By combining the aforementioned strategies, a

novel tool called O-GlcNAcPRED-II is developed. Evaluated using

five-fold cross-validation and on two independent test datasets,

O-GlcNAcPRED-II proves to significantly outperform all the existing

predictors for protein O-G1cNAcylation sites.

2 Materials and methods

2.1 Data collection and preprocessing
The datasets used to predict protein O-GlcNAcylation sites are

generally constructed from the UniProtKB/Swiss-Prot database

(Apweiler et al., 2004), dbPTM (Lee et al., 2006), dbOGAP (Wang

et al., 2011), O-GlycBase (Hansen et al., 1999), PhosphoSitePlus

(Hornbeck et al., 2012) and PubMed literature. In this work,

the datasets used to train and test the predictive model for identify-

ing protein O-G1cNAcylation siteswere collected from the

dbOGAPdatabase (Wang et al., 2011) and the work of Jochmann

et al. (2014). From dbOGAP, 392O-GlcNAcylated serine sites on

172 proteins were used to construct our positive training dataset.

Additionally, from the work of Jochmann et al. (2014), 1,181O-

GlcNAcylated sites on 520 proteins were collected to construct our

positive training dataset. As indicated in (Wang et al., 2016), a data-

set that contained many redundant samples with high similarity

would lack statistical representativeness. To eliminate redundancy,

CD-HIT software (Fu et al., 2012) was used to remove high-

similarity protein sequences and protein peptide fragments. For a

threshold of 40% similarity, 526 proteins with low sequence simi-

larity were retained. Then, for a threshold of 30% similarity, we

removed the protein fragments with high similarity. Finally, we ob-

tained 945O-GlcNAcylated sites (547 serine and 398 threonine)

that constituted our positive training dataset and 50 914 non-O-

GlcNAcylated sites (29754 serine and 21160 threonine) that consti-

tuted our negative training dataset.

For no web-server is available by Jia et al. and Zhao et al., the in-

dependent dataset simultaneously applied in their works, which con-

sisted 67O-GlcNAcylation sites from 38 proteins, was firstly used to

assess our predictor. Moreover, we collected the proteins available by

Wu et al. (2014) and Li et al. (2015) to construct a new independent

dataset.To avoid overestimate our model, we deleted those protein

primary sequences that were also included in our training dataset.

Furthermore, to minimize the similarity between the independent

dataset and training dataset, the peptide sequences redundancy of

length 23 were removed using the CD-HIT program (Huang et al.,

2010) with a threshold of 0.3. Finally, the independent test dataset

consisted of 368 experimentally identified O-GlcNAcylation sites and

27 139 non-O-GlcNAcylation sites from 145 protein sequences. For

convenience, the relevant training, test datasets are available both in

Supplementary Material and web-server.

2.2 Feature extraction strategy
To build a superior predictor tool, we need to use a valid mathemat-

ical expression to formulate the protein peptide fragments, which

can reflect more useful sequence information hidden in peptide frag-

ments (Ahmad et al., 2003a,b; Ward et al., 2004). In this work,

eight types of feature extraction strategies were used to formulate

our protein peptide fragments. These features are BPB, adapted

normal distribution BPB (ANBPB), di-amino acid BPB (DBPB),

amino acid composition (AAC), di-AAC (DAAC), position-specific
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amino acid propensity (PSAAP), position-specific di-amino acid pro-

pensity (PSDAAP) and position-specific tri-amino acid propensity

(PSTAAP). The detailed feature extraction process is explained in

the following subsections.

2.2.1 AAC and DAAC

AAC is the composition of 20 natural amino acids in one peptide.

Similarly, DAAC is the composition of two adjacent amino acids in

one peptide.

2.2.2 BPB

BPB is to encode one peptide by probability vector

P ¼ p1; p2; . . . ;pn; pnþ1; . . . ; p2nð Þ (1)

where pj j ¼ 1;2; . . . ; nð Þ denotes the posterior probability of each

amino acid at the jth position in the positive training samples, and

pj j ¼ nþ 1; nþ 2; . . . ; 2nð Þ denotes the posterior probability of

each amino acid at the jth position in the negative training samples.

The two posterior probabilities were usually calculated using the

frequency of each amino acid at each position in the positive and nega-

tive training datasets, respectively (Shao et al., 2009; Song et al., 2010).

2.2.3 ANBPB

In this method, the frequency of each amino acid at each pos-

ition was encoded as random variables Xij i ¼ 1; 2; . . . ; 21;ð
j ¼ 1;2; . . . ;22Þ, which were independent and obeyed binominal

distribution b m; pð Þ, where m is the number of positive/negative

training samples, and p ¼ 1
21. From the de Moivre-Laplace theorem,

when m is sufficiently large,
Xij�mpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp 1�pð Þ
p is approximated to obey the

standard normal distribution N 0; 1ð Þ. If we make Vj express

the standard variance of Xij i ¼ 1; 2; . . . ;21ð Þ (i.e. the deviation

of the fraction of each amino acid at the same jth position),

X0ij ¼ Xij�mpffiffiffiffi
Vj

p is used as the new normalization of Xij. Thus,

pj j ¼ 1; 2; . . . ;n; . . . ;2nð Þ is encoded by the following expression:

pj ¼ P X � Xij

� �
¼ u X0ij

� �
, where u xð Þ ¼ 1ffiffiffiffi

2p
p
Ð x
�1 e�

t2

2 dt; see Jia

et al. (2013).

2.2.4 DBPB

Let the probability vector

P ¼ p1; p2; . . . ;pn�1; pn; . . . ; p2� n�1ð Þ
� �

encode the sequence S in the training dataset, where

p1;p2; . . . ;pn�1ð Þ denotes the posterior probability of two adjacent

amino acids at each position in positive training samples and

pn; � � � ; p2� n�1ð Þ
� �

denotes the posterior probability of two adjacent

amino acids at each position in negative training samples. The pos-

terior probability ofboth the O-GlcNAcylation and non-O-

GlcNAcylationpeptides in the training dataset was calculated

usingthe frequency of two adjacent amino acids at each position in

thepositive and negative training datasets, respectively.

2.2.5 PSAAP

PSAAP matrix Z ¼ zi;j

� �
21�22

constructed by

zi;j ¼
aP;i;j � �aN;i;j

rN;i;j
; i ¼ 1;2; � � � ; 21; j ¼ 1;2; � � � ;22: (2)

where aP;i;j denotes the frequency of the ith amino acid at the jth

position in the positive training samples, �aN;i;j and rN; i; j denote

the average value and variance of the ith AACat the jth position in

10 negative training sample subsets (the size of each subset is same

as that of the positive training samples), respectively. Applying

PSAAP matrix Z ¼ zi;j

� �
21�22

; an n-dimensional feature vector for a

sequence peptide was constructed, where n is the length of the se-

quence peptide, omitting the residue ‘S’ or ‘T’ of the central position

(i.e. n ¼ 22).

2.2.6 PSDAAP and PSTAAP

PSDAAP was defined by the probability difference of ith di-amino

acid appeared in the jth position between positive and negative sam-

ples, while PSTAAP was defined by the probability difference of ith

tri-amino acid appeared in the jth position between positive and

negative samples (Supplementary Material).

It should be mentioned that the extracted features AAC, DAAC

and BPB are just different models of general pseudo amino acid

composition (PseAAC), first proposed by Chou (2001). With the

wide application of PseAAC, Liu et al. developed a powerful web

server called ‘Pse-in-One’ (Liu et al., 2015), which can generate

PseAAC. For detailed information on Pse-in-One and its updated

version, please refer to references (Liu et al., 2015, 2017a).

2.3 KPCA and FUS
The ratio of O-GlcNAcylated sites and non-O-GlcNAcylated sites

(945: 50914) is extremely imbalanced; thus, it is essential to research

new approaches to build balanced datasets. In this work, we pro-

pose KPCA and FUS methods.

2.3.1 KPCA

KPCA is proposed in this study based on applying the K-means clus-

tering algorithm and principal components analysis (PCA) to add

some synthetic positive samples into the positive training dataset.

The detailed description is as follows:

1. First, randomly choose K positive training samples as initial clus-

ter centres based on

P InitialCenter jð Þð Þ; j ¼ 1;2; . . . ;K; (3)

where the initial K centres are defined as

InitialCenter jð Þ ¼ rand 0; 1ð Þ �m½ � (4)

where X½ � indicates that the maximum integer is not greater than

X, m is the number of original positive training samples and

P tð Þ; t ¼ 1; 2; . . . ;m denotes the t original positive training samples.

2. According to the following computational formula, the positive

training samples can be divided into K clusters:

It ¼ min
1� j�K

kP tð Þ � P InitialCenter jð Þð Þk2; (5)

where It is the minimum squared Euclidean distance of the t original

positive training samples and K initial cluster centres. P tð Þ is divided

at the kth cluster if

It ¼ kP tð Þ � P initialCenter kð Þð Þk2: (6)

3. For each cluster of the original positive training samples, calcu-

late the average value of all samples to create the new cluster

centre.

4. Repeat the second and third steps 10 times, and the original

positive training samples can be divided into K new clusters.

O-GlcNAcPRED-II 2031
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5. For the samples of each cluster gained from the fourth step, sup-

pose P ¼ p1; p2; . . . ; pm1½ �T represents all the samples of the kth

cluster, where pi ¼ pi1;pi2; . . . ; piDimð Þ; i ¼ 1; 2; . . . ;m1 denotes

the ith sample of the kth cluster. Then, pi ¼ pi1; pi2; . . . ;piDimð Þ;
i ¼ 1; 2; . . . ;m1 is standardized using p0i ¼ pi�u

r , where u and r
are the mean and standard deviation of each column of P,

respectively.

6. Calculate the covariance matrix of P0 ¼ p01; p
0
2; . . . ;p0m1½ �T and

generate synthetic positive samples using above equation and

Y ¼ y1; y2; . . . ; ym1½ �T ; yi ¼ yi1; yi2; . . . ; yiDimð Þ; i ¼ 1;2; . . . ;m1 (7)

yij ¼ p0�i A :; jð Þ; i ¼ 1; 2; . . . ;m1; j ¼ 1;2; . . . ;Dim; (8)

where A is the corresponding eigenvector matrix, with the eigen-

values of the covariance matrix sorted in descending order.

2.3.2 FUS

FUS (Hosseinzadeh et al., 2016) uses a fuzzy membership function

to take the hidden information of training samples into account, and

we applied it to delete a certain number of negative training samples

to balance the positive and negative datasets.

The first step is to calculate the average value of the positive and

negative training samples for each feature using

Cj
Pos ¼

PPosNum
i¼1 Pos i; jð Þ

PosNum
; j ¼ 1;2; . . . ;Dim; (9)

Cj
Neg ¼

PNegNum
i¼1 Neg i; jð Þ

NegNum
; j ¼ 1; 2; . . . ;Dim; (10)

respectively, where PosNum=NegNum is the number of positive/

negative training samples, Pos i; jð Þ=Neg i; jð Þ represents the value of

the ith positive/negative training sample for the jth feature and Dim

is the number of extracted features.

The second step is to calculate the standard deviation of the posi-

tive and negative training samples for each feature using

rj
Pos ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

PosNum

XPosNum

i¼1

Pos i; jð Þ � Cj
Pos

� �2

vuut ; j ¼ 1; . . . ;Dim; (11)

rj
Neg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NegNum

XNegNum

i¼1

Neg i; jð Þ � Cj
Neg

� �2

vuut ; j ¼ 1; . . . ;Dim:

(12)

Then, the average value and standard deviation of the positive/nega-

tive training samples were used to construct the fuzzy membership

functions on the training dataset:

uj
Pos ið Þ ¼ GaussMF Data i; jð Þ; Cj

Pos; r
j
Pos

� �
; (13)

uj
Neg ið Þ ¼ GaussMF Data i; jð Þ; Cj

Neg; r
j
Neg

� �
; (14)

GaussMF x; c; rð Þ ¼ exp �1

2

x� c

r

� �2
� �

; (15)

where Data i; jð Þ is the value of the ith sample for the jth feature on

the training samples and uj
Pos ið Þ=uj

Neg ið Þ represents the fuzzy mem-

bership degree of Data i; jð Þ that belongs to the positive/negative sam-

ple i ¼ 1;2; . . . ;PosNum;PosNumþ 1; . . . ;PosNumþð NegNum;

j ¼ 1; 2 � � � ;DimÞ. Hereafter, the fuzzy value of the ith sample for the

jth feature on the training samples is expressed as

Fval i; jð Þ ¼ uj
Pos ið Þ þ 1� uj

Neg ið Þ
� �

: (16)

Then, we deleted unnecessary and uninformative negative training

samples. To achieve this, all the positive training samples were re-

tained. For each negative training sample, we defined a score func-

tion as follows:

Score ið Þ ¼
XDim

j¼1

Fval i; jð Þ (17)

i ¼ PosNumþ 1; . . . ;PosNumþNegNum:

Finally, we removed some negative training samples that gained the

highest score, and the following was used to determine the number

of removed negative training samples:

NegRemove ¼ NegNum� 1� a
a

PosNum (18)

For a specific description of FUS, see Hosseinzadeh et al. (2016).

2.4 Rotation Forest algorithm
Rotation forest is a type of classifier integrated system proposed by

Rodriguez et al. (2006), and its basic design concept is based on the

RF algorithm (Breiman et al., 2001; Rodriguez et al., 2006).

Rotation forest divides the original feature space into several sub-

sets, and then performs a linear transformation, such as PCA, for

each subset. The resulting transform components are merged ac-

cording to the original order of the subsets and preserve all the prin-

cipal components so that the data obtained after each random

segmentation is projected into different coordinate spaces, which re-

sults in a large difference quantum set. These components are used

to train the classifier, and it is possible to obtain a classifier with a

large difference and high classification performance to improve the

classification performance of the integrated system.

Four types of classifier, RF, KNN, NB and SVM, are used as the

sub-classifiers of Rotation Forest. For a specific description of the al-

gorithm for rotation forest, see (Rodriguez et al., 2006).

2.5 Model construction and evaluation
To improve the predictive performance of O-GlcNAcylation sites,

an ensemble learning predictor was used in this study, which used

majority voting to integrate the output of the four individual mod-

els: RF, KNN, NB and SVM.The performance of O-GlcNAcPRED-

II was evaluated using four measurements derived by Chen et al.

(2013) and Lin et al. (2014) based on the symbols introduced by

Chou in predicting signal peptides. Particularly, its advantages have

been analyzed and endorsed by a series of studies published very re-

cently (Jia et al., 2014, 2016; Liu et al., 2017b; Qiu et al., 2014,

2015, 2016a,b, 2017; Xu et al., 2013a,b, 2014a,b, 2017; Zhang

et al., 2014). The four measurements are given as follows:

Sn ¼ 1�Nþ�
Nþ

(19)

Sp ¼ 1�
N�þ
N�

(20)
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Acc ¼ 1�Nþ� þN�þ
Nþ þN�

(21)

MCC ¼
1� Nþ�þN�þ

NþþN�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ N�þ�Nþ�
Nþ

� �
1þ Nþ��N�þ

N�

� �r (22)

where Nþ is the total number of O-GlcNAcylation sequences and

Nþ� is the number of O-GlcNAcylation sequences incorrectly pre-

dicted as non-O-GlcNAcylation sequences; and N� is the total num-

ber of non-O-GlcNAcylation sequences and N�þ is the number of

non-O-GlcNAcylation sequences incorrectly predicted as O-

GlcNAcylation sequences. Note that the set of metrics is valid only

for single-label systems. For multi-label systems whose existence has

become more frequent in system biology (Lin et al., 2013; Wu et al.,

2011) and system medicine (Cheng et al., 2017a,b; Qiu et al.,

2016b; Xiao et al., 2013), a completely different set of metrics

defined by (Chou, 2013) is required.

3 Results and discussion

3.1 Processing of the positive and negative training

datasets
Applying the KPCA, there were 945 synthetic positive training sam-

ples generated and combined with the original 945 positive samples

to create a new positive training dataset. Additionally, by setting the

parameter a ¼ 0:3 in equation of NegRemove, there were 2204

negative training samples retained after removing 48 710 negative

training samples. It should be noted that only the original 945 posi-

tive training samples were experimentally validated, and the non-

redundant negative training samples were adopted as the testing

dataset for five-fold cross-validation.

3.2 Combining various features to optimize the

prediction model
For the four classifiers, RF, KNN, NB and SVM, the optimal feature

combination was different; therefore, we ran the selection of fea-

tures four times. In the following, we only consider an example of

constructing the optimal prediction model for the RF classifier to de-

scribe the specific process.

To determine the optimal prediction model, we not only indi-

vidually used eight types of feature coding strategy, described in

Section 2.2, but also two or more combinations of different types of

features to encode each peptide. Five-fold cross-validation was used

to train our prediction model. Sn was used as the evaluation criter-

ion to select features because the higher the sensitivity, the fewer

wrongly predicted O-GlcNAcylated sites.

Initially, each of eight types of feature coding strategy was indi-

vidually used to encode our samples, and seven types of feature cod-

ing strategy with Sn values�63% for five-fold cross-validation

were retained to further optimize prediction performance. This is be-

cause the Sn was just 31.98% using DAAC coding, and so DAAC

was not considered in the following steps. The specific results are

listed in Supplementary Table S1a and b. Then, any combination of

two types of features among seven feature coding strategies was fur-

ther evaluated. Among the 21 (C2
7 ¼ 21) models, the top four mod-

els with Sn values�80% for five-fold cross-validation were retained

to further optimize the prediction model (Supplementary Table S1c).

By increasing the types of features combined, only the combination

AACþANBPBþBPBþPSAAPþPSTAAP achieved the best predic-

tion performance, with a Sn of 82.26%, Sp of 90.99%, Acc of

88.41% and MCC of 0.7248 for five-fold cross-validation. The de-

tailed evaluation results are listed in Supplementary Table S1d.

Thus, an RF-based prediction model was built using the fea-

ture combination AACþANBPBþBPBþPSAAPþPSTAAP.

Additionally, we used the same procedure to construct the other

three optimal prediction models: the nearest neighbour optimal

model built on the feature combination AACþDAACþBPBþ
DBPBþANBPBþPSTAAPþPSAAP, NB optimal model built on

the feature combination PSAAPþAAC, and SVM optimal model

built on the feature combination ANBPBþDAACþPSTAAPþ
BPBþPSAAPþDBPB. The detailed results for feature selection

for the three classifiers are listedin Supplementary Tables S2–S4,

respectively. Finally, the ensemble learning predictor, O-

GlcNAcPRED-II, was constructed using a majority voting strategy

for the prediction values of the four optimal models. Given a poten-

tial O-GlcNAcylat site, each of the classification models derives a

prediction on the class (O-GlcNAcylated or non-O-GlcNAcylated).

If N1 models derived an O-GlcNAcylated site, whereas N2 models

derived a non-O-GlcNAcylated site among four classifiers, then we

compared N1 and N2. If N1 � N2, the ensemble model assessed

this site to be an O-GlcNAcylated site; otherwise, the ensemble

model assessed it to be a non-O-GlcNAcylatedsite. Figure 1 shows

the flow diagram for constructing the four optimal models and

ensemble predictor, O-GlcNAcPRED-II. The parameters selected in

O-GlcNAcPRED-II are given in Supplementary Table S5.

3.3 Effectiveness of the resampling approach
The average result of five-fold cross-validation run 20 times was

used to demonstrate the effectiveness of our combination of KPCA

and FUS. The comparison results are listed in Table 1 for original

extremely imbalanced positive and negative samples, random under-

sampling, conducting KPCA oversampling, FUS undersampling and

conducting KPCA oversampling s and FUS undersampling. For the

random undersampling, we randomly selected the same number of

negative samples as positive samples. We repeated the random-

ization for 10 times and compared the results in Supplementary

Table S7 and Table 1, respectively. As can be seen, the best Sn,

Fig. 1. Conceptual framework of O-GlcNAcPRED-II

O-GlcNAcPRED-II 2033

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2029/4840731 by U
.S. D

epartm
ent of Justice user on 16 August 2022

Deleted Text: , 
Deleted Text: ,
Deleted Text: s
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty039#supplementary-data
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty039#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty039#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty039#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty039#supplementary-data
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty039#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty039#supplementary-data


the best Sp and the average result among 10 times randomization

are all lower than the result of combination of KPCA oversampling

and Fuzzy undersampling. We found that O-GlcNAcPRED-II for a

combination of KPCA and FUS achieved the best prediction

performance, with aSn of 77.89%, Sp of 98.38%, Acc of 91.90%

and Mcc of 0.8112. Additionally, the second best prediction

performance was achieved by FUS for negative samples with a Sn

of 76.68%, Sp of 94.28%, Acc of 89.01% and Mcc of 0.7322.

The Sn values achieved by the without resampling and KPCA

oversampling were less than 30%; therefore, we shall not consider

them further.

3.4 Improving predictive performance using

ensemble learning
The ensemble of the sub-classifier of Rotation Forest was first used

to resolve the prediction of protein post-translational modifica-

tion. To intuitively reflect the effectiveness of ensemble learning,

we listed the prediction results of the four single classifiers and en-

semble O-GlcNAcPRED-II for an independent test dataset that

contained 368 experimentally identified O-GlcNAcylation sites

and 27 139 non-O-GlcNAcylation sites. As listed in Table 2, the

ensemble model O-GlcNAcPRED-II achieved the best Sn of

67.12% and the best MCC of 0.1012. The two best Sp were

achieved by SVM and RF; however, the Sn achieved by SVM and

RF were only 55.16% and 61.41%, respectively. Therefore, the en-

semble model using majority voting was selected to construct our

prediction model.

3.5 Comparison with existing tools
Regarding the performance of O-GlcNAcylation prediction, we

compared O-GlcNAcPRED-II with other ten predictors as we

known from different aspects.

Since the original training datasets were friendly offered by

GlycoEP (Chauhan et al., 2013), GlycoMine (Li et al., 2015) and

kernel SVM (Wang et al., 2017), O-GlcNAcPRED-II was compared

with these methods using 5/10 fold cross-validation according to the

results listed in their works. As shown in Table 3, O-GlcNAcPRED-

II generally results in an improvement of 2.76-29% with respect to

GlycoMine, kernel SVM, MDDLogo-clustered SVM models and

GlycoEP. From the results can also be concluded that the

predictor was greatly influence by the selected sample. However,

O-GlcNAcPRED-II showed better robustness, and obtained the ac-

curacy ranged from 89.43 to 95.58%. Additionally, the best per-

formance also indicated that ensemble classifier is more suitable

than single classifier for O-GlcNAcylation sites prediction.

Considering the unavailability of the two previously developed

webservers O-GlcNAcPRED and PGlcS, we further compared our

O-GlcNAcPRED-II with the existing tools on the same independent

dataset simultaneously applied in O-GlcNAcPRED and PGlcS. As

can be observed in Table 4, O-GlcNAcPRED-II achieved the best Sn

of 71.64%, which generally resulted in an improvement of 7.02 and

14.92% with respect to the second best PGlcS and third best

O-GlcNAcPRED, respectively. Regarding another assessment, Sp,

O-GlcNAcPRED-II achieved the fourth best Sp of 70.18%,

O-GlcNAcscan achieved the best Sp of 92.45%, YinOYang

achieved the second best Sp of 89.36% and the two-layered model

of Lee et al. (Kao et al., 2015) achieved the third best Sp of 89.83%.

However, it is instructive that we found that the sensitivities at-

tained by the O-GlcNAcscan, YinOYang and two-layered model of

Lee et al. (Kao et al., 2015) were far less than 50%, which is the

probability of a random guess.

To further show the effectiveness of our O-GlcNAcPRED-II pre-

dictor, we also compared O-GlcNAcPRED-II with the accessible

web-servers GlycoEP and DAPPLE2 on our new independent

test set. May be affected by the number of known sites for

O-GlcNAcylation sites, DAPPLE2 captured 45 proteins among 145

test proteins. On the other hand, GlycoEP and O-GlcNAcPRED-II

achieved pretty close value of Sn, 64.13 and 67.12%, respectively.

However, GlycoEP got the Sp of 37.17%, which is far below the Sp

of 72.46% reached by O-GlcNAcPRED-II. It should be pointed

out that we used the default threshold suggested by GlycoEP.

These results indicate that our method represents a significant im-

provement in sensitivity over the existing prediction algorithm ap-

parently. Due to the dynamics of O-GlcNAcylation, how to increase

sensitivity at the same time as enhancing specificity is future work

that we should research.

Table 1. Comparison of different resampling methods on 5-fold

cross validation

Resample method Sn (%) Sp (%) Acc (%) MCC

Without resampling 27.75 99.72 98.41 0.4160

Random undersampling 73.73 90.35 81.61 0.6459

Fuzzy undersampling 76.68 94.28 89.01 0.7322

KPCA oversampling 16.70 99.95 98.43 0.3717

O-GlcNAcPRED-II 77.89 98.38 91.90 0.8112

Table 2. Comparison of O-GlcNAcPRED-II with other four classifiers

on our independent test set

Classifier Sn (%) Sp (%) Acc (%) MCC

Random forest 61.41 76.25 76.02 0.1010

K nearest neighbor 64.13 71.19 71.09 0.0892

Naive Bayes 65.76 67.83 67.80 0.0823

SVM 55.16 78.07 77.76 0.0916

O-GlcNAcPRED-II 67.12 72.46 72.39 0.1012

Table 3. Comparison of O-GlcNAcPRED-II with other four popular

predictors for different methods on k-fold cross-validation

Classifier Sn (%) Sp (%) Acc (%) MCC

GlycoMine (IGþIFS) 90.00 84.97 86.67 0.7228

GlycoMine (mRMRþIFS) 84.23 87.82 86.61 0.7078

O-GlcNAcPRED-II 86.07 90.93 89.43 0.7573

GlycoEP 63.40 62.13 62.77 0.2700

O-GlcNAcPRED-II 84.43 96.22 92.60 0.8233

MDDLogo-clusterd SVM model 76.00 80.00 78.00 0.3700

O-GlcNAcPRED-II 78.48 98.70 92.55 0.8222

kernel SVM 62.85 95.00 92.55 –

O-GlcNAcPRED-II 76.15 97.21 95.58 0.7789

Table 4. Comparison of O-GlcNAcPRED-II with other popular pre-

dictors on the JIA independent test set

Classifier Sn (%) Sp (%) Acc (%) MCC

YinOYang 34.33 89.36 88.85 0.0725

O-GlcNAcscan 31.34 92.45 91.89 0.0847

O-GlcNAcPRED 56.72 64.77 64.70 0.0428

PGlcS 64.62 68.40 68.37 0.0697

Two-layered model of Lee 49.25 87.92 87.57 0.1074

O-GlcNAcPRED-II 71.64 70.18 70.20 0.0868
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Considering the similarity between the independent test dataset

and training dataset can influence the prediction results, we further

investigated the performance of O-GlcNAcPRED-II by setting simi-

larity thresholds from 0.9 to 0.3 with CD-HIT software. We re-

ported the Sn, Sp, Acc, MCC and AUC obtained on different

thresholds in Supplementary Table S6. It is noted that the prediction

performance was not sensitive to the similarity between the inde-

pendent test samples and training samples.

4 Conclusion

This study proposed a novel resampling method, KPCA-FUS, to re-

duce the imbalanced ratio of positive and negative training samples.

Based on the training dataset processed by KPCA-FUS, different opti-

mal features of eight types of sequence information were selected ac-

cording to four sub-classifiers (KNN, RF, NB and SVM) of rotation

forest. Then, using voting methods, we built the ensemble predictor

O-GlcNAcPRED-II based on the rotation forest algorithm. The pre-

diction results demonstrated that our approach was more accurate

than the other five methods, which demonstrates the usefulness of the

KPCA-FUS resampling technique and ensemble prediction algorithm.

It is anticipated that O-GlcNAcPRED-II will be a helpful tool for pre-

dicting O-GlcNAcylation sites, and the KPCA-FUS resampling tech-

nique and ensemble prediction algorithm can be used in other protein

post-translational modification predictions.
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