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,( h2n+2- f ) Bounds on Some spline Interpolation Errors 

by 

Blair Swartz 

ABSTRACT 

Certain spline interpolations (of odd degree) t o  
smooth functions a t  uniformly spaced joints are 
considered. Certain cubic spline interpolations 
a t  arbi t rar i ly  spaced joints are also discussed. 
Good error bounds are obtained i n  all cases, for  
the errors are essentially those of a local  two- 
point .Polya interpolation. 

Introduction. 

It had been.fe l t  for perhaps three or four 

years that c ~ ,  2n + 1 degree polynomial spline in- 

terpolation of a sufficiently amooth function 

would yield ~ ( h ~ ~ + * " )  accuracy i n  approximating 

i t s  f th  derivative. Ahlberg, . e t  al.' (p. 151) 

shared t h i s  t o  be so for n _> 1, for equally spaced 

joints, and under periodic boundary conditions 

(see also Theorem 9). We. show a b i t  more under 

two other boundary conditions: the error i n  spline 

interpolation i s  bounded by the error in  a local  

two-point interpolation (of a sor t  we c e l l  Polya 

interpolation) plus a higher order term (Theorems 

1.1 and 1.2). These higher order terms are zero 

when interpolating a polynomial of degree 2n + 2. 

In spite of the lack of generality of the re- 

sults, we fee l  tha t  they may be of some use i n  

practical problems and hope tha t  the methods mqf  

'a id.in arriving.at  more general conclusions. 

The foundations of the proofs arose from a 

study of cubic spline interpolation for variably 

spaced joints; the numerical bounds which resulted 

' from that  study' are presented i n  Section lo. The . 

role of the mesh r a t i o  i s  also discussed (and 

down-graded somewhat). Some of the bounds are 

sharp, in  , the  sense lrentioned in  Theorems 1.1 and 

1.2. Bounds of t h i s  sor t  for  the cubics were f i r s t  

disclosed by Birkhpff and de ~ o o r ~ '  and improved by 

Sharma and t4eirO3 Our assumption of four or five 

derivatives has yielded bounds which are one t o  

two orders of magnitude smaller than those of 

Sharma and ~ e i r , ~  one better than those of Nord, 
4 

and two or more better than those i n  Ref. 1, p. 

32. We haw not compared our numbers with the 

~(h*~") bounds associated with spline approxi- 
5,G mation by moments. 

While t h i s  was being written, it was pointed 

out t o  us tha t  ~ ( h  error bounds for  periodic 

spline interpolation of odd degree follow immedi- 

ately from Theorem 4 of ~ u b b o t i n . ~  We f e e l  that  

the constants derivable from that  peper l i e  between 

those i n  Ref. 1 and the bounds that  follow here. 

It should be pointed out, however, that  Subbotin's 

Theorems 1 and 2 consider the c2"-1, 2n degree 

spline interpolations of ~ c h o e n b e r g ~ ' ~  (which in- 

terpolate between the joints), indicating error 

bounds f ~ r m  which o(h2"+l-') bounds follow for  



suff ic ient ly  smooth periodic -functions. We have no 

camparable resu l t s  for  this case. The argument 

sharpening Theorem 2 of subbotin7 i s  presented i n  

the last paragraph of t h i s  paper. We must also add 

t h a t  the  resul ts .  of our Sections 7 and 8 mey be 

found i n  subbotin1° as well, b u t  we f e e l  tha t  our . 

proofs m a y  be suff ic ient ly  succinct t o  warrent in- 

clusion here. 

We have assumed many derivatives of the func- 

t ion interpolated; it seems likely,  however, that  

Sharma and ~ e i r ~  can now be extended using lower 

order' Green's functions and Polya interpolations 

( fo r  example, Corollaries 9.1 and 9.2 consider .. . 

reasonably rough functions). 

b 
[a,bl. l l f l l  [,,b] EMS [la I f IP/(~-~)] ' /P ,  

1 5  P 5 [ b ~ ~ , [ ~ , ~ ~  = max ( f l ; [ a , b ] m i s s i n g  
x ~ [ a , b l  

inplies [a,b] = [0,1]. A spline, s, is  a function 

which i s  a polynomial of degree m = 2n + 1 between 

the joints, n _> 1, (m = 2n as  well i n  Section 5) 

such tha t  s r c ~ - ~ [ o , ~ I .  f i  is  f(xi). H is  a 

function which i s  a polynomial of degree m between 

the joints such tha t  Hi and H!') match f i  and f!') 

for  some f ' s  and all i (see Section 2); H i s  re- 

ferred t o  as  a Polya interpolation of f and some of 

i ts  derivatives. 'Is interpolates f" means si = fi, 

i = O,...,N. d ' s  - H, e E H  - f ;  thus e z  s - f 
H 

= eH + do 

The loca l  basis of the  vector space of splines Theorem 1.1. Let s be the spline of degree 2n + 1, 

(with given joints) is  discussed in  Section 5 0  We n 2.1, interpolating f E ~'~'?[0,1] and matching i t s  

there take the opportunity t o  c o ~ e n t  on its great f i r s t  n odd derivatives a t  0 and 1 as well. Let 

usef'ulness in pract ical  problems, a usef'ulness of N - 2 2n + 1. kt H, a polynomial o i  degree 2n + 1 

which some numerical analysts may  be unaware. between the joints, interpolate f i, f Y j - l ) ,  

Because t h i s  i s ,  i n  a sense, a bract ical  paper, 1 5  j < n, 0 5 i 5 N. Then there are constants K ( 1)  
1,n 

we a v ~ I , ~ ~ i z e  for  not suppLying more numbers i n  the and Di') such that,  for  0 < l < 20 + 1, 
~n 

place of l e t t e r s .  The numbers, par t icular ly  those 

1 llH(') - f ( f ) l l ,  < h2n+2-f ( l )  Ilf(2n'2) 
associated with the P norm, can be of mdch use i n  e~ - G ~ , n  / I m ,  

2 
practice;  see, fo r  example, Birkhoff e t  dou which (1.1) 

t h i s  paper now extends ( i n  theory) t o  obtaining and 

O( h4n+2), two-sided bounds on Sturm-Liouville eigerr (1) ( 1  - ( )  < ,12n+2-j K ( l )  llf(2n+2)llp, 
Ila 1 1 , - I I  11- -. 

values with the numerical solution of one (4x1 + 3)- 1,n 
(1.2) 

dTagonal l /h  x l / h  matrix eigenvalue problem. A l -  

though we have not presented the  numbers concerning 
If f E ~ ~ + ~ [ 0 , 1 ] ,  there are K(2) such ' that  

I,n 

the s t r i c t  x2 bounds here, we hope we have c lear ly  

indicated how t o  compute them. We do indicate 

t h e i r  asymptotic form for  the boundary conditions 

of Theorem 1.1 (see Example 3.4). 

We do not know how t o  obtain bounds for  bound- 

ary conditions other than those mentioned in,theo- 

rems 1.1, 1.2, and 9. 

I n  an Appendix we discuss a stable numerical 

method fo r  calculating the interpolating splines. 

Finally, we note tha t  some of the resu l t s  and 

proofs of this paper are summarized i n  Swartz, l 2  

where cer ta in  elementary corollaries concerning the 

I f  f is  a polynomial of degree 2n + 2, H ' s. 

Analogous resul ts  hold, with bet ter  constants, 
, . .  

using II  lip.. 

Proof. See Section 9 and &ample 3.1. The numbers 

~(lti, and K ( ~ )  occur i n  Table I, section loo  
1,1 f,1 

By example 3.3, G(l)  is  sharp i n  the sense tha t  
0,n - 

t h e r e  i s  no K < G(') such t h a t  \If - sIlp < K h2n+2 
0, n 

llf(a+2)llm for all f r c ~ + ~ [ o , ~ ] .  The asymptotic 

asymptotic behavior of the errors bre a lso  proven. form of the maximum norm of the error i s  discussed 

in  Swartz.12  he asymptotic form of the S2 norm i s  
1. Notation and Main Results. 

described i n  Exrmrple 3.4. 
Unless otherwise stated,  the following notation 

f s  observed. "Joints" means the numbers xi = i / ~ ,  Theorem 1.2. Let s be the spline of degree 2n + 1, 
k 

0 _< ;i 5 N; h = 1 1 ~ ~  C [a,b] is  the se t  of func- n . 2  1, interpolating f E ~ ~ + ~ [ 0 , 1 ]  and matching i t s  

tions, f ,  such t h a t  f"), 1 2  k, is  continuous on f i r s t  n even derivatives a t  0 and 1 as well. Let 



N - > 2n + 1. Let H, a polynomial of degree, 2n + 1 

between the joints, interpolate fi, f (2J) ,  
i 

1 < j 5 n,. 0 < i 5  N. Then there are constants 

K\; Ma o\::mch that, for  1 = 0,1,..., 2n + 1, 

and 

lld(f)llw 5 h 
2nt2-1 K(3) Ilf(2n+2)llw. 

,,n 

I f  $ i s  defined by B(x) = (-l)i, x c (xiSl, xi), 

i = 1,. . .,N; if f E c%~+'[o,~I sa t i s f i es  

f(2n+2) - 4 E c'[o,~] for some number, a, while 
N (2n+2) 

- f (2ne2)(~)  = (-1) f (1) = a; then there are 

constants K(4)  such that  
,,n 

If f(2n+2) = a$, H s -  Analogous resul ts  hold, 

with better constants, for 11 ' 

Proof. See Section 9 and Fxample 3.2. The numbers 

F a n d  K ( ~ )  occur in Table I, Section U). By, 
111 

Fxample 3.3, the numbers are sharp i n  the 

following .sense: considering only even N, l e t  Se 

be the set  of functions f such tha t  f E C ~ ~ [ O , ~ ]  

and there exis ts  a number, a, such that (1) 

f(2"+2) - 4 E c1[0,'1], and (2) -f (2"+2)(o) = 

( - l lN  f(2n+2)(1) = a. Then, given k, 0 5 k < n, 

there i s  no K < G& such tha t  l((f - s)(2k)llm 5 

K h2n+2-2k llf(2n+2)11m for  a ~ . f  E se. The sane 

resul t  holds for. odd N with respect t o  the class 

3 defined i n  the same way. 
0 

Example 1. Cubic spline interpolation on [0,1] 

with N interior joints xi such tha t  xi+ - xi = 6, 

i = 1,2,...,N - 1 spaced so tha t  x l =  6'= 1 - 5, 
5 t o  a function f E C [0,1], matching f and f" a t  0 

and 1, i s  a;Lmost the same as cubic Hermite inter- 

polation t o  fi, f;, 15  i f N, f (0) ,  f l ( 0 ) ,  f ( l ) ,  

f l ( l )  ; for the difference between the fth deriva- 

t ives  of the two interpolations may be bounded by 

b5-' K, ~l f (~) l l ,  except in the two end intervals 

where 1 d(')) = 0(ti2), 1 = 0(1). The proof 

follows from Section lD and i s  omitted. A similar 

example for  a higher order spline i s  unknown. 

In  Section 3 we begin a sequence of lemmas 

leading up t o  the proofs of the theorems. R c d t s  

w i l l  be atated only for  tho maximum norm for a h -  

i ty ;  extensions t o  other n o m  and M h e r  remarks 

cffe made in comment8 which follow each lemma. Sec- 

t ionr3 bounds the norm of the derivatives of f - H. 

~ e c t i o n e  5 through 8 bound s - f and i t s  deriva- 

t ives  a t  the joints. Section 9 then bounds the 

norm of the derivatives of the piecewise polynomial 

H - s ,  and Theorems 1.1 and 1.2 are proved. Peri- 

odic spline interpolation is then considered as 

well, and Theorem 9 develops some error estimates 

for  a l l  three spline types dimult&eously. 

2. Existence and Uniqueness. 

Regarding Polya interpolation, we shal l  have 

reason t o  refer  t o  the following definit ior~: the 

se t  of integers [ l ( i ,  j ) ]  satisfying 

are oeid t o  be a Polya se t  i f ,  and only i f ,  given 

any m + 1 numbers aj, j = 0 ,..., j(0);  bj,. j = 

- 0,. . . , j ( l ) ,  there exis ts  a unique polynomial, P; 

of degree m satis- P(O) = ao, P('(O~'))(O) = 

aj, 1 2  3 5 J(o); ~ ( 1 )  = bo, P(f( l ' J ) ) ( l )  = bj, 

1 5  j f J(1).  

I f  [ l ( i ,  j)]. i s  a Polya set, the type of poly- 

nomial interpolation it describes can be performed 

on [a,b] as well as on [0,1], and there exists a 

unique Greai1s function for the boundary value 

problem . ( ~ e k  1nce,13 pp. 254-255) 

For example, the  se t  [ ( i , j ) ] ;  j = 1 ,..., n = 

j ( i ) ;  i = 0, 1 i s  a Polya se t  since it describes 

ordinary two-point Hermite interpolation. (See 

"endroff,14 pp. 1-7) .' The following sets, occur- . 

ring i n  Theorem 1.1 and 1.2, are Polya sets. 

( i ,  2 j ) ;  j = l,...,n = j ( i ) ;  i = 0, lo (2.4) 

15 . 
For, in the language of Schoenberg , [ 1, ( i ,  j )  ] i s  

, 
a Polya s e t  i f ,  an8 only i f ,  it can be converted, 

i n  an obvlous wey, into the "&nci,dence rn&ttt.rix1' 

(with 1 ' s  i n  i t s  f i r s t  column) for a "poised two- 



point Hermite-Birkhoff" interpolation problem. A 

necessary and sufficient condition tha t  [ I, ( i ,  j ) ]  

is a Polya s e t  was determined by Polye and i s  given 

i n  Ref. 15, p. 540: for each I, 1 5 I 5 m - 1, I 

should be l ess  than two plus the number of f ( i ,  j) 

E [ f , ( i , j ) ]  which do not.exceed I. Equations 2.3 

and 2.4 satisf'y t h i s  criterion. 

For the purposes of t h i s  paper we have re- 

ferred t o  t h i s  type of Hermite-Birkhoff i n t e r p o l e  

t ion  as "Polya" interpolation; t h i s  serves t o  em- 

phasize tha t  we only consider two points per poly-. 

nnmi~l.  ' 

The existence and uniqueness of the spline in- 

terpolations i n  Theorems 1.1 and i.2 follow from 

the existence irnd uniqueness of periodic spline 

intcrpolation16 (however, it also follows from Lem- 

ma 8). The spline interpolation i n  Theorm 1.1 

can be constructed as follows: because Eq. 2.3 i s  

a PoLva set, we may aksume tha t  f and i t s  f i r s t  n 

odd derivatives vanish a t  O ahci 1. Ref1ecL f as 

an even fi~nction in  [-1,1] and extend it by peri- 

odicity of period 2. Interpolate f a t  the joints 

(and the i r  reflections) i n  [-1,1] with a (unique) 

periodic spline of period 2. This spline and i t s  

f i r s t  n odd derivatives. vanish a t  x = 0 and x = 1. 

The existence of the spline interpola.tlu~l of The- 

orem 1.2 follows similarly from Eq. 2.4 using the 

Odd ~~~efltcl; i lr iI  of fa 

3. Bounding the Pblya Part  of the Error. It i s  

well known tha t  ordinary two-point 2n + 1 degree 

Hermite interpolation t o  f € ~ ~ " + ~ [ 0 , 1 ]  and i t s  

f i r s t  n derivatives a t  dl the joints gives an er- 

Tor, e , whose Ith derivative i s  O(h 
2n+2- I 

II 1 0  

Lemma 3. L e t  [ f ( i , j ) ]  be a Polya set.  Let 

f E Cml[O,h] be given. Let P be the polynomial 

accomplishing the Polya interpolation of f a t  0 

md h doocribe?. hy [ f (  i, j) 1. ' Then there are con- 

s tants  GI, independent of h but dependent on 

r f ( i , j ) ] ,  such that, for  0 5 I 5  m, 

. The G1 are defined i n  Eq. 3.2. 

Proof. f - P solves the boundary value problem 

F) = f(m') with the boundary conditions of 

Eq. 2.2. Let Gh(x,t) be the Green's function for 
h 

~ q .  2.2. Then ( f  - P)(x) = ~ ~ ( x , t ) i ( ) l ) ( t ) d t .  

With G the Green's function for h = 1, Gh(x,t) = 

h%(x/h, t/h). Equation 3.1 follows with 

Corollary 3. Suppose only one type of interpola- 

t ion between the joints i s  used in  forming ~ ( x ) ,  

and suppose f E cm9oJ1j .  Then . 

Proof. Innnediate from Lemma 3. - 
Conrment. The result  for 11 e 11 i n  terns of 

H P Wllp, 1 < p < - is slmil~y.: 

where 

Example 3.1. We now show tha t  spline interpolation 

of degree 2n + 1 t o  a polynomial, P, of degree 

2n + 2, matchku the f i r s t  n odd derivati.w.s of P 

a t  0 and 1, i s  the same as 2n + 1 degree Polya in- 

terpolation (between the equally spaced joints) t o  

pi and p i f ) ,  I = 1, 3,...,2n - 1; 0 2  i 5 ~ .  ~t 

suffices t o  show that eH € c ~ ~ [ o , ~ ] .  Becmse of 

the  equal joint spacing t h i s  follows i f  

where G i s  the Green's function for the boundary 

v u e  problem on [0,11. The f i r s t  integral i s  

y(2k)(0); the second, y ( ; where y( 2'l+C) , 1 
i n  (0,l)  with y en& i t s  f i r s t  n odd derivatives 

venishina, a t  0 and 1. But y(1 - x) also solves 

t h i s  boundary value problcmo By uniqueness, y(x) = 
~ ( 1  - x). 

Example 3.2. Similarly, i f  f(2n+2)(x) = $(x) (de- 

fined i n  Theorem 1.2), then spline interpolation 

of degree 2n + 1 t o  f ,  matching i t s  f i r s t  n cven 



derivatives a t  0 and 1, is the sane as Polya In- 

terpolation of degree 2n + 1, between the joints, 

t o  f i  a d  fi2k), k = 1, ..., n. Indeed, eH r 

~ ~ + ~ [ 0 , 1 ]  which implies t h a t  H, and the spline, 

i s  a polynomial. 

Ekample 3.3. The Green's functions for Eq. 2;2 

with m = 2n + 1, under the boundary conditions 

specified by either Eq. 2.3 or 2.4, do not change 

sign in the square which i s  the i r  domain of defini- 

tion; even more i s  true under Eq. 2.4 conditions. 

The proof u8es Rolle's theorem and i s  given for  

EQ.'2.3 conditions. For fixed interior t = to, , 

d")G/hzn i s  piecewise l inear and continuous 

with a jump of 1 in i t s  derivative a t  x = to. 

Hence it vanishes a t  no more than two inter ior  

points. Thus a( 2n-1)~/h2n-1, which vanishes a t  

the ends, has a t  most one.interior zero. Con- 

sequently a(2n-2)G/&2n-2 vanishes a t  no more than 

two inter ior  points, etc. Thus vanishes at 

no more than one interior point, and ~ ( x , t ~ )  has 

no inter ior  zeroes (since it vanishes a t  the ends). 

By.continuity, G does not change sign in the square. 

Under Eq, 2.4 conditions we may show similarly 

that a(2k)G/&2k does not change sign in the square, 

O Z k Z n .  

~ s ,  i f  f(2n+2) i s  constant in ( ~ , h ) ,  

a t ta ins  i t s  bound, Eq. 3.1, under.Eq. 2.3 boundary 

conditions'. Similarly, under Eq. 2.4 conditions, 

e(2k)(x) a t ta ins  i t s  bound ( ~ q .  3.1), 0 5 k 5 n. 
H 

Example 3.4 (April, 1968). The asymptotic form of 

the maximum norm of the error, for  periodic bound- . . 

my ccriidiLluntl, 1s indicate& i n  s~ai%z," Corollary 

Here 

while 

I s l / k :  , k even 

~ ~ ~ ( x ) ~ ~ ~ k ! ,  k odd 
< 2/[(2nlk(l - 21-k)l. 

B~[%(x) 1 i s  t h e  kth Bern&i number [polynomial] . 
To find corresponding, numbers re la t ing. the L2 

norms, we f i r s t  r eca l l  from Swartz,12 Eq. 4, tha t  

for anyx  and y in [O,h] 

( 1) (Thus &,,(t) B2n+2- (t)/(2n+2-1) : .) Squaring ' 

(3.5). and picking y such tha t  

we see, upon integration between 0 and h, that 

Since similar resul ts  hold between each pair of 

adjacent joints,' we multiply..by h and'add them all 

up,, obtaining 

( I )  .o[h2n+2-fW(f(2H2) 
NOW ( s - H) ,h)l  (see 

~wartz '~) .  Thus we have, in analogy t o  Eq. 3.4, 

fo r  odd derivative or periodic boundary conditions: 



where 

2 2 2 
(C ) = I ~ ~ ~ ~ I / ( b k + b ) :  + B ~ - ~ / [ ( * + ~ ) : I ,  

k, 2 

2k 
(D,,,)~ = 1 ~ ~ ~ 1 / ( 2 k )  : < ' 2 / ( 2 4  

we note t h a t  D rz J2 D ~ , ~ ,  while c = W3 ck,20 k, k,OD 

4. Boqnding Polynomials i n  Terms of Bounds on 

Some Derivatives a t  the Ends of an Interval .  

I f  the spline interpolating f ,  and the  flmc- 

t i o n  H formed from local  Polya interpolation, a re .  

both of degree 2n + 1, then, d = B - H i s  piecewltie 

polyn&ial of degree 2n + 1 between the joints. 

Sections 4 through 9 are concerned with bounding 

d o  Section 9 exhibits bounds on cer ta in  deriva- 

t ives  of d a t  the  joints, and the foUowing resul t  

w i l l  be needed. 

~e~mma.4. Let 6;1 be. the (m-1)-dimensional r e a l  

vector space of polynomials of d e p e e  5 m vjhich 

vanish a t  0 and h, with the topology induced f r m  

C[O,h] . Let [ f , ( i ,  j )  1 be a Poljra s e t  (section 2), 

and l e t  m - 1  posit ive numbers A(i, j) ,  1 ( j 5 j ( i ) ,  

i = 0, 1 be given as well. Define a parallelepiped 

P 6 bjl C U C ~  that  

I P ( ' ( ~ ? ~ ) ) ( O )  1 - < A ( O , ~ ) / ~ ~ ( ~ J ~ )  

R h = [  f 0 r l 5 j 5 j ( y , 7  I P ( ~ ( ~ ' ~ ) ) ( ~ ) I  5 ~ ( l , j ) / h  f ( l , j ) '  ( 4 d )  

for  1 5  j ( j(1). 

Then there are constants, B1, 0 5 f ( m, (depending 

on 1, [ f ( i , j ) ] ,  and [A(i,j)], but not on h) such 

tha t  

For computation, we noZe %hat B Is a tLd~led  UL u 
I 

vertex of W 
1' 

Proof: .Let q be the continuous seminorm, q(P) = ,  

I ,  , , 0. The map 3: Ph 7 Pl defined 
. . 

by J(P)(x) = ~ ( h x )  i s  an isomorphism, and 

[ d ( ' ) ( r ( ~ ) ) / a x ] ( ~ )  = hf [d(f)~/dxf](ht) .  n u s  

J($) = R1, and PM E el maximizes q over W1 i f ,  

and only i f ,  3-'(pH) maximizes q over %. Setting 

B = M = q(PM), we have q = ~ ~ / h ' :  -.1t -re- 
f 

mains t o  show that  q a t ta ins  Bf a t :  a vertex of B1. 

Let Jrij E P1 be the basis for  Pl defined by 

and similarly for  i = 1. (See, e.g., Appendix B). 

The (compact) convex symmetric parallelepiped 

is seen t o  be 
* . 

Now, PM E ljl; for  i f  PM E In t  (el) then there i s  

an a, la1 > 1, such t h a t  a pM E a 03~; but q(a pM) = 

la1 q(PM) > M. Hence the boundary, a%, of the 

(cloocd, oonvex) M-bell f'nr 1-1 intersects hl. In 

these circumstances there i s  a vertex of W in  a 
1 %; 

for i f  a campact, convex polyhedron, R, is  contained 

in  a closed, convex body, C (all in  E~-'), and 

there lo  a vector v E a 8 n i) C, then there is  a 

vertex of I i n  aC. (Let U be a support hyperplane 

far  C through v. Then f l  i s  R rn~ppnrf, hmerplane 

for 63 klu-ough v, thus thcrc i c  a vertex of 1R i n  1 

and consequently in  %.) 

Comment. The l e m a  remeins true, with different - 
constants Bf for  the seminorms q h ( ~ )  = 

(1) ,P' 
f,P, 

I l p  I lp ,  [O,hl> ( p < 

5. A Local Relation between a Spline md i ts  De- 

interpolates f i t )  To estimate t h i s  we w i l l  need 

a localized relacion Between neiplburiug si  and 

B( I)  . k'*F the oubio cp2lnux, fl.jr rr.unw11111 P, Ril.. 4 in 
i -- 

de B O O ~ ~ '  re la tes  three adjacent s i J s  with the, , 

three eorrcnponding s?)'s, while Eq. 4 in  Walsh 

&t ala18 re la tes  three s.'s with three corremond- 
1 

R .  In  similar fashion, for splines bf de- ine 6, 

gree m, Eq. 7 in  Loscalzo and ~ a l b o t ' ~  re la tes  m 

s!')'s, while Eqs. 7 and 15 in Ahlberg e t  al. 
16 

re la te  m si's, with m s (ml)'s. Like the l a s t  two, 
i '  

our resu l t  is  for  splines of odd or even degree. 



Lemma 5. For any spline s(x), of degree m _ > 2  and 

i n  ~ ~ ' [ 0 , 1 ] ;  for each v, 0 < v < N + 1 - m; and 

for  each 1, 1 5 1 < m - 1, there is  a l inear  re- 

l a t ion  between the m quantities, and the m 
(1) quantities, sj+v, 0 5 j < m - 1. This re la t ion is 

given 

The coe?'?'icients may bc written as 

1 ,(m,I) = 
j .  (-1) i-0 (-Ui . c + , , ~ + ~  ( j  + 1- i ) ,  

(5.2) 

where 

Proof. The proof is  a straightforward generaliza- - 
t ion of the proof found i n  Ref. 20, pp. 435-436, 

there attr ibuted t o  Schoenberg. In  the notation 

of Ref. 20 the generaldzation i s  made by replacing 

the last two equations on page 436 with 

and 

Lemma 5 and i t s  proof originally generalized 

Loscalzo and Talbot. 
21 

. . 

Cments :  The following properties of the coef- 

f i c i en t s  b(m) and should be noted: (1.) 
3 j 

m: him) s a t i s i y  a simple recursion, nee w e  A d  
22 16 

Collatz, p. 414 and Ahlber e t  al., Eq. 18. 

(2.) mi bid and (m - 11,: a b , ' )  are integers; 

for  each 1 and n the smallest nonzero of these is  

1 in  absolute value ( J  = 0, j = m - 1) .  (3.) For 

fLt& m and even 1, b(m) and are symmetric 
3 j 

i n  j about (m - 1)/2; for  odd 1 and are 

ant isymetr ic  in j about (m - 1)/2. !For the a ' s  

t h i s  is just  restating Eq. 5.5.) (4.) The in- 

tegers ml b(m) are positive and add t o  m:, 
.I 

The ~ ( x ) ,  called Bgplinee by Schoenhsrg, 

have generslizations t o  variable mesh spacings; 

see, for  example, ~choenberg ,~  and de ~ o o r , ~ ~  9 5. 

For a uniform mesh on [0,1], Q,[(x - x,)/h], 

.-m < k 5 N - 1, form a basis for  the (N + m)-.dl- 

mensional vector space of all cm-' splines of de- 

gree m with the given N + 1 joints (see Ref. 8, 

p3.18 .Ref, 23, p. 20; and Ref. 24, Eq. 2.16). The 

basis i s  loca l  i n  the sense' that each element van- 

ishes identically outside an interval of width 

(m + 1)h. Thus, fo r  example, the interpolation , 

problem mey be solved by set t ing up an about 'N x N, 
+ T 

m-diagonal, l inear system with f = [fi] i ts right- 

hand side. 8'24 The use of the hasis in  probl&a 

involving variational principles often se t s  

band matrjx problems whose solutions determine ap- 

proximations o f ,  high order accuracy. Local two- 

point Hermite interpolation of the same degree, 

m = 2n + 1, has a similar baais, with about 

(n  + 1 ) ~  elements. The use of this basis yields 

matrices of the same band width (bn + 3), but 

( n  + 1) times b i g g e r . = ~ ~ ~ ' ~ ~  The resu l t  of t h i s  

paper, then, i s  that  the smaller matrix problem 

w i l l  give the same order of accuracy. 

6. A Truncation Error for  Odd Degree Splines. 

Lemma 6 .  Let s E ~ ~ ~ [ 0 , 1 ]  be i spline bf odd de- 

gree m = 2n + 1 interpolating f .  Define truncation 

errors ( fo r  a s  many f as f permits) 

Then 

= T  (f,%). 
n, 1 

(6.2) 

Various assumptions about f yield various 

estimates of IT I ; those of in teres t  here are 
, n,l 

l ~ ~ , ~ ( f , $ l  5 h 2n+2-1 %, (0) 1 M2n+2 

i f  11f(*~) I l w  = Ma+,; (6.3) 

I ~ ~ , , ( f , x , ) l  zh2n+2-' (An, 1 %+2 + *n, (2) 1 '2n+3) 

i f  llf(a+3)llw = %3, (6.4a) 



A(') = o fo r  odd .L ; 
n, 1 

mel- 1 
(6.4b) m: (m - 1) Tn,l(fJQ/h 

2n+l 
I f  EU we know is tha t  llf(*)llm = Mwl, EQ.  

A(3) = 0 for. even 1, i f  f E C [0,1] . . 
n9 1 ( 6 0 ~ ~ )  6.7 gives the estimate' Eq. 6.3 where 

and there exis ts  Ma++% with 

. . 

,&$, A('), m a  A ( ~ )  are  dcfincd i n  ~qs. 6.8, 
n, n~ R a'm,'), ( J  - t)m]~db. 

6.10, and 6.11; 9 in  Theorem 1.2. n+j 

Proof. Equation 6.2 i s  verified by replacing j 

with j + n and v with k - n i n  Eq. 5.1, dividing 
I 

by h , subtracting the derivative term of Eq. 6.2 

from both sides, and noting tha t  sHj = fHj.  

Since Eq. 5.1 i s  an ident i ty  for  polynomials 

of degree 5 2n + 1, we now armme tha t  

where Pa+3. (x) i s  the .Taylor polynomial of degree 

2n + 1 for  f about x,'. Then, with rd = 2n + 1,' 

I f  we know, however, that 1lf("~)11, = M,,, 

then 

and -so 6.4a and b follow from Eq. 6.7 with 

- (g - I )  : ( j - t)n]dtl ,  even 1 ;  (6.10) 
n+j 

It follows that  m: (m - 1): A ~ , !  (2) 

Thus, sl~bs+.i t.i~t.ing Eq. 6.6 into Eq . 6.2, we have 

mel- 1 
m: (m - I): T (f,%)/h 

n, 1 

- [m: b E i  ( t  - jlm-' - (m - 1): a z ' )  ( t  - J ) ~ ]  iJW1) (5 - ht) at. ' 1  . . 

Since m = a, + 1 i s  odd, the  symqetry propertien of the b(m) and the (see the comments in  section.)) 

imply tha t  
3 d 



Equations 6.5a, b, and c follow i n  similar fashion 

*om ~ q .  6.7, formuhe are not given. 

Comments. Bounds of the same order reault  when 

Tn, 
(f , \)  is  estimated in  terns  of 

Similar resul ts  hold i f ' f  has only lower order de- 

rivatives;  the powers o f h  drop accordingly. Per- 

haps the magnitude of the A ( ~ )  can be improved by 
n, l 

using some sort  of 2n + 1 degree Polya i n t e r p o l e  

t ion on [ x ~ , ~ ,  G ~ ]  instead of the Taylor inter- 

pol~tj:nn, Eq. 6.6, a t  \. 

7. A Polynomial-Like R i q .  

Suppose the same type of Polya interpolation 

t o  f i  and fiL( ')) ,  j = l,...,n i s  used in all the 
C 

intervals [xi, Then d = s - H i s  not only 

piecewise polynomial of degree 2n + 1, but i t s  

l ( j ) - t h  derivatives a t  the joints are also 

s ('('))) - fif")), thus satisfying Relation 6.1. 
i 

To bound m+x 1 si 

my, 1 T ~ ,  ,( j) (f,xi) 1 now becomes desirable, for  

then Lemma 4 w i l l  bound d and i ts  derivatives. 

Relation 6.1 is  a band matrix taking a vector i n  

in to  a vector i n  E?+1-2n. More, precisely, 

l e t  h be the ( N  + 1 - 2n) x (N + 1) matrix [hij], 

where the integers h are given by 
i j  

With e = f - s, 

, l e t  2 " )  = [ e ~ f ) , o e e , ~ f ~ ~  and ? ( I )  

=[ Tn, ,( f,xn), . . .,Tn, f,5-n)]T. Then ( E ~ .  6.1) 

This band matrix h has a simple structure, inde- 

pendent of I ;  it i s  (2n + 1)- diagonal, i f  that 

term may be applied here, and each row is  the 

translation of one generic row which, i n  turn, i s  

symnetric about is  central  element. I f  h were 

diagonally dominant, standard arguments could come 

into play. The matrices for odd-degree splines of 

degrees 7 t o  15 are not diagonally dominant; prob- 

ably none beyond 7 are. We now show that  such 

matrices can be factored into  a product of tri- 

diagonal matrices, and wil l  make use of t h i s  f a c t  

i n  Section 8. 

Consider the c lass  C of doubly inf ini te  

(2n + 1)-diagonal matrices, n = 0, 1,. . . of com- 

plex numbers (co,. . .,cn) given by C .= [c .  .], 
1 J - a, < i, j < + -, where c 6 c 

i j  n-li-j l '  l i -  d l  Z n ,  
and c = 0 otherwise. 

i 3 
C-E C implies that  the rows of c are identical  

(except for  translation), and the generic row i s  

symmetric about i t s  diagonal element, cn. Evidently 

each c E C may be represented by the notation c = 

(co,. . .,en), c0 # 0, for  some n. Let Ck be. the s e t  

of c = (co, ..., ck), co # 0. C U (0)  is  isomorphic 

t o  the complex numbers. C i t s e l f  is  a commutative 

ring with ident i ty  (1) under matrix multiplication. 

The class Dn = fl Ck i s  analogous t o  the polymmi- 

n 
h 0  

als E cizn-i o f  degree 5 ., for  i f  C ~ E  cm and 
i=o 

cn E Dn, cm0cn E Dwn. The rule of combination of 

coefficients, however, appears t o  be different from 

that  for polynomial multiplication. 

We now show that  the ring of polynomials with 

complex coefficients i s  isomorphic t o  C. The cor- 

respondence, 0, i s  s e t  up'as follows: 0[a] = (a ) ,  
n 

0[z] = (1,0l, O[zn] = (~[z])" ,  0[ z uizn-'1 = 
n i=O  
E uiO(znoi). I n  particular we note that  

i = O  

Indeed, the generic row of O[zn] i s  the 

nth f ' d l  row of Pe,8cal1s t r i m g l e  with 0 's  inter- 

spersed; in fact ,  it consists of the coefficients 
2 

.of ( z + 1) ". We w i l l  use t h i s  i n  a moment. The 



map 0 c lear ly  preserves addition and multiplication. 

Furthermore, for any (c0, cl ,..., c = c E C there 
n n-i 

e x i s t s  a polynomial Pn (z)  E C uiz . such tha t  
i = O  - - 

0[pn] = c. (one simply s t a r t s  with uo = co, ul = 

el, looks a t  c - o [u0zn] - ~ [ u ~ z ~ - ' l  t o  f ind u2, 

03, etc) .  This i s  equivalent t o  solving the p a i r .  

of uncoupled lower triangular l inear  systems (with 

1 on the diagonals) 

where [x] i s  the largest  integer not bigger than x. 

We note t h a t  i f  the coefficients, instead of 

being complex numbers, were simply the elements of 

a commutative ring, R, with unity, then 0 would be 

An isomorphism of the ring of polynomials with 

coefficients in R onto the ring C with coefficients 

i n  R. In  our case, however, R i s  the complex num- 

bers, tu~d we have shown . 

n 
Lemma7.1. 11, C ~ , O - , C  I = n (1, ril if, and 

n 
n 

. i=l 

only i f ,  Z uizn-lG n ( z +  r ), whcre the ui 
i = O  i= 1 i 

and c .  are related by Eq. 3.4. 
1 

For a diagonally dominant tr idiagonal matrix 

( l , r ) ,  the important quantity i s  r - 2 i f  r > 2. 
11. 

For (1, el,. o .,cn) = n (1, r i) ,  the important 
i=l 

n -- 
quantity w i l l  be i t s  "excess," En n ( r  - 2), 

i= 1 i / 
i f  ri > 2, 1 5  i 5 n (Lemma 8). We now show that  

the matrices (2n + 1 )  : { b p ) ,  .,b(*+l)) n have 
.- 

such a factorization, and t h a t  E i s  computable 
n 

d i rec t ly  from bo ( , . *, b( 2n+1) v i a  Eq . 7.6 or 

f r o m  'tile Bernoulli numbers via Eq. 7.7. 

To show t h i s  we have another isomorphism in 

mind: define 

$f[zn](z) ' (z2 + l)"/zn, and Jr i s  an isomorphism . 

onto i ts  range. It follows tha t  Q [ P ~ ( Z ) ]  =2n 

(c0,...,cn) if, and only i f ,  $f[pn(z)](z) = . r: - 
* * 1=V 

c*zn-', where ci = c2n_i = E ~ ,  0 5 i 5 n. We fils0 
i 

n -- -- 
have Jr[ n ( z  + ri)](z) '. n (z  + r + 112). We 

i=1 i=l 
i 

now deduce 

(2n+l) b(2n+l)} = Lemma 7.2. Let (2n + I): (bo ,..., 
n 
fi {l,r?)), whei-e b(') are defined by Eq. 5.3. 
i= 1 . j 

Then r p )  > 2 ,  1< i < ?, n = 1, 2 ,.... 
(2n+ljj - 

Proof. kt 0-l[(2n + 1):  (by), ..., b - 
n 

n 

pn( z) ; i.e. uln) are defined from 
i=o 
*om the c j  = (2n + 1)  : b\2n+1) by Eq. 7.4. Then 

n 
$ f [q ] (z )  = If (z + r + 1 But it has been 

l=l 
i 

shown tha t  z%fpn](z) has roots, , which are all 
W~ 

reel, rli  tinct, and negative ( ~ e f ,  25 6 17) ; and 

they occur in  reciprocal pairs: 
w ~ ~ + ~  = 1 / ~ ~ ~ ,  

1 < i 5 n (see Ref. 10, p. 33; Ref. 16, near Eq. - 
( 23; Ref. 24, p. 101). It follows tha t  r:) may be 

taken t o  be - ( w ~ ~  + 1 1 ~ ~ ~ )  > 2 ,  l l i 5 n .  

The value8 of r p ) ,  1 5  I 5  n, 1 5  n 5 7 l rnvr  

been computed as the rvuts of t;hr pu1yi1uo1ia.l~ or 

Lemma 7.1 ( see the Appendix, Tablc AI) . 
n 

Lemma 7.3. Let (1, C ~ , . . ~ , C  1 n (l,riJ, and .. .. I .  --7.- n 
i=l 

net co = 1. Then 

- .  

0 < i 5 n. We have 

2n 2 
= Z cyzn-io (7.5) where (zl + l ) /z l  = -2. Thus 

i s 0  2n 

( r i  - 2) = E c: (-1ln-' 

We note tha t  i f  R&(z) = Jr[pn], then ~ ~ ~ ( 1 1 ~ )  ' i= 1 i = O  

* * n 
R 2 n ( ~ ) ;  thus c and Ca-i, O < i < n. Furthermore, = c  + 2  i 

i n C ( -1)  c ~ - ~ .  
i=l 



Comment. Subsequently, it haa been pointed out 

tha t  the isomorphism ~r-b i s  the  map ttaking R(x) = 
ix 

~ ~ ( e  ), .-n 5 x 5 n; onto the matrix c whose ge- 

neric rm consists of i t s  Fourier c'oefficients. 

The tridiagonal factorization then follows from 

the proof of the Fejer-Riez representation theorem 

(Ref. 26, p. 21). In connection.with Lemma 8; the 

Wiener theorem (Ref. 2'7, p. 246) s ta tes  that  i f  

~ ( x )  does not vanish, c: I, -, I, i s  invertible, 

an estimate of ((c'~/( being provided in Ref. 2'7, p. 

247. The inverse of a general c may be found in 

Ref. 10, p. 26; the matrix of Lemma 7.2 i s  in- 

verted in  Ref. 24, 

( ~ a y ,  1968). The function R,,,(x) associated 

with h was also shown t o  be positive, hence h in- 

vertible, i n  ~choenberg .~  (There R,,,(x)/(& + 1): 

i s  called $8a+2(~) ; see Eqs. I11 (17), I11 (18), 

IV (6),  and IV (7) of Part A, and Section I of 
8 

Part B. ) That min $&+,(x) = w a s  re- 

cently shown in  ~ c h n e n b e r g , ~ ~  Lemma 6. As an 

alternative t o  calculating the integers (2x1 + 1 )  1. 

bLa+') in  order t o  evaluate R,,,(n), i.e., Qr 7.6, 

we have from Eq. 2.19 in  Ref. 28 tha t  

We now observe, using Eqs. 23.2.20 and 23.2.16 of 

Ref. 29, that  

thus g iv ink  the "exceso", Eqo 7.6, of h qaitit: ex- 

p l i c i t l y  together with a good.la*er bound. Here , 

E$ i s  the kth Bernoulli number. 

8. A Use for the Tridiagonal Factorization. 

I f  = $where h has a diagohdly dominant 

factorization, and if ~(l;fl, i s  a t  hand, one can 
+ 

obtain a bound on ((v((, in some circumstances. I n .  

our CMF! we w i l l  need the followhg. 

. + T 
Lemma 8. Suppose v = [vI, v ~ + ~ ,  . . .,v I , J _> I, 

-D 
J 

+ 
and w = twI-n ,..., w I"? sat isfy  v = T ~ T ~  ... rn 
+ J+n 
w, where each 3' i s  the appropriate ( J  -. I - 1 + 

k 
2k) x (J  - I + 1 + 2k) segment of (1, rk) ,  

Then v I"' = v. Suppose further tha t  for  each k, 

1 < k 5 n, there exists m(k) such that  

Then, i f  Irk) > 2, 1 < k < n, 

Proof. For .l < k < n - 

the l a s t  inequality being omitted i f  k = n. 

Comment. The crucial  assumption here (besides di- 

agonal domlnkceof each factor) i s  tha t  as one 
+ 

moves down *om v t o  w one needs an interior maxi- 

mum, Eq. 8.1, a t  each stage;'.this i s  where the 

boundary conditions enter so strongly in  the next 

~ecti .on. 

In the case of interest ,  L& 7.2, all the rk 
n 

are greater than 2. Hence the bound 1/ n ( r p )  - 
k=1 

2) on (lc-lll (c: I, + I,), which i s  estimated by 

Eqs. 8.2 and 7.6, is actually attained a t  the vec- 

t o r  [(-1)']T. This resul t  nsy also be found i n  

Theorem 1 and Lemma 3 of Ref. 10, p . 27 and pp . 33- 

36 

By 3s.  5.3 and 5.4 and the remarks following 

Lemma 5, we have also proved the existence of the 

periodic spline interpolating periodic data given 

a t  equally spaced jointe. Appendix A applies the 

tridiagonal factorization t o  the numerically stable 

calculation of t h i s  qJ,ine. 



9. Proofs of Theorems 1.1 and 1.2; Theorem 9. 

We concentrate f i r s t  on Theorem 1.1. Pick n 

> 1 .  Set l ( j )  = 2 j  - 1, j = 1 ,..., n. Let s 'be  - 
the  spline of degree 2n + 1 interpolating f 'and 

('(j))(l) = , ' satisfying s('(j))(o) = f ( ' ( j ) ) (o) ,  s 

f ( ' ( j ) ) ( l ) ,  1 5  j - < n (section 2). let H be given . 

i n  each [x.  x. ] by polynomial interpolation of 
1-1' 1 

degree 2n + 1 of fi-l, 

j 5 n, 1 5 i < N (Section 2). Equations 7.1 and - 

7.2 suggest applying Lemma 8 t o  bound l~'( j) l l ,  in 
+ 

terms of / l ~ ' ( j ) l ( ~ ,  but Eq. 8.1 c-ot be verified. 

We now extend the  domain of definit ion of e = 's - f' 
and T 

'( ,n 
(f,\) so tha t  ~ q .  8.1 can be ver'ified. 

Let P be the Taylor polynomial of degree 2n + 

1 for  f about x = 0. Define f* = f - P, s* = s - 
P, H* = H - P, and extend t h e i r  domain of defini- 

t ion  by even-reflection i n  0: thus 

2n+2 
We note t h a t  fw E C [-1,1], s* is  a spline 

2n 
of degree 2n + 1 i n  C [-1,1] interpolating P, 

and H* interpolates frc as H interpolated f .  F'ur- 

thermore, eH = H - f is. ident ical  with H* - fw i n  

[0,1] and may be extended t o  [-1,0] by eH = H* - 
.. . 

f*; the same sor t  of extension defines d = s - H 

a n d e o n [ - 1 , 1 ] .  S e t 1  = l ( j ) ,  15 j:n. The 

truncation errors of .Section 6, T If,\), n 5 'k - 
nr 1 

< N - n are identical  with T ( fw,~ , ) ,  n 5 k < N - . n,l 
- n, and ' a re  now extended by tha t  ident i ty  for 

-(N - n) < k 5 N - n. The bounds, Eq. 6.3 or 6.4, 
( 2n+2) 

o n I ~  (f,xc)l i n t e r m s o f l l f  ( )dor I l f  ( 2n+3) 
n, 1 11- 

are unaffected ( in  terms of. I (  * ( I  they w i l l  be af- 
P 

fected by a root of 2). In  other words, we have 

effected an extensLon of E so  7.1 and 7.2 to-:(') = 

[.!;', ..., e ITn, l ( f , x - ( N - n ) ~ * * e ~  

T ~ ,  I[ r, 5-n)1 s&ti.*inP I c!:) 1 - 1 e:') 1 ; k = 

o,o.. ,N and I T  n, 1 ( f , ~ - ~ ) l  ' I ~ ~ , ~ ( f , x ~ ) l ,  k = 

We. now do the same thing a t  the other end, 

using the Taylor polynomial there. . The resu l t  i s  
A I .\ 

the extension o f  Eqs. 7.1 and 7.2 t o  < = . 

2N . . 

T n, 1 ( ~ , X ~ - ~ ) I  satisfying 1 e!:) I = I ekf ) I = 

0 2 . k  5 N '- n; and' I T  (f,xmmk) 1 = .IT (f,xk) 1 ,  
n, ' n, ' 

-9 

n k 5 N. The bounds, Gs. 6.3 or 6.4, on I I T  ("II, 

have been unaffected (and essentially so for  ( ( * ) I  
-+ -9 P 

e s t k t e s ) .  I n  Lemma 8 we now take w = e ( I ) ,  I = 
+ -'('I - ( N - n ) ,  J = 2 N - n ,  v =  ( 2 n + l ) : T  , r k =  

occurring i n  the factorization of (2n + 1) : 

{bL2n'r1), . . . , b l  U8ing L m  7.2, we con- 

clude from Lemma 8 that, since 2 ( ') = 2 ('), f = 

'( 34, 

The r e s t  is  easy. We have the excess, E- = 
n 

I1 

11 (r!") - e ) ,  wa. 7.6 or 7.7. Asruling 
i=l - - 

that  llf(a+2)(1m = M2n+2, we have from Eqs. 603 snd 

9 01 

From Lem& 4, using *he Polya act 2.3, and with 

A ,  j j  = A i = 0,1, we ua.IuiLtiLe EI', CW- 
n , f ( j I J  . - 

eluding Eq. 1.2 with ~ ( l )  = (2n + 1 )  : B' /E~ .  From 
',n 

Corollary 3, using Eq. 2.3, we conclude Eq. 1.1 

with G(l) = GI. ~f f ~*+3ro,l-j we similarly 
',n 

use ~ q s .  6.4a and b, calculate sf from and 

validate nq. 1.2 with d 2 )  = (2n + 1)  : RJ\. (A,.- 
',n 

though f*(&' 3, may jump a t  0 or 1, Eq. 6.9 stiU 

holds. ) ' 

Theorem 1.2 i s  proved 111 sjlui1.s ffsshisn cx- 

cept that  P, s*, and H* are defined by odd re- 

flection because the i r  Ibs t  11 even derivativco 

w i s h  a t  0' and 1. The bounds are different be- 

cause the rolya oct uocd i e  Eq. 2.4; Eqs. h , 5 n ,  h, 

and c replace 6.4a and b in  the argument. 

We now make two observations about t h i s  proof 

which permit the construction of bounds that  may 

be Bmaller than those in  Theorems 1.1 and 1.2 in 



some cases. The f i r s t  observation i s  tha t  the sub- Let 8 be the spline of degree 2n + 1 which inter- 

tractions of the Teylor polynomials a t  either end 

and the subsequent even, or odd, reflections were 

performed only t o  extend s aa a spline s* on [-1,2] 

so tha t  Lemma 8.would apply, and t o  ensure tha t  f* 

had enough continuous derivatives a t  0 and 1 sp 

that Lemma 6 could be applied t o  s* - f*. Thus for 

periodic spline interpolation of a h c t i o n  with 

enough periodic derivatives,16 one may apply Lem- 

m a s  6 and 8 directly t o  s - f .  The second obser- 

vation concerns the Polya interpolations used. 

Lemmas 6'and 8 actually bound (s* - f*)(') a t  the 

joints for  each I 2n + 1. Thus eny Polya inter- 

polation of degree 5 2x1 + 1 may be used' in  the er- 

ror decomposition on any interval, with L e w  3 

and 4 then bounding the two par ts  of the error and 

i t s  derivatives i n  tha t  interval. We conclude 

Theorem 9. Let n _> 1, N > 2n + 1. Let f E C 
2n+l 

[0,1] be such that  f(2"*2T i s  continuous &ccpt, 

perhaps, for jump discontinuities a t  the joints. 

Let s be the spline of degree En + 1 interpolating 

f ,  and (a.) matching i t s  f h s t  n odd derivatives 

a t  0 and 1, (b.) matching i t s  f i r s t  n even d e r i v e  

t ives  a t  0 and 1, or ( c  .) satisfying periodic boundr 

ary conditions ( i f  f i s  periodic with period 1, and 

f E c~+'(--,-), with possible jump discontinuities 

in  f(a+2) a t  the joints).  For 1 = 0, ..., 2n + 1, 

define 

where En i s  defined by Eq, 7*6; f [ i , j ]  i s  any Polya 

set  for 2n + 1 degree Polya interpolation (Section 

2); an8 for  each such Polya set, Gf i s  determined 

by Lemma 3 and Bf by Lemma 4 using ~enrma 6. Then, 

f o r O 5 f z h + 1 ,  

As an example of what can be done with l ess  

smooth iirnctions, we easi ly  show (January, 1968) 

Corollary 9.1. Suppose f i s  continuous, but not 

differentiable, on ( ' 3 ~ )  and periodic with period 

one. Let 

m a  If(x) - f(y)I = 4f,0). 
Ix-YI 5 6 

p l a t e s  f a t  the equally spaced joints and sa t i s f i es  

periodic conditions a t  0 and 1 (or h a s ' i t s  f i r s t  n 

odd, or even, derivatives vanishing a t  0 and 1) .  

Let H be piecewlse ,linear interpolation of f a t  the 

joints,. Then, wlth h = 1/~, 

l l f  - dl, 5 4 f , h ) ,  (9.2) 

and there exis t  Kn such tha t  

from which Eq. 9.2 follows immediately. Further- 

more, 191 5 cu(f,h)/h. s!'), I odd, i s  bounded by 

O[co(f,h)/hf] using Eq. 5.1, Comment 3 af ter  Lemma 

5, suitable reflection as w, and Lemmas 7.2 and 

8. Thus there are constants 4,, such tha t  

Lemma 4 now applies t o  H - s, proving Eq. 9.3. 

For the cubic splines with equally spwed 

joints, t h i s  argument yields Ilf - s((, ( 2 cu(f,h) 

not quite so good as Nordls 714. 4 

Corollary 9.2. Suppose instead that f i s  merely 

bounded. Then the r e s t  of Corollary 9.1 holds un- 

altered. Thus the spline interpolants are uniformly 

bounded fo r  all h. 

10. Error Bounds fo r  Some Cubic Spline Interpol* 

t ions on Arbitrary Meshes. 

Let the joints 0 = xo < xl < ... < % = 1 be . 

given, and s e t  ht = xi - hm = min hi, 
l l i ( N  

max hi. With f also i n  hand, we f i r s t  
% = 1 5 i ( N  

consider the spline, s, which i s  a cubic polynomial 
2 

between the joints, i s  in  C [O,l], and interpolates 

f a t  the joints and f 1  a t  0 and 1. Let H be the 

piecewise cubic which interpolates fi, f i ,  0 5 i - < 

N. 

,All the previouo work becomes, easy for the .  

cubics. The analogue of Relation 5.1-among three . 



successive s;s and the corresponding s y ) ' s  is  

given by de Boor's Eq. 4,17 The analogue of the 

truncation error,  T (f,xi), E& 6.1, i s  easily 
1,l 

computed using Taylor's theorem with in tegral  re- 

mainder. (we have not explored the consequences ' 

of estimating T by using Polya interpolation on 
1 9 1  

instead of Taylor interpolation a t  

x. .) The analogue of the matrix, h, Eq. 7.1, i s  

tr idiagonal and diagonally dominant. Since d' = 
0 

dp; = 0, the extreme value of Id! 1 i s  attained a t  
7. 

an in te r io r  joint. One then concludes, i f  

We repeat i n  simiiar fashion for  the cubic 

spline,  s, which matches f "  a t  0 and 1, and with 

H the piecewise cub2c which interpolates fi,fy, 

0 5 i 5 N. The 'analogue of Relation 5.1 is  now 

given by Welsh e t  a~., ~ q .  4.i8 The resu l t  cor- 

responding t o  E q .  10.1 i s  (since there i s  no par- 

ticular advantage in ass& tha t  f(') exis ts)  

With pi now a bound on d: and we use Lemma 4 

again t o  se t  up the f i r s t  column of the second s a t  

of entries i n  T@le I. The appropriate Green's 

function ,yields the second C O i m .  From .thlx tuld 

2 
Eq. 10.2 we see, -ng other things, tha t  (a.) the 

4 r [hi+lhi lhi(h:+l + hi ) '4, i / (  h i + l  + hi)]/24 mesh r a t i o  only disturbs o(%- ) bounds on /I f ( - 
15 i 5 N-1. 

s(')ll, for  f = p, notriig further that  llr - 5 

L 
(1) Let pi bound d!' and dile1,. Define lid, [ l a  = 

I I ~ ( ~ ) I I  U ~ i n g  LA 11, we bo~mfi. 114( '3 11, 
-'[xi-,'xi I 

by p.  times the appropriate entry i n  the f i r s t  col- 

umn of Table I. Using Lemma 3, with G(x,t) given 

i n  Ref. 30, p. 376, we bound /lep)lli by M4.i iimes 

'he second column. (the numbers are G(l) of Theorem 
111 

1.1). From these two resu l t s  and Eq. 10.1 one may 

- 

0 ( h x ) ~ ; ;  (b.) for  sufficiently smvth meshes, 

4- 1 (1) (1) 
o ( ~ / N  ) bounds can be found on /If . .  .- s / I w ,  
0 < 1.2.3. The thi rd  colAlnnn. again indicates the 

(1) boynds on I(d (1, with a tmifovn mesh; the numbers 

tharca ~ L T O  K(3) of  'Gh~nrem 1.2. 
1,1 

Fin*, we ob6o.n.r~ th.=,+. t . h ~  ~ ~ P R R  developed 

in  Section 9 apply t o  these two types of cubic 

spline intemol8tlon end .Lo cubic periodic spline 

lntorpobation on ~ b l t ~ : . ~ e . r y  mefihafi RS well. Th1.1.s~ 

for these three types of boundary conditions, we 

see tha t  the mesh r a t i o  has no significant effect 

on the convergence ra te  ( in terms of )k) of s(  ' I .  .to 

f"), 0 5 f - < 2. Furthermore, we see that  the 

smaller the local  mesh length, the faster the local 

observe much; fo r  example, (a.) the me8n ra t io ,  cul'lvcrgcnce, I - 0, lo In  th ic  last respef:l, r ~ i h i r  
11-1 

q h , ,  has no ipportant effect  on O(% )-type spline interpolation ac.1;~ somewfiat l ike  cubic Polya 

interpolation, &though with the Polya interpola- 
bounds on /If - sll, and [If ' - s'll,; indeed I l f  - s(li 

tior) it i s  clnly the l oca l  mesh length whioh i s  
' hi~/f(l i) /~,  (44 + h:)/384* (be) for svfficient* 

significant. For exanple, the m s x m  mesh width, - 
(11 smoothmeshes, however, Ild II ,LO(~/N'-~) $, can remain fixed while the local  length, hi, 

11 f 0 5 3. For a uniform mesh, with h = 
goes t o  zero, atid t h e s p l i n e  error wi l l ' go  t o  zero 

2 

(4) - 
l i k e  hi while the Polya error goes t o  h4 This 

' 1 f (1, - M4 or 11f(5)11m = 4, we derive the 
i' 

order of local  convergence for  the spline i s  not t o  

t h i r d  and fourth columns of Table I from Eq. 10.1 
4 

be improved on in  general, for  i f  f (x )  = x i s  in- 

and the  f i r s t  column. The numbers in  columns 3 and terpolated a t  -1, -€, €, 1 by the cubic spline, s, 

4 ar& ~ ( l )  and d2) of Theorem 1.1. 
1,1 

which matches f '  a t  + 1 .as well, then s(0) = c 2  + 
1,1 

o ( E ~ )  . 



Table I. Cubic Splines, (1 11, Bounds. 

f interpolation 

f" interpolation 

o 5hi/384 . . 1a4/384 

1 hi/2 h:/24 h3/8 

2 1 h:/8 h2/4 

3 .  2/hi hi/2 h/2 

* 
100 G1 E 8.0187537 a t  x = 112 2 0.2886751. G. Birkhoff and A. Priver3' have shown subsequently that  

G1 = 431216. 

The author th& Professor Carl de Boor who 

inquired about the existence of tridiagonal fac- 

torization of beid matrices and contributed the 

following argument which sharpens Theorems 2 and 4 

of ~ u b b o t i n . ~  Suppose f E c2"+'(--,i) with 

bounded 2n + lst derivative. According t o  Eq. 1 

of ~ u b b o t i n , ~  if s is  the unique cb-l spline of 

degree 2n interpolating f halfway between the 

uniformly spaced joints, then 

-(*-I) i s  piecewise Let a be a tbnction such tha t  s 

l inear  an? interpolates a t  the joints. - - 
Then the spline interpolating f - s is s - 8. 

Hence 

t ( )  OD - < D h2 I I ~ ( ~ + ~ ) I I ~ ,  giving the 

a d i t i o n d l  p o m r s  of h which are desired. 
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I ,  

Appendix A. Stable Computation of the Spline In- 

terpol&.~. 

(May, 1968). We now apply the tridiagonal 

factorization of Section 7 t o  the pract ical  problem 

of findine m~mc?ri.c+ly . . the geriodic, . . epline of de- 
. . . . 

gree 2n + 1, of period 1, which interpo1ate.s f (el- 

so of period l )  a t  the equslly spaced joints xk = 

k / ~ .   h he calculation of the interpolants involving 

odd or even derivative boundary conditions i s  then 

easi;ly accoqolished - see the end of the ~ppendix.) 

Tn p m t i ~ a w , ,  W* w i ~ h  t.n rnmpi1t.e t h ~ :  coefficients, 

ck, of the. elements of the ?.ocal basis for th'e. 
. . , 7 .  

splines, 
' >  

gk(x) Q & + ~ ( x / . ~  - , k + n + 1) ,. 

such that  the spline, 

0 

sa t i s f i e s  s ( a )  = dckh), o 5 k 5 N.-.I,. a d  i s  

periodic with period 1. Here Qh+2 i s  given hy 

Eq. 5.4 (although we do not know i f  tha t  definit ion 

is the best wey t o  compute'it) . Thus. 'we wish. t o  

rrvlve Lhe Jnllh1.y infini;6c'matrix problem . 

where h i s  given by Eq. 7.1, (but < i, j < :), 
. . 

c =  (..., c-l, co, Cl, ..., CNe1, CN, ... )T, 

T . 
= (...> f-l, fO> fl, .**, fN-l, fN, O *  ; 

while f has period N, t h a t , i s  

. . . _.. 
fWN =. 'fk for  all ki' ' 



It is  clear tha t  finding co, . . ., t+& will- The diegonally daminant [ ~ / 2 ]  + 1 by [ ~ / 2 ]  + 1 * 
suffice, since c a lso has period N. matrix 'I. to, be used dependsqon g and N.'  

We shal l  show the following: the N coeffi- g symmetric, N even: 

cients mey be found by solving two N/2, by ~ / 2  se t s  
r 2 

of l inear  equations, E R C ~  of t h i s  pair of l inear  

equations i s  solved by finding, successively, the 

solutions, of n tridiagonal N/2 by N/2 l inear  equac 

tions (the tridiagonal matrices' are indicated be- 

low). Since each tridiagonal system i s  diagonally , 

dominant, it i s  easily and stably solved numerically ant.smtric, wen: 

by the usual technique. The result ,  then, i s  tha t  

the N coefficients mey be found by a stable numeri- r 

cal. procedure involving about 2nN multiplications, 

nN divisions, and 3nN additions. The resul t  fo r  

the other two boundary conditions i s  essentially 

I * = [ :  ; ;  j 
the same (see the next t o  l a s t  paragraph of t h i s  r 

1 

Appendix). 

To both motivate and prove the general case, 
g symmetric, N odd: 

we consider f i r s t  the tridiagonal case and assume 

tha t  m = r = ( l , r ) ,  with r 5. 2. 

A sequence, c, i s  called periodic with period r* 
N i f ,  and only if, ck = cHN, . all k. A sequence c 

( : ; r ; . = . )  

i s  called [anti]  symmetric i f ,  and only i f ,  c-k = 
l+l 

( - l ) i  ck, i = 0 [ i  = 11, all k. We note tha t  a 

periodic sequence i s  [anti]  symmetric 'if, and only . g antisymmetric, N odd: . 

if ,  it i s  [ant i ]  symmetric about N/2 (or, more 
i 

precisely, %,k = (-1) ck). We note further tha t  

periodicity i s  preserved under I and and tha t  
I = 

[anti]  syn&etry of a periodic sequence is  also . .  

preserved uncle? r and r-l. We assume hereafter 
,!, 

that  dl sequences are periodic with period N. 
r-1 

To solve,. now, the problem . To solve 

where the given g i s  either symmetric or.antisym- giyen a general periodic sequence, g, we f i r s t  de- 
metric, we solve the problem 

fine sequences gmn and godd by 

where 

and set  

ck, g symmetric 
1 5 k 5 [N/21 

-ck, g antisymmetric 

Then we solve the two systeme 

and, upon extending cmn and coda as above, we s e t  



We turn f ina l ly  to  the: solution of the peri-' 

odic interpolation problem, Eq. A.1, 

?. Tn, each 3;c = where, as in  Section 7, b = 1 T 

as  above, we solve, successively, the n problems 

=;("I* - 
even 

+ 
Finding codd from g i n  a similar fashion, we sel; 

odd 

+ -' + 
c = c  + C 

even odd , . . , 

. t o  complete the process. 

As for  finding the spline matching f and i!S 

f i r s t  n odd (or  even) derivatives a t  the ends, we 

f i r s t  s e t  

where P i s  the Polya p o l y n d e l  of demee 2n + 1 

interpolating f and i t s  n odd (or  even) derivatives 

a t ' the  ends. By the existence argument of Section 

2, g i s  t o  be extended by even (odd) reflection i n  

zero and interpolated by a spline (of degree 2n + 1 

and of period two) on [-I, 11. It should now he 

' clear that  the numerical procedure for  finding 

t h i s  s p l h e  o - P w i l l  be t o  solve 

* 
where,, Jk i s  now the N. + I. by N + 1 analogue of Eq. 

~ . 2 , ( o r  EQ. Ao3 for  the even derivative boundary 
-+ 'I: 3 

oonditaonn), c = ( s ~ ,  nl, ..., cN) , and a = 

T 
(q,,.gl, * a * ,  

. . 

We haw computed the r(") for  1 5 n 2 7. They 
k 

are given i n  Table AI. 

- . Table A I .  r("). ' 
. , k.. .. 

5 Notation: 2.34 + 5 uleeuis C.34 X 10 . 
1 2 

4.0 'PO 

2.753p 49234 04039 +o 2.3266 95076 5959b +L 

2.4034 60066 11789 +O 8.2821 82046 85356 +O 

2.2527 41294 01893 +O 5.1583 67231 97466 +o 

2.1735 16654 602'74 +O 3.9462 14873 06176 +0 

2.1266 10293 31673 +O 3.3351 43517 76947 +u 

2.05165 06956 19066 10 e.9790 42678 09236 +O 



Appendix B. A Local Basis for  Odd Derivative Polya The polynomials, P (Eqs. B.l and B.2), are  
.I 

Interpolation. constructed from the Euler polynomials, E,(x), and 

( ~ u n e ,  1968). Eqs. B.6. B.7 below define the Bernoulli polynomials, Bm(x). (see Ref. 29, 

n + 1 polynomials, P.j, of degree 2n + 1, such that  Section 23 and i t s  references). To construct these 
.. 

P ' s  we f i r s t  define a 
~ ~ ( 0 )  = 1, P0(l) = 0; 3 .. . 

P ( ~ ' - ~ ) ( o )  = pFL- l ) (1 )  ; 0, 1 - < - < n 
d[f(x).I = !id4 

taking the function f onto the function g ,such tha t  
and, for 1 < j 5 n 

g" = f in [0,11, g(0) = g(1) = 0. 
P (0) = ~ ~ ( 1 )  = 0; 

P '2f-1)(0) = 6jf,  P(2f-1)(1) = 0, 1 5 l < We note 

' I .  
' &[I] = *IE~(X)I  = E2(x)/2: 

We n o t e  in passing that  these polynomials lead 

immediately t o  the construction of the polynomial, 
& [ ~ ~ ~ ( x ) / ( 2 k )  :I = E21rc2(x)/(2k+2) :, k 1 0; and 

P, required in the existence proof of Section 2 and + [ ~ ~ ~ - ~ ( x ) / ( 2 k - l )  :I = ~ ~ - + ~ ( x ) / ( 2 ~ 1 )  :, k 1.1- 
the next t o  l a s t  paragraph of Appendix A. They al- 

so are ident ical  with the Jr used in  the proof of Turning t o  construct Po(x) ( ~ q .  B.1) we assume 
03 

Lema 4 for  the Polya conditions given by Eq. 2.3. 

We now define, for  0 < k 5 N and 1 5  j 5 n 
P 1 ( x )  a Then 

g O k ( ~ )  = 
e , otherwise 

1 
P?~(X) = d[pi3)(x) 1 = a0Ea(x)/(2n) : 

pjC(x-xJ/h1, 5 < x < 5 + h 

gjk(x) = h2'-' {-: [ (  s -x ) /h l ,  5 - h  5 x - < 5 Hence 

X 
0 , otherwise. po(x) = ao. I Em( t )  at/%: 

(Be41 1 

These (n  + 1 ) ( ~  + 1)  functions form a basis = ao[ E ~ + ~ ( x )  - E2n+l( 1 )  I/( 2n+l) : 

for  the vector space of all piecewise polynomials, 
where a. is picked so that  P (0) = 1. 

I I (X) ,  of degree < 2n + 1 having joints x0, O .  ., 5' 
9 

Thus, from Ref. 29, formula 23.1.X), 
k / ~ ,  ...,% such that  H and H("-'), 1 < j < n are 

continuous. This basis is  a local  basis in the P,(x) = I2 - L + ~ ) E ~ ~ + ~ ( X ) / (  2 2 n + 2 - l ~ / ~ a I . p ~ / 4  

sense that  each element vanishes identically out- 
(B.6) 

side an interval of width ( a t  most) 2h. 'Fkther-  

more, Polya interpolation, H, of f and i ts  f i r s t  n 
where E is  the 2n + lSt Euler polynomial and 

2n+l 
B,,, is  the 2n + 2nd BernovUi number. 

odd derivatives a t  the joints, i s  given.by 

N n 
To find P (x) (Eq. ~ . 2 )  we assume . 

3 
H(x) = k=o ' [f(5)gok(x) + j=l ' f(2j-1)(xk)ljk(x)] ' p( 2n+3.) 

j 
(x) = ad. 

(J3.5) 

Then 
As an application we shall see that  the in- 

tegral  of H yields the Euler-Msclaurin formula for  

the integral  of f ( the one which stops with the 

a - lst derivative of f ) .  ~ a x i m m  and l2 norm 

error estimates follow from Lemma 3 and Example 3.4 

of t h i s  report and from Eqs. 3 and 4 uf Swartz. 
12 



where a. is  picked so t h a t  P (1) = 0 (see Ref. 29, 
i 

formula'23.1.20). Here E ~ ( X ( . )  [ B ~ ( Y ) ]  i~ the mth 

N e r  [ ~ e r n o f l i ]  poiyn~mlal. 

Finally, t o  verify tha t  the in tegral  df the 

odd derivative Polya interpolant of f, Eq. Bb5, 

yields the Euler-Maclaurin formula (terminated 

with the f (2n-1) end corrections) we observe from 

Eqs. B.3, ~ . 4 ,  B.6, and B.7 that  

T ~ U S ,  i f  H i o  given by Eq. B.5, 

For W t h e r  discussion of some connections 

between splines, Bernoulli polynomials, the Euler- 

Maclaurin formla,  and best quadrature formulas, 

we refer  the reader t o  I. J. Schoenberg's "On 

Monosplines of Least Deviation and Best Q.uadrature 

Rnmil  RP, " ST AM .Tniimd nn Ni~meri ~ 8 . 1  An~.l yfii s, 

Volume 2, 1965, pp. 144-I@. 


