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Abstract

Fermionic neural network (FermiNet) is a re-

cently proposed wavefunction Ansatz, which is

used in variational Monte Carlo (VMC) meth-

ods to solve the many-electron Schrödinger equa-

tion. FermiNet proposes permutation-equivariant

architectures, on which a Slater determinant is

applied to induce antisymmetry. FermiNet is

proved to have universal approximation capabil-

ity with a single determinant, namely, it suffices

to represent any antisymmetric function given

sufficient parameters. However, the asymptotic

computational bottleneck comes from the Slater

determinant, which scales with O(N3) for N
electrons. In this paper, we substitute the Slater

determinant with a pairwise antisymmetry con-

struction, which is easy to implement and can re-

duce the computational cost to O(N2). We for-

mally prove that the pairwise construction built

upon permutation-equivariant architectures can

universally represent any antisymmetric function.

Besides, this universality can be achieved via

continuous approximators when we aim to rep-

resent ground-state wavefunctions.

1. Introduction

How to efficiently solve fermionic quantum many-body

systems has been a crucial problem in quantum physics

and chemistry, as well as in a large number of applications

in material science and drug discovery (Keimer and Moore,

2017; Heifetz, 2020). On the one hand, density functional

theory (DFT) (Hohenberg and Kohn, 1964; Becke, 1992) is

a widely used computational method in these fields due to

its computational efficiency. There are also efforts trying to

approximate DFT via deep neural networks (Gilmer et al.,

2017; Schütt et al., 2019). However, due to the simplified

assumptions on the wavefunction, i.e. limiting the wave-

function to be Slater determinant constructed out of orthog-

onal single particle wavefunctions, DFT relies on the ex-

change and correlation functional. Only approximate forms
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of the functionals (such as local-density approximations

(LDA) and generalized gradient approximations (GGA))

are used in practice, leading to a potentially low prediction

accuracy (Zhao et al., 1999; Iikura et al., 2001).

On the other hand, quantum Monte Carlo (QMC) is a fam-

ily of Monte Carlo methods that provide more accurate ap-

proximations. Especially, variational Monte Carlo (VMC)

involves a trial wavefunction to minimize the energy. The

accuracy of VMC relies on how close the trial wavefunc-

tion is to the ground state. Optimizing the parameters of the

wavefunction Ansatz only depends on the data sampled by

Markov chain Monte Carlo (MCMC) methods (Hastings,

1970), and thus does not need supervised data.

Carleo and Troyer (2017) introduce neural networks to

solve the quantum many-body problem by constructing

neural quantum states as the Ansatz. Pfau et al. (2020)

develop Fermionic Neural Network (FermiNet) as a wave-

function Ansatz to be used in VMC. The key insight from

FermiNet is that the single-electron wavefunctions can be

replaced with a permutation-equivariant neural network to

capture the correlation of particles, while the Slater deter-

minant is merely an antisymmetrizer. The model family

of FermiNet is proved to be universal for representing any

antisymmetric function even with a single Slater determi-

nant. Compared to FermiNet, Hermann et al. (2020) design

PauliNet which encodes built-in physical constraints to fa-

cilitate optimization. Along with this routine, graph neural

networks (GNNs) and transformers are involved to model

new Ansatz with equivariance (Gao and Günnemann, 2021;

Atz et al., 2021; Thölke and Fabritiis, 2022).

A follow up work Spencer et al. (2020) implements Fer-

miNet in JAX, which improves six fold compared to the

original TensorFlow code. It shows the potential of apply-

ing recent advancements in both software and hardware to

quantum chemistry problems. However, the antisymmetry

of FermiNet is still implemented via the Slater determi-

nant, which requires O(N3) computation for N -electron

systems. The cost of computing the Slater determinant (or

Pfaffian) will asymptotically overwhelm the other parts of

the model. It limits the scalability of FermiNet and other

variants that uses the Slater determinant.

To this end, several efforts have been devoted to

determinant-free strategies for separately modelling the
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sign and amplitude of wave functions (Torlai et al.,

2018; Choo et al., 2020; Szabó and Castelnovo, 2020;

Stokes et al., 2020; Inui et al., 2021). Nevertheless, they

are applied to spin lattice systems or molecules in second

quantization, as discussed in Schätzle et al. (2021). In real-

space cases, Han et al. (2019) design a pairwise O(N2)
Ansatz, but we demonstrate that their Ansatz requires dis-

continuous approximators to represent ground-state wave-

functions (detailed in Section 3.1).

In this paper, we developO(N2) pairwise Ansatz based on

the permutation-equivariant multi-electron functions used

in FermiNet. Our pairwise Ansatz is straightforward to im-

plement, with minor modification on the FermiNet archi-

tecture, and can be applied to other network-based archi-

tectures like PauliNet (Hermann et al., 2020). We formally

prove that our pairwise Ansatz can universal represent any

ground-state wavefunction with continuous approximators,

which can be modelled via finite-capacity neural networks.

2. Preliminary

We let x = (x1, · · · , xN ) ∈ R
dN denote the d-dimensional

coordinates of an N -electron system, where xi ∈ R
d for

i = 1, · · · , N . Given a set of single-electron orbitals

{φ1, · · · , φN}, we can construct an antisymmetric wave-

function Ansatz via the Slater determinant as

ψsingle(x) =

∣

∣

∣

∣

∣

∣

∣

φ1(x1) · · · φ1(xN )
...

...

φN (x1) · · · φN (xN )

∣

∣

∣

∣

∣

∣

∣

= det[φi(xj)].

(1)

It is known that only a small subset of all possible antisym-

metric functions can be written as the form of ψsingle(x),
i.e., the model family of ψsingle(x) is not universal.

To this end, FermiNet (Pfau et al., 2020) replaces the

single-electron orbitals φi(xj) with the multi-electron func-

tions φi(xj ; {x\j}) modeled by neural networks, where

{x\j} denotes the set of all electrons except xj . By ar-

chitecture design, the functions φi(xj ; {x\j}) are invariant

to the permutation of elements in {x\j}. The wavefunction

Ansatz of FermiNet can be written as

ψFermi(x) = det
[

φi(xj ; {x\j})
]

. (2)

The model family of ψFermi(x) is proved to be universal to

represent any antisymmetric function, as stated below:

Lemma 1. (Universality by Pfau et al. (2020)) For any an-

tisymmetric function Ψ(x), there exist multi-electron func-

tions φ1, · · ·φN , such that ∀x, there is ψFermi(x) = Ψ(x).

In practice, FermiNet uses multiple ψk
Fermi(x) to achieve

high accuracy for k = 1, · · · ,K , and the ensemble

wavefunction ΨFermi(x) is constructed as ΨFermi(x) =
∑

k ωkψ
k
Fermi(x) where ωk is the weight of k-th component.

3. O(N2) Universal Antisymmetry

Evaluating the Slater determinant operator in Eq. (2) re-

quires O(N3) computation, which asymptotically lim-

its the scalability of FermiNet and most of the other

VMC methods. Given this, we develop an easy-to-

implement O(N2) substitute for the Slater determinant

to build antisymmetric functions on top of a permutation-

equivariant function. Technically, we require a function

F (xi, xj ; {x\{i,j}}) that is invariant to any permutation on

the set {x\{i,j}}. Then we construct the pairwise wave-

function Ansatz as

ψpair(x) =
∏

1≤i<j≤N

A ◦ F (xi, xj ; {x\{i,j}}), (3)

where A is an antisymmetrizer such that A ◦ F (xi, xj) =
−A ◦ F (xj , xi) holds.1 Now we demonstrate that ψpair(x)
is also antisymmetric:

Lemma 2. (Antisymmetry) ψpair(x) is antisymmetric under

the permutation of any two elements xm and xn in x.

Proof. Assuming that m < n without loss of generality,

after we permute xm and xn, the term A ◦ F (xm, xi)
changes to A ◦ F (xi, xm) and the term A ◦ F (xi, xn)
changes to A ◦ F (xn, xi) for i ∈ (m,n). Besides, the

term A ◦ F (xm, xn) changes to A ◦ F (xn, xm). Note

that each term change contributes to a sign change (i.e.,

multiplying −1). So the total number of sign changes is

1 + 2× (n−m− 1), which is always an odd number and

thus ψpair(x) is antisymmetric.

A simple implementation of A ◦ F is A ◦ F (xi, xj) =
F (xi, xj) − F (xj , xi), which requires O(1) extra com-

putation on top of computing F . Since there are C2

N =
N × (N − 1)/2 terms in ψpair(x), totally it requiresO(N2)
extra computation to induce antisymmetry. In the follow-

ing, we analyse how different choices of A ◦ F influence

the universality and continuity of ψpair(x).

3.1. Instantiation from Han et al. (2019)

Han et al. (2019) developed an O(N2) scaling Ansatz

ψHan(x) formulated as

ψHan(x) = φC(x) ·
∏

1≤i<j≤N

(φB(xj , xi)− φB(xi, xj)) . (4)

Here φB(xj , xi) is a two-electron function, and φC(x) =
φC(x1, · · · , xN ) is a multi-electron symmetric function.

The form of ψHan(x) can be regarded as a special instan-

tiation of ψpair(x), where

A◦F (xi, xj) = (φB(xj , xi)− φB(xi, xj))·φC(x)
2

N(N−1) .

1For notation compactness, here we omit the dependence of
F (xi, xj) on other elements in {x\{i,j}} without ambiguity.



We can show that for ground-state wavefunctions Ψg(x) of

fermionic systems,2 we cannot find continuous construc-

tions of both φB and φC to satisfy ψHan(x) = Ψg(x),
which makes it non-trivial for neural networks to approx-

imate φB and φC . To prove this, we resort to the tiling

property of ground-state antisymmetric wavefunctions, as

stated below:

Lemma 3. (Tiling property by Ceperley (1991)) We define

N (Ψg) = {x|Ψg(x) = 0} to be the node set of ground-

state Ψg , and Ω(Ψg, x) be the nodal cell around the point

x. Then the tiling property claims that ∀x 6∈ N (Ψg),

⋃

π

Ω(Ψg, xπ) = R
dN \ N (Ψg), (5)

where xπ is the input x permuted by π and the union
⋃

π is

taken over all possible permutations.

According to the tiling property of ground-state wavefunc-

tions, we can further prove the following:

Theorem 1. (Discontinuity) There exist ground-state wave-

functions Ψg(x), such that if there is ∀x, ψHan(x) = Ψg(x),
then either φB or φC must be discontinuous on R

dN .

Proof. For notation compactness, we denote

A(x;φB) =
∏

i<j

(φB(xj , xi)− φB(xi, xj)) , (6)

and thus ψHan(x) = A(x;φB) · φC(x). We first prove

that there exist ground-state Ψg(x), such that for any φB ,

the sign of A(x;φB) cannot keep aligned with the sign of

Ψg(x). Specifically, we consider a three-electron system,

where we have four coordinate candidates x1, x2, x3, x4.

For simplicity, we write Ai,j,k = A(xi, xj , xk;φB) and

ai,j = φB(xj , xi)−φB(xi, xj), whereAi,j,k = ai,j ·ai,k ·
aj,k. Now we can derive that

A1,2,3 ·A1,2,4 ·A1,3,4 ·A2,3,4

=a2
1,2 · a

2

1,3 · a
2

1,4 · a
2

2,3 · a
2

2,4 · a
2

3,4 ≥ 0,

which holds for any x1, x2, x3, x4. Thus, given any Ψg(x)
satisfying that sgn(Ψg

1,2,3 ·Ψ
g
1,2,4 ·Ψ

g
1,3,4 ·Ψ

g
2,3,4) = −1,3

there must be sgn(A(x;φB)) 6= sgn(Ψg(x)) for any φB .

Since sgn((−Ψg
1,2,3) · (−Ψg

1,2,4) · (−Ψg
1,3,4) · (−Ψg

2,3,4)) =
−1, there is also sgn(A(x;φB)) 6= sgn(−Ψg(x)).

Let Ψg be any one of the ground-state functions whose sign

cannot be represented via A(x;φB), i.e., there exist x′ 6∈

2We assume that the ground-state Ψg(x) is continuous on

R
dN .

3Intuitively, we can select x1 and x2 to be very close, and
select x3 and x4 to satisfy sgn(Ψg

1,2,3 · Ψg
1,2,4) = −1. Then due

to the continuity of Ψg , there is sgn(Ψg
1,3,4 ·Ψ

g
2,3,4) = 1.

N (Ψg) such that sgn(A(x′;φB)) 6= sgn(Ψg(x′)). Now we

prove that if φB is continuous, there must be

N (A(x;φB)) 6⊂ N (Ψg). (7)

Specifically, we know that A(x;φB) is continuous and

sgn(A(x′;φB)) = sgn(−Ψg(x′)). Assume, to the con-

trary, that N (A(x;φB)) ⊂ N (Ψg). Then according to

the tiling property, we have the nodal cell Ω(Ψg, x′) ⊂
R

dN \N (A(x;φB)), and due to the continuity ofA(x;φB),
we know that the signs of both A(x;φB) and Ψg are

unchanged in Ω(Ψg, x′). Thus, ∀x ∈ Ω(Ψg, x′),
sgn(A(x;φB)) = sgn(−Ψg(x)). Since both A(x;φB)
and Ψg(x) are antisymmetric, given any permutation π,

there is ∀x ∈ Ω(Ψg, x′π), sgn(A(x;φB)) = sgn(−Ψg(x)).
Taking in the tiling property of Eq. (5), we achieve that

∀x 6∈ N (Ψg), there is sgn(A(x;φB)) = sgn(−Ψg(x)),
which lead to contradiction with our three-electron counter-

example above.

Now we have proved that if φB is continuous, there must

be N (A(x;φB)) 6⊂ N (Ψg), i.e., there exist an input x′′

such that A(x′′;φB) = 0 and Ψg(x′′) 6= 0. Assume that

ψHan(x) = A(x;φB) · φC(x) = Ψg(x) for ∀x, then for

any finite value of φC(x
′′), we always have ψHan(x

′′) =
A(x′′;φB) · φC(x′′) 6= Ψg(x′), which leads to a contradic-

tion. Thus, either φB or φC is discontinuous on R
dN .

3.2. Achieving Universality with Continuous φB

In the above section, we show that there exist ground-state

functions Ψg(x) that ψHan(x) have to represent via dis-

continuous φB or φC , which makes finite-capacity neural

networks difficult to approximate them, as also discussed

in Pfau et al. (2020). Intuitively, this discontinuity comes

from the two-electron dependence of φB , i.e., φB cannot

model the relation among multiple electrons.

To this end, we resort to the permutation-equivariant ar-

chitecture designed in FermiNet, which includes N multi-

electron functions φ1(xj ; {x\j}), · · · , φN (xj ; {x\j}) that

are invariant to any permutation in the set {x\j}, as de-

scribed in Section 2. In contrast, here we only need one

function φB(xj ; {x\j}), and we instantiate ψ′
pair(x) as

ψ′
pair(x) =

∏

1≤i<j≤N

(

φB(xj ; {x\j})− φB(xi; {x\i})
)

. (8)

Now we prove that the model family of ψ′
pair(x) is univer-

sal to represent any ground-state wavefunction Ψg using

continuous φB , as stated below:

Theorem 2. (Continuous universality) For any ground-

state wavefunction Ψg(x), there exist a continuous multi-

electron function φB , such that ∀x, ψ′
pair(x) = Ψg(x).

Proof. For any ground-state wavefunction Ψg(x), accord-

ing to its tiling property, we can select one of the nodal cell



Ω∗, such that ∀x ∈ Ω∗, there is Ψg(x) > 0. Besides, there

exist a permutation rule π∗ to map the points from other

nodal cells into the selected Ω∗, i.e., ∀x ∈ R
dN \ N (Ψg),

there is xπ∗ ∈ Ω∗ and Ψg(xπ∗) > 0, where xπ∗ is the input

x permuted by π∗. We use σ(π∗) denote the sorting sign of

π∗ and π∗(x, j) denote the index of xj after permutation.

Then we let φB to satisfy that ∀x ∈ R
dN \N (Ψg), there is

φB(xj ; {x\j}) = π∗(x, j) ·

(

Ψg(xπ∗)
∏

i<j(j − i)

)
2

N(N−1)

; (9)

and ∀x ∈ N (Ψg), there is φB(xj ; {x\j}) = 0, where

j = 1, · · · , N . Note that the tiling property also claims that

if two points x and x′ come from the same nodal cell (i.e.,

Ω(Ψg, x) = Ω(Ψg, x′)), then π∗ executes the same permu-

tation operation on them (i.e., π∗(x, j) = π∗(x′, j) for any

index j). Thus, the function π∗(x, j) is constant inside any

nodal cell, and due to the continuity of Ψg, we know that

φB is continuous on R
dN \ N (Ψg). Furthermore, when

the input x approaches to the node set N (Ψg), the value

of Ψg(xπ∗) will consistently approach to zero. So when

x → N (Ψg), there is φB(xj ; {x\j}) → 0 for any index

j, by which we can conclude that φB is continuous on the

entire space of RdN . Using the construction of continuous

φB in Eq. (9), we have

ψ′
pair(x) =

∏

i<j

(

φB(xj ; {x\j})− φB(xi; {x\i})
)

=σ(π∗) ·
∏

i<j

(j − i) ·

(

Ψ(xπ∗)
∏

i<j(j − i)

)
2

N(N−1)

=σ(π∗) ·Ψ(xπ∗) = σ(π∗) · σ(π∗) ·Ψ(x) = Ψ(x),

which holds for ∀x.

As to the antisymmetric function Ψ(x) that is not ground-

state, there still exist φB (but may not be continuous) mak-

ing ψ′
pair(x) represent Ψ, as stated below:

Corollary 1. (Universality) For any antisymmetric func-

tion Ψ(x), there exist a multi-electron function φB , such

that ∀x, ψ′
pair(x) = Ψ(x).

Proof. Similar to the proof routine of Appendix B in

Pfau et al. (2020), given a certain permutation π, we use

σ(π) to denote the sorting sign of π. For notation compact-

ness, we define Λ as

Λ =
∏

3≤j≤N

j (j + sgn(Ψ(xπ)))
∏

3≤i<j≤N

(j − i),

where Ψ(x) is the antisymmetric function that we aim to

represent. It is easy to verify that Λ > 0. Then we could let

φB satisfy that

φB(xπ1 ; {xπ\1
}) = −sgn(Ψ(xπ)) ·

(

|Ψ(xπ)|

Λ

)
2

N(N−1)

;

φB(xπ2 ; {xπ\2
}) = 0;

φB(xπj
; {xπ\j

}) = j ·

(

|Ψ(xπ)|

Λ

)
2

N(N−1)

, ∀3 ≤ j ≤ N ,

where xπj
is the j-th element of xπ. It is easy to verify that

ψ′
pair(x) =

∏

i<j

(

φB(xj ; {x\j})− φB(xi; {x\i})
)

=σ(π) · Λ · sgn(Ψ(xπ)) ·
|Ψ(xπ)|

Λ
=σ(π) ·Ψ(xπ) = σ(π) · σ(π) ·Ψ(x) = Ψ(x),

which holds for ∀x.

Connection with ψFermi(x). The form of ψ′
pair(x) can be

written as the determinant of a Vandermonde matrix

ψ′
pair(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
φB(x1; {x\1}) · · · φB(xN ; {x\N})
φ2B(x1; {x\1}) · · · φ2B(xN ; {x\N})

...
...

...

φN−1

B (x1; {x\1}) · · · φN−1

B (xN ; {x\N})

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

which can be regarded as a special case of ψFermi(x) where

φi = φi−1

B (but ψ′
pair(x) only requires O(N2) computa-

tion). Therefore, the model family of ψFermi(x) is strictly

more powerful than ψ′
pair(x), and consequently the contin-

uous universality of representing ground-state wavefunc-

tions (claimed in Theorem 2) also holds for ψFermi(x).

Extension of ψ′
pair(x). We can extend ψ′

pair(x) to involve

more permutation-equivariant functions, e.g., we construct

ψ′′
pair(x) =

∏

1≤i<j≤N

∣

∣

∣

∣

φA(xi; {x\i}) φA(xj ; {x\j})
φB(xi; {x\i}) φB(xj ; {x\j})

∣

∣

∣

∣

. (10)

Specially, if we trivially choose ∀x, φA(xj ; {x\j}) = 1 be

a constant function, then ψ′′
pair(x) degenerates to ψ′

pair(x).
Therefore, the model family of ψ′′

pair(x) is also strictly more

powerful than ψ′
pair(x), and the similar conclusions in The-

orem 2 and Corollary 1 also hold for ψ′′
pair(x).

Computational complexity of implementing ψpair(x). As

analyzed in the Section IV B of Pfau et al. (2020), the

complexity of implementing the multi-electron orbitals

φ1, · · · , φN is O(N2) for single-atom systems and fixed

numbers of hidden units. After substituting the Slater de-

terminant in FermiNet with our pairwise constructions (as

described in Eq. (8) and Eq. (10)), we know that the cost of

computing φA and φB is no more than O(N2). Besides,



Table 1. Ground state energy. The values of ‘Exact’ column come

from Chakravorty et al. (1993). The values of ‘ψ′
pair’ and ‘ψ′′

pair’

are averaged on the last 1,000 iterations with sampling stride of

10.

Atom ψ′′
pair ψ′

pair Exact

Li −7.4782 −7.4781 −7.47806032

Be −14.6673 −14.6664 −14.66736

B −24.5602 −24.4475 −24.65391

C −37.3531 −37.2785 −37.8450

N −53.1855 −53.0626 −54.5892

there are C2

N = N × (N − 1)/2 terms and each term

A ◦ F (xi, xj) requires O(1) extra computation on top of

φB (and φA). Therefore, totally ψ′
pair(x) and ψ′′

pair(x) still

require O(N2) computation.

3.3. Empirical Evaluation

In the experiments, we follow the main training settings

in Pfau et al. (2020), as briefly recapped below. The Fer-

miNet architecture includes four layers, each having 256

hidden units for the one-electron stream and 32 hidden

units for the two-electron stream. The non-linear activa-

tion function is Tanh. To empirically estimate the gradient,

2,048 samples drawn from ΨFermi(x) are used in each train-

ing batch, with ensemble number K = 16. These samples

are updated via the random-walk MCMC algorithm, with

10 iterations and a move width of 0.02. The optimizer is

a modified version of KFAC (Martens and Grosse, 2015),

with the initial learning rate of 10−4.

In Table 1, we show some initial results using our pairwise

constructions, where we substitute ΨFermi(x) with Ψ′
pair(x)

and Ψ′′
pair(x), respectively. Here we do not apply Hartree-

Fock initialization. Our computational cost is less than

FermiNet from two aspects: first, we use only one or two

permutation-equivariant functions φA and φB for different

atoms, while the number of functions φ1, · · · , φN used

in FermiNet scales with N ; second, we do not involve

determinant operators and only require O(N2) computa-

tion. However, as seen in the results, our methods empiri-

cally ask for permutation-equivariant functions with higher

model capacity for larger atoms. This can be achieved

via applying more powerful network architectures, and we

leave this to future exploration.

4. Conclusion

This paper develops a simple way toward O(N2) universal

antisymmetry in FermiNet by pairwise constructions. Our

methods can also seamlessly adapt to other determinant-

based Ansatz like PauliNet (Hermann et al., 2020). The

universality of our pairwise Ansatz is established on the

employment of multi-electron neural networks, which are

proved to be universal approximators (Hornik et al., 1989).

As to ground-state wavefunctions, we prove the exis-

tence of continuous construction, which facilitates practical

learning via finite-capacity networks.

Although theoretically, we demonstrate the (continuous)

universality of pairwise constructions, empirically, we may

require a large model capacity to fit the ground-truth φA,

φB . This limitation is reflected in our initial experiments,

as seen in Table 1. Nevertheless, the model architecture

used in FermiNet is still quite shallow from the aspect of

deep learning, and many model designs could be applied to

obtain much more powerful multi-electron functions. An-

other limitation is that there is no clear advantage compared

to the Slater determinant whenN is small, because the neu-

ral network part dominates the computation in this case.
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