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Abstract: In his 1977 paper on vacuum decay in field theory: The Fate of the False

Vacuum, Coleman considered the problem of a single scalar field and assumed that the

minimum action tunnelling field configuration, the bounce, is invariant under O(4) rotations

in Euclidean space. A proof of the O(4) invariance of the bounce was provided later

by Coleman, Glaser, and Martin (CGM), who extended the proof to N > 2 Euclidean

dimensions but, again, restricted non-trivially to a single scalar field. As far as we know

a proof of O(N) invariance of the bounce for the tunnelling problem with multiple scalar

fields has not been reported in the QFT literature, even though it was assumed in many

works since. We make progress towards closing this gap. Following CGM we define the

reduced problem of finding a field configuration minimizing the kinetic energy at fixed

potential energy. Given a solution of the reduced problem, the minimum action bounce

can always be obtained from it by means of a scale transformation. We show that if a

solution of the reduced problem exists, then it and the minimum action bounce derived

from it are indeed O(N) symmetric. We review complementary results in the mathematical

literature that established the existence of a minimizer under specified criteria.
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1 Introduction and result

In his 1977 paper on vacuum instability in field theory, Coleman [1] considered the problem

of a single scalar field and assumed that the tunnelling field configuration of minimum

Euclidean action, the bounce, is O(4)-invariant. A proof of the O(4) invariance of the

bounce was provided later in ref. [2]. This proof was given for N > 2 Euclidean dimensions,

and was restricted non-trivially to the case of a single scalar field.

As far as we know, a proof of O(N) invariance of the bounce with multiple scalar

fields has not been reported in the QFT literature, although it was assumed implicitly or

explicitly in many works (for a handful of examples, see refs. [3–12]). The purpose of the

current paper is to make progress towards closing this gap.

Following ref. [2] we define the reduced problem of finding a field configuration minimiz-

ing the kinetic energy at fixed potential energy. Given a solution of the reduced problem,

it is known that the minimum action bounce can always be obtained from it by means of a

scale transformation. We show that if a solution of the reduced problem exists, then it and

the minimum action bounce derived from it are O(N) symmetric.

The paper is organised as follows. Section 2 reviews the definition of the reduced

problem introduced in ref. [2] and theorem A that was proved in that paper and that is

used in our analysis. Section 3 is our main contribution, showing that the solution of the

reduced problem, if it exists, possesses O(N) symmetry. As in ref. [2] we restrict to N > 2

dimensions. Section 4 reviews complementary results in the math literature, some of which

established the existence of a minimizer under suitable admissibility criteria, that we relate

to phenomenologically interesting QFTs. In section 5 we conclude.
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2 The reduced problem

First we recall some preliminaries. We are interested in the scalar multi-field configuration

Φ = {Φa}, a = 1, . . . ,m. The Euclidean equations of motion (EOM) are

N−1∑
i=0

∂2Φa

∂x2
i

− ∂U

∂Φa
= 0, (2.1)

where U(Φ) is the potential energy density. We make the following admissibility assump-

tions about U :

(A1) U is continuously differentiable everywhere in field space,

(A2) U(0) = ∂U/∂Φa|Φ=0 = 0,

(A3) U is somewhere negative,

(A4) U is stabilized at the origin. For concreteness we impose that all of the eigenvalues

of the Hessian of U at Φ = 0 are positive.

The kinetic and potential energy functionals associated with Φ are given by

T [Φ] =

∫
dNx

m∑
a=1

N−1∑
i=0

1

2

(
∂Φa

∂xi

)2

, (2.2)

V [Φ] =

∫
dNxU(Φ). (2.3)

The action is

S = T + V. (2.4)

We define a scale transformation by [13]

Φ(σ)
a (x) = Φa(x/σ), (2.5)

where σ is a positive number. Then V and T transform as

V [Φ(σ)] = σNV [Φ], T [Φ(σ)] = σN−2T [Φ]. (2.6)

Any solution of eq. (2.1) makes S stationary. In particular S must be stationary w.r.t. scale

transformations. This leads to

(N − 2)T +NV = 0, (2.7)

or equivalently

S =
2T

N
, (2.8)

for any solution of eq. (2.1). A non-trivial solution of eq. (2.1) has T > 0 and, by eq. (2.7),

V < 0.

– 2 –
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We define the reduced problem as the problem of finding a collection of configurations

Φa vanishing at infinity1 which minimizes T for some fixed negative V .

If a solution of the reduced problem is found for some negative V , then by applying

the appropriate scale transformation we can find a solution for any negative V . To see this,

consider the scale-invariant quantity

R =
T

N
N−2

−V
. (2.9)

For fixed negative V , minimizing R is equivalent to minimizing T . However, all configura-

tions that are scale-transformed of each other have the same value of R. Thus the reduced

problem can equivalently be stated as the problem of finding a configuration with arbitrary

negative V that minimizes R.

Theorem A. If a solution of the reduced problem exists, then, for appropriately chosen

V , it is a solution of eq. (2.1) that has action less than or equal to that of any non-trivial

solution of eq. (2.1).

A proof of Theorem A was given in ref. [2]. In the rest of this section we review

this proof. The first step is to show that a solution of the reduced problem can always

be scale-transformed into a solution of eq. (2.1). A solution Φ̃ of the reduced problem

stationarizes

S′[Φ̃] = T [Φ̃] + λ2(V [Φ̃]− V0), (2.10)

where V0 < 0 is a negative number and λ2 is a Lagrange multiplier. Stationarity w.r.t. scale

transformations yields

(N − 2)T [Φ̃] + λ2NV [Φ̃] = 0. (2.11)

Since V [Φ̃] is negative and T [Φ̃] is positive we have λ2 > 0, and we can define the scale-

transformed configuration Φ(x) = Φ̃(λ)(x) = Φ̃(x/λ). The equation of motion obeyed by

Φ̃(x) is the same as eq. (2.1) with the replacement ∂U
∂Φa
→ λ2 ∂U

∂Φ̃a
. Using this it is easy to

verify that Φ satisfies eq. (2.1).

The second step is to show that the solution Φ constructed above has S less than or

equal to that of any solution of eq. (2.1). Let Φ̄ be a non-trivial solution of eq. (2.1).

Now, let Φ̃ be a solution of the reduced problem with V [Φ̃] = V [Φ̄]. By the definition of

the reduced problem, T [Φ̃] ≤ T [Φ̄] which, comparing eqs. (2.7) and (2.11), gives λ ≤ 1.

Proceeding as before, Φ = Φ̃(λ) satisfies eq. (2.1), but with

T [Φ] = λ(N−2)T [Φ̃] ≤ T [Φ̃]. (2.12)

Using eq. (2.8) we finally have

S[Φ] ≤ S[Φ̄], (2.13)

where equality holds if and only if Φ̄ is a solution of the reduced problem. This completes

the proof of Theorem A. As noted in ref. [2], the proof holds for an arbitrary number of

scalar fields m.
1“Vanishing at infinity” means that for any positive number ε the set of all points for which |Φa| ≥ ε

has finite Lebesgue measure.
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3 O(N) invariance

Let us assume that there exists a multi-field configuration that solves the reduced problem.

By Theorem A we can use a scale transformation to construct a solution Φ of eq. (2.1),

with negative V [Φ] and with action S[Φ] that is equal to or smaller than that of any non-

trivial solution of eq. (2.1). Furthermore, R[Φ] is equal to or smaller than R of any other

configuration with negative V (strictly smaller if the other configuration is not a solution

of the reduced problem).

The following chain of arguments shows that Φ possesses O(N) symmetry.

We choose a Cartesian coordinate system {x0, x1, . . . , xN−1} and pay particular atten-

tion to the x0 direction. The choice of coordinate system and of x0 is arbitrary. Define the

kinetic and potential surface energy densities,

T (t) =

∫
dN−1x

m∑
a=1

N−1∑
i=0

1

2

(
∂Φa

∂xi

)2∣∣∣∣
x0=t

(3.1)

V (t) =

∫
dN−1xU(Φ)|x0=t (3.2)

where dN−1x = dx1dx2 . . . dxN−1. Of course,

T =

∫
dtT (t), V =

∫
dtV (t). (3.3)

Let us consider a surface x0 = t, dividing space into two parts x0 > t and x0 < t. For each

part, the kinetic and potential energy are given by

T t+ =

∫ ∞
t

dt′T (t′), V t
+ =

∫ ∞
t

dt′V (t′), (3.4)

T t− =

∫ t

−∞
dt′T (t′), V t

− =

∫ t

−∞
dt′V (t′), (3.5)

such that

T t+ + T t− = T, V t
+ + V t

− = V. (3.6)

Now, let us construct a field configuration by reflecting the region x0 > t onto the

region x0 < t. We call this configuration Φt
+. To be precise, we define

Φt
+ = Φ(t+ |x0 − t|, x1, . . .). (3.7)

Analogously, we also construct the opposite reflection Φt
−. The reflected configurations

satisfy:2

T [Φt
±] = 2T t±, (3.8)

V [Φt
±] = 2V t

±, (3.9)

R[Φt
±] =

(
2T t±

) N
N−2

−2V t
±

. (3.10)

2Strictly speaking, ∂Φt
±/∂x0 and thus the kinetic energy density associated with it are undefined at the

point x0 = t. However, the discontinuity is integrable and the kinetic and potential energy are well behaved

everywhere.
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V (t) is a continuous function. Thus there exists t∗ for which

V t∗
+ = V t∗

− =
V

2
. (3.11)

Since Φ is a solution of the reduced problem, R[Φ] ≤ R[Φt
±] for any t. Therefore,

T t
∗

+ = T t
∗
− =

T

2
. (3.12)

Otherwise, either R[Φt∗
+ ] < R[Φ] or R[Φt∗

− ] < R[Φ].

Let us, for the sake of clarity, redefine the x0 coordinate setting t∗ = 0. We then

construct an infinitesimal perturbation by considering the surface x0 = ε/2 with sufficiently

small ε. We have

T [Φ
ε/2
− ] = T + 2

∫ ε/2

0
dtT (t) = T + εT (0), (3.13)

V [Φ
ε/2
− ] = V + εV (0), (3.14)

T [Φ
ε/2
+ ] = T − εT (0), (3.15)

V [Φ
ε/2
+ ] = V − εV (0). (3.16)

Computing R for the deformed configurations, we have

R[Φ
ε/2
− ] = R[Φ] + εR[Φ]

(
NT (0)

(N − 2)T
− V (0)

V

)
= R[Φ]− εR[Φ]

V
(T (0) + V (0)) , (3.17)

R[Φ
ε/2
+ ] = R[Φ] + ε

R[Φ]

V
(T (0) + V (0)) , (3.18)

where we made use of eq. (2.7). Imposing R[Φ
ε/2
− ] ≥ R[Φ] and R[Φ

ε/2
+ ] ≥ R[Φ] we obtain

V (0) + T (0) = 0. (3.19)

We gain more mileage from eq. (3.19) as follows. Acting with
∫
dN−1x

∑
a
∂Φa
∂x0

on the

EOM and integrating by parts, we have

0 =

∫
dN−1x

∑
a

∂Φa

∂x0

∂2Φa

∂x2
0

+
∑

j=1,2,...

∂2Φa

∂x2
j

− ∂U

∂Φa


=

∂

∂x0

∫
dN−1x

∑
a


(
∂Φa

∂x0

)2

−
∑

i=0,1,2,...

1

2

(
∂Φa

∂xi

)2
− U

 . (3.20)

Notice that the sum on i in the second line includes i = 0. Since all fields and derivatives

vanish at |x0| → ∞, the quantity on which ∂x0 acts is zero at any x0, implying∫
dN−1x

∑
a

(
∂Φa

∂x0

)2∣∣∣∣
x0=t

= T (t) + V (t) (3.21)

– 5 –



J
H
E
P
0
5
(
2
0
1
7
)
1
0
9

for any t. Combining eqs. (3.19) and (3.21) we find that∫
dN−1x

∑
a

(
∂Φa

∂x0

)2∣∣∣∣
x0=0

= 0. (3.22)

Therefore the first derivative of all of the Φa w.r.t. x0 vanishes on the N − 1 dimensional

surface defined by x0 = 0.

The surface x0 = t∗ (which we took to be t∗ = 0) is unique: there is no other parallel

surface x0 = t̃∗, with t̃∗ 6= t∗, at which eq. (3.22) is satisfied. If there were another t̃∗ 6= t∗,

say t̃∗ < t∗, then the contribution to the kinetic energy from the interval (t̃∗, t∗) must

vanish, implying that Φa = 0 in the interval. In that case we could construct a new

configuration Φ̃ by clipping Φ at x0 < t∗, namely, Φ̃(~x) = θ(x0)Φ(~x), where θ(x) is the

Heaviside step function. A quick calculation shows that R[Φ̃] =
(

2−
2

N−2

)
R[Φ] < R[Φ], in

contradiction with Φ being a solution of the reduced problem.

The choice of coordinate system and of x0 in eq. (3.22) is arbitrary. Therefore for any

direction n̂ we have a unique surface orthogonal to n̂ across which the first derivative of

all of the Φa vanishes. We denote such surface an n̂∗-surface.

For clarity we divide the following final arguments into 4 steps.

Step 1. Here we create an N -fold parity symmetric solution of the reduced prob-

lem ΦPN based on the original configuration Φ. First, we choose a coordinate system

{x0, x1, . . . , xN−1}. Next, we fold Φ N times by reflecting, for example, first the region

x0 > 0 onto the region x0 < 0 after adjusting x̂∗0-surface at x0 = 0, then the region x1 > 0

onto x1 < 0, and so on. The configuration after N reflections is denoted ΦPN . It is easy to

see that ΦPN has mirror symmetries (parity) across all of the x̂∗i surfaces and is a solution

of the reduced problem.

Step 2. The uniqueness of x0 = t∗ = 0 isolates the point ~x = 0 as the intersection of

the N reflection surfaces of ΦPN . The point ~x = 0 is the physical centre of the bounce. It

is easy to see that the centre of the bounce is unique, namely that any reflection surface

(orthogonal to some arbitrary direction n̂) must pass through ~x = 0. To see this, consider

a surface orthogonal to some direction n̂ that is a linear combination of the original x̂i.

If the new surface does not pass through ~x = 0, say it is displaced from the origin by an

impact parameter d, then by a combination of N reflections across the original x̂i axes we

can construct a new surface parallel to the first one and displaced from it by 2d along n̂,

in contradiction with the uniqueness of the reflection surface per direction n̂.

Step 3. ΦPN is invariant to O(N) rotations around ~x = 0. Consider ΦPN
a (~y) for some

arbitrary point ~y. An infinitesimal O(N) rotation takes ΦPN
a (~y) → ΦPN

a (~y + εn̂), where

n̂ · ~y = 0. Assigning the coordinate x0 to the direction n̂, the coordinate x1 to ŷ, and using

eq. (3.22) we find

δΦPN
a = ε

(
∂ΦPN

a

∂x0

)
x0=0

= 0. (3.23)

Thus ΦPN is O(N) invariant. Figure 1 illustrates the construction for N = 3.

– 6 –
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Figure 1. One, two, three orthogonal t∗-surfaces for a bounce in N=3.

Step 4. Finally, we show the O(N) invariance of the original configuration Φ. From

step 3 we know that after N reflection operations, the original Φ becomes the O(N) sym-

metric ΦPN . Take one step back and consider the configuration ΦPN−1 obtained after N−1

reflections. Note that from ΦPN−1 we obtain an N -fold parity invariant configuration, and

therefore an O(N) symmetric configuration, both if we reflect the region xN−1 > 0 onto

the region xN−1 < 0 or vice-verse, xN−1 < 0 onto xN−1 > 0. Given a continuously differen-

tiable U we know that solutions of the reduced problem are continuous.3 From continuity

it follows that ΦPN−1 must already be O(N) symmetric. Tracking the argument N − 1

times backwards we conclude that the original configuration Φ is O(N) symmetric.

4 Complementary results in the math literature, and some examples

A proof of O(N) invariance of the solution of a functional minimization problem equivalent

to our reduced problem was given by Lopes [14], albeit without reference to action extrem-

ization. While it differs in details, the basic construction in [14] resembles ours: identifying

hyper-surfaces that divide equally the potential and kinetic energy of the field configura-

tion. More recently, ref. [15] presented a proof that parallels ours (though, again, differing

in details) and extends to N = 2, and discussed the connection to action extremization via

the scaling argument.

Our proof of O(N) symmetry (and likewise the proofs in [14, 15]) assumes the existence

of a solution — a minimizer — of the reduced problem. An important caveat is that, in

some cases, a minimizer may not exist. Ref. [16] addressed this problem, without attending

to the question of radial symmetry. For N ≥ 3, the existence of a minimizer was established

for continuous U(Φ) satisfying U(0) = 0, subject to the following additional conditions:4

(R1) lim sup
|Φ|→∞

|Φ|−
2N
N−2 U(Φ) ≥ 0,

(R2) lim sup
|Φ|→0

|Φ|−
2N
N−2 U(Φ) ≥ 0,

(R3) U is somewhere negative,

3A solution of the reduced problem satisfies an elliptic differential equation given by eq. (2.1) with

(∂U/∂Φa)→ λ2 (∂U/∂Φa) with λ2 > 0, and so it is continuous for continuously differentiable U .
4We choose to work with (2.6–2.8) of [16], rather than their (2.5).

– 7 –
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(R4) (i) lim sup
|Φ|→∞

|Φ|−
2N
N−2 |U(Φ)| = 0,

or

(ii) U ∈ C1 (Rm \ {0}) and |∇U(Φ)| ≤ C + C|Φ|
N+2
N−2 ,

or

(iii) U ∈ C1 (Rm \ {0}) and |∇U(Φ)| ≤ C + C|Φ|q−1 and |Φ|
2N
N−2 + |U(Φ)| ≥ α|Φ|q −

C,

where α,C > 0 are inessential positive constants and q ≥ 2N/(N − 2).

The set-up of continuous U(Φ) with U(0) = 0, along with conditions (R2)–(R3)

(and U ∈ C1 (Rm \ {0}) in (R4)(ii), (R4)(iii)), are guaranteed by our initial assumptions

(A1)–(A4).

Condition (R1) requires the potential to be either stabilised — that is, positive — far

away in field space, or, if it admits a runaway, the runaway slope is bounded by 2N/(N−2).

In particular, for N = 4, a potential of the form lim
|Φ|→∞

U(Φ) ∼ −λ|Φ|4 formally fails (R1).

Conditions (A1)–(A4), (R1)–(R3), and (R4)(ii–iii) are satisfied, for example, by the

polynomial potentials of ref. [5], as well as by many other supersymmetric potentials.

U(Φ) = ca1a2Φa1Φa2 + . . .+ ca1...anΦa1 · · · Φan (4.1)

with finite n, positive eigenvalues for ca1a2 , and highest order terms ca1...an constrained to

guarantee lim
|Φ|→∞

U(Φ) > 0. The potentials of [5], for example, fulfil these requirements, as

do many other supersymmetric potentials.

A common exercise in the QFT literature is to study effective finite-order polynomial

potentials, assumed to represent an expansion in the vicinity of some false vacuum. The

quartic potentials studied in [7–9] give recent examples. Allowing a quartic runaway, these

potentials formally violate (R1). However, the discussion in these models (and many other

examples) is limited in the first place to a finite region in field space, |Φ| < Λ. To analyze

“little bounces” constrained to lie within |Φ| < Λ, we are free to deform the potential such

that U(Φ) > 0 for Φ > Λ, satisfying (A1)–(A4) and (R1)–(R4).

5 Summary

We have considered scalar multi-field solutions of the Euclidean equations of motion

(EOM). The reduced problem is defined as the problem of finding a field configuration

vanishing at infinity that minimizes the kinetic energy T at some fixed negative potential

energy V . Ref. [2] proved that, for N > 2 Euclidean dimensions, if a solution of the reduced

problem exists, then for appropriately chosen value of V it is a minimum action solution of

the EOM. It is the bounce [1], and dominates the decay of the false vacuum. Ref. [2] further

showed that, for a single scalar field, the bounce is invariant under O(N) rotations around

its centre. To our knowledge, a proof of O(N) symmetry of the bounce in the multi-field

case has not been reported in the QFT literature.

We made progress towards closing this gap and proved that if a solution of the reduced

problem exists, then it and the minimum action solution of the multi-field equations derived

– 8 –
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from it are indeed O(N) symmetric. We reviewed complimentary results from the math

literature [14, 15]. The task of finding a proof of existence for a solution of the reduced

problem was addressed in [16], leading to a positive answer — for example — for finite-order

polynomial potentials that are stabilised at |Φ| → ∞.

Interesting related questions include: (i) we have considered only canonical kinetic

terms. What happens to the answer when more general kinetic terms are allowed? (ii)

what happens to the answer when gravity is included? (iii) while the minimum-action

bounce is O(N)-symmetric, an actual bubble nucleating in some cosmological set-up would

not be, due to quantum fluctuations. How does one quantify the deviation from sphericity?
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