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Abstract. In this paper, we consider reachability games over general hybrid systems,
and distinguish between two possible observation frameworks for those games: either the
precise dynamics of the system is seen by the players (this is the perfect observation
framework), or only the starting point and the delays are known by the players (this is
the partial observation framework). In the first more classical framework, we show that
time-abstract bisimulation is not adequate for solving this problem, although it is sufficient
in the case of timed automata. That is why we consider an other equivalence, namely the
suffix equivalence based on the encoding of trajectories through words. We show that this
suffix equivalence is in general a correct abstraction for games. We apply this result to o-
minimal hybrid systems, and get decidability and computability results in this framework.
For the second framework which assumes a partial observation of the dynamics of the
system, we propose another abstraction, called the superword encoding, which is suitable
to solve the games under that assumption. In that framework, we also provide decidability
and computability results.

1. Introduction

Games over hybrid systems. Hybrid systems are finite-state machines equipped with a con-
tinuous dynamics. In the last thirty years, formal verification of such systems has become
a very active field of research in computer science, with numerous success stories. In this
context, hybrid automata, an extension of timed automata [AD90, AD94], have been inten-
sively studied [Hen95, Hen96], and decidable subclasses of hybrid systems have been drawn
like initialized rectangular hybrid automata [Hen96]. More recently, games over hybrid sys-
tems have appeared as a new interesting and active field of research since, among others,
they correspond to a formulation of control problems, the counterpart of model checking
for open systems, i.e., systems embedded in a possibly reactive environment. In this con-
text, many results have already been obtained, like the (un)decidability of control problems
for hybrid automata [HHM99], or (semi-)algorithms for solving such problems [dAHM01].
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Given a system S (with controllable and uncontrollable actions) and a property ϕ, con-
trolling the system means building another system C (which can only enforce controllable
actions), called the controller, such that S ‖ C (the system S guided by the controller C)
satisfies the property ϕ. In our context, the property is a reachability property and our aim
is to build a controller enforcing a given location of the system, whatever the environment
does (which plays with the uncontrollable actions).

O-minimal hybrid systems. O-minimal hybrid systems have been first proposed in [LPS00]
as an interesting class of systems (see [vdD98] for an overview of properties of o-minimal
structures). They have very rich continuous dynamics, but limited discrete steps (at each
discrete step, all variables have to be reset, independently from their initial values). This al-
lows to decouple the continuous and discrete components of the hybrid system (see [LPS00]).
Thus, properties of a global o-minimal system can be deduced directly from properties of
the continuous parts of the system. Since the introductory paper [LPS00], several works
have considered o-minimal hybrid systems [Dav99, BMRT04, BM05, KV04, KV06], mostly
focusing on abstractions of such systems, on reachability properties, and on bisimulation
properties.

Word encoding. In [BMRT04], an encoding of trajectories with words has been proposed
in order to prove the existence of finite bisimulations for o-minimal hybrid systems (see
also [BM05]). Let us mention that this technique has been used in [KV04, KV06] in order
to provide an exponential bound on the size of the finite bisimulation in the case of pfaffian
hybrid systems. Let us also notice that similar techniques already appeared in the literature,
see for instance the notion of signature in [ASY01]. Different word encoding techniques have
been studied in a wider context in [Bri07]. Recently in [KRS07], the authors propose a new
algorithm for counter-example guided abstraction and refinement on hybrid systems, based
on use a word encoding approach. In this paper we use the so-called suffix encoding, which
was shown to be in general too fine to provide the coarsest time-abstract bisimulation.
However, based on this encoding, a semi-algorithm has been proposed in [Bri07, Bri06] for
computing a time-abstract bisimulation, and it terminates in the case of o-minimal hybrid
systems.

Contributions of this paper. In this paper, we focus on games over hybrid systems. We de-
scribe two rather natural frameworks for such games, one assuming a perfect observation of
the dynamics of the system, and another one assuming a partial observation of the dynamics.
For the first framework, we use the above-mentioned suffix word encoding of trajectories for
giving sufficient computability conditions for the winning states of a game. Time-abstract
bisimulation is an equivalence relation which is correct with respect to reachability prop-
erties on hybrid systems [AHLP00] and with respect to control reachability properties on
timed automata [AMPS98]. Here, we show that the time-abstract bisimulation is not cor-
rect anymore for solving control problems on a general class of hybrid systems: we exhibit
a system in which two states are time-abstract bisimilar, but one of the states is winning
and the other is not. Using the suffix encoding of trajectories of [Bri07], we prove that,
in the perfect observation framework, two states having the same suffixes are equivalently
winning or losing (this is a stronger condition than the one for the time-abstract bisimu-
lation). We then focus on o-minimal hybrid games and prove that, under the assumption
that the theory of the underlying o-minimal structure is decidable, the control problem can
be solved and that winning states and winning strategies can be computed. Regarding the
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partial observation framework, we provide a new encoding technique, the so-called super-
word encoding, which turns out to be sound for the control under partial observation of the
dynamics, and which allows to prove decidability and computability results similar to those
in the perfect observation framework.

Related work. The most relevant related works are those dealing with hybrid games [HHM99,
dAHM01]. However, the framework of these papers is pretty different from ours:

(1) In their framework, time is considered as a discrete action, and once action “let time
elapse” has been chosen, it is not possible to bound the time elapsing, which is quite
restrictive. For instance, the timed game of Figure 1 is winning from (ℓ0, x = 0) in
our framework (the strategy is to wait some amount of time t ∈ [2, 5] and to take the
controllable action c), whereas it is not winning in their framework (once x is above
5, it is no more possible to take the transition and reach the winning location ℓ1, and
there is no way to impose a delay within [2, 5]). This yields significant differences in
the properties: in their framework, game bisimulation is one of the tools for solving
the games, and as stated by [HHM99, Prop. 1], the classical bisimulation tool is
then sufficient to solve games. On the contrary, in our framework, the notion of
bisimulation relevant to our model (time-abstract bisimulation) is not correct for
solving games, as will be explored in this paper.

ℓ0 ℓ1
2 6 x 6 5, c

Figure 1: A simple game

(2) Our games are control games, they are thus asymmetric, which is not the case of the
games in the above-mentioned works; in our framework, the environment is more
powerful than the controller in that it can outstrip the controller and do an action
right before the controller decides to do a controllable action.

Let us also mention the paper [WT97] on control of linear hybrid automata. In [WT97] the
author proposes a semidecision procedure for synthesizing controllers for such automata.
No general decidability result is given in this paper.

Plan of the paper. In Section 2, we recall results about finite games and bisimulation. In
Section 3, we define the games over dynamical systems (for both perfect information and
partial observation), and we show that time-abstract bisimulation is not correct for solving
them. The word encoding techniques are presented in Section 4 and used in Section 5
to present a general framework for solving games over dynamical systems. We apply and
extend these results in Section 6 for computing winning states and winning strategies in
o-minimal games. In the paper, we often only develop technical details of the partial
observation framework, which actually extends the perfect observation framework.

Part of the results presented in this paper have been published in [BBC06] (the de-
cidability of the control reachability problem and the synthesis of strategies for o-minimal
hybrid systems). In this paper, we give full proofs of those results, and extend them to a
natural partial observation framework.
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2. Classical Finite Games

In this section, we recall some basic definitions and results concerning bisimulations on
a transition system (see [Acz88, Mil89, Cau95, Hen95] for general references) and classical
(untimed) games.

2.1. Classical Games. We present here the definitions of the problem of control on a finite
graph (also called finite game) and the notion of strategy (see [GTW02] for an overview
on games). These definitions are classical and will be extended to real-time systems in the
next section.

Definition 2.1. A finite automaton is a tuple A = (Q,Goal,Σ, δ) where Q is a finite set
of locations, Goal ⊆ Q is a subset of winning locations, Σ is a finite set of actions, and δ
consists of a finite number of transitions (q, a, q′) ∈ Q×Σ×Q.

Definition 2.2. A transition system T = (Q,Σ,→) consists of a set of states Q (which
may be uncountable), Σ an alphabet of events, and → ⊆ Q× Σ×Q a transition relation.

A transition (q1, a, q2) ∈ → is also denoted by q1
a
−→ q2. A transition system is said

finite if Q is finite. Note that a finite automaton canonically defines a transition system TA.

A run of A is a finite or infinite sequence q0
a1−→ q1

a2−→ . . . of the transition system TA.

Such a run is said winning if qi ∈ Goal for some i. If ρ is a finite run q0
a1−→ q1

a2−→ . . .
an−→ qn

we define last(ρ) = qn. We note Runsf (A) the set of finite runs in A.

Definition 2.3. A finite game is a finite automaton (Q,Goal,Σ, δ) where Σ is partitioned
into two subsets Σc and Σu corresponding to controllable and uncontrollable actions.

We will consider control games. Informally there are two players in such a game: the
controller and the environment. The actions of Σc belong to the controller and the actions
of Σu belong to the environment. At each step, the controller proposes a controllable
action which corresponds to the action he wants to perform; then either this action or an
uncontrollable action is done and the automaton goes into one of the next states1. In the
sequel, we will only consider reachability games : the controller wants to reach the Goal
states and the environment wants to prevent him from doing so.

Definition 2.4. A strategy is a partial function λ from Runsf (A) to Σc such that for all
runs ρ ∈ Runsf (A), if λ(ρ) is defined, then it is enabled in last(ρ).

Let ρ = q0
a1−→ q1

a2−→ . . . be a run, and set for every i, ρi the prefix of length i of ρ. The
run ρ is said compatible with a strategy λ when for all i, ai+1 = λ(ρi) or ai+1 ∈ Σu. A run
ρ is said maximal w.r.t. a strategy λ if it is infinite or if λ(ρ) is not defined.

A strategy λ is winning from a state q if all maximal runs starting in q compatible with
λ are winning.

1There may be several next states as the game is not supposed to be deterministic, and we assume that
the environment chooses the next state in case there are several.
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2.2. Bisimulation. We recall now the definition of bisimulation for transition systems:

Definition 2.5 ([Mil89, Cau95]). Given a transition system T = (Q,Σ,→), a bisimulation
for T is an equivalence relation ∼ ⊆ Q×Q such that ∀q1, q

′
1, q2 ∈ Q, ∀a ∈ Σ,

(
q1 ∼ q′1 and q1

a
−→ q2

)
⇒

(
∃q′2 q2 ∼ q′2 and q′1

a
−→ q′2

)

Moreover, if P is a partition of Q and if ∼ respects P (i.e., q ∈ P and q ∼ q′ with P ∈ P
implies q′ ∈ P ), we say that ∼ is compatible with P.

2.3. Game and Bisimulation in the Untimed Case. In the untimed framework, bisim-
ulation is a commonly used technique to abstract games: bisimilar states can be identified
in the control problem. This is stated in the next folklore theorem, for which we provide a
proof.

Theorem 2.6. Let A = (Q,Goal,Σ, δ) be a finite game, q, q′ ∈ Q and ∼ a bisimulation
compatible with Goal. Then, there is a winning strategy from q iff there is a winning strategy
from q′.

Proof. Assume that ∼ is a bisimulation relation compatible with Goal and such that q ∼ q′.
Assume furthermore that λ is a winning strategy from q. We will define a strategy λ′ that
will be winning from q′. To do that we will map finite runs starting in q′ to finite runs
starting in q, so that λ′ will mimick λ through this mapping. We note f this mapping, and
start by setting f(q′) = q. We then proceed inductively as follows. If λ(f(̺′)) is defined,

we set λ′(̺′) = λ(f(̺′)) and for every run ̺′
λ′(̺′))
−−−−→ q̃′ (which is compatible with λ′) there

is a run f(̺′)
λ(̺)
−−→ q̃ which is compatible with λ and such that q̃ ∼ q̃′. We then define

f(̺′
λ′(̺′)
−−−→ q̃′) = f(̺′)

λ(̺)
−−→ q̃. The strategy λ′ is winning from q′ since ∼ is compatible

with Goal.

This theorem remains true for infinite-state discrete games [HHM99, dAHM01] and
can be used to solve them: if an infinite-state game has a bisimulation of finite index, the
control problem can be reduced to a control problem over a finite graph. Real-time control
problems cannot be seen as classical infinite-state games because of the special nature of
the time-elapsing action. which does not belong to one of the players. It seems nevertheless
natural to try to adapt the bisimulation approach to solve real-time control problems.

3. Games over Dynamical Systems

3.1. Dynamical Systems. Let M be a structure. When we say that some relation, subset
or function is definable, we mean it is first-order definable in the structure M. A general
reference for first-order logic is [Hod97]. We denote by Th(M) the theory of M. In this
paper we only consider structures M that are expansions of ordered groups, we also assume
that the structureM contains two symbols of constants, i.e., M = 〈M,+, 0, 1, <, . . .〉 where
+ is the group operation and w.l.o.g. we assume that 0 < 1.

Definition 3.1. A dynamical system is a pair (M, γ) where:

• M = 〈M,+, 0, 1, <, . . .〉 is an expansion of an ordered group,
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• γ : V1 × V → V2 is a function definable in M (where V1 ⊆ Mk1 , V ⊆ M and
V2 ⊆ Mk2).2

The function γ is called the dynamics of the system.

Classically, when M is the field of the reals, we see V as the time, V1 as the input space,
V1 × V as the space-time and V2 as the (output) space. We keep this terminology in the
more general context of a structure M.

The definition of dynamical system encompasses a lot of different behaviors. Let us
first give a simple example, several others will be presented later.

Example 3.2. We can recover the continuous dynamics of timed automata (see [AD94]).
In this case, we have that M = 〈R, <,+, 0, 1〉 and the dynamics γ : Rn × [0,+∞[→ Rn is
defined by γ(x1, . . . , xn, t) = (x1 + t, . . . , xn + t).

Definition 3.3. If we fix a point x ∈ V1, the set Γx = {γ(x, t) | t ∈ M+} ⊆ V2 is called the
trajectory determined by x.

We define a transition system associated with the dynamical system. This definition
is an adaptation to our context of the classical continuous transition system in the case of
hybrid systems (see [LPS00] for example).

Definition 3.4. Given (M, γ) a dynamical system, we define a transition system Tγ =
(Q,Σ,→γ) associated with the dynamical system by:

• the set Q of states is V2;
• the set Σ of events is M+ = {τ ∈ M | τ > 0};

• the transition relation y1
t
−→γ y2 is defined by:

∃x ∈ V1, ∃t1, t2 ∈ M+ such that t1 6 t2,

γ(x, t1) = y1, γ(x, t2) = y2 and t = t2 − t1

3.2. M-Games Under Perfect Observation. In this subsection, we defineM-automata,
which are automata with guards, resets and continuous dynamics definable in the M-
structure. We then introduce our model of dynamical game which is an M-automaton with
two sets of actions, one for each player; we finally express in terms of winning strategy the
main problem we will be interested in, the control problem in a class C ofM-automata under
perfect observation. The partial observation framework will be discussed in Subsection 3.3.

Definition 3.5 (M-automaton). AnM-automaton A is a tuple (M, Q,Goal,Σ, δ, γ) where
M = 〈M,+, 0, 1, <, . . .〉 is an expansion of an ordered group, Q is a finite set of locations,
Goal ⊆ Q is a subset of winning locations, Σ is a finite set of actions, δ consists in a finite
number of transitions (q, g, a,R, q′) ∈ Q × 2V2 × Σ × (V2 → 2V2) × Q where g and R are
definable in M, and γ maps every location q ∈ Q to a dynamics γq : V1 × V → V2.

We use a general definition for resets: a reset R is indeed a general function from V2 to
2V2 , which may correspond to a non-deterministic update. If the current state is (q, y) the
system will jump to some (q′, y′) with y′ ∈ R(y).

An M-automaton A = (M, Q,Goal,Σ, δ, γ) defines a mixed transition system TA =
(S,Γ,→) where:

2We use these notations in the rest of the paper.
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• the set S of states is Q× V2;
• the set Γ of labels is M+ ∪ Σ, (where M+ = {τ ∈ M | τ > 0});

• the transition relation (q, y)
e
−→ (q′, y′) is defined when:

– e ∈ Σ, and there exists (q, g, e,R, q′) ∈ δ with y ∈ g and y′ ∈ R(y), or

– e ∈ M+, q = q′, and y
e
−→γq y′ where γq is the dynamic in location q.

In the sequel, we will focus on behaviors of M-automata which alternate between
continuous transitions and discrete transitions.

We will also need more precise notions of transitions. When (q, y)
τ
−→ (q, y′) with

τ ∈ M+, this is due to some choice of (x, t) ∈ V1 × V such that γq(x, t) = y. We say

that (q, y)
τ
−→x,t (q, y′) if γq(x, t) = y and γq(x, t + τ) = y′. To ease the reading of the

paper, we will sometimes write (q, x, t, y)
τ
−→ (q, x, t + τ, y′) for (q, y)

τ
−→x,t (q, y

′). We say
that an action (τ, a) ∈ M+ × Σ is enabled in a state (q, x, t, y) if there exists (q′, x′, t′, y′)

and (q′′, x′′, t′′, y′′) such that (q, x, t, y)
τ
−→ (q′, x′, t′, y′)

a
−→ (q′′, x′′, t′′, y′′). We then write

(q, x, t, y)
τ,a
−−→ (q′′, x′′, t′′, y′′).

A run of A is a finite or infinite sequence (q0, x0, t0, y0)
τ1,a1
−−−→ (q1, x1, t1, y1) . . . Such a

run is said winning if qi ∈ Goal for some i.

We note Runsf (A) the set of finite runs in A. If ρ is a finite run (q0, x0, t0, y0)
τ1,a1
−−−→

. . .
τn,an
−−−→ (qn, xn, tn, yn) we define last(ρ) = (qn, xn, tn, yn).

Definition 3.6 (M-game). An M-game is an M-automaton (M, Q,Goal,Σ, δ, γ) where Σ
is partitioned into two subsets Σc and Σu corresponding to controllable and uncontrollable
actions.

Definition 3.7 (Strategy). A strategy3 is a partial function λ from Runsf (A) to M+ ×Σc

such that for all runs ρ in Runsf (A), if λ(ρ) is defined, then it is enabled in last(ρ).

The strategy tells what is to be done at the current moment: at each instant it tells
what delay we will wait and which controllable action will be taken after this delay. Note
that the environment may have to choose between several edges, each labeled by the action
given by the strategy (because the original game is not supposed to be deterministic).

A strategy λ is said memoryless if for all finite runs ρ and ρ′, last(ρ) = last(ρ′) implies

λ(ρ) = λ(ρ′). Let ρ = (q0, x0, t0, y0)
τ1,a1
−−−→ . . . be a run, and set for every i, ρi the prefix of

length i of ρ. The run ρ is said consistent with a strategy λ when for all i, if λ(ρi) = (τ, a)
then either τi+1 = τ and ai+1 = a, or τi+1 6 τ and ai+1 ∈ Σu. A run ρ is said maximal
w.r.t. a strategy λ if it is infinite or if λ(ρ) is not defined. A strategy λ is winning from
a state (q,y) if for all (x, t) such that γ(x, t) = y, all maximal runs starting in (q, x, t, y)
compatible with λ are winning. The set of winning states is the set of states from which
there is a winning strategy.

We can now define the control problems we will study.

Problem 3.8 (Control problem under perfect observation in a class C of M-automata).
Given an M-game A ∈ C, and a definable initial state (q, y), determine whether there exists
a winning strategy in A from (q, y).

3In the context of control problems, a strategy is also called a controller.
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Problem 3.9 (Controller synthesis under perfect observation in a class C of M-automata).
Given an M-game A ∈ C, and a definable initial state (q, y), determine whether there exists
a winning strategy, and compute such a strategy if possible.4

Example 3.10. Let us consider the M-game A = (M, Q,Goal,Σ, δ, γ) (depicted in Fig. 2)
where M = 〈R,+, ·, 0, 1, <, sin, cos〉, Q = {q1, q2, q3}, Goal = {q2}, Σ = Σc ∪ Σu where
Σc = {c} (resp. Σu = {u}) is the set of controllable (resp. uncontrollable) actions. The
dynamics in q1, γq1 : R

2 × [0, 2π] × R → R2 is defined as follows.

γq1(x1, x2, θ, t) =

{
(t. cos(θ), t. sin(θ)) if (x1, x2) = (0, 0),

(x1 + t.x1, x2 + t.x2) if (x1, x2) 6= (0, 0).

We associate with this dynamical system the partition P = {A,B,C} where A = {(0, 0)},
B = {

(
θ cos(θ), θ sin(θ)

)
| 0 < θ 6 2π} and C = R2 \ (A ∪ C). Let us call piece B the

spiral (see Figure 2(b)). The guard gB corresponds to B-states (i.e., points on the spiral)
and the guard gC corresponds to C-states (points not on the spiral and different from the
origin). In this example, the point (q1, (0, 0)) is a winning state. Indeed a winning strategy

q1

q2

q3

gC,
c

gB , u

(a) The M-game A

A
B

(b) Dynamics in q1

Figure 2: Time-abstract bisimulation does not preserve winning states

is given by λ(q1, 0, 0, θ, t) = (θ2 , c) where c consists in taking the transition leading to state
q2 (which is winning).

3.3. M-Games Under Partial Observation. Subsection 3.2, we have assumed that from
a given point, the environment chooses the continuous trajectory followed by the game, and
the controller reacts accordingly. In this section, we consider partial observation of the
dynamics: the trajectory is not known by the controller, and its strategy may depend only
on the current point. In particular, this framework naturally models drift of clocks where
the slopes of the clocks lies within an interval [Pur98, ALM05]. Note that our partial
observation assumption concerns the dynamics of the system, not the actions which are
performed. This has to be contrasted with the notion of partial observation studied in the
framework of finite systems in [AVW03] or in the context of timed systems in [BDMP03]

4In this definition, ‘compute a strategy’ means ‘give a formula for the strategy’. In particular, a strategy
which is computable is definable in the theory.
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where the partial observation assumption concerns actions which are done, and not the
dynamics (indeed, in these models, there is no real choice for the dynamics; It is completely
determined by the point in the state-space). In order to formalize our partial observation
framework, we need to adapt notions such as strategy in this new setting. First, we define
what we call observation of a given run.

Definition 3.11 (Observation of a run). Let ρ = (q0, x0, t0, y0)
τ1,a1
−−→ . . .

τn,an
−−−→ (qn, xn, tn, yn)

be a finite run. The observation of ρ, denoted obs(ρ) is the sequence (q0, y0)
τ1,a1
−−−→ . . .

τn,an
−−−→

(qn, yn).

Definition 3.12 (Strategy under partial observation). A strategy λ is said under partial
observation if for all finite runs ρ, ρ′, obs(ρ) = obs(ρ′) implies λ(ρ) = λ(ρ′).

All other notions, like memoryless strategies, consistency, winning strategies, winning
states, etc... naturally extend in this new context. In this setting, we will consider the two
following problems.

Problem 3.13 (Control problem under partial observation in a class C of M-automata).
Given an M-game A ∈ C, and a definable initial state (q, y), determine whether there exists
a winning strategy under partial observation in A from (q, y).

Problem 3.14 (Controller synthesis under partial observation in a class C ofM-automata).
Given an M-game A ∈ C, and a definable initial state (q, y), determine whether there exists
a winning strategy under partial observation in A from (q, y), and compute such a strategy
if possible.

Example 3.15. We consider again the spiral example (Example 3.10). We showed that
under perfect observation this M-game has a winning strategy in (q1, (0, 0)) given by
λ(q1, 0, 0, θ, t) = (θ2 , c). Note that this strategy depends on the precise trajectory (parame-
ter θ). Moreover, one can show that there is no winning strategy under partial observation
for this game: such a strategy may only depend on the current point, and in this precise
example, whatever action (τ, a) the controller proposes in (q1, (0, 0)), there is a trajectory
which reaches a bad state (i.e., points on the spiral) before τ .

The previous example shows that some games can be winning under perfect observation
whereas they are not winning under partial observation. Nevertheless, considering a new
dynamics which will roughly inform the controller of the current trajectory, we can see the
perfect observation control problem as a special case of the partial observation framework.
This is stated by the following proposition :

Problem 3.16. Given an M-game A1 and a state (q, y) of A1, we can effectively con-
struct an M-game A2 and a state (q′, y′) of A2 such that there exists a winning strategy
under perfect observation in A1 from (q, y) iff there exists a winning strategy under partial
observation in A2 from (q′, y′).

Proof. Let A1 = (M, Q,Goal,Σ, δ, γ) where γ : V1 × V → V2. We define V ′
2 = {(x, t, y) ∈

V1×V ×V2 | γ(x, t) = y} and for q ∈ Q, γ′q : V1×V → V ′
2 such that γ′q(x, t) = (x, t, γq(x, t)).

The dynamics γ′ behaves exactly like γ but “gives” to the controller the current trajectory
as this information is stored in the state space V ′

2 .
We then use A2 = (M, Q,Goal,Σ, δ′, γ′), where δ′ is the transition relation δ adapted to

the new states V ′
2 : if (q1, g, a,R, q2) ∈ δ then (q1, g

′, a,R′, q2) ∈ δ′ where g′ = {(x, t, γ(x, t)) |
γ(x, t) ∈ g} and for all (x, t) ∈ V1×V , R′(γ(x, t)) = {(x′, t′, γ(x′, t′)) | γ(x′, t′) ∈ R(γ(x, t))}.
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W.l.o.g. we can suppose that there exists a unique (x0, t0) ∈ V1×V such that γ(x0, t0) =
y (if necessary, we add a location with constant continuous dynamics pointing to the actual
location of y). Then there exists a winning strategy under perfect observation in A1 from
(q, y) iff there exists a winning strategy under partial observation in A2 from (q, (x0, t0, y)).

From the above proposition we get that any definability, decidability, etc result in the
partial observation framework will hold in the perfect observation framework.

3.4. M-Games and Bisimulation. Time-abstract bisimulation [Hen95, Dav99, AHLP00]
is a sufficient behavioral relation to check reachability properties of hybrid systems, and
in particular of M-automata [Bri07]. Moreover, it has been shown that it is also a suf-
ficient behavioral relation in order to solve control problems in the framework of timed
automata [AMPS98]. However, when considering wider classes of hybrid systems, we will
see that this tool is not sufficient anymore for solving control problems in the perfect ob-
servation framework.

Definition 3.17. Given a mixed transition system T = (S,Γ,→), a time-abstract bisimu-
lation for T is an equivalence relation ∼ ⊆ S×S such that ∀q1, q

′
1, q2 ∈ S, the two following

conditions are satisfied:

∀a ∈ Σ,
(
q1 ∼ q′1 and q1

a
−→ q2

)
⇒(

∃q′2 ∈ S s.t. q2 ∼ q′2 and q′1
a
−→ q′2

)

∀τ ∈ M+,
(
q1 ∼ q′1 and q1

τ
−→ q2

)
⇒

(
∃τ ′ ∈ M+, ∃q′2 ∈ S s.t. q2 ∼ q′2 and q′1

τ ′
−→ q′2

)

Example 3.18. In this example, we assume a perfect observation framework. Let us
consider the M-game A = (M, Q,Goal,Σ, δ, γ) where M = 〈R, <,+, 0, 1,≡2〉 (≡2 denotes
the “modulo 2” relation), Q = {q1, q2, q3}, Goal = {q2}, Σ = Σc∪Σu where Σc = {c} (resp.
Σu = {u}) is the set of controllable (resp. uncontrollable) actions. The dynamics in q1,
γq1 : R+ × {0, 1} × R+ → R+ × {0, 1} is defined as γq1(x1, x2, t) = (x1 + t, x2).

q1

q2

q3

gC,
c

gB , u

(a) The M-game A

x2 = 0
A C B C B

x2 = 1
A B C B C

(b) Dynamics in q1

Figure 3: Time-abstract bisimulation does not preserve winning states

We consider the partition depicted on Figure 3(b). The guard gC is satisfied on C-states
and the guard gB is satisfied on B-states. Note that this partition is compatible with Goal
and w.r.t. discrete transitions.
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In this game, the controller can win when it enters a C-state by performing action c and
it loses when entering a B-state because it cannot prevent the environment from performing
a u and going in the losing state q3.

It follows that the state s1 = (q1, (0, 1)) is losing, whereas the state s2 = (q1, (0, 0)) is
winning. However, the equivalence relation induced by the partition {A,B,C} is a time-
abstract bisimulation: the two states s1 and s2 are thus time-abstract bisimilar, but not
equivalent for the game. It follows that time-abstract bisimulation is not correct for solving
control problems, in the sense that a time-abstract bisimulation cannot always distinguish
between winning and losing states.

Problem 3.19. Let M be a structure and A an M-game. A partition respecting Goal
and inducing a time-abstract bisimulation on Q× V2 does not necessarily respect the set of
winning states of A.

4. The Suffix and the Superword Abstractions

In this section we explain how to encode symbolically trajectories of dynamical systems
with “words”. We will present two different encodings (or abstractions) depending on the
observation framework (perfect or partial) we assume.

4.1. Perfect Observation and the Suffix Abstraction. In this subsection, we review
the word encoding technique introduced in [BMRT04] in order to study o-minimal hybrid
systems. We focus on the suffix partition introduced in [Bri07]. This encoding will be
suitable in order to study control reachability problem in the perfect observation framework
(see Subsection 5.3). We first explain how to build words associated with trajectories. Given
a dynamical system (M, γ) and a finite partition P of V2, given x ∈ V1 we associate a word
with the trajectory Γx = {γ(x, t) | t ∈ V } in the following way. We consider the sets
{t ∈ V | γ(x, t) ∈ P} for P ∈ P. This gives a partition of the time V . In order to define
a word on P associated with the trajectory determined by x, we need to define the set of
intervals Fx =

{
I | I is a time interval or a point and is maximal for the property “∃P ∈

P, ∀t ∈ I, γ(x, t) ∈ P”
}
. For each x, the set Fx is totally ordered by the order induced

from M . This allows us to define the word on P associated with the trajectory Γx denoted
ωx.

Definition 4.1. Given x ∈ V1, the word associated with Γx is given by the function ωx :
Fx → P defined by ωx(I) = P , where I ∈ Fx is such that ∀t ∈ I, γ(x, t) ∈ P .

The set of words associated with (M, γ) over P gives in some sense a complete static
description of the dynamical system (M, γ) through the partition P. In order to recover
the dynamics, we need further information.

Given a point x of the input space V1, we have associated with x a trajectory Γx

and a word ωx. If we consider (x, t) a point of the space-time V1 × V , it corresponds to
a point γ(x, t) lying on Γx. To recover in some sense the position of γ(x, t) on Γx from
ωx, we associate with (x, t) a suffix of the word ωx denoted ω(x,t). The construction of
ω(x,t) is similar to the construction of ωx, we only need to consider the sets of intervals

F(x,t) =
{
I ∩ {t′ ∈ V | t′ > t} | I ∈ Fx

}
.

Let us notice that given (x, t) a point of the space-time V1 × V there is a unique suffix
ω(x,t) of ωx associated with (x, t). Given a point y ∈ V2 it may have several (x, t) such that
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γ(x, t) = y and so several suffixes are associated with y. In other words, given y ∈ V2, the
future of y is non-deterministic, and a single suffix ω(x,t) is thus not sufficient to recover
the dynamics of the transition system through the partition P. To encode the dynamical
behavior of a point y of the output space V2 through the partition P, we introduce the
notion of suffix abstraction (called suffix dynamical type in [Bri07, Bri06]) of a point y
w.r.t. P.

Definition 4.2. Given a dynamical system (M, γ), a finite partition P of V2, a point
y ∈ V2, the suffix abstraction of y w.r.t. P is denoted SufP(y) and defined by SufP(y) =
{ω(x,t) | γ(x, t) = y}.

This allows us to define an equivalence relation on V2. Given y1, y2 ∈ V2, we say
that they are suffix-equivalent if and only if SufP(y1) = SufP(y2). We denote Suf (P) the
partition induced by this equivalence, which we call the suffix partition w.r.t. P. We say
that a partition P is suffix-stable if Suf(P) = P (it implies that if y1 and y2 belong to the
same piece of P then SufP(y1) = SufP(y2)).

To understand the suffix abstraction technique, we provide several examples.

Example 4.3. We start with example 3.10. The suffix abstraction in (0, 0) is composed of
a unique suffix ACBC because any trajectory leaving (0, 0) crosses exactly once the spiral
at some point. By looking at Fig. 2 one can convince oneself that the suffixes associated
with the other points of the plane are given by suffixes of ACBC; for instance, the points
lying on the spiral (the piece B) have suffix BC.

Example 4.4. We first consider a two dimensional timed automata dynamics (see Exam-
ple 3.2). In this case we have that γ(x1, x2, t) = (x1 + t, x2 + t). We associate with this
dynamics the partition P = {A,B} where B = [1, 2]2 and A = R2 \B. In this example the
suffix partition is made of three pieces, which are depicted in Figure 4.

x2

0 x1

BA

A

ABA

Figure 4: Suffixes for the timed automata dynamics

The suffix abstraction allows to encode more sophisticated continuous dynamics than
the previous suffix encoding of a trajectory. In the next example we recover in some sense
the continuous dynamics of rectangular automata [HKPV98], which requires to use the suffix
abstraction (some of the points do not have a unique suffix).

Example 4.5. We consider the dynamical system (M, γ) where M = 〈R,+, ·, 0, 1, <〉 and
γ : R2×[1, 2]×R+ → R2 is defined by γ(x1, x2, p, t) = (x1+t, x2+p·t). We associate with this
dynamical system the partition P = {A,B,C} where B = [2, 5] × [3, 4], C = [3, 5] × [1, 2]
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and A = R2 \ (B ∪ C) (see Figure 5(a)). Let us focus on the suffix abstractions of the
two points y1 = (1, 2.5) and y2 = (2, 0.5). We have that SufP(y1) = {A,ABA} and
SufP(y2) = {ABA,ACABA}. Though several points have several possible suffixes, the
partition induced by the suffix abstraction is finite and illustrated in Figure 5(b).

C

B

y1

y2

A

(a) The dynamics

y1

y2

{A,ABA}

{ABA,ACABA}

(b) The suffix partition

Figure 5: A rectangular dynamics

4.2. Partial Observation and the Superword Abstraction. The suffix-partition pro-
posed in Subsection 4.1 is not suitable for the partial observation framework. We will
intuitively convince the reader of this fact. Let (M, γ) be a dynamical system, y be a point
of V2 and P be a partition of V2. Since several trajectories cross the point y, there exist

several y′ such that y
τ
−→ y′, for some τ ∈ M+. In the partial observation framework, the

controller does not know which trajectory will be chosen by the environment and have to
choose a pair (τ, c) independently. In particular, starting from y, one can potentially be
in several different pieces of P after τ time units. The notion of suffix abstraction is not
sufficient in order to capture these behaviors, that is why we now associate a word ωy on

2P with a given y ∈ V2. We will see in Subsection 5.2 that this new encoding is suitable in
order to study control reachability problem in the partial observation framework. In order
to define the word on 2P associated with y ∈ V2, we need to introduce further definitions.

Definition 4.6. Let y be a point of V2 and τ be a time in M+.

Fy(τ) =
{
P ∈ P | ∃x ∈ Mk1 ∃t ∈ M γ(x, t) = y and γ(x, t+ τ) ∈ P

}
.

The set Fy(τ) represents the set of pieces that we have potentially reached after τ time
units when starting from y.

Definition 4.7. Let y be a point of V2.

Fy =
{
I | I is a time interval and is maximal for the property

∃S ∈ 2P ∀τ ∈ I Fy(τ) = S
}

For each y ∈ V2, the set Fy exactly consists of the connected components of the sets
{τ ∈ M+ | Fy(τ) = S}, for S ∈ 2P . We can now define the superword SupP(y) associated
with a given y ∈ V2.
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Definition 4.8. Let (M, γ) be a dynamical system, y be a point of V2, and P be a partition
of V2. The superword associated with y is given by the function SupP(y) : Fy → 2P defined
by:

SupP(y)(I) = S where I ∈ Fy is such that ∀τ ∈ I Fy(τ) = S.

Let us notice that given (M, γ) a dynamical system, P a partition of V2, and y a
point of V2, there exists a unique superword SupP(y) associated with y. If (M, γ) is a
dynamical system and P a finite partition of V2, we write Sup(P) for the partition induced
by superwords. We say that a partition P is superword-stable if Sup(P) = P. Let us
illustrate this new notion on examples.

Example 4.9. Let us consider the three dynamical systems depicted on Figures 6. In
the three cases, the dynamical system consists of two trajectories exiting the point yi.
What differs in the three systems is the way the partition P = {A,B,C} is crossed. We
are interested in the superword associated with yi. For the two first dynamical systems
we have that SupP(y1) = SupP(y2) = {A}{B,C}, and for the last one we have that
SupP(y3) = {A}{B,C}{B}{B,C}{C}{B,C}.

y1

A
B C B

C B C

(a) {A}{B,C}

y2

A
B

C

(b) {A}{B,C}

y3

A
B C B

C B C

(c) {A}{B,C}{B}{B, C}{C}{B, C}

Figure 6: Suffix and superword are not comparable

Let us notice that the notions of suffix abstraction and superword abstraction are in-
comparable. To illustrate this fact, let us consider again the three dynamical systems of
Figure 6. We have that SupP(y1) = SupP(y2) 6= SupP(y3). Let us now consider the suffix
abstractions of these points:

Suf(y1) = {ABCB,ACBC} ; Suf(y2) = {AB,AC} ; Suf(y3) = {ABCB,ACBC}.

This shows that the superword abstraction can distinguish between y1 and y3, but cannot
distinguish between y1 and y2, although the suffix abstraction can distinguish between y1
and y2, but cannot distinguish between y1 and y3.

5. Solving an M-Game

In this section we first present a general procedure to compute the set of winning states
for an M-game under partial observation. We then show that if a partition is superword-
stable, the procedure can be performed symbolically on pieces of the partition. The proce-
dure described is not always effective and we will later point out specific M-structures for
which each step of the procedure is computable. By Proposition 3.16, we know that the
perfect observation control problem can be seen as a special case of the partial observation
framework; however at the end of this section, we explain how the suffix partition can be
used in order to directly solve the perfect observation control problem.
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5.1. Controllable Predecessors under Partial Observation. As for classical reacha-
bility games [GTW02], one way of computing winning states is to compute the attractor of
goal states by iterating a controllable predecessor operator. Let A = (M, Q,Goal,Σ, δ, γ) be
an M-game. For W ⊆ Q× V2, a ∈ Σc and u ∈ Σu we first define the notion of controllable
discrete predecessors. For every a ∈ Σ = Σc ∪Σu, we have

Preda(W ) =




(q, y) ∈ Q× V2

|
|
|
|
|

a is enabled in (q, y),
and ∀(q′, y′) ∈ Q× V2,(
(q, y)

a
−→ (q′, y′) ⇒ (q′, y′) ∈ W

)





.

The intuition of this operator is the following: a state is in Preda(W ) if action a can be done
from (q, y), and whichever transition is taken leads to a state in W (action a ensures W in

one step). We also define cPred(W ) =
⋃

c∈Σc

Predc(W ) and uPred(W ) =
⋃

u∈Σu

Predu(W ).

As for timed and hybrid games [AMPS98, HHM99], we also define a safe time predeces-
sor of a set W w.r.t. a set W ′, that is specific to the partial observation framework: a state
(q, y) is in time-Predpartial(W,W ′) if a delay τ can be chosen such that for all trajectories
starting from (q, y), one can let τ time units pass avoiding W ′ and then reach (q′, y′) ∈ W .
Formally the operator time-Predpartial is defined as follows:

time-Predpartial(W,W ′) =




(q, y) ∈ Q× V2

|
|
|
|
|

∃τ ∈ M+, ∀(x, t) ∈ V1 × V s.t.

γq(x, t) = y, and (q, y)
τ
−→x,t (q

′, y′)

implies
(
(q′, y′) ∈ W and Postq,x[t,t+τ ] ⊆ W ′

)





.

where Postq,x[t,t+τ ] = {γq(x, t
′) | t 6 t′ 6 t+ τ}.

The controllable predecessor operator under partial observation πpartial is then defined
as:

πpartial(W ) = W ∪
⋃

a∈Σc

time-Predpartial(Preda(W ),uPred(W )).

Remark 5.1. Note that the operator πpartial is definable in any expansion of an ordered
group. Hence, if W is definable, so is πpartial(W ).

Example 5.2. We first illustrate the computation of the operator πpartial on Example 3.10
(see page 8). In this case, πpartial does not induce a winning strategy from (q1, (0, 0)) under
partial observation. Setting W = Goal × V2 = {q2} × V2, we have that πpartial(W ) does not
contain the point (q1, (0, 0)) because there is no uniform choice for a positive delay τ before
taking action c so that the spiral (area B) can be avoided. Notice however that πpartial(W )
is not empty because it includes all points different from (q1, (0, 0)) (from which there is a
unique trajectory).

Remark 5.3. Note also that due to the partial observation assumption, in the definition
of πpartial, the action a for controlling the system has to be chosen before choosing the delay
τ . Indeed, the controller does not know which precise trajectory will be chosen by the
environment, in particular, action a should be available after time τ independently of the
choice of trajectory made by the environment. This is illustrated in the next example.

Example 5.4. Let us consider the M-game A depicted on Figure 7(a) where Goal =
{q2, q3} and where c1, c2 ∈ Σc are distinct controllable actions. The dynamics in q1 is
depicted on Figure 7(b), roughly speaking, it consists of of two trajectories exiting the
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point y. perfect observation from y; indeed depending on the trajectory we are following,
we will either play (τ, c1) or (τ, c2), for some well-chosen τ ∈ R+. However, there is no
winning strategy under partial observation from y. Although we can find τ ∈ R+ such that
a controllable action will be (safely) available (from y) after τ time units, we are unable to
tell which controllable action will be taken.

In fact if W = Goal × V2 we have that πpartial(W ) = {(q1, z) | z ∈ V2\{y}}. Indeed if
(q1, z) 6= (q1, y), the controller can deduce the trajectory from the current state and choose
its action accordingly.

q1

q2

q3

gB,
c1

gC , c2

(a) The M-game A

y
A

B

C

(b) Dynamics in q1

Figure 7:

The next proposition states the soundness of this operator for computing winning states
in the games under a partial observation hypothesis.

Problem 5.5. Let A = (M, Q,Goal,Σ, δ, γ) be an M-game. If there exists n ∈ N s.t.
πn

partial(Goal) = πn+1
partial(Goal) then π∗

partial(Goal) = πn
partial(Goal) is the set of winning states

of A under partial observation.

Proof. We first prove that if (q, y) ∈ π∗
partial(Goal) then there exists a winning strategy under

partial observation from (q, y). To this aim, we define a memoryless winning strategy from
any (q, y) ∈ π∗

partial(Goal). By notation misuse, we define the strategy λ on states (q, y)

instead of executions.
We define a strategy λ on all sets

⋃
06i6k π

i
partial(Goal) by induction on k, and prove

that it is a winning strategy. If k = 0, we assume λ is defined nowhere, it is thus winning
from all states in Goal.

Suppose now that λ is already defined on W =
⋃

06i6k π
i
partial(Goal) and is winning

on these states. We now define λ on πpartial(W ). Let (q, y) ∈ Q × V2: if (q, y) ∈ W , λ is
already defined; if (q, y) ∈ πpartial(W ) \ W , then we know that there exists a ∈ Σc with

(q, y) ∈ time-Predpartial
(
Preda(W ),uPred(W )

)
. There exists τ ∈ M+ with (τ, a) enabled5

in (q, y) such that for every (x, t) if γq(x, t) = y, then (q, y)
τ,a
−−→x,t (q

′, y′), (q′, y′) ∈ W and

Postq,x
[t,t+τ ]

⊆ uPred(W ). We set λ(q, y) = (τ, a) and show that this is a winning choice.

We show by induction on k that λ is winning for each state of W =
⋃

06i6k π
i
partial(Goal).

This is immediate for k = 0. Suppose now that the result is true for k and let (q, y) ∈

πpartial(W ). Let ρ = (q, x, t, y)
τ1,a1
−−−→ (q1, x1, t1, y1)

τ2,a2
−−−→ . . . be an execution compatible

with λ. We have that either τ1 = τ and a1 = a, in which case (q1, y1) ∈ W , or τ1 6 τ

and a1 ∈ Σu, in which case (q, y)
τ1−→x,t (q′, y′)

a1−→ (q1, y1) with (q′, y′) /∈ uPred(W ) so
(q1, y1) ∈ W . In both cases, (q1, y1) ∈ W so by induction hypothesis, ρ is winning.

5We say that (τ, a) ∈ M+ ×Σ is enabled in (q, y) if there exists (x, t) ∈ V1 × V such that γ(x, t) = y and
(τ, a) is enabled in (q, x, t, y).
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We now show that if there exists a strategy under partial observation λ winning from
(q, y) then (q, y) ∈ π∗

partial(Goal). Set W = π∗
partial(Goal), by contradiction suppose that

(q, y) /∈ W , we will construct a non-winning execution compatible with λ. By hypothesis
πpartial(W ) = W so (q, y) /∈ πpartial(W ), it follows that for all a ∈ Σc, for all τ ∈ M+

there exists (x, t) ∈ V1 × V such that γq(x, t) = y, and (q, y) →τ
x,t (q

′, y′) implies (q′, y′) /∈

Preda(W ) or Postq,x[t,t+τ ] ∩ uPred(W ) 6= ∅. Let (τ, a) = λ(q, y) (as λ is a strategy under

partial observation it does not depend of x and t) and let (x, t) ∈ V1 × M+ be as in the
previous statement.

There exists (q1, x1, t1, y1) with (q1, y1) /∈ W such that either (q, x, t, y)
τ,a
−→ (q1, x1, t1, y1)

or there exists τ ′ 6 τ and u ∈ Σu with (q, x, t, y)
τ ′,u
−−→ (q1, x1, t1, y1). In both cases, the

constructed execution is compatible with λ. As (q1, y1) /∈ W we can repeat the same

argument and construct inductively an execution ρ = (q, x, t, y)
τ1,a1
−−−→ (q1, x1, t1, y1)

τ2,a2
−−−→

. . . compatible with λ and such that for every i, (qi, xi, ti, yi) /∈ W . By definition of W , for
every i, qi /∈ Goal, which contradicts the assumption that λ is a winning strategy.

π∗
partial(Goal), but this does not imply that we can compute this set, as some M-

structures have an undecidable theory. The following corollary states that if some conditions
on the structure and on πpartial are satisfied, then this procedure provides an algorithmic
solution to the control problem.

Corollary 5.6. Let M be a structure such that Th(M) is decidable.6 Let C be a class of
M-games such that for every A in C, there exists a finite partition P of Q × V2 definable
in M, respecting Goal7, and stable under πpartial.

8 Then the control problem under partial
observation in the class C is decidable. Moreover if A ∈ C, the set of winning states under
partial observation of A is computable.

Proof. Let M be a structure and C a class of automata satisfying the hypotheses and take
A ∈ C. As P is stable under πpartial, π

∗
partial(Goal) is a finite union of pieces of P. Hence

there exists n ∈ N such that π∗
partial(Goal) = πn

partial(Goal). Thus proposition 5.5 shows that

the set of winning states is π∗
partial(Goal).

As πpartial and Goal are definable, we have that πi
partial(Goal) is definable and as Th(M)

is decidable we can test if πi
partial(Goal) = πi+1

partial(Goal), we can thus effectively find a

representation of π∗
partial(Goal).

As Th(M) is decidable, if a state (q, y) is definable we can test if (q, y) ∈ π∗
partial(Goal).

It follows that the control problem in an M-structure is decidable.

5.2. Superwords and the πpartial Operator. We now present a sufficient condition for
a partition to be stable under the operator πpartial: we require that the partition is stable
under Preda (for all a ∈ Σ) to handle the discrete part of the automaton and we show that
the stability by superwords is fine enough to be correct for solving control problems under
partial observation.

6We recall that a theory Th(M) is decidable iff there is an algorithm which can determine whether or not
any sentence (i.e., a formula with no free variable.) is a member of the theory (i.e., is true). We suggest to
readers interested in general decidability issues on o-minimal hybrid systems to refer to Section 5 of [BM05].

7I.e., Goal is a union of pieces of P .
8Meaning that if P is a piece of P then πpartial(P ) is a union of pieces of P .
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Problem 5.7. Let A be an M-game and P be a partition of Q× V2. If P respects Goal,
is stable under Preda (for all a ∈ Σ) and superword-stable, then P is stable under the
operator πpartial.

Proof. We fix a location q of the automaton and we take y1, y2 ∈ V2 such that there exists
A ∈ P with y1, y2 ∈ A. We now show that if y1 ∈ πpartial(X), for some X ∈ P then
y2 ∈ πpartial(X). In case y1 ∈ X then X = A and y2 ∈ Y .

We assume y1 ∈ πpartial(X) \ X. There exists a ∈ Σc and τ1 ∈ M+ such that for

all (x, t) ∈ V1 × V with γq(x, t) = y1 and for all y′1 such that y1
τ1−→x,t y′1, we have that

y′1 ∈ Preda(X), and Postq,x[t,t+τ1]
⊆ uPred(X). Let us now express the previous condition in

term of superword. Assume that

SupP(y1) = S1S2 · · ·Sk, where Si ∈ 2P ,

the previous condition means that SupP(y1) contains a prefix S1 · · · Sl is such that:

• for all Pi ∈ Sl, we have that Pi ⊆ Preda(X) (this condition makes sense since P
is stable under Preda; indeed, a priori we only have that there exists y′1 ∈ Pi such
that y′1 ∈ Preda(X), the stability of P under Preda implies that Pi ⊆ Preda(X)),

• for all j 6 l, for all Pi ∈ Sj, we have that uPred(X) ∩ Pi = ∅ (again this condition
makes sense since P is stable under Preda).

Since P = Sup (P) and both y1 and y2 belong to the same piece of P, we have that
SupP(y1) = SupP(y2) = S1S2 · · ·Sk. In particular, we can find τ2 ∈ M+ such that if

y2
τ2−→ y′2, we have that y′2 corresponds to the letter Sl. Thus we have that y′2 ∈ Preda(X)

and Postq,x[t,t+τ2]
⊆ uPred(X), i.e. y2 ∈ πpartial(X).

As an immediate corollary of this proposition and of Corollary 5.6, we get the following
general decidability result.

Corollary 5.8. Let M be a structure such that Th(M) is decidable. Let C be a class of
M-games such that for every A in C, there exists a finite partition P of Q×V2 definable in
M, respecting Goal, superword-stable, and stable under Preda for every action a ∈ Σ. Then
the control problem under partial observation (Problem 3.13) in the class C is decidable, and
if A ∈ C, the set of winning states under partial observation of A is computable.

5.3. A Note on the Perfect Observation Framework. We briefly discuss the perfect
observation framework. We have already seen that it is a special case of the partial obser-
vation framework (see Proposition 3.16). Hence, we can reuse the previous results and get
decidability and computability results. However, we can also define an appropriate control-
lable predecessor operator πperfect that will be correct in the perfect observation framework.
The new operator πperfect is just a twist of the previous operator, which we define as:

πperfect(W ) = W ∪ time-Predperfect
(
cPred(W ),uPred(W )

)

where time-Predperfect existentially quantifies on pairs (x, t) such that y = γq(x, t) (instead
of universally quantifying on those pairs, as in time-Predpartial).

Remark 5.9. In the perfect observation framework, the controller is aware of the precise
trajectory that will be followed, hence his choice of action can be done after his choice of
delay contrarily to the partial observation case (remember Remark 5.3). That is why the
union over actions is put within the scope of the safe time predecessor in πperfect.
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Applying similar reasoning as in the previous sections, we can prove that π∗
perfect(Goal)

corresponds to the set of winning states of A, and that a partition, which is both stable
under Preda (for every a ∈ Σ) and suffix-stable, is actually correct for solving control
problems in the perfect observation framework. We can thus state the following theorem.

Theorem 5.10. Let M be a structure such that Th(M) is decidable. Let C be a class of
M-games such that for every A in C, there exists a finite partition P of Q × V2 definable
in M, respecting Goal, suffix-stable, and stable under Preda for every action a ∈ Σ. Then
the control problem under perfect observation (Problem 3.8) in the class C is decidable, and
if A ∈ C, the set of winning states under perfect observation of A is computable.

Note that being suffix-stable is a stronger condition than being a time-abstract bisim-
ulation [Bri07], and we see here that this is one of the right tools to solve control problems.
For instance in Example 3.18 the partition P is a time-abstract bisimulation but is not
suffix-stable. Indeed s1, s2 ∈ A but SufP(s1) 6= SufP(s2).

Remark 5.11. Using the results of this section, we recover the results of [AMPS98] about
control of timed automata. Note that for the timed automata dynamics (remember Ex-
ample 3.2) partial or perfect observation do not make a difference (the dynamics is deter-
ministic). Indeed we consider the classical finite partition of timed automata that induces
the region graph (see [AD94]). Let us call PR this partition, and notice that PR is de-
finable in 〈R, <,+, 0, 1〉. PR is stable under the action of Preda for every action a ∈ Σ.
By Example 3.2 the continuous dynamics of timed automata is definable in 〈R, <,+, 0, 1〉.
Hence it makes sense to encode continuous trajectories of timed automata as words. Then
one can easily verify that Suf(PR) = PR. By Theorem 5.10 we get the decidability and
computability of winning states under perfect information in timed games [AMPS98] as a
side result.

Corollary 5.12. The control problem under perfect information in the class of timed au-
tomata is decidable. Moreover the set of winning states under perfect observation is com-
putable.

6. O-Minimal Games

In this section, we focus on the particular case of o-minimal games (i.e., M-games
where M is an o-minimal structure and in which extra assumptions are made on the re-
sets). We first briefly recall definitions and results related to o-minimality [PS86]. We
show that existence of finite partitions which are stable w.r.t. the controllable predecessor
operator can be guaranteed for o-minimal games. More precisely, we first show that, in
this framework, a partition stable under the controllable predecessor operator can easily
be obtained via the superword abstraction (this is due to the assumptions on the resets).
Then, we use properties of o-minimality to prove the finiteness of the previously obtained
partition. Finally we focus on o-minimal structures with a decidable theory in order to ob-
tain full decidability and computability results. As in the previous section, we mostly focus
on the partial observation framework, but also mention results in the perfect observation
framework.
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6.1. O-Minimality. We recall here the definition of o-minimality and the “Uniform Finite-
ness Theorem” that will be applied later in this section. The reader interested in o-
minimality should refer to [vdD98] for further results and an extensive bibliography on
this subject.

Definition 6.1. An extension of an ordered structureM = 〈M,<, . . .〉 is o-minimal if every
definable subset of M is a finite union of points and open intervals (possibly unbounded).

In other words the definable subsets of M are the simplest possible: the ones which are
definable in 〈M,<〉. This assumption implies that definable subsets of Mn (in the sense of
M) admit very nice structure theorems (like the cell decomposition [KPS86]) or Theorem 6.2
below. The following are examples of o-minimal structures: the ordered group of rationals
〈Q, <,+, 0, 1〉, the ordered field of reals 〈R, <,+, ·, 0, 1〉, the field of reals with exponential
function, the field of reals expanded by restricted pfaffian functions and the exponential
function, and many more interesting structures (see [vdD98, Wil96]). An example of non
o-minimal structure is given by 〈R, <, sin, 0〉, since the definable set {x | sin(x) = 0} is not
a finite union of points and open intervals. However, let us mention that the structure9

〈R,+, ·, 0, 1, <, sin|[0,2π]
, cos|[0,2π]

〉 is o-minimal (see [vdD96]).

Theorem 6.2 (Uniform Finiteness [KPS86]). Let M = 〈M,<, . . .〉 be an o-minimal struc-
ture. Let S ⊆ Mm×Mn be definable (in M), we denote by Sa the fiber {y ∈ Mn|(a, y) ∈ S}.
Then there is a number NS ∈ N such that for each a ∈ Mm the set Sa ⊆ Mn has at most
NS definably connected components.

6.2. Generalities on O-Minimal Games.

Definition 6.3. Given A an M-game, we say that A is an o-minimal game if the structure
M is o-minimal and if all transitions (q, g, a,R, q′) of A belong to10 Q× 2V2 ×Σ× 2V2 ×Q.

Let us notice that the previous definition implies that given A an o-minimal game, the
guards, the resets and the dynamics are definable in the underlying o-minimal structure.
We denote by PA the coarsest partition of the state space S = Q×V2 which respects Goal,
and all guards and resets in A. Note that PA is a finite definable partition of S.

Due to the strong reset condition we have that PA is stable under the action of Preda

for every action a. This holds by the same argument that allows to decouple the continuous
and discrete components of a hybrid system in [LPS00]. Let us also notice that, in the
framework of o-minimal games, any refinement of PA is stable under the action of Preda

for every a ∈ Σ.

Example 6.4. The continuous dynamics of timed automata (see Example 4.4) is definable
in the o-minimal structure 〈R,+, 0, 1, <〉. The continuous dynamics of rectangular automata
(see Example 4.5) is definable in the o-minimal structure 〈R,+, ·, 0, 1, <〉. Hence games on
timed (resp. rectangular) automata with strong resets are particular cases of o-minimal
games. The M-game of Example 3.10 is in fact an o-minimal game; indeed one can see
that it can be defined in the structure 〈R,+, ·, 0, 1, <, sin|[0,2π]

, cos|[0,2π]
〉 which is o-minimal

(see [vdD96]).

9sin|[0,2π]
and cos|[0,2π]

correspond to the sinus and cosinus functions restricted to the segment [0, 2π].
10This is a particular case of reset for M-game where we consider only constant functions for resets.
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6.3. Solving O-Minimal Games. In this subsection, we will see how we can (easily)
build a partition which is stable under the actions of the controllable predecessor operator.
The key ingredients to build this partition will be (i) the strong resets conditions and (ii)
the superword abstraction. The finiteness of the obtained partition will be discussed in
Subsection 6.4.

Problem 6.5. Let A be an o-minimal game, and PA the partition corresponding to its
guards and resets. The superword (resp. suffix) partition Sup(PA) (resp. Suf(PA)) is
stable under the action of πpartial (resp. πperfect).

Proof. This proposition is not a corollary of Proposition 5.7, as Sup(PA) is not superword-
stable. However, the proof of Proposition 5.7 only relied on the fact that in a superword-
stable partition, two points in a piece of the partition have the same superword abstraction,
which is precisely what we have in the current case. Hence the previous proof can be
mimicked, and we do not write all details. It is worth noting also that we do not use all
properties of o-minimal games, but only the strong reset property, which ensures that the
partition is stable under Preda for every action a ∈ Σ.

6.4. Definability and Finiteness Issues. In the previous subsection, we have proved
that, given A an o-minimal game, the partition Sup(PA) (resp. Suf(PA)) is stable under the
action of the controllable predecessor operator under the partial (resp. perfect) observation
framework. We will now show that this partition is finite. For this we will exploit the
finiteness property of o-minimality and in order to do so, we first need to prove that our
encodings are definable.

6.4.1. Definability. Let (M, γ) be a dynamical system and P be a finite partition of V2.
We now would like to show that in the case of o-minimal dynamical system the superword
encoding previously discussed can be done in a definable way. The approach closely follows
the one used in [Bri06, Section 12.2] for the suffix abstraction (called suffix dynamical type
in this paper).

Let (M, γ) be an o-minimal dynamical system and P be a finite definable partition of
V2. First let us notice that, since P is finite and definable, given S ∈ 2P one can easily write
a first-order formula ϕ(y, τ) which is true if and only if Fy(τ) = S (where Fy is defined
similarly to Fx – see page 11). Let us give this formula, assuming that S = {A1, . . . , An}:

ϕS(y, τ) ≡ ∃x1 ∃t1 · · · ∃xn ∃tn
∧

i=1,...,n

(
γ(xi, ti) = y ∧ γ(xi, ti + τ) ∈ Ai

)

∧ ∀x ∀t
(
γ(x, t) = y

)
⇒

(
γ(x, t+ τ) ∈ A1 ∪ · · · ∪An

)
.

Thus, for each y ∈ V2, the set Fy exactly consists of the connected components of the sets
{τ ∈ M+ | ϕS(y, τ)}, for S ∈ 2P ; i.e. Fy is a set of intervals. In order to show that Fy is
first-order definable we need to encode each interval I ⊆ M as a point in some cartesian
power of M . An interval I ⊆ M is entirely characterized by (i) its end-points and (ii) the
fact of being right (resp. left) open or closed. For (i) we formally need a couple to represent
a single end point in order to recover −∞ and +∞ (as in the projective line case). For
(ii) we can use a binary encoding, let us say 0 means open and 1 closed. Thus any interval
I ⊆ M will be encoded by an element (a1, a2, a3, b1, b2, b3) ∈ M6. For instance, the interval
I = {x ∈ R | x > 5} is encoded by (5, 1, 1, 1, 0, 0). Thanks to this “trick”, one can find a
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first-order formula ϕy defining Fy. The writing of the formula ϕy is not difficult but rather
tedious: different cases have to be considered (depending on whether the interval I, encoded
by an element of M6, is left (resp. right) bounded and left (resp. right) open or closed).
Further details of the construction of the formula can be found in [Bri06, Section 12.2].

6.4.2. Finiteness. We will now prove that when considering o-minimal dynamical systems,
only finitely many finite superwords are needed to encode all possible trajectories.

Problem 6.6. Let (M, γ) be an o-minimal dynamical system and P be a finite definable
partition of V2. There exists finitely many finite superwords associated with (M, γ) w.r.t.
P.

Proof. Given S ∈ 2P let us first consider the set

Fy(S) =
{
τ ∈ M+ | Fy(τ) = S

}
=

{
τ ∈ M+ | ϕS(y, τ)

}
.

By the above discussion, the set Fy(S) is a definable subset of M . Hence by o-minimality
it is a finite union of points and open intervals, in particular, it has only finitely many
connected components. By definition of Fy we have the following equality.

|Fy| =
∑

S∈2P

(
number of connected components of Fy(S)

)
.

Since P is finite we can conclude that Fy is finite.

Using the uniform finiteness theorem (Theorem 6.2) we obtain that there exists N ∈ N

such that for all y ∈ V2 we have that
∣∣Fy

∣∣ 6 N .
In terms of word encoding, this means that there are only finitely many superwords

associated with the points of the (output) space V2. More precisely, the superwords SupP(y)
have lengths uniformly bounded by N . Since the superwords SupP(y) are words on the
finite alphabet 2P , this completes the proof.

The previous proposition directly implies the finiteness of the partition Sup(P). More-
over we have that this partition is definable, as stated in the following proposition.

Problem 6.7. Let (M, γ) be an o-minimal dynamical system, P be a finite definable
partition of the output space V2. The partition Sup(P) is finite and definable.

Proof. Since there are only finitely many superwords, it suffices to show that given y ∈ V2

and SW a superword on P (i.e. a word on 2P ), we can define (by a first-order formula)
that SW = SupP(y). Suppose that SW = S1 · · · Sk · · ·Sn, where Sk ∈ 2P . We have that
SW = SupP(y) if and only if the following formula holds.

∃τ1 ∈ M+, ∃τ2 ∈ M+, · · · ∃τn ∈ M+, ∃I1 ∈ Fy, I2 ∈ Fy, · · · ∃In ∈ Fy

(τ1 < τ2 < · · · < τn) ∧

n∧

k=1

Fy(τk) = Sk ∧ Fy = {I1, I2, . . . , In}.

Notice that the above formula is first-order since Fy is first-order definable and testing
whether Fy(τk) = Sk is also first-order definable.
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6.5. Synthesis of Winning Strategies. We now prove that given A an o-minimal game
definable in M, we can construct a definable strategy (in the same structure M) for the
winning states under partial observation. The effectiveness of this construction will be
discussed later.

Theorem 6.8. Given A an o-minimal game, there exists a definable memoryless win-
ning strategy under partial (resp. perfect) observation for each (q, y) ∈ π∗

partial(Goal) (resp.

π∗
perfect(Goal)).

Proof. By Proposition 6.5, the partition Sup(PA) is finite, definable and stable under πpartial.
In particular, there exists thus n ∈ N such that π∗

partial(Goal) = πn
partial(Goal). Hence, by

Proposition 5.5, πn
partial(Goal) is the set of winning states.

Given (q, y) ∈ πn
partial(Goal), we know that there exists a winning strategy from (q, y).

We now have to point out a definable winning strategy from (q, y). Following the proof
of Proposition 5.5, we build the definable strategy by induction on the number of it-
erations of πpartial. Let us suppose we have already built a strategy on each piece of

W =
⋃

06i6k

πi
partial(Goal), let us now consider πpartial(W ) \W .

By Proposition 6.5, we know that πpartial(W )\W is a finite union of pieces of Sup(PA).
Let P be one of these pieces. We know that P corresponds to a finite superword on PA.
Thus given (q, y) ∈ P we have that

SupPA
(y) = S1S2 · · ·Sk, where Si ∈ 2PA .

Since (q, y) ∈ πpartial(W ) \W , the superword SupPA
(y) contains a prefix S1 · · ·Sl such

that there is a ∈ Σc with:

• for all Pi ∈ Sl, Pi ⊆ Preda(W ),
• for all j 6 l, for all Pi ∈ Sj, uPred(W ) ∩ Pi = ∅.

Since for all Pi ∈ Sl, we have that Pi ⊆ Preda(W ), the controllable action a ∈ Σc is such
that given any (q, y) ∈ Sl a transition labelled by a is enabled and all such transitions lead
to W . The strategy for (q, y) will be to perform action a after some delay. We now explain
how to choose this delay.

Let (q, y) be such that (q, y) ∈ P . Let us consider Time(y) the subset of M+ defined
as follows:

Time(y) = {τ ∈ M+ | ∃y′ ∈ Sl such that (q, y)
τ
−→ (q, y′)}.

This set is definable since Sl is definable.
By o-minimality, we have that Time(y) is a finite union of points and open intervals.

Let us denote by I the leftmost point or interval. Let us notice that I is definable. If I has
a minimum m, we define λ(q, y) = (m, c). Otherwise two cases may occur. If I is bounded
then it is of the form (m,m′) or (m,m′] in this case we define11 λ(q, y) = (12 (m +m′), c).
Finally if I has no minimum and is unbounded it is of the form (m,∞) and in this case we

11Let us recall that every o-minimal ordered group is torsion free and divisible (see [PS86]), this implies
there exists a unique y satisfying y + y = (m+m′), which we note 1

2
(m+m′).
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define λ(q, y) = (m+ 1, c). We summarize12 the definition of λ on Sl as follows:

λ(q, y) =





(
min(I), c

)
if ϕ1(y)(

1
2

(
inf(I) + sup(I)

)
, c
)

if ϕ2(y)(
inf(I) + 1, c

)
otherwise

where ϕ1(y) is a formula which is true if and only if I (or Time(y)) has a minimum and
ϕ2(y) is a formula which is true if and only if I has no minimum and is bounded. Thus
clearly λ is definable.

Since there are finitely many P ∈ Sup(PA), we can conclude that λ is definable.

Remark 6.9. Note that the memoryless strategy given by Theorem 6.8 is computable if
π∗

partial(Goal) is.

Remark 6.10. Let us notice that in the case of timed automata dynamics (described
in Example 3.2), our definable strategies correspond to the realizable strategies computed
in [BCFL04].

6.6. Decidability Result. Theorem 6.8 is an existential result. It claims that given an o-
minimal game, there exists a definable memoryless strategy for each y ∈ π∗

partial(Goal), and
by Theorem 6.5 we know that Sup(PA) is finite. The conclusion of the previous subsection
is that given an o-minimal game there exists a definable memoryless winning strategy for
each y ∈ π∗

partial(Goal).
In general, Theorem 6.8 does not allow to conclude that the control problem in an

M-structure is decidable. Indeed it depends on the decidability of Th(M). We can state
the following theorem:

Theorem 6.11. Let M be an o-minimal structure such that Th(M) is decidable and C
a class of M-automata. Then the control problem under partial (resp. perfect) observa-
tion in class C is decidable. Moreover if A ∈ C, the set of winning states π∗

partial(Goal)
(resp. π∗

perfect(Goal)) under partial (resp. perfect) observation is computable and a mem-

oryless winning strategy can be effectively computed for each (q, y) ∈ π∗
partial(Goal) (resp.

π∗
perfect(Goal)).

Proof. By Proposition 6.7, for each A ∈ C, Sup(PA) is a definable finite partition respecting
Goal. Moreover by Proposition 6.5, Sup(PA) is stable under πpartial. Hypothesis of Corol-
lary 5.6 are thus satisfied and we get that the control problem in class C is decidable and
that the winning states of a game A ∈ C are computable. Moreover Theorem 6.8 ensures
that a memoryless strategy can be effectively defined from such winning states.

12Let us notice that the way we extract a single point from Time(y) is nothing more than the curve
selection for o-minimal expansions of ordered abelian groups, see [vdD98, chap.6].
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Remark 6.12. 〈R, <,+, 0, 1〉 and 〈R, <,+, ·, 0, 1〉 are examples of o-minimal structures
with decidable theory and so o-minimal games based on theses structures can be solved by
Theorem 6.11.

Remark 6.13. In this paper we did not distinguish Zeno behaviours. In particular, in our
framework, if the environment has a strategy that prevents the game to reach the Goal
locations by blocking time, we say that the controller loses the game. In the framework
of timed automata, an ad-hoc solution to this problem of Zenoness has been proposed
in [AFH+03]. However, due to the strong reset conditions of o-minimal hybrid systems,
the method of [AFH+03] cannot be easily applied to our framework, but this problem is
somehow orthogonal to ours.

7. Conclusion

In this paper we have studied games based on dynamical systems with general dynamics,
both under a prefect and a partial observation of the dynamics. Under the first hypothesis,
we have shown that time-abstract bisimulation is not fine enough to solve these games,
which is a major difference with the case of timed automata. By means of an encoding
of trajectories by words, we have obtained a good abstraction for control problems (with
reachability winning conditions, but it applies also to basic safety winning conditions). We
have finally provided decidability and computability results for o-minimal games under both
perfect and partial observation hypothesis. Our technique applies to timed automata, and
we recover decidability of timed games [AMPS98], as well as the construction of winning
strategies [BCFL04] as side results.
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